WorldWideScience

Sample records for cancer genome atlas

  1. Cancer Genome Atlas Pan-cancer Analysis Project

    OpenAIRE

    Zhang, Kun; Wang, Hong

    2015-01-01

    Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA) Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, p...

  2. Cancer Genome Atlas Pan-cancer Analysis Project

    Directory of Open Access Journals (Sweden)

    Kun ZHANG

    2015-04-01

    Full Text Available Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, protein and epigenetic level, The results contain a wealth of data provides us with an opportunity for common, personality and new ideas throughout the cancer lineages form a whole description. Pan-cancer genome program first compares the 12 kinds of cancer types. Analysis of different tumor molecular changes and their functions, will tell us how effective treatment method is applied to a similar phenotype of the tumor.

  3. [Cancer Genome Atlas Pan-cancer Analysis Project].

    Science.gov (United States)

    Zhang, Kun; Wang, Hong

    2015-04-01

    Cancer can exhibit different forms depending on the site of origin, cell types, the different forms of genetic mutations which also affect cancer therapeutic effect. Although many genes have been demonstrated to change a direct result of the change in phenotype, however, many cancers lineage complex molecular mechanisms are still not fully elucidated. Therefore, The Cancer Genome Atlas (TCGA) Research Network analyzed a large human tumors, in order to find the molecular changes in DNA, RNA, protein and epigenetic level, The results contain a wealth of data provides us with an opportunity for common, personality and new ideas throughout the cancer lineages form a whole description. Pan-cancer genome program first compares the 12 kinds of cancer types. Analysis of different tumor molecular changes and their functions, will tell us how effective treatment method is applied to a similar phenotype of the tumor. PMID:25936886

  4. Large-scale profiling of microRNAs for The Cancer Genome Atlas.

    Science.gov (United States)

    Chu, Andy; Robertson, Gordon; Brooks, Denise; Mungall, Andrew J; Birol, Inanc; Coope, Robin; Ma, Yussanne; Jones, Steven; Marra, Marco A

    2016-01-01

    The comprehensive multiplatform genomics data generated by The Cancer Genome Atlas (TCGA) Research Network is an enabling resource for cancer research. It includes an unprecedented amount of microRNA sequence data: ~11 000 libraries across 33 cancer types. Combined with initiatives like the National Cancer Institute Genomics Cloud Pilots, such data resources will make intensive analysis of large-scale cancer genomics data widely accessible. To support such initiatives, and to enable comparison of TCGA microRNA data to data from other projects, we describe the process that we developed and used to generate the microRNA sequence data, from library construction through to submission of data to repositories. In the context of this process, we describe the computational pipeline that we used to characterize microRNA expression across large patient cohorts.

  5. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas.

    Science.gov (United States)

    Schwartz, Harvey; Scroggins, Brad; Zuehlke, Abbey; Kijima, Toshiki; Beebe, Kristin; Mishra, Alok; Neckers, Len; Prince, Thomas

    2015-09-01

    The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas. PMID:26070366

  6. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS

    Science.gov (United States)

    Geifman, Nophar; Butte, Atul J.

    2016-01-01

    Open clinical trial data offer many opportunities for the scientific community to independently verify published results, evaluate new hypotheses and conduct meta-analyses. These data provide a springboard for scientific advances in precision medicine but the question arises as to how representative clinical trials data are of cancer patients overall. Here we present the integrative analysis of data from several cancer clinical trials and compare these to patient-level data from The Cancer Genome Atlas (TCGA). Comparison of cancer type-specific survival rates reveals that these are overall lower in trial subjects. This effect, at least to some extent, can be explained by the more advanced stages of cancer of trial subjects. This analysis also reveals that for stage IV cancer, colorectal cancer patients have a better chance of survival than breast cancer patients. On the other hand, for all other stages, breast cancer patients have better survival than colorectal cancer patients. Comparison of survival in different stages of disease between the two datasets reveals that subjects with stage IV cancer from the trials dataset have a lower chance of survival than matching stage IV subjects from TCGA. One likely explanation for this observation is that stage IV trial subjects have lower survival rates since their cancer is less likely to respond to treatment. To conclude, we present here a newly available clinical trials dataset which allowed for the integration of patient-level data from many cancer clinical trials. Our comprehensive analysis reveals that cancer-related clinical trials are not representative of general cancer patient populations, mostly due to their focus on the more advanced stages of the disease. These and other limitations of clinical trials data should, perhaps, be taken into consideration in medical research and in the field of precision medicine. PMID:26776196

  7. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS.

    Science.gov (United States)

    Geifman, Nophar; Butte, Atul J

    2016-01-01

    Open clinical trial data offer many opportunities for the scientific community to independently verify published results, evaluate new hypotheses and conduct meta-analyses. These data provide a springboard for scientific advances in precision medicine but the question arises as to how representative clinical trials data are of cancer patients overall. Here we present the integrative analysis of data from several cancer clinical trials and compare these to patient-level data from The Cancer Genome Atlas (TCGA). Comparison of cancer type-specific survival rates reveals that these are overall lower in trial subjects. This effect, at least to some extent, can be explained by the more advanced stages of cancer of trial subjects. This analysis also reveals that for stage IV cancer, colorectal cancer patients have a better chance of survival than breast cancer patients. On the other hand, for all other stages, breast cancer patients have better survival than colorectal cancer patients. Comparison of survival in different stages of disease between the two datasets reveals that subjects with stage IV cancer from the trials dataset have a lower chance of survival than matching stage IV subjects from TCGA. One likely explanation for this observation is that stage IV trial subjects have lower survival rates since their cancer is less likely to respond to treatment. To conclude, we present here a newly available clinical trials dataset which allowed for the integration of patient-level data from many cancer clinical trials. Our comprehensive analysis reveals that cancer-related clinical trials are not representative of general cancer patient populations, mostly due to their focus on the more advanced stages of the disease. These and other limitations of clinical trials data should, perhaps, be taken into consideration in medical research and in the field of precision medicine.

  8. The Cancer Genome Atlas expression profiles of low-grade gliomas.

    Science.gov (United States)

    Gonda, David D; Cheung, Vincent J; Muller, Karra A; Goyal, Amit; Carter, Bob S; Chen, Clark C

    2014-04-01

    Differentiating between low-grade gliomas (LGGs) of astrocytic and oligodendroglial origin remains a major challenge in neurooncology. Here the authors analyzed The Cancer Genome Atlas (TCGA) profiles of LGGs with the goal of identifying distinct molecular characteristics that would afford accurate and reliable discrimination of astrocytic and oligodendroglial tumors. They found that 1) oligodendrogliomas are more likely to exhibit the glioma-CpG island methylator phenotype (G-CIMP), relative to low-grade astrocytomas; 2) relative to oligodendrogliomas, low-grade astrocytomas exhibit a higher expression of genes related to mitosis, replication, and inflammation; and 3) low-grade astrocytic tumors harbor microRNA profiles similar to those previously described for glioblastoma tumors. Orthogonal intersection of these molecular characteristics with existing molecular markers, such as IDH1 mutation, TP53 mutation, and 1p19q status, should facilitate accurate and reliable pathological diagnosis of LGGs.

  9. The Genome Atlas Resource

    OpenAIRE

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik; Hansson, Lena; Ussery, David

    2010-01-01

    Abstract. The Genome Atlas is a resource for addressing the challenges of synchronising prokaryotic genomic sequence data from multiple public repositories. This resource can integrate bioinformatic analyses in various data format and quality. Existing open source tools have been used together with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The r...

  10. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik;

    2010-01-01

    Abstract. The Genome Atlas is a resource for addressing the challenges of synchronising prokaryotic genomic sequence data from multiple public repositories. This resource can integrate bioinformatic analyses in various data format and quality. Existing open source tools have been used together...... with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  11. Association analysis of a chemo-response signature identified within The Cancer Genome Atlas aimed at predicting genetic risk for chemo-response in ovarian cancer

    Science.gov (United States)

    Salinas, Erin A; Newtson, Andreea M; Leslie, Kimberly K; Gonzalez-Bosquet, Jesus

    2016-01-01

    Background: A gene signature associated with chemo-response in ovarian cancer was created through integration of biological data in The Cancer Genome Atlas (TCGA) and validated in five independent microarray experiments. Our study aimed to determine if single nucleotide polymorphisms (SNPs) within the 422-gene signature were associated with a genetic predisposition to platinum-based chemotherapy response in serous ovarian cancer. Methods: An association analysis between SNPs within the 422-gene signature and chemo-response in serous ovarian cancer was performed under the log-additive genetic model using the ‘SNPassoc’ package within the R environment (p<0.0001). Subsequent validation of statistically significant SNPs was done in the Ovarian Cancer Association Consortium (OCAC) database. Results: 19 SNPs were found to be associated with chemo-response with statistical significance. None of the SNPs found significant in TCGA were validated within OCAC for the outcome of interest, chemo-response. Conclusions: SNPs associated with chemo-response in ovarian cancer within TGCA database were not validated in a larger database of patients and controls from OCAC. New strategies integrating somatic and germline information may help to characterize genetic predictors for treatment response in ovarian cancer. PMID:27186327

  12. Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: A Linkage to The Cancer Genome Atlas Project and Prediction of Survival

    Science.gov (United States)

    von Rundstedt, Friedrich-Carl; Rajapakshe, Kimal; Ma, Jing; Arnold, James M.; Gohlke, Jie; Putluri, Vasanta; Krishnapuram, Rashmi; Piyarathna, D. Badrajee; Lotan, Yair; Gödde, Daniel; Roth, Stephan; Störkel, Stephan; Levitt, Jonathan M.; Michailidis, George; Sreekumar, Arun; Lerner, Seth P.; Coarfa, Cristian; Putluri, Nagireddy

    2016-01-01

    Purpose We used targeted mass spectrometry to study the metabolic fingerprint of urothelial cancer and determine whether the biochemical pathway analysis gene signature would have a predictive value in independent cohorts of patients with bladder cancer. Materials and Methods Pathologically evaluated, bladder derived tissues, including benign adjacent tissue from 14 patients and bladder cancer from 46, were analyzed by liquid chromatography based targeted mass spectrometry. Differential metabolites associated with tumor samples in comparison to benign tissue were identified by adjusting the p values for multiple testing at a false discovery rate threshold of 15%. Enrichment of pathways and processes associated with the metabolic signature were determined using the GO (Gene Ontology) Database and MSigDB (Molecular Signature Database). Integration of metabolite alterations with transcriptome data from TCGA (The Cancer Genome Atlas) was done to identify the molecular signature of 30 metabolic genes. Available outcome data from TCGA portal were used to determine the association with survival. Results We identified 145 metabolites, of which analysis revealed 31 differential metabolites when comparing benign and tumor tissue samples. Using the KEGG (Kyoto Encyclopedia of Genes and Genomes) Database we identified a total of 174 genes that correlated with the altered metabolic pathways involved. By integrating these genes with the transcriptomic data from the corresponding TCGA data set we identified a metabolic signature consisting of 30 genes. The signature was significant in its prediction of survival in 95 patients with a low signature score vs 282 with a high signature score (p = 0.0458). Conclusions Targeted mass spectrometry of bladder cancer is highly sensitive for detecting metabolic alterations. Applying transcriptome data allows for integration into larger data sets and identification of relevant metabolic pathways in bladder cancer progression. PMID:26802582

  13. Exploring TCGA Pan-Cancer Data at the UCSC Cancer Genomics Browser

    OpenAIRE

    Cline, Melissa S.; Brian Craft; Teresa Swatloski; Mary Goldman; Singer Ma; David Haussler; Jingchun Zhu

    2013-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) offers interactive visualization and exploration of TCGA genomic, phenotypic, and clinical data, as produced by the Cancer Genome Atlas Research Network. Researchers can explore the impact of genomic alterations on phenotypes by visualizing gene and protein expression, copy number, DNA methylation, somatic mutation and pathway inference data alongside clinical features, Pan-Cancer subtype classifications and genomic biomarkers....

  14. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  15. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: an analysis of The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Cong D

    2015-08-01

    Full Text Available Dan Cong,1 Mengzi He,2 Silin Chen,2 Xiaoli Liu,1 Xiaodong Liu,2 Hui Sun11Jilin Provincial Key Laboratory of Surgical Translational Medicine, Department of Thyroid and Parathyroid Surgery, People’s Republic of China–Japan Union Hospital, 2Key Laboratory of Radiobiology (Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of ChinaAbstract: In the present study, we analyzed microRNA (miRNA and gene expression profiles using 499 papillary thyroid carcinoma (PTC samples and 58 normal thyroid tissues obtained from The Cancer Genome Atlas database. A pivotal regulatory network of 18 miRNA and 16 targets was identified. Upregulated miRNAs (miR-222, miR-221, miR-146b, miR-181a/b/d, miR-34a, and miR-424 and downregulated miRNAs (miR-9-1, miR-138, miR-363, miR-20b, miR-195, and miR-152 were identified. Among them, the upregulation of miR-424 and downregulation of miR-363, miR-195, and miR-152 were not previously identified. The genes CCNE2 (also known as cyclin E2, E2F1, RARA, CCND1 (cyclin D1, RUNX1, ITGA2, MET, CDKN1A (p21, and COL4A1 were overexpressed, and AXIN2, TRAF6, BCL2, RARB, HSP90B1, FGF7, and PDGFRA were downregulated. Among them, CCNE2, COL4A1, TRAF6, and HSP90B1 were newly identified. Based on receiver operating characteristic curves, several miRNAs (miR-222, miR-221, and miR-34a and genes (CCND1 and MET were ideal diagnostic indicators, with sensitivities and specificities greater than 90%. The combination of inversely expressed miRNAs and targets improved diagnostic accuracy. In a clinical feature analysis, several miRNAs (miR-34a, miR-424, miR-20b, and miR-152 and genes (CCNE2, COL4A1, TRAF6, and HSP90B1 were associated with aggressive clinical features, which have not previously been reported. Our study not only identified a pivotal miRNA regulatory network associated with PTC but also provided evidence that miRNAs and target genes can be used as biomarkers in PTC diagnosis and clinical

  16. Data and analysis of the cancer genome atlas%癌症基因组图谱计划数据及分析

    Institute of Scientific and Technical Information of China (English)

    邓祯祥(综述); 李金明(审校)

    2014-01-01

    Multiple chromosomal aberrations, nucleotide substitutions, and epigenetic modifications may occur in human cancer cells, which drive malignant transformation. The Cancer Genome Atlas (TCGA) project aims to promote large-scale multi-dimensional analysis of these molecular characteristics in human cancer and rapidly provide data to researchers. In this study, we introduce four flow paths of the production of TCGA data, the collections of various cancer types, the data category and level, and the standardized pipeline of data analysis, as well as several existing data analytical tools. We used ovarian cancer as an example to introduce the application of the TCGA data in the analyses of mutation, copy number, analysis, and expression. We summarized the important findings of glioblasto-ma by TCGA teams.%人类癌症细胞中通常藏匿着多种引起恶性病变的染色体变异,核酸替换和表观遗传修饰。癌症基因组图谱(the can-cer genome atlas,TCGA)计划的目标是获取、刻画并分析人类癌症中大规模、多种变异的分子特征,并且为癌症研究者迅速地提供数据。本文对TCGA数据的四个产生流程以及包含的癌症种类、数据类型、数据水平、分析流程和常用的几种分析工具等进行阐述,同时以卵巢癌(ovarian cancer)为例详细介绍了TCGA数据在突变分析、拷贝数分析、表达分析和通路分析等方面的应用,并对TCGA研究团队近几年有关胶质母细胞瘤(glioblastoma,GBM)的研究方法和结果以及已经完成分析的癌症类型进行综述。

  17. Center for Cancer Genomics | Office of Cancer Genomics

    Science.gov (United States)

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  18. Significance of the BRAF mRNA Expression Level in Papillary Thyroid Carcinoma: An Analysis of The Cancer Genome Atlas Data.

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    Full Text Available BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC, and it is associated with high-risk prognostic factors. However, the significance of the BRAF mRNA level in PTC remains unknown. We evaluated the significance of BRAF mRNA expression level by analyzing PTC data from The Cancer Genome Atlas (TCGA database.Data from 499 patients were downloaded from the TCGA database. After excluding other PTC variants, we selected 353 cases of classic PTC, including 193 cases with BRAFV600E and 160 cases with the wild-type BRAF. mRNA abundances were measured using RNA-Seq with the Expectation Maximization algorithm.The mean BRAF mRNA level was significantly higher in BRAFV600E patients than in patients with wild-type BRAF (197.6 vs. 179.3, p = 0.031. In wild-type BRAF patients, the mean BRAF mRNA level was higher in cases with a tumor > 2 cm than those with a tumor ≤ 2.0 cm (189.4 vs. 163.8, p = 0.046, and was also higher in cases with lymph node metastasis than in those without lymph node metastasis (188.5 vs. 157.9, p = 0.040. Within BRAFV600E patients, higher BRAF mRNA expression was associated with extrathyroidal extension (186.4 vs. 216.4, p = 0.001 and higher T stage (188.1 vs. 210.2, p = 0.016.A higher BRAF mRNA expression level was associated with tumor aggressiveness in classic PTC regardless of BRAF mutational status. Evaluation of BRAF mRNA level may be helpful in prognostic risk stratification of PTC.

  19. The evolving role of cancer cell line-based screens to define the impact of cancer genomes on drug response ?

    OpenAIRE

    Garnett, Mathew J.; McDermott, Ultan

    2014-01-01

    Over the last decade we have witnessed the convergence of two powerful experimental designs toward a common goal of defining the molecular subtypes that underpin the likelihood of a cancer patient responding to treatment in the clinic. The first of these ‘experiments’ has been the systematic sequencing of large numbers of cancer genomes through the International Cancer Genome Consortium and The Cancer Genome Atlas. This endeavour is beginning to yield a complete catalogue of the cancer genes ...

  20. Genomic Data Commons | Office of Cancer Genomics

    Science.gov (United States)

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  1. Collaborators | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  2. Translating the cancer genome: Going beyond p values

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Lynda; Chin, Lynda; Gray, Joe W.

    2008-04-03

    Cancer cells are endowed with diverse biological capabilities driven by myriad inherited and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant pathways. Efforts to elucidate these aberrations began with Boveri's hypothesis of aberrant mitoses causing cancer and continue today with a suite of powerful high-resolution technologies that enable detailed catalogues of genomic aberrations and epigenomic modifications. Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual cancers. The challenge now is to discern causal molecular abnormalities from genomic and epigenomic 'noise', to understand how the ensemble of these aberrations collaborate to drive cancer pathophysiology. Here, we highlight lessons learned from now classical examples of successful translation of genomic discoveries into clinical practice, lessons that may be used to guide and accelerate translation of emerging genomic insights into practical clinical endpoints that can impact on practice of cancer medicine.

  3. Programs | Office of Cancer Genomics

    Science.gov (United States)

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  4. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions.

  5. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  6. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.

    Science.gov (United States)

    Zhang, Junjun; Baran, Joachim; Cros, A; Guberman, Jonathan M; Haider, Syed; Hsu, Jack; Liang, Yong; Rivkin, Elena; Wang, Jianxin; Whitty, Brett; Wong-Erasmus, Marie; Yao, Long; Kasprzyk, Arek

    2011-01-01

    The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal. PMID:21930502

  7. Contact | Office of Cancer Genomics

    Science.gov (United States)

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  8. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabe, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolas, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clement, Bruno; de Alava, Enrique; Degos, Francoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayes, Monica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; Lopez-Otin, Carlos; Majumder, Partha; Marra, Marco; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R.; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Campbell, Peter J.; Flicek, Paul; Getz, Gad; Guigo, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; Lopez-Bigas, Nuria; Luo, Ruibang; Pearson, John V.; Puente, Xose S.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D.; Guigo, Roderic; Hubbard, Tim J.; Joly, Yann; Jones, Steven M.; Lathrop, Mark; Lopez-Bigas, Nuria; Ouellette, B. F. Francis; Spellman, Paul T.; Teague, Jon W.; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L.; Axton, Myles; Dyke, Stephanie O. M.; Futreal, P. Andrew; Gunter, Chris; Guyer, Mark; McPherson, John D.; Miller, Linda J.; Ozenberger, Brad; Kasprzyk, Arek; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R. C.; Hasel, Karl W.; Joly, Yann; Kaan, Terry S. H.; Kennedy, Karen L.; Knoppers, Bartha M.; Lowrance, William W.; Masui, Tohru; Nicolas, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M.; Biankin, Andrew V.; Bowtell, David D. L.; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Scarpa, Aldo; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A.; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Joerg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlen, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R.; Futreal, P. Andrew; Birney, Ewan; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; Stunnenberg, Hendrik G.; Thomas, Gilles; van de Vijver, Marc; van't Veer, Laura; Birnbaum, Daniel; Blanche, Helene; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D.; Lathrop, Mark; Pauporte, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Joerg; Treilleux, Isabelle; Bioulac-Sage, Paulette; Clement, Bruno; Decaens, Thomas; Degos, Francoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic

  9. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2015-09-01

    Full Text Available Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1. The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.

  10. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  11. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Science.gov (United States)

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  12. New study reveals relatively few mutations in AML genomes - TCGA

    Science.gov (United States)

    Investigators for The Cancer Genome Atlas (TCGA) Research Network have detailed and broadly classified the genomic alterations that frequently underlie the development of acute myeloid leukemia (AML).

  13. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  14. Genomic determinants of cancer immunotherapy.

    Science.gov (United States)

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.

  15. Genomic profiling of breast cancer.

    Science.gov (United States)

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling.

  16. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Science.gov (United States)

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  17. Dana-Farber Cancer Institute | Office of Cancer Genomics

    Science.gov (United States)

    Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.

  18. International network of cancer genome projects.

    OpenAIRE

    Aretz, Axel; Bernabé, Rosa R.; Eerola, Iiro; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Lane, David P; Laplace, Frank; Nettekoven, Gerd; Remacle, Jacques; WATANABE, Koichi; Yuen, Matthew M. F.; Knoppers, Bartha M.

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeut...

  19. Translating genomics in cancer care.

    Science.gov (United States)

    Bombard, Yvonne; Bach, Peter B; Offit, Kenneth

    2013-11-01

    There is increasing enthusiasm for genomics and its promise in advancing personalized medicine. Genomic information has been used to personalize health care for decades, spanning the fields of cardiovascular disease, infectious disease, endocrinology, metabolic medicine, and hematology. However, oncology has often been the first test bed for the clinical translation of genomics for diagnostic, prognostic, and therapeutic applications. Notable hereditary cancer examples include testing for mutations in BRCA1 or BRCA2 in unaffected women to identify those at significantly elevated risk for developing breast and ovarian cancers, and screening patients with newly diagnosed colorectal cancer for mutations in 4 mismatch repair genes to reduce morbidity and mortality in their relatives. Somatic genomic testing is also increasingly used in oncology, with gene expression profiling of breast tumors and EGFR testing to predict treatment response representing commonly used examples. Health technology assessment provides a rigorous means to inform clinical and policy decision-making through systematic assessment of the evidentiary base, along with precepts of clinical effectiveness, cost-effectiveness, and consideration of risks and benefits for health care delivery and society. Although this evaluation is a fundamental step in the translation of any new therapeutic, procedure, or diagnostic test into clinical care, emerging developments may threaten this standard. These include "direct to consumer" genomic risk assessment services and the challenges posed by incidental results generated from next-generation sequencing (NGS) technologies. This article presents a review of the evidentiary standards and knowledge base supporting the translation of key cancer genomic technologies along the continuum of validity, utility, cost-effectiveness, health service impacts, and ethical and societal issues, and offers future research considerations to guide the responsible introduction of

  20. Clinical Implications of the Cancer Genome

    OpenAIRE

    MacConaill, Laura E; Garraway, Levi A

    2010-01-01

    Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empow...

  1. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity | Office of Cancer Genomics

    Science.gov (United States)

    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools 'expanding ploidy and allele frequency on nested subpopulations' (EXPANDS) and PyClone to detect clones that are present at a ≥10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman's correlation coefficient, ρ = 0.24-0.41; P < 0.001).

  2. Integration of genomics in cancer care

    DEFF Research Database (Denmark)

    Santos, Erika Maria Monteiro; Edwards, Quannetta T; Floria-Santos, Milena;

    2013-01-01

    PURPOSE: The article aims to introduce nurses to how genetics-genomics is currently integrated into cancer care from prevention to treatment and influencing oncology nursing practice. ORGANIZING CONSTRUCT: An overview of genetics-genomics is described as it relates to cancer etiology, hereditary...... cancer syndromes, epigenetics factors, and management of care considerations. METHODS: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. FINDINGS: Cancer is now known to be heterogeneous at the molecular level, with genetic......: Rapidly developing advances in genetics-genomics are changing all aspects of cancer care, with implications for nursing practice. CLINICAL RELEVANCE: Nurses can educate cancer patients and their families about genetic-genomic advances and advocate for use of evidence-based genetic-genomic practice...

  3. Application of statistical cancer atlas for 3D biopsy

    Science.gov (United States)

    Narayanan, Ramkrishnan; Shen, Dinggang; Davatzikos, Christos; Crawford, E. David; Barqawi, Albaha; Werahera, Priya; Kumar, Dinesh; Suri, Jasjit S.

    2008-02-01

    Prostate cancer is the most commonly diagnosed cancer in males in the United States and the second leading cause of cancer death. While the exact cause is still under investigation, researchers agree on certain risk factors like age, family history, dietary habits, lifestyle and race. It is also widely accepted that cancer distribution within the prostate is inhomogeneous, i.e. certain regions have a higher likelihood of developing cancer. In this regard extensive work has been done to study the distribution of cancer in order to perform biopsy more effectively. Recently a statistical cancer atlas of the prostate was demonstrated along with an optimal biopsy scheme achieving a high detection rate. In this paper we discuss the complete construction and application of such an atlas that can be used in a clinical setting to effectively target high cancer zones during biopsy. The method consists of integrating intensity statistics in the form of cancer probabilities at every voxel in the image with shape statistics of the prostate in order to quickly warp the atlas onto a subject ultrasound image. While the atlas surface can be registered to a pre-segmented subject prostate surface or instead used to perform segmentation of the capsule via optimization of shape parameters to segment the subject image, the strength of our approach lies in the fast mapping of cancer statistics onto the subject using shape statistics. The shape model was trained from over 38 expert segmented prostate surfaces and the atlas registration accuracy was found to be high suggesting the use of this method to perform biopsy in near real time situations with some optimization.

  4. Oncogenomic portals for the visualization and analysis of genome-wide cancer data.

    Science.gov (United States)

    Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr

    2016-01-01

    Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415

  5. Complete mitochondrial genome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae) and the phylogenetic relationship of Saturniidae species.

    Science.gov (United States)

    Chen, Miao-Miao; Li, Yan; Chen, Mo; Wang, Huan; Li, Qun; Xia, Run-Xi; Zeng, Cai-Yun; Li, Yu-Ping; Liu, Yan-Qun; Qin, Li

    2014-07-15

    Mitochondrial genome (mitogenome) can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. In this study, we present the complete mitogenome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae), a well-known silk-producing and ornamental insect with the largest wing surface area of all moths. The mitogenome of A. atlas is a circular molecule of 15,282 bp long, and its nucleotide composition shows heavily biased towards As and Ts, accounting for 79.30%. This genome comprises 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A+T-rich region. It is of note that this genome exhibits a slightly positive AT skew, which is different from the other known Saturniidae species. All PCGs are initiated by ATN codons, except for COI with CGA instead. Only six PCGs use a common stop codon of TAA or TAG, whereas the remaining seven use an incomplete termination codon T or TA. All tRNAs have the typical clover-leaf structure, with an exception for tRNA(Ser)(AGN). The A. atlas A+T-rich region contains non-repetitive sequences, but harbors several features common to the Bombycoidea insects. The phylogenetic relationships based on Maximum Likelihood method provide a well-supported outline of Saturniidae, which is in accordance with the traditional morphological classification and recent molecular works.

  6. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  7. Letter from the Director - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The NCI’s Clinical Proteomic Technologies for Cancer (CPTC) initiative is focused on developing a better understanding of cancer biology through the proteomic interrogation of genomically characterized tumors from sources such as The Cancer Genome Atlas.

  8. Genomic tumor evolution of breast cancer.

    Science.gov (United States)

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized. PMID:25998191

  9. ChromoHub V2: cancer genomics

    OpenAIRE

    Shah, Muhammad A; Denton, Emily L; Liu, Lihua; Schapira, Matthieu

    2013-01-01

    Summary: Cancer genomics data produced by next-generation sequencing support the notion that epigenetic mechanisms play a central role in cancer. We have previously developed Chromohub, an open access online interface where users can map chemical, structural and biological data from public repositories on phylogenetic trees of protein families involved in chromatin mediated-signaling. Here, we describe a cancer genomics interface that was recently added to Chromohub; the frequency of mutation...

  10. Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks

    Science.gov (United States)

    Lin, Shengda; Yin, Yi A.; Jiang, Xiaoqian; Sahni, Nidhi; Yi, Song

    2016-01-01

    The advent of the human genome sequence and the resulting ~20,000 genes provide a crucial framework for a transition from traditional biology to an integrative “OMICs” arena (Lander et al., 2001; Venter et al., 2001; Kitano, 2002). This brings in a revolution for cancer research, which now enters a big data era. In the past decade, with the facilitation by next-generation sequencing, there have been a huge number of large-scale sequencing efforts, such as The Cancer Genome Atlas (TCGA), the HapMap, and the 1000 genomes project. As a result, a deluge of genomic information becomes available from patients stricken by a variety of cancer types. The list of cancer-associated genes is ever expanding. New discoveries are made on how frequent and highly penetrant mutations, such as those in the telomerase reverse transcriptase (TERT) and TP53, function in cancer initiation, progression, and metastasis. Most genes with relatively frequent but weakly penetrant cancer mutations still remain to be characterized. In addition, genes that harbor rare but highly penetrant cancer-associated mutations continue to emerge. Here, we review recent advances related to cancer genomics, proteomics, and systems biology and suggest new perspectives in targeted therapy and precision medicine. PMID:27403431

  11. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed;

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been...... large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations....

  12. Prostate Cancer Genomics: Toward a New Understanding

    OpenAIRE

    John S Witte

    2008-01-01

    Recent genetics and genomics studies of prostate cancer help clarify the genetic basis of this common but complex disease. Genome-wide studies have detected numerous variants associated with disease as well as common gene fusions and expression ‘signatures’ in prostate tumors. Based on these results, some advocate gene-based individualized screening for prostate cancer, although such testing may only be worthwhile to distinguish disease aggressiveness. Lessons learned here provide strategies ...

  13. Characterizing the cancer genome in lung adenocarcinoma

    OpenAIRE

    Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A; Borecki, Ingrid B

    2007-01-01

    Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly ...

  14. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  15. The genomic landscape of prostate cancer

    Directory of Open Access Journals (Sweden)

    Sylvan eBaca

    2012-05-01

    Full Text Available Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.

  16. Novel patterns of cancer genome evolution

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Xiaodi Deng; Yu Zhang; Zhiguang Li

    2015-01-01

    Cells usually undergo a long journey of evolution during the progression from normal to precancerous cells and finally to full-fledged cancer cells. Multiple genomic aberrations are acquired during this journey that could either act as drivers to confer significant growth advantages or act as passengers with little effect on the tumor growth. Recent advances in sequencing technology have made it feasible to decipher the evolutionary course of a cancer cell on a genome-wide level by evaluating the relative number of mutated alleles. Novel terms such as chromothripsis and chromoplexy have been introduced to describe the newly identified patterns of cancer genome evolution. These new insights have greatly expanded our understanding of the initiation and progression of cancers, which should aid in improving the efficiency of cancer management and treatment.

  17. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    International Nuclear Information System (INIS)

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines

  18. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  19. Director's Update - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) has recently begun the proteomic interrogation of genomically-characterized tumors from The Cancer Genome Atlas.

  20. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Science.gov (United States)

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  1. An atlas of bovine gene expression reveals novel distinctive tissue characteristics and evidence for improving genome annotation

    Science.gov (United States)

    Background A comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines. Results The Bovine Gene...

  2. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  3. Childhood Cancer Genomics Gaps and Opportunities - Workshop Summary

    Science.gov (United States)

    NCI convened a workshop of representative research teams that have been leaders in defining the genomic landscape of childhood cancers to discuss the influence of genomic discoveries on the future of childhood cancer research.

  4. A prostate MRI atlas of biochemical failures following cancer treatment

    Science.gov (United States)

    Rusu, Mirabela; Kurhanewicz, John; Tewari, Ashutosh; Madabhushi, Anant

    2014-03-01

    Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa). Despite advancements in radiation delivery and surgical procedures, RP and RT can result in failure rates as high as 40% and >25%, respectively. Treatment failure is characterized by biochemical recurrence (BcR), which is defined in terms of prostate specific antigen (PSA) concentrations and its variation following treatment. PSA is expected to decrease following treatment, thereby its presence in even small concentrations (e.g 0.2 ng/ml for surgery or 2 ng/ml over the nadir PSA for radiation therapy) is indicative of treatment failure. Early identification of treatment failure may enable the use of more aggressive or neo-adjuvant therapies. Moreover, predicting failure prior to treatment may spare the patient from a procedure that is unlikely to be successful. Our goal is to identify differences on pre-treatment MRI between patients who have BcR and those who remain disease-free at 5 years post-treatment. Specifically, we focus on (1) identifying statistically significant differences in MRI intensities, (2) establishing morphological differences in prostatic anatomic structures, and (3) comparing these differences with the natural variability of prostatic structures. In order to attain these objectives, we use an anatomically constrained registration framework to construct BcR and non-BcR statistical atlases based on the pre-treatment magnetic resonance images (MRI) of the prostate. The patients included in the atlas either underwent RP or RT and were followed up for at least 5 years. The BcR atlas was constructed from a combined population of 12 pre-RT 1.5 Tesla (T) MRI and 33 pre-RP 3T MRI from patients with BcR within 5 years of treatment. Similarly, the non-BcR atlas was built based on a combined cohort of 20 pre-RT 1.5T MRI and 41 pre-RP 3T MRI from patients who remain disease-free 5 years post treatment. We chose the atlas framework as it

  5. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  6. Overview | Office of Cancer Genomics

    Science.gov (United States)

    The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative uses comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of hard-to-treat childhood cancers. TARGET aims to identify therapeutic targets and prognostic markers so that new, more effective treatment strategies can be developed and applied. Novel pediatric cancer treatments are needed because:

  7. Genomic analysis of epithelial ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    John Farley; Laurent L Ozbun; Michael J Birrer

    2008-01-01

    Ovarian cancer is a major health problem for women in the United States.Despite evidence of considerable heterogeneity,most cases of ovarian cancer are treated in a similar fashion.The molecular basis for the clinicopathologic characteristics of these tumors remains poorly defined.Whole genome expression profiling is a genomic tool,which can identify dysregulated genes and uncover unique sub-classes of tumors.The application of this technology to ovarian cancer has provided a solid molecular basis for differences in histology and grade of ovarian tumors.Differentially expressed genes identified pathways implicated in cell proliferation,invasion,motility,chromosomal instability,and gene silencing and provided new insights into the origin and potential treatment of these cancers.The added knowledge provided by global gene expression profiling should allow for a more rational treatment of ovarian cancers.These techniques are leading to a paradigm shift from empirical treatment to an individually tailored approach.This review summarizes the new genomic data on epithelial ovarian cancers of different histology and grade and the impact it will have on our understanding and treatment of this disease.

  8. Genome evolution during progression to breast cancer

    KAUST Repository

    Newburger, D. E.

    2013-04-08

    Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples. By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accelerated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing, neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations. Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

  9. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  10. Developing the atlas of cancer in Queensland: methodological issues

    Directory of Open Access Journals (Sweden)

    Mengersen Kerrie L

    2011-01-01

    Full Text Available Abstract Background Achieving health equity has been identified as a major challenge, both internationally and within Australia. Inequalities in cancer outcomes are well documented, and must be quantified before they can be addressed. One method of portraying geographical variation in data uses maps. Recently we have produced thematic maps showing the geographical variation in cancer incidence and survival across Queensland, Australia. This article documents the decisions and rationale used in producing these maps, with the aim to assist others in producing chronic disease atlases. Methods Bayesian hierarchical models were used to produce the estimates. Justification for the cancers chosen, geographical areas used, modelling method, outcome measures mapped, production of the adjacency matrix, assessment of convergence, sensitivity analyses performed and determination of significant geographical variation is provided. Conclusions Although careful consideration of many issues is required, chronic disease atlases are a useful tool for assessing and quantifying geographical inequalities. In addition they help focus research efforts to investigate why the observed inequalities exist, which in turn inform advocacy, policy, support and education programs designed to reduce these inequalities.

  11. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    NARCIS (Netherlands)

    Chin, L.; Meyerson, M.; Aldape, K.; Bigner, D.; Mikkelsen, T.; VandenBerg, S.; Kahn, A.; Penny, R.; Gerhard, D. S.; Getz, G.; Brennan, C.; Taylor, B. S.; Winckler, W.; Park, P.; Ladanyi, M.; Hoadley, K. A.; Verhaak, R. G. W.; Hayes, D. N.; Spellman, Paul T.; Absher, D.; Weir, B. A.; Ding, L.; Wheeler, D.; Lawrence, M. S.; Cibulskis, K.; Mardis, E.; Zhang, Jinghui; Wilson, R. K.; Donehower, L.; Wheeler, D. A.; Purdom, E.; Wallis, J.; Laird, P. W.; Herman, J. G.; Schuebel, K. E.; Weisenberger, D. J.; Baylin, S. B.; Schultz, N.; Yao, Jun; Wiedemeyer, R.; Weinstein, J.; Sander, C.; Gibbs, R. A.; Gray, J.; Kucherlapati, R.; Lander, E. S.; Myers, R. M.; Perou, C. M.; McLendon, Roger; Friedman, Allan; Van Meir, Erwin G; Brat, Daniel J; Mastrogianakis, Gena Marie; Olson, Jeffrey J; Lehman, Norman; Yung, W. K. Alfred; Bogler, Oliver; Berger, Mitchel; Prados, Michael; Muzny, Donna; Morgan, Margaret; Scherer, Steve; Sabo, Aniko; Nazareth, Lynn; Lewis, Lora; Hall, Otis; Zhu, Yiming; Ren, Yanru; Alvi, Omar; Yao, Jiqiang; Hawes, Alicia; Jhangiani, Shalini; Fowler, Gerald; San Lucas, Anthony; Kovar, Christie; Cree, Andrew; Dinh, Huyen; Santibanez, Jireh; Joshi, Vandita; Gonzalez-Garay, Manuel L.; Miller, Christopher A.; Milosavljevic, Aleksandar; Sougnez, Carrie; Fennell, Tim; Mahan, Scott; Wilkinson, Jane; Ziaugra, Liuda; Onofrio, Robert; Bloom, Toby; Nicol, Rob; Ardlie, Kristin; Baldwin, Jennifer; Gabriel, Stacey; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.; O'Kelly, Michael; Robinson, Jim; Alexe, Gabriele; Beroukhim, Rameen; Carter, Scott; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd; Protopopov, Alexei; Perna, Ilana; Aronson, Sandy; Sathiamoorthy, Narayan; Ren, Georgia; Kim, Hyunsoo; Kong, Sek Won; Xiao, Yonghong; Kohane, Isaac S.; Seidman, Jon; Cope, Leslie; Pan, Fei; Van Den Berg, David; Van Neste, Leander; Yi, Joo Mi; Li, Jun Z.; Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin; Brooks, James D.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Choi, Yoon Gi; Han, Ju; Ray, Amrita; Wang, Victoria; Durinck, Steffen; Robinson, Mark; Wang, Nicholas J.; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Fontenay, Gerald V.; Ngai, John; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.; Speed, Terence P.; Socci, Nicholas D.; Olshen, Adam; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Qin, Li-Xuan; Seshan, Venkatraman E.; Villafania, Liliana; Cavatore, Magali; Borsu, Laetitia; Viale, Agnes; Gerald, William; Topal, Michael D.; Qi, Yuan; Balu, Sai; Shi, Yan; Wu, George; Bittner, Michael; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin; Schaefer, Carl; Madhavan, Subha; Buetow, Ken; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter; Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth

    2008-01-01

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular char

  12. TCGA researchers identify 4 subtypes of stomach cancer

    Science.gov (United States)

    Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c

  13. Glossary | Office of Cancer Genomics

    Science.gov (United States)

    A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z     B Bioinformatics The use of computing tools to manage and analyze genomic and molecular biological data.

  14. Resources | Office of Cancer Genomics

    Science.gov (United States)

    OCG provides a variety of scientific and educational resources for both cancer researchers and members of the general public. These resources are divided into the following types: OCG-Supported Resources: Tools, databases, and reagents generated by initiated and completed OCG programs for researchers, educators, and students. (Note: Databases for current OCG programs are available through program-specific data matrices)

  15. Childhood Cancer Genomics (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genomics of childhood cancer. The summary describes the molecular subtypes for specific pediatric cancers and their associated clinical characteristics, the recurring genomic alterations that characterize each subtype at diagnosis or relapse, and the therapeutic and prognostic significance of the genomic alterations. The genomic alterations associated with brain tumors, kidney tumors, leukemias, lymphomas, sarcomas, and other cancers are discussed.

  16. Review of State Comprehensive Cancer Control Plans for Genomics Content

    OpenAIRE

    Robert C. Millikan, DVM, PhD; Tejinder Rakhra-Burris, MA; Erin Shaughnessy Zuiker, MPH; Debra E. Irwin, PhD, MSPH

    2005-01-01

    Introduction The goals of this study were to determine U.S. states with Comprehensive Cancer Control plans that include genomics in some capacity and to review successes with and barriers to implementation of genomics-related cancer control initiatives. Methods This study was conducted in two phases. Phase one included a content analysis of written state Comprehensive Cancer Control plans (n = 30) for terms related to genomics, or genomic components (n = 18). The second phase involved te...

  17. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla;

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  18. Maps and atlases of cancer mortality: a review of a useful tool to trigger new questions.

    Science.gov (United States)

    d'Onofrio, Alberto; Mazzetta, Chiara; Robertson, Chris; Smans, Michel; Boyle, Peter; Boniol, Mathieu

    2016-01-01

    In this review we illustrate our view on the epidemiological relevance of geographically mapping cancer mortality. In the first part of this work, after delineating the history of cancer mapping with a view on interpretation of Cancer Mortality Atlases, we briefly illustrate the 'art' of cancer mapping. Later we summarise in a non-mathematical way basic methods of spatial statistics. In the second part of this paper, we employ the 'Atlas of Cancer Mortality in the European Union and the European Economic Area 1993-1997' in order to illustrate spatial aspects of cancer mortality in Europe. In particular, we focus on the cancer related to tobacco and alcohol epidemics and on breast cancer which is of particular interest in cancer mapping. Here we suggest and reiterate two key concepts. The first is that a cancer atlas is not only a visual tool, but it also contain appropriate spatial statistical analyses that quantify the qualitative visual impressions to the readers even though at times revealing fallacy. The second is that a cancer atlas is by no means a book where answers to questions can be found. On the contrary, it ought to be considered as a tool to trigger new questions. PMID:27610196

  19. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Tyrer, Jonathan P; Kar, Siddhartha;

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment...... at standard doses. We evaluated the top SNPs in 4,434 EOC patients, including patients from The Cancer Genome Atlas. In addition, we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. RESULTS: Five SNPs were significantly...... for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent first-line treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥ 4 cycles of paclitaxel and carboplatin...

  20. Review of State Comprehensive Cancer Control Plans for Genomics Content

    Directory of Open Access Journals (Sweden)

    Robert C. Millikan, DVM, PhD

    2005-03-01

    Full Text Available Introduction The goals of this study were to determine U.S. states with Comprehensive Cancer Control plans that include genomics in some capacity and to review successes with and barriers to implementation of genomics-related cancer control initiatives. Methods This study was conducted in two phases. Phase one included a content analysis of written state Comprehensive Cancer Control plans (n = 30 for terms related to genomics, or “genomic components” (n = 18. The second phase involved telephone interviews with the Comprehensive Cancer Control plan coordinators in states with plans that contained genomic components (n = 16. The interview was designed to gather more detailed information about the genomics-related initiatives within the state’s Comprehensive Cancer Control plan and the successes with and barriers to plan implementation, as defined by each state. Results Eighteen of the 30 Comprehensive Cancer Control plans analyzed contained genomics components. We noted a large variability among these 18 plans in the types of genomics components included. Nine (56% of the 16 states interviewed had begun to implement the genomics components in their plan. Most states emphasized educating health care providers and the public about the role of genomics in cancer control. Many states consider awareness of family history to be an important aspect of their Comprehensive Cancer Control plan. Approximately 67% of states with family history components in their plans had begun to implement these goals. Virtually all states reported they would benefit from additional training in cancer genetics and general public health genomics. Conclusion The number of states incorporating genomics into their Comprehensive Cancer Control plans is increasing. Family history is a public health application of genomics that could be implemented more fully into Comprehensive Cancer Control plans.

  1. Computational approaches to identify functional genetic variants in cancer genomes

    Science.gov (United States)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  2. Genomic and epigenomic alterations in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Maria eAschelter

    2012-11-01

    Full Text Available Prostate cancer (PC is the second most frequently diagnosed cancer and the second leading cause of cancer deaths in man. The treatment of localized PC includes surgery or radiation therapy. In case of relapse after a definitive treatment or in patients with locally advanced or metastatic disease, the standard treatment includes the androgen-deprivation therapy (ADT. By reducing the levels of Testosterone and dihydrotestosterone (DHT under the castration threshold, the ADT acts on the androgen receptor (AR, even if indirectly. The effects of the ADT are usually temporary and nearly all patients, initially sensitive to the androgen ablation therapy, have a disease progression after a 18-24 months medium term. This is probably due to the selection of the cancer cell clones and to their acquisition of critical somatic genome and epigenomic changes. This review aims to provide an overview about the genetic and epigenetic alterations having a crucial role in the carcinogenesis and in the disease progression toward the castration resistant prostate cancer (CRPC. We focused on the role of the androgen receptor, on its signaling cascade and on the clinical implications that the knowledge of these aspects would have on hormonal therapy, on its failure and its toxicity.

  3. Perspectives of integrative cancer genomics in next generation sequencing era.

    Science.gov (United States)

    Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

    2012-06-01

    The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research. PMID:23105932

  4. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine | Office of Cancer Genomics

    Science.gov (United States)

    Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.

  5. TCGA divides gastric cancer into four molecular subtypes:implications for individualized therapeutics

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths in the world. The treatment of gastric cancer is chalenging because of its highly heterogeneous etiology and clinical characteristics. Recent genomic and molecular characterization of gastric cancer, especialy the findings reported by the Cancer Genome Atlas (TCGA), have shed light on the heterogeneity and potential targeted therapeutics for four different subtypes of gastric cancer.

  6. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  7. Genome Wide Methylome Alterations in Lung Cancer.

    Science.gov (United States)

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; pLAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  8. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  9. Genetics and genomics of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Dean; Hong Lou

    2013-01-01

    Prostate cancer (PCa) is one of the most common malignancies in the world with over 890 000 cases and over 258 000 deaths worldwide each year.Nearly all mortalities from PCa are due to metastatic disease,typically through tumors that evolve to be hormone-refractory or castrate-resistant.Despite intensive epidemiological study,there are few known environmental risk factors,and age and family history are the major determinants.However,there is extreme heterogeneity in PCa incidence worldwide,suggesting that major determining factors have not been described.Genome-wide association studies have been performed and a considerable number of significant,but low-risk loci have been identified.In addition,several groups have analyzed PCa by determination of genomic copy number,fusion gene generation and targeted resequencing of candidate genes,as well as exome and whole genome sequencing.These initial studies have examined both primary and metastatic tumors as well as murine xenografts and identified somatic alterations in TP53 and other potential driver genes,and the disturbance of androgen response and cell cycle pathways.It is hoped that continued characterization of risk factors as well as gene mutation and misregulation in tumors will aid in understanding,diagnosing and better treating PCa.

  10. Genomic alterations in pancreatic cancer and their relevance to therapy

    Institute of Scientific and Technical Information of China (English)

    Erina; Takai; Shinichi; Yachida

    2015-01-01

    Pancreatic cancer is a highly lethal cancer type, for which there are few viable therapeutic options. But, with the advance of sequencing technologies for global genomic analysis, the landscape of genomic alterations in pancreatic cancer is becoming increasingly well understood. In this review, we summarize current knowledge of genomic alterations in 12 core signaling pathways or cellular processes in pancreatic ductal adenocarcinoma, which is the most common type of malignancy in the pancreas, including four commonly mutated genes and many other genes that are mutated at low frequencies. We also describe the potential implications of these genomic alterations for development of novel therapeutic approaches in the context of personalized medicine.

  11. Genome Wide Methylome Alterations in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Nandita Mullapudi

    Full Text Available Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC, we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T-non-tumor (NT pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16. Further, when DM was coupled to differential transcriptome (DE in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  12. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  13. The breast cancer genome - a key for better oncology

    OpenAIRE

    Vollan Hans; Caldas Carlos

    2011-01-01

    Abstract Molecular classification has added important knowledge to breast cancer biology, but has yet to be implemented as a clinical standard. Full sequencing of breast cancer genomes could potentially refine classification and give a more complete picture of the mutational profile of cancer and thus aid therapy decisions. Future treatment guidelines must be based on the knowledge derived from histopathological sub-classification of tumors, but with added information from genomic signatures ...

  14. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Science.gov (United States)

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  15. ATLAS

    CERN Multimedia

    2002-01-01

    Barrel and END-CAP Toroids In order to produce a powerful magnetic field to bend the paths of the muons, the ATLAS detector uses an exceptionally large system of air-core toroids arranged outside the calorimeter volumes. The large volume magnetic field has a wide angular coverage and strengths of up to 4.7tesla. The toroids system contains over 100km of superconducting wire and has a design current of 20 500 amperes. (ATLAS brochure: The Technical Challenges)

  16. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris;

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  17. Translational genomics in cancer research:converting proifles into personalized cancer medicine

    Institute of Scientific and Technical Information of China (English)

    Lalit Patel; Brittany Parker; Da Yang; Wei Zhang

    2013-01-01

    Cancer genomics is a rapidly growing discipline in which the genetic molecular basis of malignancy is studied at the scale of whole genomes. While the discipline has been successful with respect to identifying specific oncogenes and tumor suppressors involved in oncogenesis, it is also challenging our approach to managing patients suffering from this deadly disease. Speciifcally cancer genomics is driving clinical oncology to take a more molecular approach to diagnosis, prognostication, and treatment selection. We review here recent work undertaken in cancer genomics with an emphasis on translation of genomic ifndings. Finally, we discuss scientiifc challenges and research opportunities emerging from ifndings derived through analysis of tumors with high-depth sequencing.

  18. [HPV-associated head and neck cancer : mutational signature and genomic aberrations].

    Science.gov (United States)

    Wagner, S; Würdemann, N; Hübbers, C; Reuschenbach, M; Prigge, E-S; Wichmann, G; Hess, J; Dietz, A; Dürst, M; Tinhofer, I; von Knebel-Döberitz, M; Wittekindt, C; Klussmann, J P

    2015-11-01

    A significantly increasing proportion of oropharyngeal head and neck carcinomas (OSCC) in North America and Europe are associated with human papillomavirus (HPV) infections. HPV-related OSCC is regarded as a distinct tumor type with regard to its cellular, biologic, and clinical characteristics. Patients with HPV-related OSCC have significantly better local control, but higher rates of regional lymph node and distant metastases as compared to patients with HPV-negative OSCC. Classical molecular genetic investigations demonstrated specific chromosomal aberration signatures in HPV-related OSCC, and recent developments in next generation sequencing (NGS) technology have rendered possible the sequencing of entire genomes, and thus detection of specific mutations, in just a few days. Initial data from The Cancer Genome Atlas (TCGA) project obtained by using genome-wide high throughput methods have confirmed that HPV-related OSCC contain fewer, albeit more specific mutations than HPV-negative tumors. Additionally, these data revealed the presence of specific-potentially therapeutically targetable-activating driver mutations in subgroups of HPV-positive OSCC, some of which have a prognostic impact. Specific targeted NGS technologies provide new possibilities for identification of diagnostic, prognostic, and predictive biomarkers and the development of personalized cancer treatment. Patients with HPV-positive tumors are likely to profit from these developments in the future, since the genetic alterations are relatively homogenous and frequently lead to signal pathway activation. There is an urgent need for network research activities to carry out the necessary basic research in prospective cohort studies.

  19. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.

    Science.gov (United States)

    Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R

    2016-01-01

    Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery.

  20. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    Science.gov (United States)

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  1. Contributions to Cancer Research: Finding a Niche in Communication | Office of Cancer Genomics

    Science.gov (United States)

    This past July, I started a journey into the fields of communications and cancer research when I joined the Office of Cancer Genomics (OCG) as a fellow in the National Cancer Institute (NCI) Health Communications Internship Program (HCIP). Cancer genomics and working in an office were new and uncharted territory for me: before I came to OCG, I was finishing a Ph.D. in cell biology at Vanderbilt University in Dr. Matthew Tyska’s laboratory.

  2. A microscopic landscape of the invasive breast cancer genome

    OpenAIRE

    Zheng Ping; Yuchao Xia; Tiansheng Shen; Vishwas Parekh; Siegal, Gene P; Isam-Eldin Eltoum; Jianbo He; Dongquan Chen; Minghua Deng; Ruibin Xi; Dejun Shen

    2016-01-01

    Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent ca...

  3. Genomic Copy Number Variations in the Genomes of Leukocytes Predict Prostate Cancer Clinical Outcomes.

    Directory of Open Access Journals (Sweden)

    Yan P Yu

    Full Text Available Accurate prediction of prostate cancer clinical courses remains elusive. In this study, we performed whole genome copy number analysis on leukocytes of 273 prostate cancer patients using Affymetrix SNP6.0 chip. Copy number variations (CNV were found across all chromosomes of the human genome. An average of 152 CNV fragments per genome was identified in the leukocytes from prostate cancer patients. The size distributions of CNV in the genome of leukocytes were highly correlative with prostate cancer aggressiveness. A prostate cancer outcome prediction model was developed based on large size ratio of CNV from the leukocyte genomes. This prediction model generated an average prediction rate of 75.2%, with sensitivity of 77.3% and specificity of 69.0% for prostate cancer recurrence. When combined with Nomogram and the status of fusion transcripts, the average prediction rate was improved to 82.5% with sensitivity of 84.8% and specificity of 78.2%. In addition, the leukocyte prediction model was 62.6% accurate in predicting short prostate specific antigen doubling time. When combined with Gleason's grade, Nomogram and the status of fusion transcripts, the prediction model generated a correct prediction rate of 77.5% with 73.7% sensitivity and 80.1% specificity. To our knowledge, this is the first study showing that CNVs in leukocyte genomes are predictive of clinical outcomes of a human malignancy.

  4. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    Science.gov (United States)

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Zheng, Wei; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Witte, John S; Casey, Graham; Kaggwa, Sam; Cook, Michael B; Stram, Daniel O; Blot, William J; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K; Arndt, Volker; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Conti, David V; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I; Campa, Daniele; Crawford, E David; Diver, W Ryan; Gapstur, Susan M; Gaziano, J Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R; Price, Alkes L; Freedman, Matthew L; Haiman, Christopher A; Pasaniuc, Bogdan

    2016-04-07

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.

  5. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    Science.gov (United States)

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W.; Ingles, Sue A.; Kittles, Rick A.; Strom, Sara S.; Rybicki, Benjamin A.; Nemesure, Barbara; Isaacs, William B.; Zheng, Wei; Pettaway, Curtis A.; Yeboah, Edward D.; Tettey, Yao; Biritwum, Richard B.; Adjei, Andrew A.; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P.; John, Esther M.; Murphy, Adam B.; Signorello, Lisa B.; Carpten, John; Leske, M. Cristina; Wu, Suh-Yuh; Hennis, Anslem J. M.; Neslund-Dudas, Christine; Hsing, Ann W.; Chu, Lisa; Goodman, Phyllis J.; Klein, Eric A.; Witte, John S.; Casey, Graham; Kaggwa, Sam; Cook, Michael B.; Stram, Daniel O.; Blot, William J.; Eeles, Rosalind A.; Easton, Douglas; Kote-Jarai, ZSofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G.; Southey, Melissa C.; Fitzgerald, Liesel M.; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E.; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L. J.; Nordestgaard, Børge G.; Key, Tim J.; Travis, Ruth C.; Neal, David E.; Donovan, Jenny L.; Hamdy, Freddie C.; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L.; Thibodeau, Stephen N.; McDonnell, Shannon K.; Schaid, Daniel J.; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S.; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K.; Arndt, Volker; Park, Jong Y.; Sellers, Thomas A.; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A.; Teixeira, Manuel R.; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Cook, Margaret; Guy, Michelle; Govindasami, Koveela; Leongamornlert, Daniel; Sawyer, Emma J.; Wilkinson, Rosemary; Saunders, Edward J.; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Morgan, Angela; Fisher, Cyril; Hazel, Steve; Livni, Naomi; Lophatananon, Artitaya; Pedersen, John; Hopper, John L.; Adolfson, Jan; Stattin, Paer; Johansson, Jan-Erik; Cavalli-Bjoerkman, Carin; Karlsson, Ami; Broms, Michael; Auvinen, Anssi; Kujala, Paula; Maeaettaenen, Liisa; Murtola, Teemu; Taari, Kimmo; Weischer, Maren; Nielsen, Sune F.; Klarskov, Peter; Roder, Andreas; Iversen, Peter; Wallinder, Hans; Gustafsson, Sven; Cox, Angela; Brown, Paul; George, Anne; Marsden, Gemma; Lane, Athene; Davis, Michael; Zheng, Wei; Signorello, Lisa B.; Blot, William J.; Tillmans, Lori; Riska, Shaun; Wang, Liang; Rinckleb, Antje; Lubiski, Jan; Stegmaier, Christa; Pow-Sang, Julio; Park, Hyun; Radlein, Selina; Rincon, Maria; Haley, James; Zachariah, Babu; Kachakova, Darina; Popov, Elenko; Mitkova, Atanaska; Vlahova, Aleksandrina; Dikov, Tihomir; Christova, Svetlana; Heathcote, Peter; Wood, Glenn; Malone, Greg; Saunders, Pamela; Eckert, Allison; Yeadon, Trina; Kerr, Kris; Collins, Angus; Turner, Megan; Srinivasan, Srilakshmi; Kedda, Mary-Anne; Alexander, Kimberly; Omara, Tracy; Wu, Huihai; Henrique, Rui; Pinto, Pedro; Santos, Joana; Barros-Silva, Joao; Conti, David V.; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I.; Campa, Daniele; Crawford, E. David; Diver, W. Ryan; Gapstur, Susan M.; Gaziano, J. Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J.; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L.; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R.; Price, Alkes L.; Freedman, Matthew L.; Haiman, Christopher A.; Pasaniuc, Bogdan

    2016-01-01

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa. PMID:27052111

  6. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  7. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  8. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome.

    Science.gov (United States)

    Riesco-Eizaguirre, Garcilaso; Santisteban, Pilar

    2016-11-01

    Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies. PMID:27666535

  9. Exploring Cancer's Fractured Genomic Landscape: Searching for Cancer Drivers and Vulnerabilities in Somatic Copy Number Alterations

    OpenAIRE

    Zack, Travis Ian

    2014-01-01

    Somatic copy number alterations (SCNAs) are a class of alterations that lead to deviations from diploidy in developing and established tumors. A feature that distinguishes SCNAs from other alterations is their genomic footprint. The large genomic footprint of SCNAs in a typical cancer's genome presents both a challenge and an opportunity to find targetable vulnerabilities in cancer. Because a single event affects many genes, it is often challenging to identify the tumorigenic targets of SCNAs...

  10. The breast cancer genome - a key for better oncology

    Directory of Open Access Journals (Sweden)

    Vollan Hans

    2011-11-01

    Full Text Available Abstract Molecular classification has added important knowledge to breast cancer biology, but has yet to be implemented as a clinical standard. Full sequencing of breast cancer genomes could potentially refine classification and give a more complete picture of the mutational profile of cancer and thus aid therapy decisions. Future treatment guidelines must be based on the knowledge derived from histopathological sub-classification of tumors, but with added information from genomic signatures when properly clinically validated. The objective of this article is to give some background on molecular classification, the potential of next generation sequencing, and to outline how this information could be implemented in the clinic.

  11. Databases and Web Tools for Cancer Genomics Study

    Institute of Scientific and Technical Information of China (English)

    Yadong Yang; Xunong Dong; Bingbing Xie; Nan Ding; Juan Chen; Yongjun Li; Qian Zhang; Hongzhu Qu; Xiangdong Fang

    2015-01-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data com-prehensiveness, and user experience. The resources reviewed include data repository and analysis tools;and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  12. Genomics Study of Gastric Cancer and Its Molecular Subtypes.

    Science.gov (United States)

    Yuen, Siu Tsan; Leung, Suet Yi

    2016-01-01

    Gastric cancer is a heterogeneous disease encompassing diverse morphological (intestinal versus diffuse) and molecular subtypes (MSI, EBV, TP53 mutation). Recent advances in genomic technology have led to an improved understanding of the driver gene mutational profile, gene expression, and epigenetic alterations that underlie each of the subgroups, with therapeutic implications in some of these alterations. There have been attempts to classify gastric cancers based on these genomic features, with an aim to improve prognostication and predict responsiveness to specific drug therapy. The eventual aims of these genomic studies are to develop deep biological insights into the carcinogenic pathway in each of these subtypes. Future large-scale drug screening strategies may then be able to link these genomic features to drug responsiveness, eventually leading to genome-guided personalized medicine with improved cure rates. PMID:27573784

  13. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  14. Methods for detection of subtle mutations in cancer genomes

    DEFF Research Database (Denmark)

    Dahl, Christina; Ralfkiaer, Ulrik; Guldberg, Per

    2006-01-01

    With the realization that cancer is a genetic disease, detection of mutations in genomic DNA has become an important discipline in many areas of cancer research. Although the publication of the human genome sequence and the immense technological advancements have facilitated the analysis of cancer...... genomes, detection of mutations in tumor specimens may still be challenging and fraught with technical problems. In this review, we describe current technologies for detection of small DNA mutations, including mutation scanning techniques to search for unknown mutations, and diagnostic techniques...... to detect known cancer mutations. We outline the principles of the different techniques and discuss their advantages and limitations. We also discuss critical issues that must be considered before choosing methodology, including sensitivity, specificity, limit of detection, throughput and cost, quantity...

  15. An emerging place for lung cancer genomics in 2013.

    Science.gov (United States)

    Daniels, Marissa G; Bowman, Rayleen V; Yang, Ian A; Govindan, Ramaswamy; Fong, Kwun M

    2013-10-01

    Lung cancer is a disease with a dismal prognosis and is the biggest cause of cancer deaths in many countries. Nonetheless, rapid technological developments in genome science promise more effective prevention and treatment strategies. Since the Human Genome Project, scientific advances have revolutionized the diagnosis and treatment of human cancers, including thoracic cancers. The latest, massively parallel, next generation sequencing (NGS) technologies offer much greater sequencing capacity than traditional, capillary-based Sanger sequencing. These modern but costly technologies have been applied to whole genome-, and whole exome sequencing (WGS and WES) for the discovery of mutations and polymorphisms, transcriptome sequencing for quantification of gene expression, small ribonucleic acid (RNA) sequencing for microRNA profiling, large scale analysis of deoxyribonucleic acid (DNA) methylation and chromatin immunoprecipitation mapping of DNA-protein interaction. With the rise of personalized cancer care, based on the premise of precision medicine, sequencing technologies are constantly changing. To date, the genomic landscape of lung cancer has been captured in several WGS projects. Such work has not only contributed to our understanding of cancer biology, but has also provided impetus for technical advances that may improve our ability to accurately capture the cancer genome. Issues such as short read lengths contribute to sequenced libraries that contain challenging gaps in the aligned genome. Emerging platforms promise longer reads as well as the ability to capture a range of epigenomic signals. In addition, ongoing optimization of bioinformatics strategies for data analysis and interpretation are critical, especially for the differentiation between driver and passenger mutations. Moreover, broader deployment of these and future generations of platforms, coupled with an increasing bioinformatics workforce with access to highly sophisticated technologies, could

  16. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  17. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Science.gov (United States)

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

  18. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  19. Endoplasmic Reticulum Stress, Genome Damage, and Cancer

    OpenAIRE

    Dicks, Naomi; Gutierrez, Karina; Michalak, Marek; Bordignon, Vilceu; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ac...

  20. Endoplasmic reticulum stress, genome damage and cancer

    OpenAIRE

    Naomi eDicks; Karina eGutierrez; Marek eMichalak; Vilceu eBordignon; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth, however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ...

  1. Genomic diversity of colorectal cancer: Changing landscape and emerging targets.

    Science.gov (United States)

    Ahn, Daniel H; Ciombor, Kristen K; Mikhail, Sameh; Bekaii-Saab, Tanios

    2016-07-01

    Improvements in screening and preventive measures have led to an increased detection of early stage colorectal cancers (CRC) where patients undergo treatment with a curative intent. Despite these efforts, a high proportion of patients are diagnosed with advanced stage disease that is associated with poor outcomes, as CRC remains one of the leading causes of cancer-related deaths in the world. The development of next generation sequencing and collaborative multi-institutional efforts to characterize the cancer genome has afforded us with a comprehensive assessment of the genomic makeup present in CRC. This knowledge has translated into understanding the prognostic role of various tumor somatic variants in this disease. Additionally, the awareness of the genomic alterations present in CRC has resulted in an improvement in patient outcomes, largely due to better selection of personalized therapies based on an individual's tumor genomic makeup. The benefit of various treatments is often limited, where recent studies assessing the genomic diversity in CRC have identified the development of secondary tumor somatic variants that likely contribute to acquired treatment resistance. These studies have begun to alter the landscape of treatment for CRC that include investigating novel targeted therapies, assessing the role of immunotherapy and prospective, dynamic assessment of changes in tumor genomic alterations that occur during the treatment of CRC. PMID:27433082

  2. Genomic diversity of colorectal cancer: Changing landscape and emerging targets

    Science.gov (United States)

    Ahn, Daniel H; Ciombor, Kristen K; Mikhail, Sameh; Bekaii-Saab, Tanios

    2016-01-01

    Improvements in screening and preventive measures have led to an increased detection of early stage colorectal cancers (CRC) where patients undergo treatment with a curative intent. Despite these efforts, a high proportion of patients are diagnosed with advanced stage disease that is associated with poor outcomes, as CRC remains one of the leading causes of cancer-related deaths in the world. The development of next generation sequencing and collaborative multi-institutional efforts to characterize the cancer genome has afforded us with a comprehensive assessment of the genomic makeup present in CRC. This knowledge has translated into understanding the prognostic role of various tumor somatic variants in this disease. Additionally, the awareness of the genomic alterations present in CRC has resulted in an improvement in patient outcomes, largely due to better selection of personalized therapies based on an individual’s tumor genomic makeup. The benefit of various treatments is often limited, where recent studies assessing the genomic diversity in CRC have identified the development of secondary tumor somatic variants that likely contribute to acquired treatment resistance. These studies have begun to alter the landscape of treatment for CRC that include investigating novel targeted therapies, assessing the role of immunotherapy and prospective, dynamic assessment of changes in tumor genomic alterations that occur during the treatment of CRC. PMID:27433082

  3. Genomic diversity of colorectal cancer: Changing landscape and emerging targets.

    Science.gov (United States)

    Ahn, Daniel H; Ciombor, Kristen K; Mikhail, Sameh; Bekaii-Saab, Tanios

    2016-07-01

    Improvements in screening and preventive measures have led to an increased detection of early stage colorectal cancers (CRC) where patients undergo treatment with a curative intent. Despite these efforts, a high proportion of patients are diagnosed with advanced stage disease that is associated with poor outcomes, as CRC remains one of the leading causes of cancer-related deaths in the world. The development of next generation sequencing and collaborative multi-institutional efforts to characterize the cancer genome has afforded us with a comprehensive assessment of the genomic makeup present in CRC. This knowledge has translated into understanding the prognostic role of various tumor somatic variants in this disease. Additionally, the awareness of the genomic alterations present in CRC has resulted in an improvement in patient outcomes, largely due to better selection of personalized therapies based on an individual's tumor genomic makeup. The benefit of various treatments is often limited, where recent studies assessing the genomic diversity in CRC have identified the development of secondary tumor somatic variants that likely contribute to acquired treatment resistance. These studies have begun to alter the landscape of treatment for CRC that include investigating novel targeted therapies, assessing the role of immunotherapy and prospective, dynamic assessment of changes in tumor genomic alterations that occur during the treatment of CRC.

  4. Comprehensive genomic profiles of small cell lung cancer

    OpenAIRE

    George, J.; Lim, J; JANG, S.; Cun, Y.; Ozretic, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandez-Cuesta, L.; Bosco, G.; Müller, C.(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 , Bamberg, Germany); Dahmen, I.; Jahchan, N.; K. Park; D. Yang

    2015-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We ...

  5. Genomic analysis and selected molecular pathways in rare cancers

    International Nuclear Information System (INIS)

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer. (paper)

  6. Cancer in Children and Adolescents | Office of Cancer Genomics

    Science.gov (United States)

    View a fact sheet that has statistics as well as information about types, causes, and treatments of cancers in children and adolescents in the United States.  http://www.cancer.gov/cancertopics/factsheet/Sites-Types/childhood

  7. Genome-wide sequencing to identify the cause of hereditary cancer syndromes: with examples from familial pancreatic cancer

    OpenAIRE

    Roberts, Nicholas J.; Klein, Alison P.

    2012-01-01

    Advances in our understanding of the human genome and next-generation technologies have facilitated the use of genome-wide sequencing to decipher the genetic basis of Mendelian disease and hereditary cancer syndromes. The application of genome-wide sequencing in hereditary cancer syndromes has had mixed success, in part, due to complex nature of the underlying genetic architecture. In this review we discuss the use of genome-wide sequencing in both Mendelian diseases and hereditary cancer syn...

  8. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Science.gov (United States)

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  9. Cancer genomics: why rare is valuable.

    Science.gov (United States)

    Jamshidi, Farzad; Nielsen, Torsten O; Huntsman, David G

    2015-04-01

    Rare conditions are sometimes ignored in biomedical research because of difficulties in obtaining specimens and limited interest from fund raisers. However, the study of rare diseases such as unusual cancers has again and again led to breakthroughs in our understanding of more common diseases. It is therefore unsurprising that with the development and accessibility of next-generation sequencing, much has been learnt from studying cancers that are rare and in particular those with uniform biological and clinical behavior. Herein, we describe how shotgun sequencing of cancers such as granulosa cell tumor, endometrial stromal sarcoma, epithelioid hemangioendothelioma, ameloblastoma, small-cell carcinoma of the ovary, clear-cell carcinoma of the ovary, nonepithelial ovarian tumors, chondroblastoma, and giant cell tumor of the bone has led to rapidly translatable discoveries in diagnostics and tumor taxonomies, as well as providing insights into cancer biology. PMID:25676695

  10. Highlights from the prostate cancer genome report

    Institute of Scientific and Technical Information of China (English)

    Shyh-Han Tan; Gyorgy Petrovics; Shiv Srivastava

    2011-01-01

    @@ Prostate cancer (Cap) is the second most frequently diagnosed cancer of men worldwide (899 000 new cases,13.6% of the total),with nearly 75% of the registered cases occurring in developed countries (644000 cases).1 Blood prostate-specific antigen test has revolutionized the early detection of Cap and organ-confined Cap is effectively managed by state-of-the-art treatments including radical prostatectomy or radiation therapy.2 In the past decade,tremendous progress has also been made in our understanding of the biology and common genomicalterations in Cap 3.4 New molecular marker assays have promise in improving CaP diagnosis.Despite these advances,major challenges remain with our ability to distinguish indolent cancers from the more aggressive cancers detected early due to widely used prostate-specific antigen test.Furthermore,development of molecular stratification of CaP for targeted and more effective therapies is critically needed.

  11. Genomic Predictors of Outcome in Prostate Cancer

    NARCIS (Netherlands)

    Bostrom, P.J.; Bjartell, A.S.; Catto, J.W.; Eggener, S.E.; Lilja, H.; Loeb, S.; Schalken, J.A.; Schlomm, T.; Cooperberg, M.R.

    2015-01-01

    CONTEXT: Given the highly variable behavior and clinical course of prostate cancer (PCa) and the multiple available treatment options, a personalized approach to oncologic risk stratification is important. Novel genetic approaches offer additional information to improve clinical decision making. OBJ

  12. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  13. Significance of duon mutations in cancer genomes

    OpenAIRE

    Vinod Kumar Yadav; Smith, Kyle S.; Colin Flinders; Mumenthaler, Shannon M.; De, Subhajyoti

    2016-01-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulat...

  14. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  15. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    2014-03-01

    Full Text Available Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs. Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS and other endogenous or exogenous electron-abstracting molecules.

  16. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  17. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  18. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  19. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    Science.gov (United States)

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes. PMID:26305677

  20. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  1. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  2. Somatic Mutaome Profile in Human Cancer Tissues

    OpenAIRE

    Kim, Nayoung; Hong, Yourae; Kwon, Doyoung; Yoon, Sukjoon

    2013-01-01

    Somatic mutation is a major cause of cancer progression and varied responses of tumors against anticancer agents. Thus, we must obtain and characterize genome-wide mutational profiles in individual cancer subtypes. The Cancer Genome Atlas database includes large amounts of sequencing and omics data generated from diverse human cancer tissues. In the present study, we integrated and analyzed the exome sequencing data from ~3,000 tissue samples and summarized the major mutant genes in each of t...

  3. Comprehensive genomic profiles of small cell lung cancer.

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M; Russell, Prudence A; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A; la Torre, Annamaria; Field, John K; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K

    2015-08-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  4. Comprehensive genomic profiles of small cell lung cancer

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.

    2016-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  5. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients

    DEFF Research Database (Denmark)

    Győrffy, Balázs; Lánczky, András; Szállási, Zoltán

    2012-01-01

    ). A Kaplan–Meier survival plot was generated and significance was computed. The tool can be accessed online at www.kmplot.com/ovar. We used this integrative data analysis tool to validate the prognostic power of 37 biomarkers identified in the literature. Of these, CA125 (MUC16; P=3.7x10–5, hazard...... biomarker validation platform that mines all available microarray data to assess the prognostic power of 22 277 genes in 1287 ovarian cancer patients. We specifically used this tool to evaluate the effect of 37 previously published biomarkers on ovarian cancer prognosis....... set up using gene expression data and survival information of 1287 ovarian cancer patients downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays). After quality control and normalization, only probes present on all...

  6. Significance of duon mutations in cancer genomes

    Science.gov (United States)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  7. Patterns and functional implications of rare germline variants across 12 cancer types

    OpenAIRE

    Lu, Charles; Xie, Mingchao; Wendl, Michael C; Wang, Jiayin; McLellan, Michael D; Mark D M Leiserson; Huang, Kuan-lin; Wyczalkowski, Matthew A.; Jayasinghe, Reyka; Banerjee, Tapahsama; Ning, Jie; Tripathi, Piyush; Zhang, Qunyuan; Niu, Beifang; Ye, Kai

    2015-01-01

    Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes w...

  8. 19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

  9. Integrated genomic analysis of breast cancers.

    Science.gov (United States)

    Addou-Klouche, L; Adélaïde, J; Cornen, S; Bekhouche, I; Finetti, P; Guille, A; Sircoulomb, F; Raynaud, S; Bertucci, F; Birnbaum, D; Chaffanet, M

    2012-12-01

    Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0-75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically

  10. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    OpenAIRE

    Silverstein, Allison; Sood, Rachita; Costas-Chavarri, Ainhoa

    2016-01-01

    As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer ...

  11. New frontiers in translational control of the cancer genome.

    Science.gov (United States)

    Truitt, Morgan L; Ruggero, Davide

    2016-04-26

    The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions. PMID:27112207

  12. Genome-wide sequencing to identify the cause of hereditary cancer syndromes: with examples from familial pancreatic cancer.

    Science.gov (United States)

    Roberts, Nicholas J; Klein, Alison P

    2013-11-01

    Advances in our understanding of the human genome and next-generation technologies have facilitated the use of genome-wide sequencing to decipher the genetic basis of Mendelian disease and hereditary cancer syndromes. However, the application of genome-wide sequencing in hereditary cancer syndromes has had mixed success, in part, due to complex nature of the underlying genetic architecture. In this review we discuss the use of genome-wide sequencing in both Mendelian diseases and hereditary cancer syndromes, highlighting the potential and challenges of this approach using familial pancreatic cancer as an example. PMID:23196058

  13. Contributing to Tumor Molecular Characterization Projects with a Global Impact | Office of Cancer Genomics

    Science.gov (United States)

    My name is Nicholas Griner and I am the Scientific Program Manager for the Cancer Genome Characterization Initiative (CGCI) in the Office of Cancer Genomics (OCG). Until recently, I spent most of my scientific career working in a cancer research laboratory. In my postdoctoral training, my research focused on identifying novel pathways that contribute to both prostate and breast cancers and studying proteins within these pathways that may be targeted with cancer drugs.

  14. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  15. Consequences of anorectal cancer atlas implementation in the cooperative group setting: Radiobiologic analysis of a prospective randomized in silico target delineation study

    International Nuclear Information System (INIS)

    Purpose: The aim of this study is to ascertain the subsequent radiobiological impact of using a consensus guideline target volume delineation atlas. Materials and methods: Using a representative case and target volume delineation instructions derived from a proposed IMRT rectal cancer clinical trial, gross tumor volume (GTV) and clinical/planning target volumes (CTV/PTV) were contoured by 13 physician observers (Phase 1). The observers were then randomly assigned to follow (atlas) or not-follow (control) a consensus guideline/atlas for anorectal cancers, and instructed to re-contour the same case (Phase 2). Results: The atlas group was found to have increased tumor control probability (TCP) after the atlas intervention for both the CTV (p < 0.0001) and PTV1 (p = 0.0011) with decreasing normal tissue complication probability (NTCP) for small intestine, while the control group did not. Additionally, the atlas group had reduced variance in TCP for all target volumes and reduced variance in NTCP for the bowel. In Phase 2, the atlas group had increased TCP relative to the control for CTV (p = 0.03). Conclusions: Visual atlas and consensus treatment guideline usage in the development of rectal cancer IMRT treatment plans reduced the inter-observer radiobiological variation, with clinically relevant TCP alteration for CTV and PTV volumes

  16. Identification of genomic alterations in pancreatic cancer using array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Liang

    Full Text Available BACKGROUND: Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes in pancreatic cancer. MATERIALS AND METHODS: We used array comparative genomic hybridization (array CGH to identify recurrent genomic alterations and validated the protein expression of selected genes by immunohistochemistry. RESULTS: Sixteen gains and thirty-two losses occurred in more than 30% and 60% of the tumors, respectively. High-level amplifications at 7q21.3-q22.1 and 19q13.2 and homozygous deletions at 1p33-p32.3, 1p22.1, 1q22, 3q27.2, 6p22.3, 6p21.31, 12q13.2, 17p13.2, 17q21.31 and 22q13.1 were identified. Especially, amplification of AKT2 was detected in two carcinomas and homozygous deletion of CDKN2C in other two cases. In 15 independent validation samples, we found that AKT2 (19q13.2 and MCM7 (7q22.1 were amplified in 6 and 9 cases, and CAMTA2 (17p13.2 and PFN1 (17p13.2 were homozygously deleted in 3 and 1 cases. AKT2 and MCM7 were overexpressed, and CAMTA2 and PFN1 were underexpressed in pancreatic cancer tissues than in morphologically normal operative margin tissues. Both GISTIC and Genomic Workbench software identified 22q13.1 containing APOBEC3A and APOBEC3B as the only homozygous deletion region. And the expression levels of APOBEC3A and APOBEC3B were significantly lower in tumor tissues than in morphologically normal operative margin tissues. Further validation showed that overexpression of PSCA was significantly associated with lymph node metastasis, and overexpression of HMGA2 was significantly associated with invasive depth of pancreatic cancer. CONCLUSION: These recurrent genomic changes may be useful for revealing the mechanism of pancreatic carcinogenesis and providing candidate biomarkers.

  17. Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization.

    Science.gov (United States)

    Gronwald, Jacek; Jauch, Anna; Cybulski, Cezary; Schoell, Brigitte; Böhm-Steuer, Barbara; Lener, Marcin; Grabowska, Ewa; Górski, Bohdan; Jakubowska, Anna; Domagała, Wenancjusz; Chosia, Maria; Scott, Rodney J; Lubiński, Jan

    2005-03-20

    Very little is known about the chromosomal regions harbouring genes involved in initiation and progression of BRCAX-associated breast cancers. We applied comparative genomic hybridization (CGH) to identify the most frequent genomic imbalances in 18 BRCAX hereditary breast cancers and compared them to chromosomal aberrations detected in a group of 27 sporadic breast cancers. The aberrations observed most frequently in BRCAX tumours were gains of 8q (83%), 19q (67%), 19p (61%), 20q (61%), 1q (56%), 17q (56%) and losses of 8p (56%), 11q (44%) and 13q (33%). The sporadic cases most frequently showed gains of 1q (67%), 8q (48%), 17q (37%), 16p (33%), 19q (33%) and losses of 11q (26%), 8p (22%) and 16q (19%). Losses of 8p and gains 8q, 19 as well as gains of 20q (with respect to ductal tumours only) were detected significantly more often in BRCAX than in sporadic breast cancers. Analysis of 8p-losses and 8q-gains showed that these aberrations are early events in the tumorigenesis of BRCAX tumors. The findings of this report indicate similarities between BRCAX and BRCA2 tumours, possibly suggesting a common pathway of disease. These findings need confirmation by more extensive studies because only a limited number of cases were analysed and there are relatively few reports published. PMID:15540206

  18. Genomic landscape of DNA repair genes in cancer

    Science.gov (United States)

    Carneiro, Benedito A.; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A.; Platanias, Leonidas C.; Giles, Francis J.

    2016-01-01

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety.  We created comprehensive lists of DNA repair genes and indirect caretakers.  Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998).  Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively.  Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy. PMID:27004405

  19. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps.

    Science.gov (United States)

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  20. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  1. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Michael, E-mail: mng@radoncvic.com.au [Radiation Oncology Victoria, Victoria (Australia); Leong, Trevor [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); University of Melbourne (Australia); Chander, Sarat; Chu, Julie [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); Kneebone, Andrew [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, NSW (Australia); University of Sydney (Australia); Carroll, Susan [Department of Radiation Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); University of Sydney (Australia); Wiltshire, Kirsty [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); Ngan, Samuel [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); University of Melbourne (Australia); Kachnic, Lisa [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States)

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  2. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  3. Genome profiling of ERBB2-amplified breast cancers

    International Nuclear Information System (INIS)

    Around 20% of breast cancers (BC) show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC) and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence

  4. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies.

  5. Cancer models, genomic instability and somatic cellular Darwinian evolution

    Directory of Open Access Journals (Sweden)

    Little Mark P

    2010-04-01

    Full Text Available Abstract The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12, the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK (Math. Biosci. 1979:47;55-77, the generalized MVK model of Little (Biometrics 1995:51;1278-1291 and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238. Reviewers This article was reviewed by RA Gatenby and M Kimmel.

  6. Genome-wide analysis identifies novel loci associated with ovarian cancer outcomes: findings from the Ovarian Cancer Association Consortium

    Science.gov (United States)

    Johnatty, Sharon E.; Tyrer, Jonathan P.; Kar, Siddhartha; Beesley, Jonathan; Lu, Yi; Gao, Bo; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Lambrechts, Diether; Nieuwenhuysen, Els Van; Vergote, Ignace; Lambrechts, Sandrina; Rossing, Mary Anne; Doherty, Jennifer A.; Chang-Claude, Jenny; Modugno, Francesmary; Ness, Roberta B.; Moysich, Kirsten B.; Levine, Douglas A.; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Brinton, Louise; Lissowska, Jolanta; Wentzensen, Nicolas; Song, Honglin; Rhenius, Valerie; Campbell, Ian; Eccles, Diana; Sieh, Weiva; Whittemore, Alice S.; McGuire, Valerie; Rothstein, Joseph H.; Sutphen, Rebecca; Anton-Culver, Hoda; Ziogas, Argyrios; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Menon, Usha; Ramus, Susan J.; Pearce, Celeste L; Pike, Malcolm C; Stram, Daniel O.; Wu, Anna H.; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K.; Spiewankiewicz, Beata; Goodman, Marc T.; Wilkens, Lynne R.; Carney, Michael E.; Thompson, Pamela J; Heitz, Florian; du Bois, Andreas; Schwaab, Ira; Harter, Philipp; Pisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Winham, Stacey J; Earp, Madalene; Larson, Melissa C.; Fogarty, Zachary C.; Høgdall, Estrid; Jensen, Allan; Kjaer, Susanne Kruger; Fridley, Brooke L.; Cunningham, Julie M.; Vierkant, Robert A.; Schildkraut, Joellen M.; Iversen, Edwin S.; Terry, Kathryn L.; Cramer, Daniel W.; Bandera, Elisa V.; Orlow, Irene; Pejovic, Tanja; Bean, Yukie; Høgdall, Claus; Lundvall, Lene; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Sellers, Thomas; Kennedy, Catherine; Chiew, Yoke-Eng; Berchuck, Andrew; MacGregor, Stuart; deFazio, Anna; Pharoah, Paul D.P.; Goode, Ellen L.; deFazio, Anna; Webb, Penelope M.; Chenevix-Trench, Georgia

    2015-01-01

    Purpose Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. Experimental Design We analyzed ~2.8 million genotyped and imputed SNPs from the iCOGS experiment for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent firstline treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥4 cycles of paclitaxel and carboplatin at standard doses. We evaluated the top SNPs in 4,434 EOC patients including patients from The Cancer Genome Atlas. Additionally we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. Results Five SNPs were significantly associated (p≤1.0x10−5) with poorer outcomes in at least one of the four analyses, three of which, rs4910232 (11p15.3), rs2549714 (16q23) and rs6674079 (1q22) were located in long non-coding RNAs (lncRNAs) RP11–179A10.1, RP11–314O13.1 and RP11–284F21.8 respectively (p≤7.1x10−6). ENCODE ChIP-seq data at 1q22 for normal ovary shows evidence of histone modification around RP11–284F21.8, and rs6674079 is perfectly correlated with another SNP within the super-enhancer MEF2D, expression levels of which were reportedly associated with prognosis in another solid tumor. YAP1- and WWTR1 (TAZ)-stimulated gene expression, and HDL-mediated lipid transport pathways were associated with PFS and OS, respectively, in the cohort who had standard chemotherapy (pGSEA≤6x10−3). Conclusion We have identified SNPs in three lncRNAs that might be important targets for novel EOC therapies. PMID:26152742

  7. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  8. [The application of CRISPR/Cas9 genome editing technology in cancer research].

    Science.gov (United States)

    Wang, Dayong; Ma, Ning; Hui, Yang; Gao, Xu

    2016-01-01

    The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease) genome editing technology has become more and more popular in gene editing because of its simple design and easy operation. Using the CRISPR/Cas9 system, researchers can perform site-directed genome modification at the base level. Moreover, it has been widely used in genome editing in multiple species and related cancer research. In this review, we summarize the application of the CRISPR/Cas9 system in cancer research based on the latest research progresses as well as our understanding of cancer research and genome editing techniques.

  9. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Kjaer, Susanne Krüger;

    2009-01-01

    Because both ovarian and breast cancer are hormone-related and are known to have some predisposition genes in common, we evaluated 11 of the most significant hits (six with confirmed associations with breast cancer) from the breast cancer genome-wide association study for association with invasiv...

  10. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.

    Science.gov (United States)

    Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O

    2016-01-01

    Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. PMID:27342254

  11. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.

    Science.gov (United States)

    Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O

    2016-01-01

    Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer.

  12. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chen

    2016-08-01

    Full Text Available The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase and ribonucleotide reductase (RNR in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in colorectal and breast cancer patients. Furthermore, overexpression of R2 in non-tumorigenic cells progressively increases genome stress, promoting transformation. These cells display alterations in replication fork progression, elevated genomic uracil, and breaks at AT-rich common fragile sites. Consistently, overexpression of dUTPase abolishes R2-induced genome instability. Thus, the expression level of dUTPase determines the role of high R2 in driving genome instability in cancer cells.

  13. Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets

    OpenAIRE

    Fang Liu; Yaning Feng; Zhenye Li; Chao Pan; Yuncong Su; Rui Yang; Liying Song; Huilong Duan; Ning Deng

    2014-01-01

    In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic assoc...

  14. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  15. BreCAN-DB: a repository cum browser of personalized DNA breakpoint profiles of cancer genomes.

    Science.gov (United States)

    Narang, Pankaj; Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    BreCAN-DB (http://brecandb.igib.res.in) is a repository cum browser of whole genome somatic DNA breakpoint profiles of cancer genomes, mapped at single nucleotide resolution using deep sequencing data. These breakpoints are associated with deletions, insertions, inversions, tandem duplications, translocations and a combination of these structural genomic alterations. The current release of BreCAN-DB features breakpoint profiles from 99 cancer-normal pairs, comprising five cancer types. We identified DNA breakpoints across genomes using high-coverage next-generation sequencing data obtained from TCGA and dbGaP. Further, in these cancer genomes, we methodically identified breakpoint hotspots which were significantly enriched with somatic structural alterations. To visualize the breakpoint profiles, a next-generation genome browser was integrated with BreCAN-DB. Moreover, we also included previously reported breakpoint profiles from 138 cancer-normal pairs, spanning 10 cancer types into the browser. Additionally, BreCAN-DB allows one to identify breakpoint hotspots in user uploaded data set. We have also included a functionality to query overlap of any breakpoint profile with regions of user's interest. Users can download breakpoint profiles from the database or may submit their data to be integrated in BreCAN-DB. We believe that BreCAN-DB will be useful resource for genomics scientific community and is a step towards personalized cancer genomics. PMID:26586806

  16. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer

    Directory of Open Access Journals (Sweden)

    Dexter Tim J

    2010-09-01

    Full Text Available Abstract Background Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression. Results We employed ridge regression to model the relationship between regional changes in gene expression and proliferation. Regional features were extracted from tumour gene expression data using a novel clustering method, called genomic distance entrained agglomerative (GDEC clustering. Using gene expression data in this way provides a simple means of integrating the phenotypic effects of both copy number aberrations and alterations in chromatin state. We show that regional metagenes derived from GDEC clustering are representative of recurrent regions of epigenetic regulation or copy number aberrations in breast cancer. Furthermore, detected patterns of genomic alterations are conserved across independent oestrogen receptor positive breast cancer datasets. Sequential competitive metagene selection was used to reveal the relative importance of genomic regions in predicting proliferation rate. The predictive model suggested additive interactions between the most informative regions such as 8p22-12 and 8q13-22. Conclusions Data-mining of large-scale microarray gene expression datasets can reveal regional clusters of co-ordinate gene expression, independent of cause. By correlating these clusters with tumour proliferation we have identified a number of genomic regions that act together to promote proliferation in ER+ breast cancer. Identification of such regions should enable prioritisation of genomic regions for combinatorial functional studies to pinpoint

  17. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    OpenAIRE

    Aaraby Yoheswaran Nielsen; Morten Frier Gjerstorff

    2016-01-01

    Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the ...

  18. Genome-wide network analysis of Wnt signaling in three pediatric cancers

    Science.gov (United States)

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.

    2013-10-01

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  19. Whole-genome characterization of chemoresistant ovarian cancer.

    Science.gov (United States)

    Patch, Ann-Marie; Christie, Elizabeth L; Etemadmoghadam, Dariush; Garsed, Dale W; George, Joshy; Fereday, Sian; Nones, Katia; Cowin, Prue; Alsop, Kathryn; Bailey, Peter J; Kassahn, Karin S; Newell, Felicity; Quinn, Michael C J; Kazakoff, Stephen; Quek, Kelly; Wilhelm-Benartzi, Charlotte; Curry, Ed; Leong, Huei San; Hamilton, Anne; Mileshkin, Linda; Au-Yeung, George; Kennedy, Catherine; Hung, Jillian; Chiew, Yoke-Eng; Harnett, Paul; Friedlander, Michael; Quinn, Michael; Pyman, Jan; Cordner, Stephen; O'Brien, Patricia; Leditschke, Jodie; Young, Greg; Strachan, Kate; Waring, Paul; Azar, Walid; Mitchell, Chris; Traficante, Nadia; Hendley, Joy; Thorne, Heather; Shackleton, Mark; Miller, David K; Arnau, Gisela Mir; Tothill, Richard W; Holloway, Timothy P; Semple, Timothy; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Idrisoglu, Senel; Bruxner, Timothy J C; Christ, Angelika N; Poudel, Barsha; Holmes, Oliver; Anderson, Matthew; Leonard, Conrad; Lonie, Andrew; Hall, Nathan; Wood, Scott; Taylor, Darrin F; Xu, Qinying; Fink, J Lynn; Waddell, Nick; Drapkin, Ronny; Stronach, Euan; Gabra, Hani; Brown, Robert; Jewell, Andrea; Nagaraj, Shivashankar H; Markham, Emma; Wilson, Peter J; Ellul, Jason; McNally, Orla; Doyle, Maria A; Vedururu, Ravikiran; Stewart, Collin; Lengyel, Ernst; Pearson, John V; Waddell, Nicola; deFazio, Anna; Grimmond, Sean M; Bowtell, David D L

    2015-05-28

    Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1. PMID:26017449

  20. The national cancer institute (NCI) and cancer biology in a 'post genome world'

    International Nuclear Information System (INIS)

    The National Cancer Institute (NCI) exists to reduce the burden of all cancers through research and discovery. Extensive restructuring of the NCI over the past year has been aimed at assuring that the institution functions in all ways to promote opportunities for discovery in the laboratory, in the clinic, and in the community. To do this well requires the difficult and almost paradoxical problem of planning for scientific discovery which, in turn is based on the freedom to pursue the unanticipated. The intellectual and structural landscape of science is changing and it places new challenges, new demands and new opportunities for facilitating discovery. The nature of cancer as a disease of genomic instability and of accumulated genetic change, coupled with a possibility of the development of new technologies for reading, utilizing, interpreting and manipulating the genome of single cells, provides unprecedented opportunities for a new type of high through-put biology that will change the nature of discovery, cancer detection, diagnosis, prognosis, therapeutic decision-making and therapeutic discovery. To capture these new opportunities will require attention to be paid to integrate the development of technology and new scientific discoveries with the ability to apply advances rapidly and efficiently through clinical trials

  1. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki;

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  2. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  3. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan;

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  4. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.

    Science.gov (United States)

    Rozenblatt-Rosen, Orit; Deo, Rahul C; Padi, Megha; Adelmant, Guillaume; Calderwood, Michael A; Rolland, Thomas; Grace, Miranda; Dricot, Amélie; Askenazi, Manor; Tavares, Maria; Pevzner, Samuel J; Abderazzaq, Fieda; Byrdsong, Danielle; Carvunis, Anne-Ruxandra; Chen, Alyce A; Cheng, Jingwei; Correll, Mick; Duarte, Melissa; Fan, Changyu; Feltkamp, Mariet C; Ficarro, Scott B; Franchi, Rachel; Garg, Brijesh K; Gulbahce, Natali; Hao, Tong; Holthaus, Amy M; James, Robert; Korkhin, Anna; Litovchick, Larisa; Mar, Jessica C; Pak, Theodore R; Rabello, Sabrina; Rubio, Renee; Shen, Yun; Singh, Saurav; Spangle, Jennifer M; Tasan, Murat; Wanamaker, Shelly; Webber, James T; Roecklein-Canfield, Jennifer; Johannsen, Eric; Barabási, Albert-László; Beroukhim, Rameen; Kieff, Elliott; Cusick, Michael E; Hill, David E; Münger, Karl; Marto, Jarrod A; Quackenbush, John; Roth, Frederick P; DeCaprio, James A; Vidal, Marc

    2012-07-26

    Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or 'passenger', cancer mutations from causal, or 'driver', mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer. PMID:22810586

  5. Interpreting cancer genomes using systematic host perturbations by tumour virus proteins

    Science.gov (United States)

    Rozenblatt-Rosen, Orit; Deo, Rahul C.; Padi, Megha; Adelmant, Guillaume; Calderwood, Michael A.; Rolland, Thomas; Grace, Miranda; Dricot, Amélie; Askenazi, Manor; Tavares, Maria; Pevzner, Sam; Abderazzaq, Fieda; Byrdsong, Danielle; Carvunis, Anne-Ruxandra; Chen, Alyce A.; Cheng, Jingwei; Correll, Mick; Duarte, Melissa; Fan, Changyu; Feltkamp, Mariet C.; Ficarro, Scott B.; Franchi, Rachel; Garg, Brijesh K.; Gulbahce, Natali; Hao, Tong; Holthaus, Amy M.; James, Robert; Korkhin, Anna; Litovchick, Larisa; Mar, Jessica C.; Pak, Theodore R.; Rabello, Sabrina; Rubio, Renee; Shen, Yun; Singh, Saurav; Spangle, Jennifer M.; Tasan, Murat; Wanamaker, Shelly; Webber, James T.; Roecklein-Canfield, Jennifer; Johannsen, Eric; Barabási, Albert-László; Beroukhim, Rameen; Kieff, Elliott; Cusick, Michael E.; Hill, David E.; Münger, Karl; Marto, Jarrod A.; Quackenbush, John; Roth, Frederick P.; DeCaprio, James A.; Vidal, Marc

    2012-01-01

    Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations1. Genome sequencing efforts have identified numerous germline mutations associated with cancer predisposition and large numbers of somatic genomic alterations2. However, it remains challenging to distinguish between background, or “passenger” and causal, or “driver” cancer mutations in these datasets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations3. To test the hypothesis that genomic variations and tumour viruses may cause cancer via related mechanisms, we systematically examined host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways that go awry in cancer, such as Notch signalling and apoptosis. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches result in increased specificity for cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate prioritization of cancer-causing driver genes so as to advance understanding of the genetic basis of human cancer. PMID:22810586

  6. Genome instability in blood cells of a BRCA1+ breast cancer family

    International Nuclear Information System (INIS)

    BRCA1 plays an essential role in maintaining genome stability. Inherited BRCA1 germline mutation (BRCA1+) is a determined genetic predisposition leading to high risk of breast cancer. While BRCA1+ induces breast cancer by causing genome instability, most of the knowledge is known about somatic genome instability in breast cancer cells but not germline genome instability. Using the exome-sequencing method, we analyzed the genomes of blood cells in a typical BRCA1+ breast cancer family with an exon 13-duplicated founder mutation, including six breast cancer-affected and two breast cancer unaffected members. We identified 23 deleterious mutations in the breast cancer-affected family members, which are absent in the unaffected members. Multiple mutations damaged functionally important and breast cancer-related genes, including transcriptional factor BPTF and FOXP1, ubiquitin ligase CUL4B, phosphorylase kinase PHKG2, and nuclear receptor activator SRA1. Analysis of the mutations between the mothers and daughters shows that most mutations were germline mutation inherited from the ancestor(s) while only a few were somatic mutation generated de novo. Our study indicates that BRCA1+ can cause genome instability with both germline and somatic mutations in non-breast cells

  7. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  8. An Integrative Pathway-based Clinical-genomic Model for Cancer Survival Prediction.

    Science.gov (United States)

    Chen, Xi; Wang, Lily; Ishwaran, Hemant

    2010-09-01

    Prediction models that use gene expression levels are now being proposed for personalized treatment of cancer, but building accurate models that are easy to interpret remains a challenge. In this paper, we describe an integrative clinical-genomic approach that combines both genomic pathway and clinical information. First, we summarize information from genes in each pathway using Supervised Principal Components (SPCA) to obtain pathway-based genomic predictors. Next, we build a prediction model based on clinical variables and pathway-based genomic predictors using Random Survival Forests (RSF). Our rationale for this two-stage procedure is that the underlying disease process may be influenced by environmental exposure (measured by clinical variables) and perturbations in different pathways (measured by pathway-based genomic variables), as well as their interactions. Using two cancer microarray datasets, we show that the pathway-based clinical-genomic model outperforms gene-based clinical-genomic models, with improved prediction accuracy and interpretability.

  9. Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome Multiomic Profiles.

    Science.gov (United States)

    Vazquez, Ana I; Veturi, Yogasudha; Behring, Michael; Shrestha, Sadeep; Kirst, Matias; Resende, Marcio F R; de Los Campos, Gustavo

    2016-07-01

    Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression. However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging. We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole-genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that (1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in clinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases. PMID:27129736

  10. Integrating microarray gene expression object model and clinical document architecture for cancer genomics research.

    Science.gov (United States)

    Park, Yu Rang; Lee, Hye Won; Kim, Ju Han

    2005-01-01

    Systematic integration of genomic-scale expression profiles with clinical information may facilitate cancer genomics research. MAGE-OM (Microarray Gene Expression Object Model) defines standard objects for genomic but not for clinical data. HL7 CDA (Clinical Document Architecture) is a document model for clinical information, describing syntax (generic structure) but not semantics. We designed a document template in XML Schema with additional constraints for CDA to define content semantics, enabling data model-level integration of MAGE-OM and CDA for cancer genomics research. PMID:16779360

  11. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  12. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  13. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  14. Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics*

    OpenAIRE

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B; Montelione, Gaetano T.

    2008-01-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as “hubs” or “b...

  15. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindstrom, Sara; Brennan, Paul; Bickeboller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Muller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Le Marchand, Loic; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bosse, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 c

  16. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D P; Eeles, Rosalind A; Chatterjee, Nilanjan; Schumacher, Fredrick R; Schildkraut, Joellen M; Lindstrom, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S; Landi, Maria Teresa; Caporaso, Neil E; Risch, Angela; Amin Al Olama, Ali; Berndt, Sonja I; Giovannucci, Edward; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J; Stevens, Victoria L; Wiklund, Fredrik; Willett, Walter C; Goode, Ellen L; Permuth, Jennifer B; Risch, Harvey A; Reid, Brett M; Bezieau, Stéphane; Brenner, Hermann; Chan, Andrew T; Chang-Claude, Jenny; Hudson, Thomas J; Kocarnik, Jonathan; Newcomb, Polly A; Schoen, Robert E; Slattery, Martha L; White, Emily; Adank, Muriel A; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos Santos Silva, Isabel; Eliassen, A Heather; Figueroa, Jonine D; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G; Lichtner, Peter; Liu, Jian Jun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A; Nevanlinna, Heli; Peeters, Petra H; Peto, Julian; Prentice, Ross L; Rahman, Nazneen; Sanchez, Maria-Jose; Schmidt, Daniel F; Schmutzler, Rita K; Southey, Melissa C; Tamimi, Rulla M; Travis, Ruth C; Turnbull, Clare; Uitterlinden, Andre G; Wang, Zhaoming; Whittemore, Alice S; Yang, Xiaohong R; Zheng, Wei; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N; Stefansson, Kari; Sulem, Patrick; Chen, Y Ann; Tyrer, Jonathan P; Christiani, David C; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J; Gong, Jian; Peters, Ulrike; Gruber, Stephen B; Amos, Christopher I; Sellers, Thomas A; Easton, Douglas F; Hunter, David J; Haiman, Christopher A; Henderson, Brian E; Hung, Rayjean J

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 c

  17. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs

    DEFF Research Database (Denmark)

    Marquard, Andrea Marion; Eklund, Aron Charles; Joshi, Tejal;

    2015-01-01

    Ovarian and triple-negative breast cancers with BRCA1 or BRCA2 loss are highly sensitive to treatment with PARP inhibitors and platinum-based cytotoxic agents and show an accumulation of genomic scars in the form of gross DNA copy number aberrations. Cancers without BRCA1 or BRCA2 loss but with a...

  18. The genomic landscape of breast cancer and its interaction with host immunity.

    Science.gov (United States)

    Luen, Stephen; Virassamy, Balaji; Savas, Peter; Salgado, Roberto; Loi, Sherene

    2016-10-01

    Molecular profiling of thousands of primary breast cancers has uncovered remarkable genomic diversity between breast cancer subtypes, and even within subtypes. Only a few driver genes are recurrently altered at high frequency highlighting great challenges for precision medicine. Considerable evidence also confirms the role of host immunosurveillance in influencing response to therapy and prognosis in HER2+ and triple negative breast cancer. The role of immunosurveillance in ER + disease remains unclear. Advances in both these fields have lead to intensified interest in the interaction between genomic landscapes and host anti-tumour immune responses in breast cancer. In this review, we discuss the potential genomic determinants of host anti-tumour immunity - mutational load, driver alterations, mutational processes and neoantigens - and their relationship with immunity in breast cancer. Significant differences exist in both the genomic and immune characteristics amongst breast cancer subtypes. While ER + disease appears to be less immunogenic than HER2+ and triple negative breast cancer, it displays the greatest degree of heterogeneity. Mutational and neoantigen load appears to incompletely explains immune responses in breast cancer. Driver alterations do not appear to increase immunogenicity. Instead, they could contribute to immune-evasion or an immunosuppressive microenvironment, and therefore represent potential therapeutic targets. Finally, we also discuss the tailoring of immunotherapeutic strategies by genomic alterations, with possible multimodal combination approaches to maximise clinical benefits.

  19. The genomic landscape of breast cancer and its interaction with host immunity.

    Science.gov (United States)

    Luen, Stephen; Virassamy, Balaji; Savas, Peter; Salgado, Roberto; Loi, Sherene

    2016-10-01

    Molecular profiling of thousands of primary breast cancers has uncovered remarkable genomic diversity between breast cancer subtypes, and even within subtypes. Only a few driver genes are recurrently altered at high frequency highlighting great challenges for precision medicine. Considerable evidence also confirms the role of host immunosurveillance in influencing response to therapy and prognosis in HER2+ and triple negative breast cancer. The role of immunosurveillance in ER + disease remains unclear. Advances in both these fields have lead to intensified interest in the interaction between genomic landscapes and host anti-tumour immune responses in breast cancer. In this review, we discuss the potential genomic determinants of host anti-tumour immunity - mutational load, driver alterations, mutational processes and neoantigens - and their relationship with immunity in breast cancer. Significant differences exist in both the genomic and immune characteristics amongst breast cancer subtypes. While ER + disease appears to be less immunogenic than HER2+ and triple negative breast cancer, it displays the greatest degree of heterogeneity. Mutational and neoantigen load appears to incompletely explains immune responses in breast cancer. Driver alterations do not appear to increase immunogenicity. Instead, they could contribute to immune-evasion or an immunosuppressive microenvironment, and therefore represent potential therapeutic targets. Finally, we also discuss the tailoring of immunotherapeutic strategies by genomic alterations, with possible multimodal combination approaches to maximise clinical benefits. PMID:27481651

  20. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Science.gov (United States)

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  1. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Science.gov (United States)

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  2. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients

    DEFF Research Database (Denmark)

    Sausen, Mark; Phallen, Jillian; Adleff, Vilmos;

    2015-01-01

    Pancreatic adenocarcinoma has the worst mortality of any solid cancer. In this study, to evaluate the clinical implications of genomic alterations in this tumour type, we perform whole-exome analyses of 24 tumours, targeted genomic analyses of 77 tumours, and use non-invasive approaches to examine...... imaging. These observations provide genetic predictors of outcome in pancreatic cancer and have implications for new avenues of therapeutic intervention....

  3. Pre-Diagnostic Leukocyte Genomic DNA Methylation and the Risk of Colorectal Cancer in Women

    OpenAIRE

    Hongmei Nan; Giovannucci, Edward L; Kana Wu; Jacob Selhub; Ligi Paul; Bernard Rosner; Fuchs, Charles S; Eunyoung Cho

    2013-01-01

    BACKGROUND: Abnormal one-carbon metabolism may lead to general genomic (global) hypomethylation, which may predispose an individual to the development of colorectal neoplasia. METHODS: We evaluated the association between pre-diagnostic leukocyte genomic DNA methylation level and the risk of colorectal cancer in a nested case-control study of 358 colorectal cancer cases and 661 matched controls within the all-female cohort of the Nurses' Health Study (NHS). Among control subjects, we further ...

  4. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer

    Science.gov (United States)

    Roberts, Nicholas J.; Norris, Alexis L.; Petersen, Gloria M.; Bondy, Melissa L.; Brand, Randall; Gallinger, Steven; Kurtz, Robert C.; Olson, Sara H.; Rustgi, Anil K.; Schwartz, Ann G.; Stoffel, Elena; Syngal, Sapna; Zogopoulos, George; Ali, Syed Z.; Axilbund, Jennifer; Chaffee, Kari G.; Chen, Yun-Ching; Cote, Michele L.; Childs, Erica J.; Douville, Christopher; Goes, Fernando S.; Herman, Joseph M.; Iacobuzio-Donahue, Christine; Kramer, Melissa; Makohon-Moore, Alvin; McCombie, Richard W.; McMahon, K. Wyatt; Niknafs, Noushin; Parla, Jennifer; Pirooznia, Mehdi; Potash, James B.; Rhim, Andrew D.; Smith, Alyssa L.; Wang, Yuxuan; Wolfgang, Christopher L.; Wood, Laura D.; Zandi, Peter P.; Goggins, Michael; Karchin, Rachel; Eshleman, James R.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Hruban, Ralph H.; Klein, Alison P.

    2015-01-01

    Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genome of 638 familial pancreatic cancer patients. We also sequenced the exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. PMID:26658419

  5. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties

    Science.gov (United States)

    Wang, Yongcui; Fang, Jianwen; Chen, Shilong

    2016-01-01

    Accurately predicting the response of a cancer patient to a therapeutic agent is a core goal of precision medicine. Existing approaches were mainly relied primarily on genomic alterations in cancer cells that have been treated with different drugs. Here we focus on predicting drug response based on integration of the heterogeneously pharmacogenomics data from both cell and drug sides. Through a systematical approach, named as PDRCC (Predict Drug Response in Cancer Cells), the cancer genomic alterations and compound chemical and therapeutic properties were incorporated to determine the chemotherapeutic response in cancer patients. Using the Cancer Cell Line Encyclopedia (CCLE) study as the benchmark dataset, all pharmacogenomics data exhibited their roles in inferring the relationships between cancer cells and drugs. When integrating both genomic resources and compound information, the prediction coverage was significantly increased. The validity of PDRCC was also supported by its effective in uncovering the unknown cell-drug associations with database and literature evidences. It set the stage for clinical testing of novel therapeutic strategies, such as the sensitive association between cancer cell ‘A549_LUNG’ and compound ‘Topotecan’. In conclusion, PDRCC offers the possibility for faster, safer, and cheaper the development of novel anti-cancer therapeutics in the early-stage clinical trails. PMID:27645580

  6. The Cancer Genome Anatomy Project: EST Sequencing and the Genetics of Cancer Progression

    Directory of Open Access Journals (Sweden)

    David B. Krizman

    1999-06-01

    Full Text Available As the process of tumor progression proceeds from the normal cellular state to a preneoplastic condition and finally to the fully invasive form, the molecular characteristics of the cell change as well. These characteristics can be considered a molecular fingerprint of the cell at each stage of progression and, analogous to fingerprinting a criminal, can be used as markers of the progression process. Based on this premise, the Cancer Genome Anatomy Project was initiated with the broad goal of determining the comprehensive molecular characterization of normal, premalignant, and malignant tumor cells, thus making a reality the identification of all major cellular mechanisms leading to tumor initiation and progression ([Strausberg, R.L., Dahl, C.A., and Klausner, R.D. (1997. “New opportunities for uncovering the molecular basis of cancer.” Nat. Genet., 16: 415-516.], www.ncbi.nlm.nih.gov/ncicgap/. The expectation of determining the genetic fingerprints of cancer progression will allow for 1 correlation of disease progression with therapeutic outcome; 2 improved evaluation of disease treatment; 3 stimulation of novel approaches to prevention, detection, and therapy; and 4 enhanced diagnostic tools for clinical applications. Whereas acquiring the comprehensive molecular analysis of cancer progression may take years, results from initial, short-term goals are currently being realized and are proving very fruitful.

  7. [Cartography as an instrument in epidemiology: methodologic considerations for the new Swiss cancer atlas].

    Science.gov (United States)

    Bopp, M

    1989-01-01

    Maps not following the syntactical rules of the graphical language entail the risk of being misunderstood. Maps aim at demonstrating spatial patterns and visualizing dividing lines. Representation of tabular values is not a principal goal. Maps should be "seen" as a whole, not be "read" element by element. Some technical aspects of cartography are discussed (distortion of information, grouping of data, adequacy and use of colour). The guidelines for the new Swiss cancer atlas are based on these general principles. A continuous-shading technique avoiding class intervals is being used. It allows the combination of maps and diagrams of different aggregations of the same data using a common shading scale. Indications of significance are integrated into all figures. Geographical maps are enriched by diagrams showing data for 9 cities, 5 language regions, for a grouping by size of community and for a socioeconomical classification of regions. The universal shading scale enables to compare the figures separately and crossways. Relationships not apparent in a traditional map might be revealed.

  8. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-01

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  9. Using the canine genome to cure cancer and other diseases.

    Science.gov (United States)

    Olson, P N

    2007-08-01

    A high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms, has been reported. Such new tools offer scientists amazing opportunities to define genetic, nutritional, environmental, and other risk factors for various canine diseases. Because many of the diseases that affect man's best friend also affect us, understanding a dog's disease may lead to new preventions and therapies for diseases that affect both dogs and people. Since a dog's life span is shorter than that for a human, monitoring potential risk factors in a well-controlled population of dogs is possible. Such a population should be one where dogs live in close relationship with their owners. Although longitudinal studies have been previously conducted on animals housed in laboratory environments, the natural environment offers a chance to study dogs in environments shared by their owners. If dogs are carefully monitored, and select exposures defined, considerable information could be collected in a dog's lifetime--the next 10-20 years. Such information could hold the clues for important discoveries, including causes and cures for cancer. PMID:17498794

  10. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine.

    Science.gov (United States)

    Silverstein, Allison; Sood, Rachita; Costas-Chavarri, Ainhoa

    2016-01-01

    As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer care. In terms of research, there is a paucity of investigations into genetic determinants of breast cancer specific to African populations, despite consensus in the literature that predisposition and susceptibility genes vary between populations. Therefore, we need targeted strengthening of existing research efforts and support of new initiatives. Results will improve clinical care through screening and diagnosis with genetic testing specific to breast cancer in African populations. Clinically, genomic medicine can provide information capable of improving resource allocation to the population which most stands to benefit from increased screening or tailored treatment modalities. In situations where mammography or chemotherapy options are limited, this information will allow for the greatest impact. Implementation of genomic medicine will face numerous systemic barriers but is essential to improve breast cancer outcomes and survival. PMID:27413551

  11. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    Directory of Open Access Journals (Sweden)

    Allison Silverstein

    2016-01-01

    Full Text Available As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer care. In terms of research, there is a paucity of investigations into genetic determinants of breast cancer specific to African populations, despite consensus in the literature that predisposition and susceptibility genes vary between populations. Therefore, we need targeted strengthening of existing research efforts and support of new initiatives. Results will improve clinical care through screening and diagnosis with genetic testing specific to breast cancer in African populations. Clinically, genomic medicine can provide information capable of improving resource allocation to the population which most stands to benefit from increased screening or tailored treatment modalities. In situations where mammography or chemotherapy options are limited, this information will allow for the greatest impact. Implementation of genomic medicine will face numerous systemic barriers but is essential to improve breast cancer outcomes and survival.

  12. The past and future impact of next-generation sequencing in head and neck cancer

    OpenAIRE

    N. Sethi; MacLennan, K; Wood, HM; Rabbitts, P

    2016-01-01

    Progress in sequencing technology is intrinsically linked to progress in understand cancer genomics. This review aims to discuss the development from Sanger sequencing to next generation sequencing (NGS) technology. We highlight the technical considerations for understanding reports using NGS. We discuss the findings of studies in head and neck cancer using NGS as well as the Cancer Genome Atlas. Finally we discuss future routes for research utilising this methodology and the potential impact...

  13. Public stated preferences and predicted uptake for genome-based colorectal cancer screening

    NARCIS (Netherlands)

    Groothuis-Oudshoorn, Catharina G.M.; Fermont, Jilles M.; Til, van Janine A.; IJzerman, Maarten J.

    2014-01-01

    Background Emerging developments in nanomedicine allow the development of genome-based technologies for non-invasive and individualised screening for diseases such as colorectal cancer. The main objective of this study was to measure user preferences for colorectal cancer screening using a nanopill.

  14. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    Science.gov (United States)

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-DoseCancer Responses.There has been a concerted effort in the field of radiation biology to better understand cellularresponses that could have an impact on the estin1ation of cancer...

  15. DNA copy number aberrations in breast cancer by array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Li, J.; Wang, K.; Li, S.;

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for analyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb resolution bacterial artificial chromosome CGH arrays. A number...

  16. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results...

  17. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  18. Facilitating a Culture of Responsible and Effective Sharing of Cancer Genome Data

    Science.gov (United States)

    Siu, Lillian L.; Lawler, Mark; Haussler, David; Knoppers, Bartha Maria; Lewin, Jeremy; Vis, Daniel J.; Liao, Rachel G.; Andre, Fabrice; Banks, Ian; Barrett, J. Carl; Caldas, Carlos; Camargo, Anamaria Aranha; Fitzgerald, Rebecca C.; Mao, Mao; Mattison, John E.; Pao, William; Sellers, William R.; Sullivan, Patrick; Teh, Bin Tean; Ward, Robyn; ZenKlusen, Jean Claude; Sawyers, Charles L; Voest, Emile E.

    2016-01-01

    Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance diagnosis, prognostication and treatment of cancer. A critical point has now been reached where analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers for data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary, and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data aggregation challenges faced by the field, suggests potential collaborative solutions, and describes how GA4GH can catalyze a harmonized data sharing culture. PMID:27149219

  19. Atlas of genetics and cytogenetics in oncology and haematology in 2013.

    Science.gov (United States)

    Huret, Jean-Loup; Ahmad, Mohammad; Arsaban, Mélanie; Bernheim, Alain; Cigna, Jérémy; Desangles, François; Guignard, Jean-Christophe; Jacquemot-Perbal, Marie-Christine; Labarussias, Maureen; Leberre, Vanessa; Malo, Anne; Morel-Pair, Catherine; Mossafa, Hossein; Potier, Jean-Claude; Texier, Guillaume; Viguié, Franck; Yau Chun Wan-Senon, Sylvie; Zasadzinski, Alain; Dessen, Philippe

    2013-01-01

    The Atlas of Genetics and Cytogenetics in Oncology and Haematology (http://AtlasGeneticsOncology.org) is a peer-reviewed internet journal/encyclopaedia/database focused on genes implicated in cancer, cytogenetics and clinical entities in cancer and cancer-prone hereditary diseases. The main goal of the Atlas is to provide review articles that describe complementary topics, namely, genes, genetic abnormalities, histopathology, clinical diagnoses and a large iconography. This description, which was historically based on karyotypic abnormalities and in situ hybridization (fluorescence in situ hybridization) techniques, now benefits from comparative genomic hybridization and massive sequencing, uncovering a tremendous amount of genetic rearrangements. As the Atlas combines different types of information (genes, genetic abnormalities, histopathology, clinical diagnoses and external links), its content is currently unique. The Atlas is a cognitive tool for fundamental and clinical research and has developed into an encyclopaedic work. In clinical practice, it contributes to the cytogenetic diagnosis and may guide treatment decision making, particularly regarding rare diseases (because they are numerous and are frequently encountered). Readers as well as the authors of the Atlas are researchers and/or clinicians. PMID:23161685

  20. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level

    Directory of Open Access Journals (Sweden)

    Li Wenting

    2012-06-01

    Full Text Available Abstract Background Identification of driver mutations among numerous genomic alternations remains a critical challenge to the elucidation of the underlying mechanisms of cancer. Because driver mutations by definition are associated with a greater number of cancer phenotypes compared to other mutations, we hypothesized that driver mutations could more easily be identified once the genotype-phenotype correlations are detected across tumor samples. Results In this study, we describe a novel network analysis to identify the driver mutation through integrating both cancer genomes and transcriptomes. Our method successfully identified a significant genotype-phenotype change correlation in all six solid tumor types and revealed core modules that contain both significantly enriched somatic mutations and aberrant expression changes specific to tumor development. Moreover, we found that the majority of these core modules contained well known cancer driver mutations, and that their mutated genes tended to occur at hub genes with central regulatory roles. In these mutated genes, the majority were cancer-type specific and exhibited a closer relationship within the same cancer type rather than across cancer types. The remaining mutated genes that exist in multiple cancer types led to two cancer type clusters, one cluster consisted of three neural derived or related cancer types, and the other cluster consisted of two adenoma cancer types. Conclusions Our approach can successfully identify the candidate drivers from the core modules. Comprehensive network analysis on the core modules potentially provides critical insights into convergent cancer development in different organs.

  1. DNA Copy Number Aberrations in Breast Cancer by Array Comparative Genomic Hybridization

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Kai Wang; Shengting Li; Vera Timmermans-Wielenga; Fritz Rank; Carsten Wiuf; Xiuqing Zhang; Huanming Yang; Lars Bolund

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for an-alyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb reso-lution bacterial artificial chromosome CGH arrays. A number of highly frequent genomic aberrations were discovered, which may act as "drivers" of tumor pro-gression. Meanwhile, the genomic profiles of four "normal" breast tissue samples taken at least 2 cm away from the primary tumor sites were also found to have some genomic aberrations that recurred with high frequency in the primary tu-mors, which may have important implications for clinical therapy. Additionally, we performed class comparison and class prediction for various clinicopathological pa-rameters, and a list of characteristic genomic aberrations associated with different clinicopathological phenotypes was compiled. Our study provides clues for further investigations of the underlying mechanisms of breast carcinogenesis.

  2. Characterization of HPV and host genome interactions in primary head and neck cancers

    Science.gov (United States)

    Parfenov, Michael; Pedamallu, Chandra Sekhar; Gehlenborg, Nils; Freeman, Samuel S.; Danilova, Ludmila; Bristow, Christopher A.; Lee, Semin; Hadjipanayis, Angela G.; Ivanova, Elena V.; Wilkerson, Matthew D.; Protopopov, Alexei; Yang, Lixing; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Ren, Xiaojia; Zhang, Jianhua; Pantazi, Angeliki; Santoso, Netty; Xu, Andrew W.; Mahadeshwar, Harshad; Wheeler, David A.; Haddad, Robert I.; Jung, Joonil; Ojesina, Akinyemi I.; Issaeva, Natalia; Yarbrough, Wendell G.; Hayes, D. Neil; Grandis, Jennifer R.; El-Naggar, Adel K.; Meyerson, Matthew; Park, Peter J.; Chin, Lynda; Seidman, J. G.; Hammerman, Peter S.; Kucherlapati, Raju; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Butterfield, Yaron S.N.; Carlsen, Rebecca; Cheng, Dean; Chu, Andy; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Lee, Darlene; Li, Haiyan I.; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Wong, Tina; Protopopov, Alexei; Santoso, Netty; Lee, Semin; Parfenov, Michael; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Haseley, Psalm; Zeng, Dong; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Bristow, Christopher; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Casasent, Tod; Liu, Wenbin; Lu, Yiling; Mills, Gordon; Motter, Thomas; Weinstein, John; Diao, Lixia; Wang, Jing; Fan, You Hong; Liu, Jinze; Wang, Kai; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Buda, Elizabeth; Hayes, D. Neil; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Kimes, Patrick K.; Marron, J.S.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Parker, Joel S.; Perou, Charles M.; Prins, Jan F.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Singh, Darshan; Soloway, Mathew G.; Tan, Donghui; Veluvolu, Umadevi; Walter, Vonn; Waring, Scot; Wilkerson, Matthew D.; Wu, Junyuan; Zhao, Ni; Cherniack, Andrew D.; Hammerman, Peter S.; Tward, Aaron D.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Jung, Joonil; Ojesina, Akinyemi I.; Carter, Scott L.; Zack, Travis I.; Schumacher, Steven E.; Beroukhim, Rameen; Freeman, Samuel S.; Meyerson, Matthew; Cho, Juok; Chin, Lynda; Getz, Gad; Noble, Michael S.; DiCara, Daniel; Zhang, Hailei; Heiman, David I.; Gehlenborg, Nils; Voet, Doug; Lin, Pei; Frazer, Scott; Stojanov, Petar; Liu, Yingchun; Zou, Lihua; Kim, Jaegil; Lawrence, Michael S.; Sougnez, Carrie; Lichtenstein, Lee; Cibulskis, Kristian; Lander, Eric; Gabriel, Stacey B.; Muzny, Donna; Doddapaneni, HarshaVardhan; Kovar, Christie; Reid, Jeff; Morton, Donna; Han, Yi; Hale, Walker; Chao, Hsu; Chang, Kyle; Drummond, Jennifer A.; Gibbs, Richard A.; Kakkar, Nipun; Wheeler, David; Xi, Liu; Ciriello, Giovanni; Ladanyi, Marc; Lee, William; Ramirez, Ricardo; Sander, Chris; Shen, Ronglai; Sinha, Rileen; Weinhold, Nils; Taylor, Barry S.; Aksoy, B. Arman; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Reva, Boris; Schultz, Nikolaus; Sumer, S. Onur; Sun, Yichao; Chan, Timothy; Morris, Luc; Stuart, Joshua; Benz, Stephen; Ng, Sam; Benz, Christopher; Yau, Christina; Baylin, Stephen B.; Cope, Leslie; Danilova, Ludmila; Herman, James G.; Bootwalla, Moiz; Maglinte, Dennis T.; Laird, Peter W.; Triche, Timothy; Weisenberger, Daniel J.; Van Den Berg, David J.; Agrawal, Nishant; Bishop, Justin; Boutros, Paul C.; Bruce, Jeff P; Byers, Lauren Averett; Califano, Joseph; Carey, Thomas E.; Chen, Zhong; Cheng, Hui; Chiosea, Simion I.; Cohen, Ezra; Diergaarde, Brenda; Egloff, Ann Marie; El-Naggar, Adel K.; Ferris, Robert L.; Frederick, Mitchell J.; Grandis, Jennifer R.; Guo, Yan; Haddad, Robert I.; Hammerman, Peter S.; Harris, Thomas; Hayes, D. Neil; Hui, Angela BY; Lee, J. Jack; Lippman, Scott M.; Liu, Fei-Fei; McHugh, Jonathan B.; Myers, Jeff; Ng, Patrick Kwok Shing; Perez-Ordonez, Bayardo; Pickering, Curtis R.; Prystowsky, Michael; Romkes, Marjorie; Saleh, Anthony D.; Sartor, Maureen A.; Seethala, Raja; Seiwert, Tanguy Y.; Si, Han; Tward, Aaron D.; Van Waes, Carter; Waggott, Daryl M.; Wiznerowicz, Maciej; Yarbrough, Wendell; Zhang, Jiexin; Zuo, Zhixiang; Burnett, Ken; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candance; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron D.; Bowen, Jay; Frick, Jessica; Gastier-Foster, Julie M.; Harper, Hollie A.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Baboud, Julien; Jensen, Mark A.; Kahn, Ari B.; Pihl, Todd D.; Pot, David A.; Srinivasan, Deepak; Walton, Jessica S.; Wan, Yunhu; Burton, Robert; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin L.; Shaw, Kenna R. Mills; Ozenberger, Bradley A.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Saller, Charles; Tarvin, Katherine; Chen, Chu; Bollag, Roni; Weinberger, Paul; Golusiński, Wojciech; Golusiński, Paweł; Ibbs, Matthiew; Korski, Konstanty; Mackiewicz, Andrzej; Suchorska, Wiktoria; Szybiak, Bartosz; Wiznerowicz, Maciej; Burnett, Ken; Curley, Erin; Gardner, Johanna; Mallery, David; Penny, Robert; Shelton, Troy; Yena, Peggy; Beard, Christina; Mitchell, Colleen; Sandusky, George; Agrawal, Nishant; Ahn, Julie; Bishop, Justin; Califano, Joseph; Khan, Zubair; Bruce, Jeff P; Hui, Angela BY; Irish, Jonathan; Liu, Fei-Fei; Perez-Ordonez, Bayardo; Waldron, John; Boutros, Paul C.; Waggott, Daryl M.; Myers, Jeff; Lippman, Scott M.; Egea, Sophie; Gomez-Fernandez, Carmen; Herbert, Lynn; Bradford, Carol R.; Carey, Thomas E.; Chepeha, Douglas B.; Haddad, Andrea S.; Jones, Tamara R.; Komarck, Christine M.; Malakh, Mayya; McHugh, Jonathan B.; Moyer, Jeffrey S.; Nguyen, Ariane; Peterson, Lisa A.; Prince, Mark E.; Rozek, Laura S.; Sartor, Maureen A.; Taylor, Evan G.; Walline, Heather M.; Wolf, Gregory T.; Boice, Lori; Chera, Bhishamjit S.; Funkhouser, William K.; Gulley, Margaret L.; Hackman, Trevor G.; Hayes, D. Neil; Hayward, Michele C.; Huang, Mei; Rathmell, W. Kimryn; Salazar, Ashley H.; Shockley, William W.; Shores, Carol G.; Thorne, Leigh; Weissler, Mark C.; Wrenn, Sylvia; Zanation, Adam M.; Chiosea, Simion I.; Diergaarde, Brenda; Egloff, Ann Marie; Ferris, Robert L.; Romkes, Marjorie; Seethala, Raja; Brown, Brandee T.; Guo, Yan; Pham, Michelle; Yarbrough, Wendell G.

    2014-01-01

    Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis. PMID:25313082

  3. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing

    OpenAIRE

    Emily Vogtmann; Xing Hua; Georg Zeller; Shinichi Sunagawa; Voigt, Anita Y.; Rajna Hercog; Goedert, James J.; Jianxin Shi; Peer Bork; Rashmi Sinha

    2016-01-01

    Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously pub...

  4. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer

    OpenAIRE

    Kwei, KA; Kim, YH; Girard, L; Kao, J; Pacyna-Gengelbach, M; Salari, K; Lee, J.; Choi, Y-L; Sato, M.; Wang, P.; Hernandez-Boussard, T; Gazdar, AF; Petersen, I. (Inga); Minna, JD; Pollack, JR

    2008-01-01

    Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (thyroid transcription factor 1; also called NKX2-1), previously linked to normal lung development and function. When amp...

  5. High-Resolution Comparative Genomic Hybridization of Inflammatory Breast Cancer and Identification of Candidate Genes

    OpenAIRE

    Bekhouche, Ismahane; Finetti, Pascal; Adelaïde, José; Ferrari, Anthony; Tarpin, Carole; Charafe-Jauffret, Emmanuelle; Charpin, Colette; Houvenaeghel, Gilles; Jacquemier, Jocelyne; Bidaut, Ghislain; Birnbaum, Daniel; Viens, Patrice; Chaffanet, Max; Bertucci, François

    2011-01-01

    Background Inflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. Methodology/Findings Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally ...

  6. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer

    International Nuclear Information System (INIS)

    Background and purpose: To validate atlas-based autosegmentation for contouring breast/anorectal targets. Methods and materials: ABAS uses atlases with defined CTVs as template cases to automatically delineate target volumes in other patient CT-datasets. Results are compared with manually contoured CTVs of breast/anorectal cancer according to RTOG-guidelines. The impact of using specific atlases matched to individual patient geometry was evaluated. Results were quantified by analyzing Dice Similarity Coefficient (DSC), logit(DSC) and Percent Overlap (PO). DSC >0.700 and logit(DSC) >0.847 are acceptable. In addition a new algorithm (STAPLE) was evaluated. Results: ABAS produced good results for the CTV of breast/anorectal cancer targets. Delineation of inguinal lymphatic drainage, however, was insufficient. Results for breast CTV were (DSC: 0.86–0.91 ([0, 1]), logit(DSC): 1.82–2.36 ([−∞, ∞]), PO: 75.5–82.89%) and for anorectal CTVA (DSC: 0.79–0.85, logit(DSC): 1.40–1.77, PO: 68–73.67%). Conclusions: ABAS produced satisfactory results for these clinical target volumes that are defined by more complex tissue interface geometry, thus streamlining and facilitating the radiotherapy workflow which is essential to face increasing demand and limited resources. STAPLE improved contouring outcome. Small target volumes not clearly defined are still to be delineated manually. Based on these results, ABAS has been clinically introduced for precontouring of CTVs/OARs.

  7. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10−6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10−5, we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10−5), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  8. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972-2011) and Incidence (1995-2008) in Taiwan.

    Science.gov (United States)

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-05-01

    Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972-2011) and incidence (1995-2008) in Taiwan.Two sets of color maps were made based on "age-adjusted mortality by rate" and "age-adjusted mortality by rank." AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008.The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment.This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan.

  9. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972-2011) and Incidence (1995-2008) in Taiwan.

    Science.gov (United States)

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-05-01

    Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972-2011) and incidence (1995-2008) in Taiwan.Two sets of color maps were made based on "age-adjusted mortality by rate" and "age-adjusted mortality by rank." AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008.The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment.This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan. PMID:27227915

  10. Development of cancer-initiating cells and immortalized cells with genomic instability.

    Science.gov (United States)

    Yoshioka, Ken-Ichi; Atsumi, Yuko; Nakagama, Hitoshi; Teraoka, Hirobumi

    2015-03-26

    Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations and epigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells (CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A (ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2AX to levels representative of growth arrest in normal cells. PMID:25815132

  11. Funding Opportunity: Genomic Data Centers

    Science.gov (United States)

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  12. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR

    Directory of Open Access Journals (Sweden)

    Richer AL

    2015-02-01

    Full Text Available Amanda L Richer,1 Jacqueline M Friel,1 Vashti M Carson,2 Landon J Inge,1 Timothy G Whitsett2 1Norton Thoracic Institute, St Joseph’s Hospital and Medical Center, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC. A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer. Keywords: non-small cell lung cancer, precision medicine, epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, serine/threonine kinase 11, tumor protein p53

  13. Genomic instability influences the transcriptome and proteome in endometrial cancer subtypes

    Directory of Open Access Journals (Sweden)

    Habermann Jens K

    2011-10-01

    Full Text Available Abstract Background In addition to clinical characteristics, DNA aneuploidy has been identified as a prognostic factor in epithelial malignancies in general and in endometrial cancers in particular. We mapped ploidy-associated chromosomal aberrations and identified corresponding gene and protein expression changes in endometrial cancers of different prognostic subgroups. Methods DNA image cytometry classified 25 endometrioid cancers to be either diploid (n = 16 or aneuploid (n = 9, and all uterine papillary serous cancers (UPSC to be aneuploid (n = 8. All samples were subjected to comparative genomic hybridization and gene expression profiling. Identified genes were subjected to Ingenuity pathway analysis (IPA and were correlated to protein expression changes. Results Comparative genomic hybridization revealed ploidy-associated specific, recurrent genomic imbalances. Gene expression analysis identified 54 genes between diploid and aneuploid endometrioid carcinomas, 39 genes between aneuploid endometrioid cancer and UPSC, and 76 genes between diploid endometrioid and aneuploid UPSC to be differentially expressed. Protein profiling identified AKR7A2 and ANXA2 to show translational alterations consistent with the transcriptional changes. The majority of differentially expressed genes and proteins belonged to identical molecular functions, foremost Cancer, Cell Death, and Cellular Assembly and Organization. Conclusions We conclude that the grade of genomic instability rather than the histopathological subtype correlates with specific gene and protein expression changes. The identified genes and proteins might be useful as molecular targets for improved diagnostic and therapeutic intervention and merit prospective validation.

  14. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer

    NARCIS (Netherlands)

    Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Masson, G.; Agnarsson, B.A.; Benediktsdottir, K.R.; Sigurdsson, A.; Magnusson, O.T.; Gudjonsson, S.A.; Magnusdottir, D.N.; Johannsdottir, H.; Helgadottir, H.T.; Stacey, S.N.; Jonasdottir, A.; Olafsdottir, S.B.; Thorleifsson, G.; Jonasson, J.G.; Tryggvadottir, L.; Navarrete, S.; Fuertes, F.; Helfand, B.T.; Hu, Q.; Csiki, I.E.; Mates, I.N.; Jinga, V.; Aben, K.K.H.; Oort, I.M. van; Vermeulen, S.; Donovan, J.L.; Hamdy, F.C.; Ng, C.F.; Chiu, P.K.; Lau, K.M.; Ng, M.C.; Gulcher, J.R.; Kong, A.; Catalona, W.J.; Mayordomo, J.I.; Einarsson, G.V.; Barkardottir, R.B.; Jonsson, E.; Mates, D.; Neal, D.E.; Kiemeney, L.A.L.M.; Thorsteinsdottir, U.; Rafnar, T.; Stefansson, K.

    2012-01-01

    In Western countries, prostate cancer is the most prevalent cancer of men and one of the leading causes of cancer-related death in men. Several genome-wide association studies have yielded numerous common variants conferring risk of prostate cancer. Here, we analyzed 32.5 million variants discovered

  15. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin;

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  16. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Science.gov (United States)

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  17. Examination of Epigenetic and other Molecular Factors Associated with mda-9/Syntenin Dysregulation in Cancer Through Integrated Analyses of Public Genomic Datasets

    Science.gov (United States)

    Bacolod, Manny D.; Das, Swadesh K.; Sokhi, Upneet K.; Bradley, Steven; Fenstermacher, David A.; Pellecchia, Maurizio; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.

    2016-01-01

    mda-9/Syntenin (melanoma differentiation-associated gene 9) is a PDZ domain-containing, cancer invasion-related protein. In this study, we employed multiple integrated bioinformatic approaches to identify the probable epigenetic factors, molecular pathways, and functionalities associated with mda-9 dysregulation during cancer progression. Analyses of publicly available genomic data (e.g., expression, copy number, methylation) from TCGA, GEO, ENCODE, and Human Protein Atlas projects led to the following observations: a) mda-9 expression correlates with both copy number and methylation level of an intronic CpG site (cg17197774) located downstream of the CpG island, b) cg17197774 methylation is a likely prognostic marker in glioma, c) Among 22 cancer types, melanoma exhibits the highest mda-9 level, and lowest level of methylation at cg17197774, d) cg17197774 hypomehtylation is also associated with histone modifications (at the mda-9 locus) indicative of more active transcription, e) Using Gene Set Enrichment Analysis (GSEA), and the VIGOR (Virtual Gene Over-expression or Repression ) analytical scheme, we were able to predict mda-9’s association with extracellular matrix organization (e.g., MMPs, collagen, integrins), IGFBP2 and NF-κB signaling pathways, phospholipid metabolism, cytokines (e.g., interleukins), CTLA-4, and components of complement cascade pathways. Indeed, previous publications have shown that many of the aforementioned genes and pathways are associated with mda-9’s functionality. PMID:26093898

  18. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    Science.gov (United States)

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  19. Integrating Microarray Gene Expression Object Model and Clinical Document Architecture for Cancer Genomics Research

    OpenAIRE

    Park, Yu Rang; Lee, Hye Won; Kim, Ju Han

    2005-01-01

    Systematic integration of gene expression profiling with clinical information may facilitate cancer genomics research. MAGE-OM (MicroArray Gene Expression Object Model) defines standard objects for genomic but not for clinical data. HL7 CDA (Clinical Document Architecture) is a document model for clinical information, describing syntax but not semantics. We designed a document template and common data elements in XML Schema with additional constraints for CDA to define conte...

  20. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    International Nuclear Information System (INIS)

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinically in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined

  1. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  2. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Science.gov (United States)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  3. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Kemp

    2015-12-01

    Full Text Available Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  4. Can metabolomics in addition to genomics add to prognostic and predictive information in breast cancer?

    Science.gov (United States)

    Howell, Anthony

    2010-11-16

    Genomic data from breast cancers provide additional prognostic and predictive information that is beginning to be used for patient management. The question arises whether additional information derived from other 'omic' approaches such as metabolomics can provide additional information. In an article published this month in BMC Cancer, Borgan et al. add metabolomic information to genomic measures in breast tumours and demonstrate, for the first time, that it may be possible to further define subgroups of patients which could be of value clinically. See research article: http://www.biomedcentral.com/1471-2407/10/628.

  5. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna;

    2015-01-01

    85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies.......Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...

  6. Integrated proteomic and genomic analysis of colorectal cancer

    Science.gov (United States)

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  7. Genomically Driven Tumors and Actionability across Histologies: BRAF-Mutant Cancers as a Paradigm.

    Science.gov (United States)

    Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Subbiah, Vivek; Rodon, Jordi; Kurzrock, Razelle

    2016-04-01

    The diagnosis, classification, and management of cancer are traditionally dictated by the site of tumor origin, for example, breast or lung, and by specific histologic subtypes of site-of-origin cancers (e.g., non-small cell versus small cell lung cancer). However, with the advent of sequencing technologies allowing for rapid, low cost, and accurate sequencing of clinical samples, new observations suggest an expanded or different approach to the diagnosis and treatment of cancer-one driven by the unique molecular features of the tumor. We discuss a genomically driven strategy for cancer treatment using BRAF as an example. Several key points are highlighted: (i) molecular aberrations can be shared across cancers; (ii) approximately 15% of all cancers harbor BRAF mutations; and (iii) BRAF inhibitors, while approved only for melanoma, have reported activity across numerous cancers and related disease types bearing BRAF aberrations. However, BRAF-mutated colorectal cancer has shown poor response rate to BRAF inhibitor monotherapy, striking a cautionary note. Yet, even in this case, emerging data suggest BRAF-mutated colorectal cancers can respond well to BRAF inhibitors, albeit when administered in combination with other agents that impact resistance pathways. Taken together, these data suggest that molecular aberrations may be the basis for a new nosology for cancer. Mol Cancer Ther; 15(4); 533-47. ©2016 AACR. PMID:27009213

  8. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  9. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells

    OpenAIRE

    Chih-Wei Chen; Ning Tsao; Lin-Yi Huang; Yun Yen; Xiyong Liu; Christine Lehman; Yuh-Hwa Wang; Mei-Chun Tseng; Yu-Ju Chen; Yi-Chi Ho; Chian-Feng Chen; Zee-Fen Chang

    2016-01-01

    The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase) and ribonucleotide reductase (RNR) in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in co...

  10. A Health Services Research Agenda for Cellular, Molecular and Genomic Technologies in Cancer Care

    Science.gov (United States)

    Wideroff, Louise; Phillips, Kathryn A.; Randhawa, Gurvaneet; Ambs, Anita; Armstrong, Katrina; Bennett, Charles L.; Brown, Martin L.; Donaldson, Molla S.; Follen, Michele; Goldie, Sue J.; Hiatt, Robert A.; Khoury, Muin J.; Lewis, Graham; McLeod, Howard L.; Piper, Margaret; Powell, Isaac; Schrag, Deborah; Schulman, Kevin A.; Scott, Joan

    2009-01-01

    Background In recent decades, extensive resources have been invested to develop cellular, molecular and genomic technologies with clinical applications that span the continuum of cancer care. Methods In December 2006, the National Cancer Institute sponsored the first workshop to uniquely examine the state of health services research on cancer-related cellular, molecular and genomic technologies and identify challenges and priorities for expanding the evidence base on their effectiveness in routine care. Results This article summarizes the workshop outcomes, which included development of a comprehensive research agenda that incorporates health and safety endpoints, utilization patterns, patient and provider preferences, quality of care and access, disparities, economics and decision modeling, trends in cancer outcomes, and health-related quality of life among target populations. Conclusions Ultimately, the successful adoption of useful technologies will depend on understanding and influencing the patient, provider, health care system and societal factors that contribute to their uptake and effectiveness in ‘real-world’ settings. PMID:19367091

  11. The Genomic Grade Assay Compared With Ki67 to Determine Risk of Distant Breast Cancer Recurrence

    DEFF Research Database (Denmark)

    Ignatiadis, Michail; Azim, Hatem A; Desmedt, Christine;

    2016-01-01

    Importance: The Genomic Grade Index (GGI) was previously developed, evaluated on frozen tissue, and shown to be prognostic in early breast cancer. To test the GGI in formalin-fixed, paraffin-embedded breast cancer tumors, a quantitative reverse transcriptase polymerase chain reaction assay...... was developed and named the Genomic Grade (GG). The GG assay has the potential to increase the clinical application of the GGI, but robust demonstration of the clinical validity of the GG assay is required. Objective: To evaluate the prognostic ability of the GG assay to detect breast cancer recurrence compared...... cancer. Patients included in this study had available formalin-fixed, paraffin-embedded samples of their primary tumors and were randomized to either a 5-year tamoxifen monotherapy arm or a 5-year letrozole monotherapy arm. Associations between either GG assay results or log2-transformed Ki67 data...

  12. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    DEFF Research Database (Denmark)

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb;

    2016-01-01

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with c...

  13. In Remembrance of Robert J. Arceci, M.D., Ph.D. | Office of Cancer Genomics

    Science.gov (United States)

    It is with great sadness and a profound sense of loss that OCG recognizes the untimely passing of Dr. Robert J. Arceci. Dr. Arceci was a co-Principal Investigator for the Acute Myeloid Leukemia (AML) project within the TARGET initiative, which aims to discover novel, more effective treatments for childhood cancers. Dr. Arceci was passionate about the use of cancer genomics to both inform therapeutic approaches in the clinic and expand the field of precision medicine.

  14. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers

    OpenAIRE

    Lin, De-Chen; Xu, Liang; Ding, Ling-Wen; Sharma, Arjun; Liu, Li-Zhen; Yang, Henry; Tan, Patrick; Vadgama, Jay; Karlan, Beth Y.; Lester, Jenny; Urban, Nicole; Schummer, Michèl; Doan, Ngan; Said, Jonathan W.; Sun, Hongmao

    2013-01-01

    Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry ...

  15. Integrating Genomics with Proteomics - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Approximately 60 percent of patients diagnosed with cancer present as early stage disease (Stage I and II). Despite the favorable prognosis associated with treatment intervention of such early stage disease (typically surgical excision), there are a small, but significant, fraction of these cancers that appear to be hardwired for aggressive metastatic behavior and ultimately lethal outcome.

  16. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  17. POSSIBLE REASONS FOR TP53 ACCUMULATION IN NASO- PHARYNGEAL CARCINOMA USING ATLAS HUMAN CANCER cDNA EXPRESSION ARRAY

    Institute of Scientific and Technical Information of China (English)

    李虹; 韩为农; 张玲; 冯湘玲; 姚开泰

    2002-01-01

    Objective: To compare gene expression profiles of nasopharyngeal carcinoma (NPC) tissue with that of control tissue by cDNA Array and to discuss possible reasons of TP53 accumulation in NPC tissue. Methods: (1) hybridization of Atlas Human Cancer cDNA Expression Array 7742-1; (2) analysis of Atlas Arrays using Atlasimage 1.01a; (3) verification of results of array by RT-PCR; (4) verification of protein expression alterations by immuno- histochemistry. Results: (1) Of 588 tumor-related genes, 134 genes were upregulated, 88 downregulated; (2) Of 32 TP53-regulated genes, 13 genes were shown differential expression, 11 upregulated, 2 downregulated; (3) ATM and JNK2 were upregulated; (4) mRNA expression of ubiquitin-conjugating enzyme E2 (M74524) and ubiquitin- conjugating enzyme E2 (L22005) has no evident changes; Conclusion: (1) TP53 dysfunction exists in NPC tissues; (2) ATM and JNK might be the important causes of TP53 accumulation.

  18. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    International Nuclear Information System (INIS)

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  19. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Oikawa Masahiro

    2011-12-01

    Full Text Available Abstract Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN, which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH. Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread, which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05. The concordance of results between aCGH and fluorescence in situ hybridization (FISH for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively. The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15. Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40. Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005 independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for

  20. Distribution of prostate nodes: a PET/CT-derived anatomic atlas of prostate cancer patients before and after surgical treatment

    International Nuclear Information System (INIS)

    In order to define adequate radiation portals in nodal positive prostate cancer a detailed knowledge of the anatomic lymph-node distribution is mandatory. We therefore systematically analyzed the localization of Choline PET/CT positive lymph nodes and compared it to the RTOG recommendation of pelvic CTV, as well as to previous work, the SPECT sentinel lymph node atlas. Thirty-two patients being mostly high risk patients with a PSA of 12.5 ng/ml (median) received PET/CT before any treatment. Eighty-seven patients received PET/CT for staging due to biochemical failure with a median PSA of 3.12 ng/ml. Each single PET-positive lymph node was manually contoured in a “virtual” patient dataset to achieve a 3-D visualization, resulting in an atlas of the cumulative PET positive lymph node distribution. Further the PET-positive lymph node location in each patient was assessed with regard to the existence of a potential geographic miss (i.e. PET-positive lymph nodes that would not have been treated adequately by the RTOG consensus on CTV definition of pelvic lymph nodes). Seventy-eight and 209 PET positive lymph nodes were detected in patients with no prior treatment and in postoperative patients, respectively. The most common sites of PET positive lymph nodes in patients with no prior treatment were external iliac (32.1 %), followed by common iliac (23.1 %) and para-aortic (19.2 %). In postoperative patients the most common sites of PET positive lymph nodes were common iliac (24.9 %), followed by external iliac (23.0 %) and para-aortic (20.1 %). In patients with no prior treatment there were 34 (43.6 %) and in postoperative patients there were 77 (36.8 %) of all detected lymph nodes that would not have been treated adequately using the RTOG CTV. We compared the distribution of lymph nodes gained by Choline PET/CT to the preexisting SPECT sentinel lymph node atlas and saw an overall good congruence. Choline PET/CT and SPECT sentinel lymph node atlas are comparable to

  1. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis.

    Directory of Open Access Journals (Sweden)

    Rachael Natrajan

    2016-02-01

    Full Text Available The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters.We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D in solid tumors, termed the tumor ecosystem diversity index (EDI, using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3 breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2 breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52. Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size.To our knowledge, this is the first

  2. Genomic and genetic alterations influence the progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Stefania Nobili; Lorenzo Bruno; Ida Landini; Cristina Napoli; Paolo Bechi; Francesco Tonelli; Carlos A Rubio; Enrico Mini; Gabriella Nesi

    2011-01-01

    Gastric cancer is one of the leading causes of cancerrelated deaths worldwide, although the incidence has gradually decreased in many Western countries. Twomain gastric cancer histotypes, intestinal and diffuse, are recognised. Although most of the described genetic alterations have been observed in both types, different genetic pathways have been hypothesized. Genetic and epigenetic events, including 1q loss of heterozygosity (LOH), microsatellite instability and hypermethylation, have mostly been reported in intestinal-type gastric carcinoma and its precursor lesions, whereas 17p LOH, mutation or loss of E-cadherin are more often implicated in the development of diffuse-type gastric cancer.

  3. Noncoding Genomics in Gastric Cancer and the Gastric Precancerous Cascade: Pathogenesis and Biomarkers

    Directory of Open Access Journals (Sweden)

    Alejandra Sandoval-Bórquez

    2015-01-01

    Full Text Available Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori and Epstein-Barr virus (EBV, host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs, regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade.

  4. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

    NARCIS (Netherlands)

    M. Smid (Marcel); F.G. Rodriguez-Gonzalez (F. German); A.M. Sieuwerts (Anieta); R. Salgado (Roberto); W.J.C. Prager-van der Smissen (Wendy); Vlugt-Daane, M.V.D. (Michelle Van Der); A. van Galen (Anne); S. Nik-Zainal (Serena); J. Staaf (Johan); A.B. Brinkman (Arie B.); M.J. Vijver (Marc ); A.L. Richardson (Andrea); A. Fatima (Aquila); Berentsen, K. (Kim); A. Butler (Adam); S. Martin (Sandra); H. Davies (Helen); J.E.M.A. Debets (Reno); M.E.M.-V. Gelder (Marion E. Meijer-Van); C.H.M. van Deurzen (Carolien); Macgrogan, G. (Gaëtan); Van Den Eynden, G.G.G.M. (Gert G. G. M.); C.A. Purdie (Colin A.); A.M. Thompson (Alastair M.); C. Caldas (Carlos); P.N. Span (Paul); Simpson, P.T. (Peter T.); S. Lakhani (Sunil); S.J. van Laere (Steven); C. Desmedt (Christine); Ringnér, M. (Markus); Tommasi, S. (Stefania); Eyford, J. (Jorunn); A. Broeks (Annegien); A. Vincent-Salomon (Anne); Futreal, P.A. (P. Andrew); S. Knappskog (Stian); King, T. (Tari); G. Thomas (Gilles); Viari, A. (Alain); Langerød, A. (Anita); A.-L. Borresen-Dale (Anne-Lise); E. Birney (Ewan); H. Stunnenberg (Henk); M.R. Stratton (Michael); J.A. Foekens (John); J.W.M. Martens (John)

    2016-01-01

    textabstractA recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP

  5. Genome-wide association study for ovarian cancer susceptibility using pooled DNA

    DEFF Research Database (Denmark)

    Lu, Yi; Chen, Xiaoqing; Beesley, Jonathan;

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used in...

  6. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analys

  7. Mitochondrial Genome Deletion for Detection of Prostate Cancer — EDRN Public Portal

    Science.gov (United States)

    The Prostate Core Mitomic Test™ is based upon a 3.4 kb mitochondrial genome deletion (3.4 mtdelta) that was identified through PCR analysis of frozen prostate cancer samples. In cancer research it has been found that deletions in mitochondrial DNA can correlate with cellular changes that indicate development of cancer. This deletion includes the terminal 22 bases of MT-ND4L, all of MT-ND4, 3 tRNAs (histidine, serine 2, and leucine 2), and all except the terminal 24 bases of MT-ND5.

  8. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  9. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Science.gov (United States)

    Covell, David G

    2015-01-01

    Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE) and Sanger Cancer Genome Project (CGP). The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a) evaluate drug responses of compounds with similar mechanism of action (MOA), b) examine measures of gene expression (GE), copy number (CN) and mutation status (MUT) biomarkers, combined with gene set enrichment analysis (GSEA), for hypothesizing biological processes important for drug response, c) conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d) assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  10. Organoids as Models for Neoplastic Transformation | Office of Cancer Genomics

    Science.gov (United States)

    Cancer models strive to recapitulate the incredible diversity inherent in human tumors. A key challenge in accurate tumor modeling lies in capturing the panoply of homo- and heterotypic cellular interactions within the context of a three-dimensional tissue microenvironment. To address this challenge, researchers have developed organotypic cancer models (organoids) that combine the 3D architecture of in vivo tissues with the experimental facility of 2D cell lines.

  11. [Genomic Tests as Predictors of Breast Cancer Patients Prognosis].

    Science.gov (United States)

    Bielčiková, Z; Petruželka, L

    2016-01-01

    Hormonal dependent breast cancer is a heterogeneous disease from a molecular and clinical perspective. The relapse risk of early breast cancer patients treated with adjuvant hormonal therapy varies. Validated predictive markers concerning adjuvant cytotoxic treatment are still lacking in ER+/ HER2-  breast cancer, which has a good prognosis in general. This can lead to the inefficient chemotherapy indication. Molecular classification of breast cancer reports evidence about the heterogeneity of hormonal dependent breast cancer and its stratification to different groups with different characteristics. Multigene assays work on the molecular level, and their aim is to provide patients risk stratification and therapy efficacy prediction. The position of multigene assays in clinical practice is not stabile yet. Non uniform level of evidence connected to patients prognosis interpretations and difficult comparison of tests are the key problems, which prevent their wide clinical use. The article is a summary of some of the most important multigene assays in breast cancer and their current position in oncology practice. PMID:26879059

  12. Gastric cancers of Western European and African patients show different patterns of genomic instability

    Directory of Open Access Journals (Sweden)

    Mulder Chris JJ

    2011-01-01

    Full Text Available Abstract Background Infection with H. pylori is important in the etiology of gastric cancer. Gastric cancer is infrequent in Africa, despite high frequencies of H. pylori infection, referred to as the African enigma. Variation in environmental and host factors influencing gastric cancer risk between different populations have been reported but little is known about the biological differences between gastric cancers from different geographic locations. We aim to study genomic instability patterns of gastric cancers obtained from patients from United Kingdom (UK and South Africa (SA, in an attempt to support the African enigma hypothesis at the biological level. Methods DNA was isolated from 67 gastric adenocarcinomas, 33 UK patients, 9 Caucasian SA patients and 25 native SA patients. Microsatellite instability and chromosomal instability were analyzed by PCR and microarray comparative genomic hybridization, respectively. Data was analyzed by supervised univariate and multivariate analyses as well as unsupervised hierarchical cluster analysis. Results Tumors from Caucasian and native SA patients showed significantly more microsatellite instable tumors (p Conclusions Gastric cancers from SA and UK patients show differences in genetic instability patterns, indicating possible different biological mechanisms in patients from different geographical origin. This is of future clinical relevance for stratification of gastric cancer therapy.

  13. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    Science.gov (United States)

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  14. Understanding Cancer Prognosis

    Medline Plus

    Full Text Available ... Renal Cell) Cancer Leukemia Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ... Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & Early Detection Treatment Cancer & Public Health Cancer ...

  15. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Directory of Open Access Journals (Sweden)

    Nur Zarina Ali Hassan

    Full Text Available Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV and gene expression in colorectal cancer (CRC samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  16. Methods in Mammary Gland Development and Cancer: the second ENDBC meeting - intravital imaging, genomics, modeling and metastasis

    OpenAIRE

    Stingl, John; Matthew J Smalley; Glukhova, Marina A.; Bentires-Alj, Mohamed

    2010-01-01

    The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer.

  17. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland Ch

  18. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  19. Centrosome Dysfunction Contributes To Chromosome Instability, Chromoanagenesis And Genome Reprograming In Cancer.

    Directory of Open Access Journals (Sweden)

    German A Pihan

    2013-11-01

    Full Text Available The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker’s precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegreated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.

  20. Figure 4 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Gene-list view of genomic data. The gene-list view allows users to compare data across a set of loci. The data in this figure includes copy number, mutation, and clinical data from 202 glioblastoma samples from TCGA. Adapted from Figure 7; Thorvaldsdottir H et al. 2012

  1. Figure 5 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Split-Screen View. The split-screen view is useful for exploring relationships of genomic features that are independent of chromosomal location. Color is used here to indicate mate pairs that map to different chromosomes, chromosomes 1 and 6, suggesting a translocation event. Adapted from Figure 8; Thorvaldsdottir H et al. 2012

  2. Figure 2 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Grouping and sorting genomic data in IGV. The IGV user interface displaying 202 glioblastoma samples from TCGA. Samples are grouped by tumor subtype (second annotation column) and data type (first annotation column) and sorted by copy number of the EGFR locus (middle column). Adapted from Figure 1; Robinson et al. 2011

  3. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  4. The tandem duplicator phenotype as a distinct genomic configuration in cancer.

    Science.gov (United States)

    Menghi, Francesca; Inaki, Koichiro; Woo, XingYi; Kumar, Pooja A; Grzeda, Krzysztof R; Malhotra, Ankit; Yadav, Vinod; Kim, Hyunsoo; Marquez, Eladio J; Ucar, Duygu; Shreckengast, Phung T; Wagner, Joel P; MacIntyre, George; Murthy Karuturi, Krishna R; Scully, Ralph; Keck, James; Chuang, Jeffrey H; Liu, Edison T

    2016-04-26

    Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response. PMID:27071093

  5. The tandem duplicator phenotype as a distinct genomic configuration in cancer

    Science.gov (United States)

    Menghi, Francesca; Inaki, Koichiro; Woo, XingYi; Kumar, Pooja A.; Grzeda, Krzysztof R.; Malhotra, Ankit; Yadav, Vinod; Kim, Hyunsoo; Marquez, Eladio J.; Ucar, Duygu; Shreckengast, Phung T.; Wagner, Joel P.; MacIntyre, George; Murthy Karuturi, Krishna R.; Scully, Ralph; Keck, James; Chuang, Jeffrey H.; Liu, Edison T.

    2016-01-01

    Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response. PMID:27071093

  6. Integrated functional, gene expression and genomic analysis for the identification of cancer targets.

    Directory of Open Access Journals (Sweden)

    Elizabeth Iorns

    Full Text Available The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.

  7. MuSiC: identifying mutational significance in cancer genomes.

    Science.gov (United States)

    Dees, Nathan D; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C; Schierding, William; Koboldt, Daniel C; Mooney, Thomas B; Callaway, Matthew B; Dooling, David; Mardis, Elaine R; Wilson, Richard K; Ding, Li

    2012-08-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery.

  8. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Nordentoft, Iver Kristiansen; Christensen, Emil;

    2016-01-01

    Background: At least half of the patients diagnosed with non–muscle-invasive bladder cancer (NMIBC) experience recurrence and approximately 15% will develop progression to muscle invasive or metastatic disease. Biomarkers for disease surveillance are urgently needed. Objective: Development of ass...

  9. Synthetic Genetic Targeting of Genome Instability in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J., E-mail: mcmanusk@cc.umanitoba.ca [Manitoba Institute of Cell Biology, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0V9 (Canada)

    2013-06-24

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets.

  10. Genomic aberrations relate early and advanced stage ovarian cancer

    NARCIS (Netherlands)

    A. Zaal; W.J. Peyrot (Wouter ); P.M.J.J. Berns (Els); M.E.L. van der Burg (Maria); J.H.W. Veerbeek (Jan ); J.B. Trimbos; I. Cadron (Isabelle); P.J. van Diest (Paul); W.N. Wieringen (Wessel); O. Krijgsman (Oscar); G.A. Meijer (Gerrit); J.M.J. Piek (Jurgen ); P.J. Timmers (Petra); I. Vergote (Ignace); R.H.M. Verheijen (René); B. Ylstra (Bauke); R.P. Zweemer (Ronald )

    2012-01-01

    textabstractBackground Because of the distinct clinical presentation of early and advanced stage ovarian cancer, we aim to clarify whether these disease entities are solely separated by time of diagnosis or whether they arise from distinct molecular events. Methods Sixteen early and sixteen advanced

  11. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  12. MuSiC: Identifying mutational significance in cancer genomes

    Science.gov (United States)

    Dees, Nathan D.; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C.; Schierding, William; Koboldt, Daniel C.; Mooney, Thomas B.; Callaway, Matthew B.; Dooling, David; Mardis, Elaine R.; Wilson, Richard K.; Ding, Li

    2012-01-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery. PMID:22759861

  13. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    OpenAIRE

    Ning An; Xue Yang; Shujun Cheng; Guiqi Wang; Kaitai Zhang

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically a...

  14. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers.

    Science.gov (United States)

    Ferrari, Anthony; Vincent-Salomon, Anne; Pivot, Xavier; Sertier, Anne-Sophie; Thomas, Emilie; Tonon, Laurie; Boyault, Sandrine; Mulugeta, Eskeatnaf; Treilleux, Isabelle; MacGrogan, Gaëtan; Arnould, Laurent; Kielbassa, Janice; Le Texier, Vincent; Blanché, Hélène; Deleuze, Jean-François; Jacquemier, Jocelyne; Mathieu, Marie-Christine; Penault-Llorca, Frédérique; Bibeau, Frédéric; Mariani, Odette; Mannina, Cécile; Pierga, Jean-Yves; Trédan, Olivier; Bachelot, Thomas; Bonnefoi, Hervé; Romieu, Gilles; Fumoleau, Pierre; Delaloge, Suzette; Rios, Maria; Ferrero, Jean-Marc; Tarpin, Carole; Bouteille, Catherine; Calvo, Fabien; Gut, Ivo Glynne; Gut, Marta; Martin, Sancha; Nik-Zainal, Serena; Stratton, Michael R; Pauporté, Iris; Saintigny, Pierre; Birnbaum, Daniel; Viari, Alain; Thomas, Gilles

    2016-01-01

    HER2-positive breast cancer has long proven to be a clinically distinct class of breast cancers for which several targeted therapies are now available. However, resistance to the treatment associated with specific gene expressions or mutations has been observed, revealing the underlying diversity of these cancers. Therefore, understanding the full extent of the HER2-positive disease heterogeneity still remains challenging. Here we carry out an in-depth genomic characterization of 64 HER2-positive breast tumour genomes that exhibit four subgroups, based on the expression data, with distinctive genomic features in terms of somatic mutations, copy-number changes or structural variations. The results suggest that, despite being clinically defined by a specific gene amplification, HER2-positive tumours melt into the whole luminal-basal breast cancer spectrum rather than standing apart. The results also lead to a refined ERBB2 amplicon of 106 kb and show that several cases of amplifications are compatible with a breakage-fusion-bridge mechanism. PMID:27406316

  15. Five endometrial cancer risk loci identified through genome-wide association analysis.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  16. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  17. MuSiC: Identifying mutational significance in cancer genomes

    OpenAIRE

    Dees, Nathan D.; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C.; Schierding, William; Koboldt, Daniel C.; Mooney, Thomas B.; Matthew B Callaway; Dooling, David; Elaine R Mardis; Wilson, Richard K.; Ding, Li

    2012-01-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly sig...

  18. Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers

    Science.gov (United States)

    Sanchez-Garcia, Félix; Villagrasa, Patricia; Matsui, Junji; Kotliar, Dylan; Castro, Verónica; Akavia, Uri-David; Chen, Bo-Juen; Saucedo-Cuevas, Laura; Barrueco, Ruth Rodriguez; Llobet-Navas, David; Silva, Jose M.; Pe’er, Dana

    2014-01-01

    Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, a novel algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p-value < e−14). 9/10 top scoring Helios genes are known drivers of breast cancer and in vitro validation of 12 novel candidates predicted by Helios found 10 conferred enhanced anchorage independent growth, demonstrating Helios’s exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying novel driver genes and how it can yield important insights into cancer. PMID:25433701

  19. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas;

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24......,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR). RESULTS: We observed no significant association between genetic variants and prostate cancer survival. CONCLUSIONS: Common genetic...... variants with large impact on prostate cancer survival were not observed in this study. IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes....

  20. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes

    OpenAIRE

    Sintupisut, Nardnisa; Liu, Pei-Ling; Yeang, Chen-Hsiang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between ‘effector’ molecular aberrations and ‘target’ gene expressions in GBMs. A rich collection of prior st...

  1. Will Chinese ovarian cancer patients benefit from knowing the BRCA2 mutation status?

    OpenAIRE

    Liu, Guo-Yan; Zhang, Wei

    2012-01-01

    In Western countries, the mutation status of the BRCA1 and BRCA2 genes is commonly determined for genetic counseling among members of families with a history of breast or ovarian cancer, especially for women of the Ashkenazi Jewish ethnicity. Recent studies in the Cancer Genome Atlas project have demonstrated that BRCA2 mutation carriers are more responsive to platinum-based chemotherapy among high-grade serous ovarian cancer patients. Thus, in Western countries, the mutation status of BRCA1 ...

  2. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway analysis of genome-wide association study (GWAS data in 3,141 pancreatic cancer patients and 3,367 controls with European ancestry.Using the gene set ridge regression in association studies (GRASS method, we analyzed 197 pathways identified from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM test to identify major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes (P<0.01 using the Database for Annotation, Visualization, and Integrated Discovery (DAVID.Two pathways were significantly associated with risk of pancreatic cancer after adjusting for multiple comparisons (P<0.00025 and in replication testing: neuroactive ligand-receptor interaction, (Ps<0.00002, and the olfactory transduction pathway (P = 0.0001. LKM test identified four genes that were significantly associated with risk of pancreatic cancer after Bonferroni correction (P<1×10(-5: ABO, HNF1A, OR13C4, and SHH. Functional enrichment analysis using DAVID consistently found the G protein-coupled receptor signaling pathway (including both neuroactive ligand-receptor interaction and olfactory transduction pathways to be the most significant pathway for pancreatic cancer risk in this study population.These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer.

  3. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  4. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    LENUS (Irish Health Repository)

    McKay, James D

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  5. The Genomic and Proteomic Content of Cancer Cell-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    2012-04-01

    Full Text Available Exosomes are secreted membrane vesicles that have been proposed as an effective means to detect a variety of disease states, including cancer. The properties of exosomes, including stability in biological fluids, allow for their efficient isolation and make them an ideal vehicle for studies on early disease detection and evaluation. Much data has been collected over recent years regarding the mRNA, miRNA, and protein contents of exosomes. In addition, many studies have described the functional role that exosomes play in disease initiation and progression. Tumor cells have been shown to secrete exosomes, often in increased amounts compared to normal cells, and these exosomes can carry the genomic and proteomic signatures characteristic of the tumor cells from which they were derived. While these unique signatures make exosomes ideal for cancer detection, exosomes derived from cancer cells have also been shown to play a functional role in cancer progression. Here, we review the unique genomic and proteomic contents of exosomes originating from cancer cells as well as their functional effects to promote tumor progression.

  6. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  7. A genome-wide association study of breast cancer in women of African ancestry

    OpenAIRE

    Chen, Fang; Chen, Gary K.; Stram, Daniel O.; Millikan, Robert C.; Ambrosone, Christine B.; John, Esther M; Bernstein, Leslie; Zheng, Wei; Palmer, Julie R.; Jennifer J Hu; Rebbeck, Tim R.; Ziegler, Regina G.; Nyante, Sarah; Bandera, Elisa V.; Sue A Ingles

    2012-01-01

    Genome-wide association studies (GWAS) in diverse populations are needed to reveal variants that are more common and/or limited to defined populations. We conducted a GWAS of breast cancer in women of African ancestry, with genotyping of > 1,000,000 SNPs in 3,153 African American cases and 2,831 controls, and replication testing of the top 66 associations in an additional 3,607 breast cancer cases and 11,330 controls of African ancestry. Two of the 66 SNPs replicated (p < 0.05) in stage 2, wh...

  8. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    OpenAIRE

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei

    2014-01-01

    Genetic alterations are frequently observed in bladder cancer. In this study, we demonstrate that bladder tumors can be classified into two different types based on the spectrum of genetic diversity they confer. In one class of tumors, we observed tumor protein p53 mutations and a large number of single-nucleotide and structural variants. Another characteristic of this group was chromosome shattering, known as chromothripsis, and mutational heterogeneity. The other two bladder tumors did not ...

  9. Understanding the Genetic Mechanisms of Cancer Drug Resistance Using Genomic Approaches.

    Science.gov (United States)

    Hu, Xueda; Zhang, Zemin

    2016-02-01

    A major obstacle in precision cancer medicine is the inevitable resistance to targeted therapies. Tremendous effort and progress has been made over the past few years to understand the biochemical and genetic mechanisms underlying drug resistance, with the goal to eventually overcome such daunting challenges. Diverse mechanisms, such as secondary mutations, oncogene bypass, and epigenetic alterations, can all lead to drug resistance, and the number of known involved genes is growing rapidly, thus providing many possibilities to overcome resistance. The finding of these mechanisms and genes invariably requires the application of genomic and functional genomic approaches to tumors or cancer models. In this review, we briefly highlight the major drug-resistance mechanisms known today, and then focus primarily on the technological approaches leading to the advancement of this field.

  10. Understanding the Genetic Mechanisms of Cancer Drug Resistance Using Genomic Approaches.

    Science.gov (United States)

    Hu, Xueda; Zhang, Zemin

    2016-02-01

    A major obstacle in precision cancer medicine is the inevitable resistance to targeted therapies. Tremendous effort and progress has been made over the past few years to understand the biochemical and genetic mechanisms underlying drug resistance, with the goal to eventually overcome such daunting challenges. Diverse mechanisms, such as secondary mutations, oncogene bypass, and epigenetic alterations, can all lead to drug resistance, and the number of known involved genes is growing rapidly, thus providing many possibilities to overcome resistance. The finding of these mechanisms and genes invariably requires the application of genomic and functional genomic approaches to tumors or cancer models. In this review, we briefly highlight the major drug-resistance mechanisms known today, and then focus primarily on the technological approaches leading to the advancement of this field. PMID:26689126

  11. Functional genomics identifies therapeutic targets for MYC-driven cancer

    OpenAIRE

    Toyoshima, Masafumi; Howie, Heather L; Imakura, Maki; Walsh, Ryan M.; Annis, James E.; Chang, Aaron N; Frazier, Jason; Chau, B. Nelson; Loboda, Andrey; Linsley, Peter S; Cleary, Michele A.; Park, Julie R.; Grandori, Carla

    2012-01-01

    MYC oncogene family members are broadly implicated in human cancers, yet are considered “undruggable” as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ∼3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by...

  12. Implications of using whole genome sequencing to test unselected populations for high risk breast cancer genes: a modelling study

    OpenAIRE

    Warren-Gash, Charlotte; Kroese, Mark; Burton, Hilary; Pharoah, Paul

    2016-01-01

    Background The decision to test for high risk breast cancer gene mutations is traditionally based on risk scores derived from age, family and personal cancer history. Next generation sequencing technologies such as whole genome sequencing (WGS) make wider population testing more feasible. In the UK’s 100,000 Genomes Project, mutations in 16 genes including BRCA1 and BRCA2 are to be actively sought regardless of clinical presentation. The implications of deploying this approach at scale for pa...

  13. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Steve Lu

    2015-03-01

    Full Text Available Analyses of chromosomal aberrations in human genetic disorders have revealed that inverted repeat sequences (IRs often co-localize with endogenous chromosomal instability and breakage hotspots. Approximately 80% of all IRs in the human genome are short (<100 bp, yet the mutagenic potential of such short cruciform-forming sequences has not been characterized. Here, we find that short IRs are enriched at translocation breakpoints in human cancer and stimulate the formation of DNA double-strand breaks (DSBs and deletions in mammalian and yeast cells. We provide evidence for replication-related mechanisms of IR-induced genetic instability and a novel XPF cleavage-based mechanism independent of DNA replication. These discoveries implicate short IRs as endogenous sources of DNA breakage involved in disease etiology and suggest that these repeats represent a feature of genome plasticity that may contribute to the evolution of the human genome by providing a means for diversity within the population.

  14. Genome-based versus gene-based theory of cancer: Possible implications for clinical practice

    Indian Academy of Sciences (India)

    Nataša Todorović-Raković

    2011-09-01

    The current state in oncology research indicates that the attempts to explain such complex process as cancerogenesis by a single or several genetic mutations were not successful enough. On the other hand, chromosomal/genomic instability – almost universal features of malignant tumours which influence a global pattern of gene expression and, subsequently, many oncogenic pathways – were often disregarded and considered nonessential to clinical application. However, a new arising field of system biology including ‘new forms’ of genome diversity such as copy number variations (CNV) and high-throughput oncogene mutation profiling now reveal all the complexity of cancer and provide the final explanation of the oncogenic pathways, based on stochastic (onco)genomic variation rather than on (onco)genic concepts.

  15. Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    DEFF Research Database (Denmark)

    Swanton, Charles; Szallasi, Zoltan Imre; Brenton, James D.;

    2008-01-01

    ) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated...... in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts....

  16. Expression genomics in breast cancer research: microarrays at the crossroads of biology and medicine

    OpenAIRE

    Miller, Lance D; Liu, Edison T

    2007-01-01

    Genome-wide expression microarray studies have revealed that the biological and clinical heterogeneity of breast cancer can be partly explained by information embedded within a complex but ordered transcriptional architecture. Comprising this architecture are gene expression networks, or signatures, reflecting biochemical and behavioral properties of tumors that might be harnessed to improve disease subtyping, patient prognosis and prediction of therapeutic response. Emerging 'hypothesis-driv...

  17. Genomic analysis to define molecular basis of aggressiveness in a mouse model of oral cancer

    OpenAIRE

    Varun Chalivendra; Krishna Latha Kanchi; Onken, Michael D.; Ashley E. Winkler; Elaine Mardis; Ravindra Uppaluri

    2014-01-01

    To investigate the molecular basis underlying aggressive behavior in oral squamous cell carcinoma (OSCC), our laboratory developed a carcinogen-induced mouse oral cancer (MOC) cell line model that encompasses the growth and metastasis spectrum of its human counterpart. We performed next-generation sequencing (NGS) and gene expression microarray profiles to explore the genomic and transcriptional backgrounds of the differential MOC line phenotypes, as well as, the cross-species relevance of th...

  18. Genomics and premalignant breast lesions: clues to the development and progression of lobular breast cancer

    OpenAIRE

    Mastracci, Teresa L; Boulos, Fouad I; Andrulis, Irene L.; Lam, Wan L.

    2007-01-01

    Advances in genomic technology have improved our understanding of the genetic events that parallel breast cancer development. Because almost all mammary carcinomas develop in the terminal duct lobular units of the breast, understanding the events involved in mammary gland development make it possible to recognize those events that, when altered, contribute to breast neoplasia. In this review we focus on lobular carcinomas, discussing the pathology, development, and progression of premalignant...

  19. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    OpenAIRE

    Liu, Biao; Conroy, Jeffrey M; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an...

  20. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    NARCIS (Netherlands)

    Rafnar, T.; Vermeulen, H.H.M.; Sulem, P.; Thorleifsson, G.; Aben, K.K.H.; Witjes, J.A.; Grotenhuis, A.J.; Verhaegh, G.W.C.T.; Hulsbergen- van de Kaa, C.A.; Besenbacher, S.; Gudbjartsson, D.; Stacey, S.N.; Gudmundsson, J.; Johannsdottir, H.; Bjarnason, H.; Zanon, C.; Helgadottir, H.; Jonasson, J.G.; Tryggvadottir, L.; Jonsson, E.; Geirsson, G.; Nikulasson, S.; Petursdottir, V.; Bishop, D.T.; Chung-Sak, S.; Choudhury, A.; Elliott, F.; Barrett, J.H.; Knowles, M.A.; Verdier, P. de; Ryk, C.; Lindblom, A.; Rudnai, P.; Gurzau, E.; Koppova, K.; Vineis, P.; Polidoro, S.; Guarrera, S.; Sacerdote, C.; Panadero, A.; Sanz-Velez, J.I.; Sanchez, M.; Valdivia, G.; Garcia-Prats, M.D.; Hengstler, J.G.; Selinski, S.; Gerullis, H.; Ovsiannikov, D.; Khezri, A.; Aminsharifi, A.; Malekzadeh, M.; Berg, L.H. van den; Ophoff, R.A.; Veldink, J.H.; Zeegers, M.P.; Kellen, E.; Fostinelli, J.; Andreoli, D.; Arici, C.; Porru, S.; Buntinx, F.; Ghaderi, A.; Golka, K.; Mayordomo, J.I.; Matullo, G.; Kumar, R.; Steineck, G.; Kiltie, A.E.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.; Kiemeney, L.A.L.M.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European G

  1. Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Jønson, Lars; Albrechtsen, Anders;

    2009-01-01

    BRCA1 and BRCA2 germ-line mutations predispose to breast and ovarian cancer. Large genomic rearrangements of BRCA1 account for 0-36% of all disease causing mutations in various populations, while large genomic rearrangements in BRCA2 are more rare. We examined 642 East Danish breast and/or ovarian...

  2. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis

    NARCIS (Netherlands)

    Greshock, J; Naylor, TL; Margolin, A; Diskin, S; Cleaver, SH; Futreal, PA; deJong, PJ; Zhao, SY; Liebman, M; Weber, BL

    2004-01-01

    Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, w

  3. Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate-cancer patients

    OpenAIRE

    Holcomb, Ilona N.; Grove, Douglas I.; Kinnunen, Martin; Friedman, Cynthia L.; Gallaher, Ian S.; Todd M. Morgan; Sather, Cassandra L.; Delrow, Jeffrey J; Peter S Nelson; Lange, Paul H.; Ellis, William J; True, Lawrence D.; Janet M Young; Hsu, Li; Trask, Barbara J.

    2008-01-01

    Disseminated epithelial cells can be isolated from the bone marrow of a far greater fraction of prostate-cancer patients than the fraction of patients who progress to metastatic disease. To provide a better understanding of these cells, we have characterized their genomic alterations. We first present an array comparative genomic hybridization method capable of detecting genomic changes in the small number of disseminated cells (10-20) that can typically be obtained from bone-marrow aspirates...

  4. Transcription Restores DNA Repair to Heterochromatin, Determining Regional Mutation Rates in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Christina L. Zheng

    2014-11-01

    Full Text Available Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs arising in an XPC−/− background. XPC−/− cells lack global genome nucleotide excision repair (GG-NER, thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.

  5. Epidemiological studies of esophageal cancer in the era of genome-wide association studies

    Institute of Scientific and Technical Information of China (English)

    An-Hui; Wang; Yuan; Liu; Bo; Wang; Yi-Xuan; He; Ye-Xian; Fang; Yong-Ping; Yan

    2014-01-01

    Esophageal cancer(EC) caused about 395000 deaths in 2010. China has the most cases of EC and EC is the fourth leading cause of cancer death in China. Esophageal squamous cell carcinoma(ESCC) is the predominant histologic type(90%-95%), while the incidence of esophageal adenocarcinoma(EAC) remains extremely low in China. Traditional epidemiological studies have revealed that environmental carcinogens are risk factors for EC. Molecular epidemiological studies revealed that susceptibility to EC is influenced by both environmental and genetic risk factors. Of all the risk factors for EC, some are associated with the risk of ESCC and others with the risk of EAC. However, the details and mechanisms of risk factors involved in the process for EC are unclear. The advanced methods and techniques used in human genome studies bring a great opportunity for researchers to explore and identify the details of those risk factors or susceptibility genes involved inthe process of EC. Human genome epidemiology is a new branch of epidemiology, which leads the epidemiology study from the molecular epidemiology era to the era of genome wide association studies(GWAS). Here we review the epidemiological studies of EC(especially ESCC) in the era of GWAS, and provide an overview of the general risk factors and those genomic variants(genes, SNPs, miRNAs, proteins) involved in the process of ESCC.

  6. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men

    Directory of Open Access Journals (Sweden)

    Gyorgy Petrovics

    2015-12-01

    Full Text Available Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA and Caucasian American (CA CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients. Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.

  7. A genome-wide scan for breast cancer risk haplotypes among African American women.

    Directory of Open Access Journals (Sweden)

    Chi Song

    Full Text Available Genome-wide association studies (GWAS simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645, thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density.

  8. Identifying common prognostic factors in genomic cancer studies: A novel index for censored outcomes

    Directory of Open Access Journals (Sweden)

    Moreau Thierry

    2010-03-01

    Full Text Available Abstract Background With the growing number of public repositories for high-throughput genomic data, it is of great interest to combine the results produced by independent research groups. Such a combination allows the identification of common genomic factors across multiple cancer types and provides new insights into the disease process. In the framework of the proportional hazards model, classical procedures, which consist of ranking genes according to the estimated hazard ratio or the p-value obtained from a test statistic of no association between survival and gene expression level, are not suitable for gene selection across multiple genomic datasets with different sample sizes. We propose a novel index for identifying genes with a common effect across heterogeneous genomic studies designed to remain stable whatever the sample size and which has a straightforward interpretation in terms of the percentage of separability between patients according to their survival times and gene expression measurements. Results The simulations results show that the proposed index is not substantially affected by the sample size of the study and the censoring. They also show that its separability performance is higher than indices of predictive accuracy relying on the likelihood function. A simulated example illustrates the good operating characteristics of our index. In addition, we demonstrate that it is linked to the score statistic and possesses a biologically relevant interpretation. The practical use of the index is illustrated for identifying genes with common effects across eight independent genomic cancer studies of different sample sizes. The meta-selection allows the identification of four genes (ESPL1, KIF4A, HJURP, LRIG1 that are biologically relevant to the carcinogenesis process and have a prognostic impact on survival outcome across various solid tumors. Conclusion The proposed index is a promising tool for identifying factors having a

  9. Integrative genomic analyses of a novel cytokine, interleukin-34 and its potential role in cancer prediction.

    Science.gov (United States)

    Wang, Bo; Xu, Wenming; Tan, Miaolian; Xiao, Yan; Yang, Haiwei; Xia, Tian-Song

    2015-01-01

    Interleukin-34 (IL-34) is a novel cytokine, which is composed of 222 amino acids and forms homodimers. It binds to the macrophage colony-stimulating factor (M-CSF) receptor and plays an important role in innate immunity and inflammatory processes. In the present study, we identified the completed IL-34 gene in 25 various mammalian genomes and found that IL-34 existed in all types of vertebrates, including fish, amphibians, birds and mammals. These species have a similar 7 exon/6 intron gene organization. The phylogenetic tree indicated that the IL-34 gene from the primate lineage, rodent lineage and teleost lineage form a species-specific cluster. It was found mammalian that IL-34 was under positive selection pressure with the identified positively selected site, 196Val. Fifty-five functionally relevant single nucleotide polymorphisms (SNPs), including 32 SNPs causing missense mutations, 3 exonic splicing enhancer SNPs and 20 SNPs causing nonsense mutations were identified from 2,141 available SNPs in the human IL-34 gene. IL-34 was expressed in various types of cancer, including blood, brain, breast, colorectal, eye, head and neck, lung, ovarian and skin cancer. A total of 5 out of 40 tests (1 blood cancer, 1 brain cancer, 1 colorectal cancer and 2 lung cancer) revealed an association between IL-34 gene expression and cancer prognosis. It was found that the association between the expression of IL-34 and cancer prognosis varied in different types of cancer, even in the same types of cancer from different databases. This suggests that the function of IL-34 in these tumors may be multidimensional. The upstream transcription factor 1 (USF1), regulatory factor X-1 (RFX1), the Sp1 transcription factor 1 , POU class 3 homeobox 2 (POU3F2) and forkhead box L1 (FOXL1) regulatory transcription factor binding sites were identified in the IL-34 gene upstream (promoter) region, which may be involved in the effects of IL-34 in tumors. PMID:25395235

  10. The impact of vitamin D in breast cancer: genomics, pathways, metabolism

    Directory of Open Access Journals (Sweden)

    Carmen Judith Narvaez

    2014-06-01

    Full Text Available Nuclear receptors exert profound effects on mammary gland physiology and have complex roles in the etiology of breast cancer. In addition to receptors for classic steroid hormones such as estrogen and progesterone, the nuclear vitamin D receptor (VDR interacts with its ligand 1α,25(OH2D3 to modulate the normal mammary epithelial cell genome and subsequent phenotype. Observational studies suggest that vitamin D deficiency is common in breast cancer patients and that low vitamin D status enhances the risk for disease development or progression. Genomic profiling has characterized many 1α,25(OH2D3 responsive targets in normal mammary cells and in breast cancers, providing insight into the molecular actions of 1α,25(OH2D3 and the VDR in regulation of cell cycle, apoptosis and differentiation. New areas of emphasis include regulation of tumor metabolism and innate immune responses. However, the role of VDR in individual cell types (ie epithelial, adipose, fibroblast, endotelial, immune of normal and tumor tissues remains to be clarified. Furthermore, the mechanisms by which VDR integrates signaling between diverse cell types and controls soluble signals and paracrine pathways in the tissue/tumor microenvironment remain to be defined. Model systems of carcinogenesis have provided evidence that both VDR expression and 1α,25(OH2D3 actions change with transformation but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, analysis of VDR actions in specific molecular subtypes of the disease may help to clarify the conflicting data. The expanded use of genomic, proteomic and metabolomic approaches on a diverse array of in vitro and in vivo model systems is clearly warranted to comprehensively understand the nework of vitamin D regulated pathways in the context of breast cancer.

  11. Cancer Therapy Directed by Comprehensive Genomic Profiling: A Single Center Study.

    Science.gov (United States)

    Wheler, Jennifer J; Janku, Filip; Naing, Aung; Li, Yali; Stephen, Bettzy; Zinner, Ralph; Subbiah, Vivek; Fu, Siqing; Karp, Daniel; Falchook, Gerald S; Tsimberidou, Apostolia M; Piha-Paul, Sarina; Anderson, Roosevelt; Ke, Danxia; Miller, Vincent; Yelensky, Roman; Lee, J Jack; Hong, David S; Kurzrock, Razelle

    2016-07-01

    Innovative molecular diagnostics deployed in the clinic enable new ways to stratify patients into appropriate treatment regimens. These approaches may resolve a major challenge for early-phase clinical trials, which is to recruit patients who, while having failed previous treatments, may nevertheless respond to molecularly targeted drugs. We report the findings of a prospective, single-center study conducted in patients with diverse refractory cancers who underwent comprehensive genomic profiling (CGP; next-generation sequencing, 236 genes). Of the 500 patients enrolled, 188 (37.6%) received either matched (N = 122/188, 65%) or unmatched therapy (N = 66/188, 35%). The most common reasons that patients were not evaluable for treatment included insufficient tissue, death, or hospice transfer. The median number of molecular alterations per patient was five (range, 1-14); median number of prior therapies, four. The most common diagnoses were ovarian cancer (18%), breast cancer (16%), sarcoma (13%), and renal cancer (7%). Of the 339 successfully profiled patients, 317 (93.5%) had at least one potentially actionable alteration. By calculating matching scores, based on the number of drug matches and genomic aberrations per patient, we found that high scores were independently associated with a greater frequency of stable disease ≥6 months/partial/complete remission [22% (high scores) vs. 9% (low scores), P = 0.024], longer time-to-treatment failure [hazard ratio (HR) = 0.52; 95% confidence interval (CI) = 0.36-0.74; P = 0.0003], and survival (HR = 0.65; 95% CI = 0.43-1.0; P = 0.05). Collectively, this study offers a clinical proof of concept for the utility of CGP in assigning therapy to patients with refractory malignancies, especially in those patients with multiple genomic aberrations for whom combination therapies could be implemented. Cancer Res; 76(13); 3690-701. ©2016 AACR. PMID:27197177

  12. Identification of novel targets for breast cancer by exploring gene switches on a genome scale

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2011-11-01

    Full Text Available Abstract Background An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches. Results We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2 is uncovered. We further suggest a likely transcription factor that regulates TACSTD2. Conclusions Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.

  13. Genomic Testing and Therapies for Breast Cancer in Clinical Practice

    Science.gov (United States)

    Haas, Jennifer S.; Phillips, Kathryn A.; Liang, Su-Ying; Hassett, Michael J.; Keohane, Carol; Elkin, Elena B.; Armstrong, Joanne; Toscano, Michele

    2011-01-01

    Purpose: Given the likely proliferation of targeted testing and treatment strategies for cancer, a better understanding of the utilization patterns of human epidermal growth factor receptor 2 (HER2) testing and trastuzumab and newer gene expression profiling (GEP) for risk stratification and chemotherapy decision making are important. Study Design: Cross-sectional. Methods: We performed a medical record review of women age 35 to 65 years diagnosed between 2006 and 2007 with invasive localized breast cancer, identified using claims from a large national health plan (N = 775). Results: Almost all women received HER2 testing (96.9%), and 24.9% of women with an accepted indication received GEP. Unexplained socioeconomic differences in GEP use were apparent after adjusting for age and clinical characteristics; specifically, GEP use increased with income. For example, those in the lowest income category (< $40,000) were less likely than those with an income of $125,000 or more to receive GEP (odds ratio, 0.34; 95% CI, 0.16 to 0.73). A majority of women (57.7%) with HER2-positive disease received trastuzumab; among these women, differences in age and clinical characteristics were not apparent, although surprisingly, those in the lowest income category were more likely than those in the high-income category to receive trastuzumab (P = .02). Among women who did not have a positive HER2 test, 3.9% still received trastuzumab. Receipt of adjuvant chemotherapy increased as GEP score indicated greater risk of recurrence. Conclusion: Identifying and eliminating unnecessary variation in the use of these expensive tests and treatments should be part of quality improvement and efficiency programs. PMID:21886507

  14. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali;

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349...

  15. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Wang, X.; Pankratz, V.S.; Fredericksen, Z.; Tarrell, R.; Karaus, M.; McGuffog, L.; Pharaoh, P.D.; Ponder, B.A.J.; Dunning, A.M.; Peock, S.; Cook, M.; Oliver, C.; Frost, D.; Sinilnikova, O.M.; Stoppa-Lyonnet, D.; Mazoyer, S.; Houdayer, C.; Hogervorst, F.B.L.; Hooning, M.J.; Ligtenberg, M.J.L.; Spurdle, A.; Chenevix-Trench, G.; Schmutzler, R.K.; Wappenschmidt, B.; Engel, C.; Meindl, A.; Domchek, S.M.; Nathanson, K.L.; Rebbeck, T.R.; Singer, C.F.; Gschwantler-Kaulich, D.; Dressler, C.; Fink, A.; Szabo, C.I.; Zikan, M.; Foretova, L.; Claes, K.; Thomas, G.; Hoover, R.N.; Hunter, D.J.; Chanock, S.J.; Easton, D.F.; Antoniou, A.C.; Couch, F.J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  16. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Wang, Xianshu; Pankratz, V. Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D. P.; Ponder, Bruce A. J.; Dunning, Alison M.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B. L.; Hooning, Maartje J.; Ligtenberg, Marjolijn J.; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Singer, Christian F.; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I.; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N.; Hunter, David J.; Chanock, Stephen J.; Easton, Douglas F.; Antoniou, Antonis C.; Couch, Fergus J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  17. File list: ALL.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cance...r cells SRX174586,SRX174585,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  18. File list: Pol.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic can...cer cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  19. File list: DNS.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_cancer_cells mm9 DNase-seq Pancreas Pancreatic cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  20. File list: Unc.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Unclassified Pancreas Pancreatic cance...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  1. File list: ALL.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cance...r cells SRX174585,SRX174586,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  2. File list: Oth.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic can...cer cells SRX174586,SRX174585 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  3. File list: His.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  4. File list: Oth.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic can...cer cells SRX174585,SRX174586 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  5. File list: Oth.Prs.10.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.AllAg.Prostate_cancer hg19 TFs and others Prostate Prostate cancer SRX50...X502065,SRX502059,SRX502055 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.10.AllAg.Prostate_cancer.bed ...

  6. File list: InP.Prs.50.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.50.AllAg.Prostate_cancer hg19 Input control Prostate Prostate cancer SRX861...688,SRX861686,SRX861689 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.50.AllAg.Prostate_cancer.bed ...

  7. File list: InP.Dig.50.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.50.AllAg.Colon_cancer hg19 Input control Digestive tract Colon cancer SRX12...155774,SRX124693,SRX124698 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.50.AllAg.Colon_cancer.bed ...

  8. File list: Unc.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Pancreatic_cancer_cells mm9 Unclassified Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  9. File list: ALL.Prs.10.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.10.AllAg.Prostate_cancer hg19 All antigens Prostate Prostate cancer SRX5020...61686,SRX502069,SRX502057,SRX502065,SRX502059,SRX502055 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.10.AllAg.Prostate_cancer.bed ...

  10. File list: InP.Dig.05.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.05.AllAg.Colon_cancer hg19 Input control Digestive tract Colon cancer SRX12...124693,SRX124695,SRX124694 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.05.AllAg.Colon_cancer.bed ...

  11. File list: Oth.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic cancer... cells SRX174586,SRX174585 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  12. File list: ALL.Prs.50.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.50.AllAg.Prostate_cancer hg19 All antigens Prostate Prostate cancer SRX5020...02062,SRX861679,SRX861684,SRX861685,SRX861681,SRX861678 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.50.AllAg.Prostate_cancer.bed ...

  13. File list: Unc.Dig.10.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.10.AllAg.Colon_cancer hg19 Unclassified Digestive tract Colon cancer SRX115...0169,SRX124703,SRX1150170 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Dig.10.AllAg.Colon_cancer.bed ...

  14. File list: Oth.Dig.50.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.50.AllAg.Colon_cancer hg19 TFs and others Digestive tract Colon cancer SRX1...55772,SRX155775,SRX155773,SRX155776 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.50.AllAg.Colon_cancer.bed ...

  15. File list: ALL.Prs.05.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.05.AllAg.Prostate_cancer hg19 All antigens Prostate Prostate cancer SRX5020...61685,SRX861686,SRX502057,SRX502065,SRX502055,SRX502069 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.05.AllAg.Prostate_cancer.bed ...

  16. File list: Oth.Dig.05.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.05.AllAg.Colon_cancer hg19 TFs and others Digestive tract Colon cancer SRX1...55772,SRX155773,SRX155775,SRX155776 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.05.AllAg.Colon_cancer.bed ...

  17. File list: Oth.Dig.10.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.Colon_cancer hg19 TFs and others Digestive tract Colon cancer SRX1...55772,SRX155775,SRX155773,SRX155776 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.10.AllAg.Colon_cancer.bed ...

  18. File list: Pol.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.20.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  19. File list: Unc.Dig.50.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.50.AllAg.Colon_cancer hg19 Unclassified Digestive tract Colon cancer SRX115...0169,SRX1150170,SRX124703 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Dig.50.AllAg.Colon_cancer.bed ...

  20. File list: ALL.Prs.20.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.20.AllAg.Prostate_cancer hg19 All antigens Prostate Prostate cancer SRX5020...02055,SRX861680,SRX861682,SRX861685,SRX861681,SRX861678 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.20.AllAg.Prostate_cancer.bed ...

  1. File list: InP.Prs.20.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.20.AllAg.Prostate_cancer hg19 Input control Prostate Prostate cancer SRX861...688,SRX861689,SRX861686 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.20.AllAg.Prostate_cancer.bed ...

  2. File list: Oth.Dig.20.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.AllAg.Colon_cancer hg19 TFs and others Digestive tract Colon cancer SRX1...55772,SRX155773,SRX155775,SRX155776 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.20.AllAg.Colon_cancer.bed ...

  3. File list: InP.Dig.10.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.10.AllAg.Colon_cancer hg19 Input control Digestive tract Colon cancer SRX12...155774,SRX625671,SRX155777 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.10.AllAg.Colon_cancer.bed ...

  4. File list: InP.Prs.10.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.10.AllAg.Prostate_cancer hg19 Input control Prostate Prostate cancer SRX861...688,SRX861689,SRX861686 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.10.AllAg.Prostate_cancer.bed ...

  5. File list: ALL.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cancer... cells SRX174586,SRX174585,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  6. File list: Unc.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Prs.05.AllAg.Prostate_cancer_cells hg19 Unclassified Prostate Prostate cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  7. File list: InP.Prs.05.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.05.AllAg.Prostate_cancer hg19 Input control Prostate Prostate cancer SRX861...688,SRX861689,SRX861686 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.05.AllAg.Prostate_cancer.bed ...

  8. File list: Unc.Dig.05.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.05.AllAg.Colon_cancer hg19 Unclassified Digestive tract Colon cancer SRX115...0169,SRX1150170,SRX124703 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Dig.05.AllAg.Colon_cancer.bed ...

  9. File list: Oth.Prs.05.AllAg.Prostate_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.AllAg.Prostate_cancer hg19 TFs and others Prostate Prostate cancer SRX50...X502065,SRX502055,SRX502069 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.05.AllAg.Prostate_cancer.bed ...

  10. File list: DNS.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cancer_cells.bed ...

  11. File list: InP.Dig.20.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.20.AllAg.Colon_cancer hg19 Input control Digestive tract Colon cancer SRX12...124693,SRX124697,SRX124698 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.20.AllAg.Colon_cancer.bed ...

  12. File list: Unc.Dig.20.AllAg.Colon_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.20.AllAg.Colon_cancer hg19 Unclassified Digestive tract Colon cancer SRX115...0169,SRX1150170,SRX124703 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Dig.20.AllAg.Colon_cancer.bed ...

  13. File list: Oth.Brs.20.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cancer hg19 TFs and others Breast Breast cancer SRX186804,S... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cancer.bed ...

  14. File list: Oth.Brs.50.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cancer hg19 TFs and others Breast Breast cancer SRX186804,S... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cancer.bed ...

  15. File list: Oth.Brs.05.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cancer hg19 TFs and others Breast Breast cancer SRX186804,S... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cancer.bed ...

  16. File list: ALL.Brs.20.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Breast_cancer hg19 All antigens Breast Breast cancer SRX186804,SRX...SRX186823,SRX186817,SRX186820,SRX186832,SRX186829 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.Breast_cancer.bed ...

  17. File list: ALL.Brs.05.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Breast_cancer hg19 All antigens Breast Breast cancer SRX186799,SRX...SRX186817,SRX186826,SRX186812,SRX186820,SRX186823 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.Breast_cancer.bed ...

  18. File list: Oth.Brs.10.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Breast_cancer hg19 TFs and others Breast Breast cancer SRX186804,S... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.Breast_cancer.bed ...

  19. File list: ALL.Brs.10.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Breast_cancer hg19 All antigens Breast Breast cancer SRX186799,SRX...SRX186812,SRX186826,SRX186820,SRX186817,SRX186823 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.Breast_cancer.bed ...

  20. File list: ALL.Brs.50.AllAg.Breast_cancer [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Breast_cancer hg19 All antigens Breast Breast cancer SRX186804,SRX...SRX186809,SRX186818,SRX186827,SRX186829,SRX186830 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.Breast_cancer.bed ...

  1. File list: DNS.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.50.AllAg.Pancreatic_cancer_cells mm9 DNase-seq Pancreas Pancreatic cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  2. File list: ALL.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.05.AllAg.Prostate_cancer_cells hg19 All antigens Prostate Prostate cancer c...ells SRX022582,SRX022577,SRX022578,SRX022581,SRX022579,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  3. File list: DNS.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.10.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  4. File list: Pol.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.50.AllAg.Prostate_cancer_cells hg19 RNA polymerase Prostate Prostate cancer... cells SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  5. File list: Oth.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022577,SRX022578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  6. File list: ALL.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.50.AllAg.Prostate_cancer_cells hg19 All antigens Prostate Prostate cancer c...ells SRX022579,SRX022582,SRX022581,SRX022577,SRX022580,SRX022578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  7. File list: Unc.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Prs.50.AllAg.Prostate_cancer_cells hg19 Unclassified Prostate Prostate cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  8. File list: Pol.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  9. File list: Pol.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  10. File list: His.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.AllAg.Prostate_cancer_cells hg19 Histone Prostate Prostate cancer cells ...SRX022579,SRX022581,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  11. File list: Oth.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022578,SRX022577 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  12. File list: His.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.AllAg.Prostate_cancer_cells hg19 Histone Prostate Prostate cancer cells ...SRX022579,SRX022581,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  13. File list: Unc.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Prs.20.AllAg.Prostate_cancer_cells hg19 Unclassified Prostate Prostate cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  14. File list: Oth.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.50.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022577,SRX022578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  15. File list: His.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.AllAg.Prostate_cancer_cells hg19 Histone Prostate Prostate cancer cells ...SRX022581,SRX022579,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  16. File list: ALL.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...69,SRX155770,SRX155767,ERX210207,SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.Breast_cancer_cells.bed ...

  17. File list: Oth.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155769,SRX155766,SRX155767,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cancer_cells.bed ...

  18. File list: His.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.Breast_cancer_cells.bed ...

  19. File list: His.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.Breast_cancer_cells.bed ...

  20. File list: DNS.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cancer_cells.bed ...

  1. File list: ALL.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...71,SRX155768,ERX210206,ERX210207,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.Breast_cancer_cells.bed ...

  2. File list: Oth.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155767,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.Breast_cancer_cells.bed ...

  3. File list: ALL.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...68,SRX155769,SRX155766,SRX155770,ERX210212,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.Breast_cancer_cells.bed ...

  4. File list: Pol.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.05.AllAg.Breast_cancer_cells.bed ...

  5. File list: Pol.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.20.AllAg.Breast_cancer_cells.bed ...

  6. File list: Oth.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155767,SRX155769,SRX155766,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cancer_cells.bed ...

  7. File list: His.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.Breast_cancer_cells.bed ...

  8. File list: Unc.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.Breast_cancer_cells.bed ...

  9. File list: His.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.AllAg.Breast_cancer_cells.bed ...

  10. File list: Unc.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.Breast_cancer_cells.bed ...

  11. File list: Pol.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.10.AllAg.Breast_cancer_cells.bed ...

  12. File list: Pol.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.50.AllAg.Breast_cancer_cells.bed ...

  13. File list: DNS.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cancer_cells.bed ...

  14. File list: ALL.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...66,SRX155767,SRX155770,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.Breast_cancer_cells.bed ...

  15. File list: Oth.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155769,SRX155770,SRX155767 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cancer_cells.bed ...

  16. File list: Unc.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.Breast_cancer_cells.bed ...

  17. File list: Pol.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.05.AllAg.Prostate_cancer_cells hg19 RNA polymerase Prostate Prostate cancer... cells SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  18. File list: Pol.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.10.AllAg.Prostate_cancer_cells hg19 RNA polymerase Prostate Prostate cancer... cells SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  19. File list: His.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  20. File list: Oth.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022578,SRX022577 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  1. File list: His.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  2. Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

    Science.gov (United States)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B; Martin, Sancha; Wedge, David C; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A; Gerstung, Moritz; Hooijer, Gerrit K J; Jang, Se Jin; Jones, David R; Kim, Hyung-Yong; King, Tari A; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O'Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F Germán; Romieu, Gilles; Sieuwerts, Anieta M; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van't Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Stratton, Michael R

    2016-06-01

    We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  3. Extending pathways and processes using molecular interaction networks to analyse cancer genome data

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2010-12-01

    Full Text Available Abstract Background Cellular processes and pathways, whose deregulation may contribute to the development of cancers, are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However, recent functional genomic experiments have identified thousands of interactions for the signalling canonical proteins, challenging the traditional view of pathways as independent functional entities. Combining information from pathway databases and interaction networks obtained from functional genomic experiments is therefore a promising strategy to obtain more robust pathway and process representations, facilitating the study of cancer-related pathways. Results We present a methodology for extending pre-defined protein sets representing cellular pathways and processes by mapping them onto a protein-protein interaction network, and extending them to include densely interconnected interaction partners. The added proteins display distinctive network topological features and molecular function annotations, and can be proposed as putative new components, and/or as regulators of the communication between the different cellular processes. Finally, these extended pathways and processes are used to analyse their enrichment in pancreatic mutated genes. Significant associations between mutated genes and certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated genes. Conclusions The proposed method for extending cellular pathways helps to explain the functions of cancer mutated genes by exploiting the synergies of canonical knowledge and large-scale interaction data.

  4. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2009-01-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  5. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer.

    LENUS (Irish Health Repository)

    McHugh, Seamus M

    2012-02-01

    AIMS: We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers. METHODS: An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library. RESULTS: Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment. CONCLUSION: If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.

  6. Pathway analysis of bladder cancer genome-wide association study identifies novel pathways involved in bladder cancer development

    Science.gov (United States)

    Chen, Meng; Rothman, Nathaniel; Ye, Yuanqing; Gu, Jian; Scheet, Paul A.; Huang, Maosheng; Chang, David W.; Dinney, Colin P.; Silverman, Debra T.; Figueroa, Jonine D.; Chanock, Stephen J.; Wu, Xifeng

    2016-01-01

    Genome-wide association studies (GWAS) are designed to identify individual regions associated with cancer risk, but only explain a small fraction of the inherited variability. Alternative approach analyzing genetic variants within biological pathways has been proposed to discover networks of susceptibility genes with additional effects. The gene set enrichment analysis (GSEA) may complement and expand traditional GWAS analysis to identify novel genes and pathways associated with bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer susceptibility in a Texas GWAS population. The candidate genetic polymorphisms from the significant pathway selected by GSEA were validated in an independent NCI GWAS. We identified 18 novel pathways (P < 0.05) significantly associated with bladder cancer risk. Five of the most promising pathways (P ≤ 0.001 in any of the three GSEA methods) among the 18 pathways included two cell cycle pathways and neural cell adhesion molecule (NCAM), platelet-derived growth factor (PDGF), and unfolded protein response pathways. We validated the candidate polymorphisms in the NCI GWAS and found variants of RAPGEF1, SKP1, HERPUD1, CACNB2, CACNA1C, CACNA1S, COL4A2, SRC, and CACNA1C were associated with bladder cancer risk. Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed the strongest associations; the CCNE1 signal at 19q12 has already been reported in previous GWAS. These findings offer additional etiologic insights highlighting the specific genes and pathways associated with bladder cancer development. GSEA may be a complementary tool to GWAS to identify additional loci of cancer susceptibility.

  7. Substantial contribution of extrinsic risk factors to cancer development | Office of Cancer Genomics

    Science.gov (United States)

    Recent research has highlighted a strong correlation between tissue-specific cancer risk and the lifetime number of tissue-specific stem-cell divisions. Whether such correlation implies a high unavoidable intrinsic cancer risk has become a key public health debate with the dissemination of the 'bad luck' hypothesis. Here we provide evidence that intrinsic risk factors contribute only modestly (less than ~10-30% of lifetime risk) to cancer development.

  8. Genome-wide association study of colorectal cancer identifies six new susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Schmit, Stephanie L.; Jiao, Shuo; Edlund, Christopher K.; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P.; Harju, John F.; Idos, Gregory E.; Lejbkowicz, Flavio; Manion, Frank J.; McDonnell, Kevin; McNeil, Caroline E.; Melas, Marilena; Rennert, Hedy S.; Shi, Wei; Thomas, Duncan C.; Van Den Berg, David J.; Hutter, Carolyn M.; Aragaki, Aaron K.; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Chanock, Stephen J.; Curtis, Keith R.; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Gogarten, Stephanie M.; Hayes, Richard B.; Henderson, Brian; Hunter, David J.; Jackson, Rebecca D.; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; LaCroix, Andrea; Laurie, Cathy C.; Laurie, Cecelia A.; Lemire, Mathieu; Levine, David; Ma, Jing; Makar, Karen W.; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M.; Wu, Kana; Kono, Suminori; West, Dee W.; Berndt, Sonja I.; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T.; Chan, Andrew T.; Chang-Claude, Jenny; Coetzee, Gerhard A.; Conti, David V.; Duggan, David; Figueiredo, Jane C.; Fortini, Barbara K.; Gallinger, Steven J.; Gauderman, W. James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M.; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A.; Potter, John D.; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E.; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L.; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W.; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B.; Peters, Ulrike

    2016-01-01

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies. PMID:26151821

  9. My Cancer Genome: Evaluating an Educational Model to Introduce Patients and Caregivers to Precision Medicine Information.

    Science.gov (United States)

    Kusnoor, Sheila V; Koonce, Taneya Y; Levy, Mia A; Lovly, Christine M; Naylor, Helen M; Anderson, Ingrid A; Micheel, Christine M; Chen, Sheau-Chiann; Ye, Fei; Giuse, Nunzia B

    2016-01-01

    This study tested an innovative model for creating consumer-level content about precision medicine based on health literacy and learning style principles. "Knowledge pearl" videos, incorporating multiple learning modalities, were created to explain genetic and cancer medicine concepts. Cancer patients and caregivers (n=117) were randomized to view professional-level content directly from the My Cancer Genome (MCG) website (Group A; control), content from MCG with knowledge pearls embedded (Group B), or a consumer translation, targeted at the sixth grade level, with knowledge pearls embedded (Group C). A multivariate analysis showed that Group C, but not Group B, showed greater knowledge gains immediately after viewing the educational material than Group A. Statistically significant group differences in test performance were no longer observed three weeks later. These findings suggest that adherence to health literacy and learning style principles facilitates comprehension of precision medicine concepts and that ongoing review of the educational information is necessary. PMID:27570660

  10. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study

    Science.gov (United States)

    Eeles, Rosalind A.; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G.; Guy, Michelle; Severi, Gianluca; Muir, Kenneth; Hopper, John L.; Henderson, Brian E.; Haiman, Christopher A.; Schleutker, Johanna; Hamdy, Freddie C.; Neal, David E.; Donovan, Jenny L.; Stanford, Janet L.; Ostrander, Elaine A.; Ingles, Sue A.; John, Esther M.; Thibodeau, Stephen N.; Schaid, Daniel; Park, Jong Y.; Spurdle, Amanda; Clements, Judith; Dickinson, Joanne L.; Maier, Christiane; Vogel, Walther; Dörk, Thilo; Rebbeck, Timothy R.; Cooney, Kathleen A.; Cannon-Albright, Lisa; Chappuis, Pierre O.; Hutter, Pierre; Zeegers, Maurice; Kaneva, Radka; Zhang, Hong-Wei; Lu, Yong-Jie; Foulkes, William D.; English, Dallas R.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Morrison, Jonathan; Ardern-Jones, Audrey T.; Hall, Amanda L.; O’Brien, Lynne T.; Wilkinson, Rosemary A.; Saunders, Edward J.; Page, Elizabeth C.; Sawyer, Emma J.; Edwards, Stephen M.; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin S.; Southey, Melissa C.; Lophatananon, Artitaya; Liu, Jo-Fen; Kolonel, Laurence N.; Le Marchand, Loic; Wahlfors, Tiina; Tammela, Teuvo L.; Auvinen, Anssi; Lewis, Sarah J.; Cox, Angela; FitzGerald, Liesel M.; Koopmeiners, Joseph S.; Karyadi, Danielle M.; Kwon, Erika M.; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Shahabi, Ahva; McDonnell, Shannon K.; Sellers, Thomas A; Pow-Sang, Julio; Chambers, Suzanne; Aitken, Joanne; Gardiner, R.A. (Frank); Batra, Jyotsna; Kedda, Mary Anne; Lose, Felicity; Polanowski, Andrea; Patterson, Briony; Serth, Jürgen; Meyer, Andreas; Luedeke, Manuel; Stefflova, Klara; Ray, Anna M.; Lange, Ethan M.; Farnham, Jim; Khan, Humera; Slavov, Chavdar; Mitkova, Atanaska; Cao, Guangwen; Easton, Douglas F.

    2010-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we have previously conducted a genome-wide association study in which 541, 129 SNPs were genotyped in 1,854 PrCa cases with clinically detected disease and 1,894 controls. We have now evaluated promising associations in a second stage, in which we genotyped 43,671 SNPs in 3,650 PrCa cases and 3,940 controls, and a third stage, involving an additional 16,229 cases and 14,821 controls from 21 studies. In addition to previously identified loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2, 4, 8, 11, and 22 (P=1.6×10−8 to P=2.7×10−33). PMID:19767753

  11. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics.

    Science.gov (United States)

    Zanetti, Maurizio

    2015-03-01

    Cellular immune responses that protect against tumors typically have been attributed to CD8 T cells. However, CD4 T cells also play a central role. It was shown recently that, in a patient with metastatic cholangiocarcinoma, CD4 T cells specific for a peptide from a mutated region of ERBB2IP could arrest tumor progression. This and other recent findings highlight new opportunities for CD4 T cells in cancer immunotherapy. In this article, I discuss the role and regulation of CD4 T cells in response to tumor Ags. Emphasis is placed on the types of Ags and mechanisms that elicit tumor-protective responses. I discuss the advantages and drawbacks of cancer immunotherapy through personalized genomics. These considerations should help to guide the design of next-generation therapeutic cancer vaccines.

  12. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk

    DEFF Research Database (Denmark)

    Orr, Nick; Lemnrau, Alina; Cooke, Rosie;

    2012-01-01

    We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P ...

  13. Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA

    DEFF Research Database (Denmark)

    Earp, Madalene A; Kelemen, Linda E; Magliocco, Anthony M;

    2014-01-01

    Epithelial ovarian cancer (EOC) is a heterogeneous cancer with both genetic and environmental risk factors. Variants influencing the risk of developing the less-common EOC subtypes have not been fully investigated. We performed a genome-wide association study (GWAS) of EOC according to subtype by...

  14. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  15. An Integrative Approach for the Large-scale Identification of Human Genome Kinases Regulating Cancer Metastasis

    Science.gov (United States)

    Zhang, Hanshuo; Wu, Pu-Yen; Ma, Ming; Ye, Yanzheng; Hao, Yang; Yang, Junyu; Yin, Shenyi; Sun, Changhong; Phan, John H.; Wang, May D.; Xi, Jianzhong Jeff

    2016-01-01

    Kinases regulate the majority of biological processes and become one of important groups of drug targets. To identify more kinases being potential for cancer therapy, we developed an integrative approach for the large-scale screen of functional genes capable of regulating the main traits of cancer metastasis, including cell migration as well as invasion. We first employed self-assembled cell microarray (SAMcell) to screen functional genes that regulate cancer cell migration using a siRNA library targeting 710 human genome kinase genes. We identified 81 genes capable of significantly regulating cancer cell migration. Following with invasion assays and bio-informatics analysis, we discovered that 16 genes with differentially expression in cancer samples can regulate both cell migration and invasion, among which 10 genes have been well known to play critical roles in the cancer development. The remaining 6 genes were experimentally validated to have the capacities of regulating the metastasis-related traits, including cell proliferation, apoptosis and anoikis activities besides cell motility. Together, these findings provide a new insight into the therapeutic use of human kinases. PMID:23751374

  16. Use of genome-wide association studies for cancer research and drug repositioning.

    Directory of Open Access Journals (Sweden)

    Jizhun Zhang

    Full Text Available Although genome-wide association studies have identified many risk loci associated with colorectal cancer, the molecular basis of these associations are still unclear. We aimed to infer biological insights and highlight candidate genes of interest within GWAS risk loci. We used an in silico pipeline based on functional annotation, quantitative trait loci mapping of cis-acting gene, PubMed text-mining, protein-protein interaction studies, genetic overlaps with cancer somatic mutations and knockout mouse phenotypes, and functional enrichment analysis to prioritize the candidate genes at the colorectal cancer risk loci. Based on these analyses, we observed that these genes were the targets of approved therapies for colorectal cancer, and suggested that drugs approved for other indications may be repurposed for the treatment of colorectal cancer. This study highlights the use of publicly available data as a cost effective solution to derive biological insights, and provides an empirical evidence that the molecular basis of colorectal cancer can provide important leads for the discovery of new drugs.

  17. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling.

    Directory of Open Access Journals (Sweden)

    Kazufumi Ohshiro

    Full Text Available Although Inflammatory Breast Cancer (IBC is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2, anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.

  18. Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes.

    Directory of Open Access Journals (Sweden)

    Kevin Blighe

    Full Text Available BACKGROUND: Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS: Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS: Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION: This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples.

  19. The genomic analysis of lactic acidosis and acidosis response in human cancers.

    Directory of Open Access Journals (Sweden)

    Julia Ling-Yu Chen

    2008-12-01

    Full Text Available The tumor microenvironment has a significant impact on tumor development. Two important determinants in this environment are hypoxia and lactic acidosis. Although lactic acidosis has long been recognized as an important factor in cancer, relatively little is known about how cells respond to lactic acidosis and how that response relates to cancer phenotypes. We develop genome-scale gene expression studies to dissect transcriptional responses of primary human mammary epithelial cells to lactic acidosis and hypoxia in vitro and to explore how they are linked to clinical tumor phenotypes in vivo. The resulting experimental signatures of responses to lactic acidosis and hypoxia are evaluated in a heterogeneous set of breast cancer datasets. A strong lactic acidosis response signature identifies a subgroup of low-risk breast cancer patients having distinct metabolic profiles suggestive of a preference for aerobic respiration. The association of lactic acidosis response with good survival outcomes may relate to the role of lactic acidosis in directing energy generation toward aerobic respiration and utilization of other energy sources via inhibition of glycolysis. This "inhibition of glycolysis" phenotype in tumors is likely caused by the repression of glycolysis gene expression and Akt inhibition. Our study presents a genomic evaluation of the prognostic information of a lactic acidosis response independent of the hypoxic response. Our results identify causal roles of lactic acidosis in metabolic reprogramming, and the direct functional consequence of lactic acidosis pathway activity on cellular responses and tumor development. The study also demonstrates the utility of genomic analysis that maps expression-based findings from in vitro experiments to human samples to assess links to in vivo clinical phenotypes.

  20. Understanding Cancer Prognosis

    Medline Plus

    Full Text Available ... Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Lung ... Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & Early Detection Treatment Cancer & Public Health Cancer Health ...

  1. Recurrent genomic gains in preinvasive lesions as a biomarker of risk for lung cancer.

    Directory of Open Access Journals (Sweden)

    Pierre P Massion

    Full Text Available Lung carcinoma development is accompanied by field changes that may have diagnostic significance. We have previously shown the importance of chromosomal aneusomy in lung cancer progression. Here, we tested whether genomic gains in six specific loci, TP63 on 3q28, EGFR on 7p12, MYC on 8q24, 5p15.2, and centromeric regions for chromosomes 3 (CEP3 and 6 (CEP6, may provide further value in the prediction of lung cancer. Bronchial biopsy specimens were obtained by LIFE bronchoscopy from 70 subjects (27 with prevalent lung cancers and 43 individuals without lung cancer. Twenty six biopsies were read as moderate dysplasia, 21 as severe dysplasia and 23 as carcinoma in situ (CIS. Four-micron paraffin sections were submitted to a 4-target FISH assay (LAVysion, Abbott Molecular and reprobed for TP63 and CEP 3 sequences. Spot counts were obtained in 30-50 nuclei per specimen for each probe. Increased gene copy number in 4 of the 6 probes was associated with increased risk of being diagnosed with lung cancer both in unadjusted analyses (odds ratio = 11, p<0.05 and adjusted for histology grade (odds ratio = 17, p<0.05. The most informative 4 probes were TP63, MYC, CEP3 and CEP6. The combination of these 4 probes offered a sensitivity of 82% for lung cancer and a specificity of 58%. These results indicate that specific cytogenetic alterations present in preinvasive lung lesions are closely associated with the diagnosis of lung cancer and may therefore have value in assessing lung cancer risk.

  2. Combining Chromosomal Arm Status and Significantly Aberrant Genomic Locations Reveals New Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Tal Shay

    2009-01-01

    Full Text Available Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the “volume” associated with an aberration, as the product of three factors: (a fraction of patients with the aberration, (b the aberration’s length and (c its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

  3. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  4. Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging, With Potential Applicability in Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Belinda A., E-mail: Belinda.Campbell@petermac.org [Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Bressel, Mathias [Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne (Australia); Simoens, Nathalie [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Everitt, Sarah [Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hofman, Michael S.; Hicks, Rodney J. [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Burbury, Kate [Department of Haematology, Peter MacCallum Cancer Centre, East Melbourne (Australia); MacManus, Michael [Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia)

    2015-08-01

    Purpose: Proliferating bone marrow is exquisitely sensitive to ionizing radiation. Knowledge of its distribution could improve radiation therapy planning to minimize unnecessary marrow exposure and avoid consequential prolonged myelosuppression. [18F]-Fluoro-3-deoxy-3-L-fluorothymidine (FLT)–positron emission tomography (PET) is a novel imaging modality that provides detailed quantitative images of proliferating tissues, including bone marrow. We used FLT-PET imaging in cancer patients to produce an atlas of marrow distribution with potential clinical utility. Methods and Materials: The FLT-PET and fused CT scans of eligible patients with non-small cell lung cancer (no distant metastases, no prior cytotoxic exposure, no hematologic disorders) were reviewed. The proportions of skeletal FLT activity in 10 predefined bony regions were determined and compared according to age, sex, and recent smoking status. Results: Fifty-one patients were studied: 67% male; median age 68 (range, 31-87) years; 8% never smokers; 70% no smoking in the preceding 3 months. Significant differences in marrow distribution occurred between sex and age groups. No effect was detected from smoking in the preceding 3 months. Using the mean percentages of FLT uptake per body region, we created an atlas of the distribution of functional bone marrow in 4 subgroups defined by sex and age. Conclusions: This atlas has potential utility for estimating the distribution of active marrow in adult cancer patients to guide radiation therapy planning. However, because of interindividual variation it should be used with caution when radiation therapy risks ablating large proportions of active marrow; in such cases, individual FLT-PET scans may be required.

  5. Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging, With Potential Applicability in Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Purpose: Proliferating bone marrow is exquisitely sensitive to ionizing radiation. Knowledge of its distribution could improve radiation therapy planning to minimize unnecessary marrow exposure and avoid consequential prolonged myelosuppression. [18F]-Fluoro-3-deoxy-3-L-fluorothymidine (FLT)–positron emission tomography (PET) is a novel imaging modality that provides detailed quantitative images of proliferating tissues, including bone marrow. We used FLT-PET imaging in cancer patients to produce an atlas of marrow distribution with potential clinical utility. Methods and Materials: The FLT-PET and fused CT scans of eligible patients with non-small cell lung cancer (no distant metastases, no prior cytotoxic exposure, no hematologic disorders) were reviewed. The proportions of skeletal FLT activity in 10 predefined bony regions were determined and compared according to age, sex, and recent smoking status. Results: Fifty-one patients were studied: 67% male; median age 68 (range, 31-87) years; 8% never smokers; 70% no smoking in the preceding 3 months. Significant differences in marrow distribution occurred between sex and age groups. No effect was detected from smoking in the preceding 3 months. Using the mean percentages of FLT uptake per body region, we created an atlas of the distribution of functional bone marrow in 4 subgroups defined by sex and age. Conclusions: This atlas has potential utility for estimating the distribution of active marrow in adult cancer patients to guide radiation therapy planning. However, because of interindividual variation it should be used with caution when radiation therapy risks ablating large proportions of active marrow; in such cases, individual FLT-PET scans may be required

  6. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan;

    2015-01-01

    identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset...

  7. Breast cancer risk among Swedish hemangioma patients and possible consequences of radiation-induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Eidemueller, Markus, E-mail: markus.eidemueller@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Holmberg, Erik [Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Goeteborg (Sweden); Jacob, Peter [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Lundell, Marie [Department of Medical Physics, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Karlsson, Per [Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Goeteborg (Sweden)

    2009-10-02

    Breast cancer incidence among 17,158 female Swedish hemangioma patients was analyzed with empirical excess relative risk models and with a biologically-based model of carcinogenesis. The patients were treated in infancy mainly by external application of radium-226. The mean and median absorbed doses to the breast were 0.29 and 0.04 Gy, and a total of 678 breast cancer cases have been observed. Both models agree very well in the risk estimates with an excess relative risk and excess absolute risk at the age of 50 years, about the mean age of breast cancer incidence, of 0.25 Gy{sup -1}(95% CI 0.14; 0.37) and 30.7 (10{sup 5}BYRGy){sup -1} (95% CI 16.9; 42.8), respectively. Models incorporating effects of radiation-induced genomic instability were developed and applied to the hemangioma cohort. The biologically-based description of the radiation risk was significantly improved with a model of genomic instability at an early stage of carcinogenesis.

  8. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  9. Cancer Biomarkers from Genome-Scale DNA Methylation: Comparison of Evolutionary and Semantic Analysis Methods

    Directory of Open Access Journals (Sweden)

    Ioannis Valavanis

    2015-11-01

    Full Text Available DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies.

  10. Genome-wide association study of pancreatic cancer in Japanese population.

    Directory of Open Access Journals (Sweden)

    Siew-Kee Low

    Full Text Available Pancreatic cancer shows very poor prognosis and is the fifth leading cause of cancer death in Japan. Previous studies indicated some genetic factors contributing to the development and progression of pancreatic cancer; however, there are limited reports for common genetic variants to be associated with this disease, especially in the Asian population. We have conducted a genome-wide association study (GWAS using 991 invasive pancreatic ductal adenocarcinoma cases and 5,209 controls, and identified three loci showing significant association (P-value<5x10(-7 with susceptibility to pancreatic cancer. The SNPs that showed significant association carried estimated odds ratios of 1.29, 1.32, and 3.73 with 95% confidence intervals of 1.17-1.43, 1.19-1.47, and 2.24-6.21; P-value of 3.30x10(-7, 3.30x10(-7, and 4.41x10(-7; located on chromosomes 6p25.3, 12p11.21 and 7q36.2, respectively. These associated SNPs are located within linkage disequilibrium blocks containing genes that have been implicated some roles in the oncogenesis of pancreatic cancer.

  11. Cancer-predisposition gene KLLN maintains pericentric H3K9 trimethylation protecting genomic stability

    Science.gov (United States)

    Nizialek, Emily A.; Sankunny, Madhav; Niazi, Farshad; Eng, Charis

    2016-01-01

    Maintenance of proper chromatin states and genomic stability is vital for normal development and health across a range of organisms. Here, we report on the role of KLLN in maintenance of pericentric H3K9 trimethylation (H3K9me3) and genomic stability. Germline hypermethylation of KLLN, a gene uncovered well after the human genome project, has been linked to Cowden cancer-predisposition syndrome (CS) in PTEN wild-type cases. KLLN first identified as a p53-dependent tumor suppressor gene, was believed to bind randomly to DNA and cause S-phase arrest. Using chromatin immunoprecipitation-based sequencing (ChIP-seq), we demonstrated that KLLN binds to DNA regions enriched with H3K9me3. KLLN overexpression correlated with increased H3K9 methyltransferase activity and increased global H3K9me3, while knockdown of KLLN had an opposite effect. We also found KLLN to localize to pericentric regions, with loss of KLLN resulting in dysregulation of pericentric heterochromatin, with consequent chromosomal instability manifested by increased micronuclei formation and numerical chromosomal aberrations. Interestingly, we show that KLLN interacts with DBC1, with consequent abrogation of DBC1 inhibition of SUV39H1, a H3K9 methyltransferase, suggesting the mode of KLLN regulating H3K9me3. These results suggest a critical role for KLLN as a potential regulator of pericentric heterochromatin formation, genomic stability and gene expression. PMID:26673699

  12. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences

    Science.gov (United States)

    Bacolla, Albino; Tainer, John A.; Vasquez, Karen M.; Cooper, David N.

    2016-01-01

    Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. PMID:27084947

  13. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing.

    Directory of Open Access Journals (Sweden)

    Emily Vogtmann

    Full Text Available Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient

  14. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing.

    Science.gov (United States)

    Vogtmann, Emily; Hua, Xing; Zeller, Georg; Sunagawa, Shinichi; Voigt, Anita Y; Hercog, Rajna; Goedert, James J; Shi, Jianxin; Bork, Peer; Sinha, Rashmi

    2016-01-01

    Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect

  15. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  16. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    OpenAIRE

    Garcia-Closas, Montserrat; Couch, Fergus J.; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K.; Brook, Mark N.; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E.; Eccles, Diana; Miron, Penelope; Fasching, Peter A.

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast can...

  17. GENOMIC LANDSCAPE OF NON-SMALL CELL LUNG CANCER IN SMOKERS AND NEVER SMOKERS

    Science.gov (United States)

    Govindan, Ramaswamy; Ding, Li; Griffith, Malachi; Subramanian, Janakiraman; Dees, Nathan D.; Kanchi, Krishna L.; Maher, Christopher A.; Fulton, Robert; Fulton, Lucinda; Wallis, John; Chen, Ken; Walker, Jason; McDonald, Sandra; Bose, Ron; Ornitz, David; Xiong, Donghai; You, Ming; Dooling, David J.; Watson, Mark; Mardis, Elaine R.

    2013-01-01

    Summary We report the results of whole genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and over 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatic modification and DNA repair pathways were identified along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions including ROS1 and ALK as well as novel metabolic enzymes. Cell cycle and JAK-STAT pathways are significantly altered in lung cancer along with perturbations in 54 genes that are potentially targetable with currently available drugs. PMID:22980976

  18. Specific genomic aberrations in primary colorectal cancer are associated with liver metastases

    Directory of Open Access Journals (Sweden)

    Wessels Lodewyk F

    2010-12-01

    Full Text Available Abstract Background Accurate staging of colorectal cancer (CRC with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods Array Comparative Genomic Hybridization (aCGH was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36, metastases (PM; n = 37 and a group that remained metastases-free (M0; n = 25. A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM. Results Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM with 80% accuracy (78% sensitivity and 86% specificity. The classification is predominantly based on chromosome 20q aberrations. Conclusion Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.

  19. Biosemiotic Entropy of the Genome: Mutations and Epigenetic Imbalances Resulting in Cancer

    Directory of Open Access Journals (Sweden)

    Samuel S. Shepard

    2013-01-01

    Full Text Available Biosemiotic entropy involves the deterioration of biological sign systems. The genome is a coded sign system that is connected to phenotypic outputs through the interpretive functions of the tRNA/ribosome machinery. This symbolic sign system (semiosis at the core of all biology has been termed “biosemiosis”. Layers of biosemiosis and cellular information management are analogous in varying degrees to the semiotics of computer programming, spoken, and written human languages. Biosemiotic entropy — an error or deviation from a healthy state — results from errors in copying functional information (mutations and errors in the appropriate context or quantity of gene expression (epigenetic imbalance. The concept of biosemiotic entropy is a deeply imbedded assumption in the study of cancer biology. Cells have a homeostatic, preprogrammed, ideal or healthy state that is rooted in genomics, strictly orchestrated by epigenetic regulation, and maintained by DNA repair mechanisms. Cancer is an eminent illustration of biosemiotic entropy, in which the corrosion of genetic information via substitutions, deletions, insertions, fusions, and aberrant regulation results in malignant phenotypes. However, little attention has been given to explicitly outlining the paradigm of biosemiotic entropy in the context of cancer. Herein we distill semiotic theory (from the familiar and well understood spheres of human language and computer code to draw analogies useful for understanding the operation of biological semiosis at the genetic level. We propose that the myriad checkpoints, error correcting mechanisms, and immunities are all systems whose primary role is to defend against the constant pressure of biosemiotic entropy, which malignancy must shut down in order to achieve advanced stages. In lieu of the narrower tumor suppressor/oncogene model, characterization of oncogenesis into the biosemiotic framework of sign, index, or object entropy may allow for more

  20. MicroRNA Machinery Genes as Novel Biomarkers for Cancer.

    Science.gov (United States)

    Huang, Jing-Tao; Wang, Jin; Srivastava, Vibhuti; Sen, Subrata; Liu, Song-Mei

    2014-01-01

    MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.

  1. Translating genomics: cancer genetics, public health and the making of the (de)molecularised body in Cuba and Brazil.

    Science.gov (United States)

    Gibbon, Sahra

    2016-01-01

    This article examines how cancer genetics has emerged as a focus for research and healthcare in Cuba and Brazil. Drawing on ethnographic research undertaken in community genetics clinics and cancer genetics services, the article examines how the knowledge and technologies associated with this novel area of healthcare are translated and put to work by researchers, health professionals, patients and their families in these two contexts. It illuminates the comparative similarities and differences in how cancer genetics is emerging in relation to transnational research priorities, the history and contemporary politics of public health and embodied vulnerability to cancer that reconfigures the scope and meaning of genomics as "personalised" medicine.

  2. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea.

    Science.gov (United States)

    Cho, Ja Young; Cho, Dae-Yeon; Ahn, Sei Hyun; Choi, Su-Youn; Shin, Inkyung; Park, Hyun Gyu; Lee, Jong Won; Kim, Hee Jeong; Yu, Jong Han; Ko, Beom Seok; Ku, Bo Kyung; Son, Byung Ho

    2014-06-01

    We screened large genomic rearrangements of the BRCA1 and BRCA2 genes in Korean, familial breast cancer patients. Multiplex ligation-dependent probe amplification assay was used to identify BRCA1 and BRCA2 genomic rearrangements in 226 Korean familial breast cancer patients with risk factors for BRCA1 and BRCA2 mutations, who previously tested negative for point mutations in the two genes. We identified only one large deletion (c.4186-1593_4676-1465del) in BRCA1. No large rearrangements were found in BRCA2. Our result indicates that large genomic rearrangement in the BRCA1 and BRCA2 genes does not seem like a major determinant of breast cancer susceptibility in the Korean population. A large-scale study needs to validate our result in Korea.

  3. Epigenetic mechanisms and cancer: an interface between the environment and the genome.

    Science.gov (United States)

    Herceg, Zdenko; Vaissière, Thomas

    2011-07-01

    Although epidemiological studies support the role of environment in a wide range of human cancers, the precise mechanisms by which environmental exposures promote cancer development and progression remain poorly understood. Environmental factors have been proposed to promote the development of malignancies by eliciting epigenetic changes; however, it is only with recent advances in epigenetics and epigenomics that target genes and the mechanisms underlying environmental influences are beginning to be elucidated. Because epigenetic mechanisms may function as an interface between environmental factors and the genome, deregulation of the epigenome by environmental stressors is likely to disrupt different cellular processes and contribute to cancer risk. In addition, the early appearance and ubiquity of epigenetic changes in virtually all steps of tumor development and progression in most, if not all, human neoplasms, make them attractive targets for biomarker discovery and targeted prevention. At the cellular level, aberrant epigenetic changes associated with environmental exposures may deregulate key cellular processes (including transcriptional control, DNA repair, cell cycle control, and carcinogen detoxification), which can be further modulated by environmental stressors, thus defining not only the phenotype of the disease but also potential biomarkers. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental factors may promote tumor development, with a particular focus on human lung cancer.

  4. Isolation and bioinformatics analysis of differentially methylated genomic fragments in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Ai-Jun Liao; Qi Su; Xun Wang; Bin Zeng; Wei Shi

    2008-01-01

    AIM:To isolate and analyze the DNA sequences which are methylated differentially between gastric cancer and normal gastric mucosa.METHODS:The differentially methylated DNA sequences between gastric cancer and normal gastric mucosa were isolated by methylation-sensitive representational difference analysis (MS-RDA).Similarities between the separated fragments and the human genomic DNA were analyzed with Basic Local Alignment Search Tool (BLAST).RESULTS:Three differentially methylated DNA sequences were obtained,two of which have been accepted by GenBank.The accession numbers are AY887106 and AY887107.AY887107 was highly similar to the 11th exon of LOC440683 (98%),3'end of LOC440887 (99%),and promoter and exon regions of DRD5 (94%).AY887106 was consistent (98%) with a CpG island in ribosomal RNA isolated from colorectal cancer by Minoru Toyota in 1999.CONCLUSION:The methylation degree is different between gastric cancer and normal gastric mucosa.The differentially methylated DNA sequences can be isolated effectively by MS-RDA.

  5. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  6. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy.

    Science.gov (United States)

    Bristow, R G; Berlin, A; Dal Pra, A

    2014-03-01

    Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

  7. Radiotherapy for glioblastoma: reorganization of genome maintenance mechanisms involved in the process of inhibiting cancer

    International Nuclear Information System (INIS)

    Glioblastoma is a very aggressive brain tumor, which occurs in Glial cells. The treatment consists in chemotherapy, surgery and radiotherapy. The radiotherapy is a treatment method that uses ionizing radiation to kill cancer cells. The cells have genome maintenance mechanisms (MMG) distributed in apoptosis, DNA damage response, and cell cycle pathways. These pathways are formed by sets of proteins and perform specific functions within the cell (example: induce cell death). The mutation of these proteins associated with the failure of the MMG can cause the activation of mutations and consequently induce the development of cancer. This work, objective has to identify pathways and proteins expressed in cancer treatment using free software of the statistical analysis, developed in Fortran and R platforms to show the effects caused by radiation in the proteins of cancerous tissues. The results, were fond to pathways of glioblastoma treated with radiotherapy, activation of apoptosis and response to DNA damage pathways, indicating that there is death of carcinogenic tissue caused by radiation and that some cells are triggering a process of DNA repair. (author)

  8. Using Generalized Equivalent Uniform Dose Atlases to Combine and Analyze Prospective Dosimetric and Radiation Pneumonitis Data From 2 Non-Small Cell Lung Cancer Dose Escalation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fan; Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Belderbos, Jose S.A.; Borst, Gerben R. [The Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam (Netherlands); Rosenzweig, Kenneth E. [Mount Sinai School of Medicine, New York, New York (United States); Lebesque, Joos V. [The Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam (Netherlands); Jackson, Andrew, E-mail: jacksona@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Methods and Materials: Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD was calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate {>=}20% were plotted. Results: The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. Conclusions: The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power.

  9. The state of genomic health care and cancer. Are we going two steps forward and one step backward?

    Science.gov (United States)

    Greco, Karen E; Mahon, Suzanne M

    2011-01-01

    As the application of genomic information and technology crosses the horizon of health care into our everyday lives, expanding genomic knowledge continues to affect how health care services are defined and delivered. Genomic discoveries have led to enhanced clinical capabilities to predict susceptibility to common diseases and conditions such as cancer, diabetes, cardiovascular disease, and Alzheimer's disease. Hundreds of genetic tests are now available that can identify individuals who carry one or more gene mutations that increase their risk of developing cancer or other common diseases. Increased availability and direct-to-consumer marketing of genetic testing is moving genetic testing away from trained genetics health professionals and into the hands of primary care providers and consumers. Genetic tests available on the Internet are being directly marketed to individuals, who can order these tests and receive a report of their risk for numerous health conditions and diseases. Health care providers are expected to interpret these test results, evaluate their accuracy, address the psychosocial consequences of those distressed by receiving their results, and translate genomic information into effective care. However, as we move two steps forward, we are also moving one step backward because many health care providers are unprepared for this genomic revolution. A number of international education, practice, and policy efforts are underway to address the challenges health care providers face in providing competent genomic health care in the context of unprecedented access to information, technology, and global communication. Efforts to integrate standard of care guidelines into electronic medical records increases health care providers' access to information for individuals at risk fo or diagnosed with a genomic condition. Development of genomic competencie for health care providers has led to increased genomic content in academic pro grams. These and other

  10. Molecular profiling of indolent human prostate cancer:tackling technical challenges to achieve high-fidelity genome-wide data

    Institute of Scientific and Technical Information of China (English)

    Thomas A. Dunn; Helen L. Fedor; Angelo M. De Marzo; Jun Luo

    2012-01-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men,and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases.Since progressive acquisition and accumulation of genomic alterations,both genetic and epigenetic,is a defining feature of all human cancers at different stages of disease progression,it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer.Approaches capable of detecting such alterations on a genome-wide level are the most promising.Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression,and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment.However,defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge,particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens.Here,we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies,identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues,and highlight recent progresses in efforts to address these technical challenges.

  11. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer

    OpenAIRE

    Budinska, Eva; Popovici, Vlad; Tejpar, Sabine; d'Ario, Giovanni; Lapique, Nicolas; Sikora, Katarzyna Otylia; Di Narzo, Antonio Fabio; Yan, Pu; Hodgson, John Graeme; Weinrich, Scott; Bosman, Fred; Roth, Arnaud; Delorenzi, Mauro

    2013-01-01

    The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes, and another paper reported an EMT expression signature defi...

  12. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer.

    OpenAIRE

    Budinska E.; Popovici V.; Tejpar S; D' Ario G.; Lapique N.; Sikora K.O.; Di Narzo A.F.; Yan P.; Hodgson J.G.; Weinrich S.; Bosman F.; Roth A.; Delorenzi M.

    2013-01-01

    The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes, and another paper reported an EMT expression signature defi...

  13. Optimization of primer design for the detection of variable genomic lesions in cancer.

    Science.gov (United States)

    Bashir, Ali; Liu, Yu-Tsueng; Raphael, Benjamin J; Carson, Dennis; Bafna, Vineet

    2007-11-01

    Primer approximation multiplex PCR (PAMP) is a new experimental protocol for efficiently assaying structural variation in genomes. PAMP is particularly suited to cancer genomes where the precise breakpoints of alterations such as deletions or translocations vary between patients. The design of PCR primer sets for PAMP is challenging because a large number of primer pairs are required to detect alterations in the hundreds of kilobases range that can occur in cancer. These sets of primers must achieve high coverage of the region of interest, while avoiding primer dimers and satisfying the physico-chemical constraints of good PCR primers. We describe a natural formulation of these constraints as a combinatorial optimization problem. We show that the PAMP primer design problem is NP-hard, and design algorithms based on simulated annealing and integer programming, that provide good solutions to this problem in practice. The algorithms are applied to a test region around the known CDKN2A deletion, which show excellent results even in a 1:49 mixture of mutated:wild-type cells. We use these test results to help set design parameters for larger problems. We can achieve near-optimal designs for regions close to 1 Mb. PMID:17766270

  14. Development of cancer-initiating cells and immortalizedcells with genomic instability

    Institute of Scientific and Technical Information of China (English)

    Ken-ichi Yoshioka; Yuko Atsumi; Hitoshi Nakagama; Hirobumi Teraoka

    2015-01-01

    Cancers that develop after middle age usually exhibitgenomic instability and multiple mutations. This is indirect contrast to pediatric tumors that usually developas a result of specific chromosomal translocations andepigenetic aberrations. The development of genomicinstability is associated with mutations that contributeto cellular immortalization and transformation. Canceroccurs when cancer-initiating cells (CICs), also calledcancer stem cells, develop as a result of these mutations.In this paper, we explore how CICs develop as a resultof genomic instability, including looking at which cancersuppression mechanisms are abrogated. A recent in vitrostudy revealed the existence of a CIC induction pathwayin differentiating stem cells. Under aberrant differentiationconditions, cells become senescent and develop genomicinstabilities that lead to the development of CICs. Theresulting CICs contain a mutation in the alternativereading frame of CDKN2A (ARF)/p53 module, i.e. , ineither ARF or p53. We summarize recently establishedknowledge of CIC development and cellular immortality,explore the role of the ARF/p53 module in protectingcells from transformation, and describe a risk factorfor genomic destabilization that increases during theprocess of normal cell growth and differentiation and isassociated with the downregulation of histone H2AX tolevels representative of growth arrest in normal cells.

  15. Colon Cancer-associated DNA Polymerase β Variant Induces Genomic Instability and Cellular Transformation*

    Science.gov (United States)

    Nemec, Antonia A.; Donigan, Katherine A.; Murphy, Drew L.; Jaeger, Joachim; Sweasy, Joann B.

    2012-01-01

    Rapidly advancing technology has resulted in the generation of the genomic sequences of several human tumors. We have identified several mutations of the DNA polymerase β (pol β) gene in human colorectal cancer. We have demonstrated that the expression of the pol β G231D variant increased chromosomal aberrations and induced cellular transformation. The transformed phenotype persisted in the cells even once the expression of G231D was extinguished, suggesting that it resulted as a consequence of genomic instability. Biochemical analysis revealed that its catalytic rate was 140-fold slower than WT pol β, and this was a result of the decreased binding affinity of nucleotides by G231D. Residue 231 of pol β lies in close proximity to the template strand of the DNA. Molecular modeling demonstrated that the change from a small and nonpolar glycine to a negatively charged aspartate resulted in a repulsion between the template and residue 231 leading to the distortion of the dNTP binding pocket. In addition, expression of G231D was insufficient to rescue pol β-deficient cells treated with chemotherapeutic agents suggesting that these agents may be effectively used to treat tumors harboring this mutation. More importantly, this suggests that the G231D variant has impaired base excision repair. Together, these data indicate that the G231D variant plays a role in driving cancer. PMID:22573322

  16. Possible role of the WDR3 gene on genome stability in thyroid cancer patients.

    Directory of Open Access Journals (Sweden)

    Wilser Andrés García-Quispes

    Full Text Available The role of the WDR3 gene on genomic instability has been evaluated in a group of 115 differentiated thyroid cancer (DTC patients. Genomic instability has been measured according to the response of peripheral blood lymphocytes to ionizing radiation (0.5 Gy. The response has been measured with the micronucleus (MN test evaluating the frequency of binucleated cells with MN (BNMN, both before and after the irradiation. No differences between genotypes, for the BNMN frequencies previous the irradiation, were observed. Nevertheless significant decreases in DNA damage after irradiation were observed in individuals carrying the variant alleles for each of the three genotyped SNPs: rs3754127 [-8.85 (-15.01 to -2.70, P<0.01]; rs3765501 [-8.98 (-15.61 to -2.36, P<0.01]; rs4658973 [-8.70 (-14.94 to -2.46, P<0.01]. These values correspond to those obtained assuming a dominant model. This study shows for the first time that WDR3 can modulate genome stability.

  17. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.

    Science.gov (United States)

    Bouaoun, Liacine; Sonkin, Dmitriy; Ardin, Maude; Hollstein, Monica; Byrnes, Graham; Zavadil, Jiri; Olivier, Magali

    2016-09-01

    TP53 gene mutations are one of the most frequent somatic events in cancer. The IARC TP53 Database (http://p53.iarc.fr) is a popular resource that compiles occurrence and phenotype data on TP53 germline and somatic variations linked to human cancer. The deluge of data coming from cancer genomic studies generates new data on TP53 variations and attracts a growing number of database users for the interpretation of TP53 variants. Here, we present the current contents and functionalities of the IARC TP53 Database and perform a systematic analysis of TP53 somatic mutation data extracted from this database and from genomic data repositories. This analysis showed that IARC has more TP53 somatic mutation data than genomic repositories (29,000 vs. 4,000). However, the more complete screening achieved by genomic studies highlighted some overlooked facts about TP53 mutations, such as the presence of a significant number of mutations occurring outside the DNA-binding domain in specific cancer types. We also provide an update on TP53 inherited variants including the ones that should be considered as neutral frequent variations. We thus provide an update of current knowledge on TP53 variations in human cancer as well as inform users on the efficient use of the IARC TP53 Database. PMID:27328919

  18. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.

    Science.gov (United States)

    Bouaoun, Liacine; Sonkin, Dmitriy; Ardin, Maude; Hollstein, Monica; Byrnes, Graham; Zavadil, Jiri; Olivier, Magali

    2016-09-01

    TP53 gene mutations are one of the most frequent somatic events in cancer. The IARC TP53 Database (http://p53.iarc.fr) is a popular resource that compiles occurrence and phenotype data on TP53 germline and somatic variations linked to human cancer. The deluge of data coming from cancer genomic studies generates new data on TP53 variations and attracts a growing number of database users for the interpretation of TP53 variants. Here, we present the current contents and functionalities of the IARC TP53 Database and perform a systematic analysis of TP53 somatic mutation data extracted from this database and from genomic data repositories. This analysis showed that IARC has more TP53 somatic mutation data than genomic repositories (29,000 vs. 4,000). However, the more complete screening achieved by genomic studies highlighted some overlooked facts about TP53 mutations, such as the presence of a significant number of mutations occurring outside the DNA-binding domain in specific cancer types. We also provide an update on TP53 inherited variants including the ones that should be considered as neutral frequent variations. We thus provide an update of current knowledge on TP53 variations in human cancer as well as inform users on the efficient use of the IARC TP53 Database.

  19. Quantitative and Sensitive Detection of Cancer Genome Amplifications from Formalin Fixed Paraffin Embedded Tumors with Droplet Digital PCR.

    Science.gov (United States)

    Nadauld, Lincoln; Regan, John F; Miotke, Laura; Pai, Reet K; Longacre, Teri A; Kwok, Shirley S; Saxonov, Serge; Ford, James M; Ji, Hanlee P

    2012-01-01

    For the analysis of cancer, there is great interest in rapid and accurate detection of cancer genome amplifications containing oncogenes that are potential therapeutic targets. The vast majority of cancer tissue samples are formalin fixed and paraffin embedded (FFPE) which enables histopathological examination and long term archiving. However, FFPE cancer genomic DNA is oftentimes degraded and generally a poor substrate for many molecular biology assays. To overcome the issues of poor DNA quality from FFPE samples and detect oncogenic copy number amplifications with high accuracy and sensitivity, we developed a novel approach. Our assay requires nanogram amounts of genomic DNA, thus facilitating study of small amounts of clinical samples. Using droplet digital PCR (ddPCR), we can determine the relative copy number of specific genomic loci even in the presence of intermingled normal tissue. We used a control dilution series to determine the limits of detection for the ddPCR assay and report its improved sensitivity on minimal amounts of DNA compared to standard real-time PCR. To develop this approach, we designed an assay for the fibroblast growth factor receptor 2 gene (FGFR2) that is amplified in a gastric and breast cancers as well as others. We successfully utilized ddPCR to ascertain FGFR2 amplifications from FFPE-preserved gastrointestinal adenocarcinomas. PMID:23682346

  20. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers

    Science.gov (United States)

    Tishchenko, Inna; Milioli, Heloisa Helena; Riveros, Carlos; Moscato, Pablo

    2016-01-01

    Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes—per definition—is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of

  1. Understanding Cancer Prognosis

    Medline Plus

    Full Text Available ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  2. Whole genome RNA expression profiling for the identification of novel biomarkers in the diagnosis and prognosis of biliary tract cancer

    OpenAIRE

    Chapman, M H

    2011-01-01

    Biliary tract cancer (BTC) is difficult to diagnose, in part related to the lack of reliable tumour markers. The aim of this project was to use whole genome RNA expression profiling in order to identify novel biomarkers for diagnosis and prognosis in biliary tract cancer. Chapter 1 summarises clinical aspects of BTC as well as current diagnostic and prognostic tests. Chapter 2 addresses the identification of circulating tumour cells for the diagnosis of BTC. It includes d...

  3. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges

    OpenAIRE

    Liu, Biao; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.; Qin, Maochun; Conroy, Jeffrey C.; Wang, Jianmin; Liu, Song

    2013-01-01

    Accurate detection of somatic copy number variations (CNVs) is an essential part of cancer genome analysis, and plays an important role in oncotarget identifications. Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV detection. In this review, we provide an overview of current analytic tools used for CNV detection in NGS-based cancer studies. We summarize the NGS data types used for CNV detection, decipher the principles for data preprocessing, segmentation, and ...

  4. Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer

    International Nuclear Information System (INIS)

    Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC

  5. Genome network medicine: innovation to overcome huge challenges in cancer therapy.

    Science.gov (United States)

    Roukos, Dimitrios H

    2014-01-01

    The post-ENCODE era shapes now a new biomedical research direction for understanding transcriptional and signaling networks driving gene expression and core cellular processes such as cell fate, survival, and apoptosis. Over the past half century, the Francis Crick 'central dogma' of single n gene/protein-phenotype (trait/disease) has defined biology, human physiology, disease, diagnostics, and drugs discovery. However, the ENCODE project and several other genomic studies using high-throughput sequencing technologies, computational strategies, and imaging techniques to visualize regulatory networks, provide evidence that transcriptional process and gene expression are regulated by highly complex dynamic molecular and signaling networks. This Focus article describes the linear experimentation-based limitations of diagnostics and therapeutics to cure advanced cancer and the need to move on from reductionist to network-based approaches. With evident a wide genomic heterogeneity, the power and challenges of next-generation sequencing (NGS) technologies to identify a patient's personal mutational landscape for tailoring the best target drugs in the individual patient are discussed. However, the available drugs are not capable of targeting aberrant signaling networks and research on functional transcriptional heterogeneity and functional genome organization is poorly understood. Therefore, the future clinical genome network medicine aiming at overcoming multiple problems in the new fields of regulatory DNA mapping, noncoding RNA, enhancer RNAs, and dynamic complexity of transcriptional circuitry are also discussed expecting in new innovation technology and strong appreciation of clinical data and evidence-based medicine. The problematic and potential solutions in the discovery of next-generation, molecular, and signaling circuitry-based biomarkers and drugs are explored.

  6. The Role of Genomic Profiling in Advanced Breast Cancer: The Two Faces of Janus

    Science.gov (United States)

    Eralp, Yesim

    2016-01-01

    Recent advances in genomic technology have led to considerable improvement in our understanding of the molecular basis that underpins breast cancer biology. Through the use of comprehensive whole genome genomic profiling by next-generation sequencing, an unprecedented bulk of data on driver mutations, key genomic rearrangements, and mechanisms on tumor evolution has been generated. These developments have marked the beginning of a new era in oncology called “personalized or precision medicine.” Elucidation of biologic mechanisms that underpin carcinogenetic potential and metastatic behavior has led to an inevitable explosion in the development of effective targeted agents, many of which have gained approval over the past decade. Despite energetic efforts and the enormous support gained within the oncology community, there are many obstacles in the clinical implementation of precision medicine. Other than the well-known biologic markers, such as ER and Her-2/neu, no proven predictive marker exists to determine the responsiveness to a certain biologic agent. One of the major issues in this regard is teasing driver mutations among the background noise within the bulk of coexisting passenger mutations. Improving bioinformatics tools through electronic models, enhanced by improved insight into pathway dependency may be the step forward to overcome this problem. Next, is the puzzle on spatial and temporal tumoral heterogeneity, which remains to be solved by ultra-deep sequencing and optimizing liquid biopsy techniques. Finally, there are multiple logistical and financial issues that have to be meticulously tackled in order to optimize the use of “precision medicine” in the real-life setting. PMID:27547031

  7. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  8. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers

    Science.gov (United States)

    Laskin, Janessa; Jones, Steven; Aparicio, Samuel; Chia, Stephen; Ch'ng, Carolyn; Deyell, Rebecca; Eirew, Peter; Fok, Alexandra; Gelmon, Karen; Ho, Cheryl; Huntsman, David; Jones, Martin; Kasaian, Katayoon; Karsan, Aly; Leelakumari, Sreeja; Li, Yvonne; Lim, Howard; Ma, Yussanne; Mar, Colin; Martin, Monty; Moore, Richard; Mungall, Andrew; Mungall, Karen; Pleasance, Erin; Rassekh, S. Rod; Renouf, Daniel; Shen, Yaoqing; Schein, Jacqueline; Schrader, Kasmintan; Sun, Sophie; Tinker, Anna; Zhao, Eric; Yip, Stephen; Marra, Marco A.

    2015-01-01

    Given the success of targeted agents in specific populations it is expected that some degree of molecular biomarker testing will become standard of care for many, if not all, cancers. To facilitate this, cancer centers worldwide are experimenting with targeted “panel” sequencing of selected mutations. Recent advances in genomic technology enable the generation of genome-scale data sets for individual patients. Recognizing the risk, inherent in panel sequencing, of failing to detect meaningful somatic alterations, we sought to establish processes to integrate data from whole-genome analysis (WGA) into routine cancer care. Between June 2012 and August 2014, 100 adult patients with incurable cancers consented to participate in the Personalized OncoGenomics (POG) study. Fresh tumor and blood samples were obtained and used for whole-genome and RNA sequencing. Computational approaches were used to identify candidate driver mutations, genes, and pathways. Diagnostic and drug information were then sought based on these candidate “drivers.” Reports were generated and discussed weekly in a multidisciplinary team setting. Other multidisciplinary working groups were assembled to establish guidelines on the interpretation, communication, and integration of individual genomic findings into patient care. Of 78 patients for whom WGA was possible, results were considered actionable in 55 cases. In 23 of these 55 cases, the patients received treatments motivated by WGA. Our experience indicates that a multidisciplinary team of clinicians and scientists can implement a paradigm in which WGA is integrated into the care of late stage cancer patients to inform systemic therapy decisions. PMID:27148575

  9. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci

    Science.gov (United States)

    Rothman, Nathaniel; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Malats, Nuria; Wu, Xifeng; Figueroa, Jonine; Real, Francisco X; Van Den Berg, David; Matullo, Giuseppe; Baris, Dalsu; Thun, Michael; Kiemeney, Lambertus A; Vineis, Paolo; De Vivo, Immaculata; Albanes, Demetrius; Purdue, Mark P; Rafnar, Thorunn; Hildebrandt, Michelle A T; Kiltie, Anne E; Cussenot, Olivier; Golka, Klaus; Kumar, Rajiv; Taylor, Jack A; Mayordomo, Jose I; Jacobs, Kevin B; Kogevinas, Manolis; Hutchinson, Amy; Wang, Zhaoming; Fu, Yi-Ping; Prokunina-Olsson, Ludmila; Burdette, Laurie; Yeager, Meredith; Wheeler, William; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Johnson, Alison; Schwenn, Molly; Karagas, Margaret R; Schned, Alan; Andriole, Gerald; Grubb, Robert; Black, Amanda; Jacobs, Eric J; Diver, W Ryan; Gapstur, Susan M; Weinstein, Stephanie J; Virtamo, Jarmo; Cortessis, Victoria K; Gago-Dominguez, Manuela; Pike, Malcolm C; Stern, Mariana C; Yuan, Jian-Min; Hunter, David; McGrath, Monica; Dinney, Colin P; Czerniak, Bogdan; Chen, Meng; Yang, Hushan; Vermeulen, Sita H; Aben, Katja K; Witjes, J Alfred; Makkinje, Remco R; Sulem, Patrick; Besenbacher, Soren; Stefansson, Kari; Riboli, Elio; Brennan, Paul; Panico, Salvatore; Navarro, Carmen; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Trichopoulos, Dimitrios; Caporaso, Neil; Landi, Maria Teresa; Canzian, Federico; Ljungberg, Borje; Tjonneland, Anne; Clavel-Chapelon, Francoise; Bishop, David T; Teo, Mark T W; Knowles, Margaret A; Guarrera, Simonetta; Polidoro, Silvia; Ricceri, Fulvio; Sacerdote, Carlotta; Allione, Alessandra; Cancel-Tassin, Geraldine; Selinski, Silvia; Hengstler, Jan G; Dietrich, Holger; Fletcher, Tony; Rudnai, Peter; Gurzau, Eugen; Koppova, Kvetoslava; Bolick, Sophia C E; Godfrey, Ashley; Xu, Zongli; Sanz-Velez, José I; García-Prats, María D; Sanchez, Manuel; Valdivia, Gabriel; Porru, Stefano; Benhamou, Simone; Hoover, Robert N; Fraumeni, Joseph F; Silverman, Debra T; Chanock, Stephen J

    2010-01-01

    We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120 controls of European descent (5 studies) followed by a replication strategy, which included 8,381 cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1; rs1014971, (P=8×10−12) maps to a non-genic region of chromosome 22q13.1; rs8102137 (P=2×10−11) on 19q12 maps to CCNE1; and rs11892031 (P=1×10−7) maps to the UGT1A cluster on 2q37.1. We confirmed four previous GWAS associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P=4×10−11) and a tag SNP for NAT2 acetylation status (P=4×10−11), as well as demonstrated smoking interactions with both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into mechanisms of carcinogenesis. PMID:20972438

  10. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  11. Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC)

    NARCIS (Netherlands)

    Hein, Rebecca; Maranian, Melanie; Hopper, John L.; Kapuscinski, Miroslaw K.; Southey, Melissa C.; Park, Daniel J.; Schmidt, Marjanka K.; Broeks, Annegien; Hogervorst, Frans B. L.; Bueno-de-Mesquit, H. Bas; Muir, Kenneth R.; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Puttawibul, Puttisak; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Silva, Isabel dos Santos; Peto, Julian; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marmee, Frederick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guenel, Pascal; Cordina-Duverger, Emilie; Menegaux, Florence; Truong, Therese; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Milne, Roger L.; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Benitez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Clarke, Christina A.; Brenner, Hermann; Mueller, Heiko; Arndt, Volker; Stegmaier, Christa; Rahman, Nazneen; Seal, Sheila; Turnbull, Clare; Renwick, Anthony; Meindl, Alfons; Schott, Sarah; Bartram, Claus R.; Schmutzler, Rita K.; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Wang-Gohrke, Shan; Doerk, Thilo; Schuermann, Peter; Karstens, Johann H.; Hillemanns, Peter; Nevanlinna, Heli; Heikkinen, Tuomas; Aittomaki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia V.; Zalutsky, Iosif V.; Antonenkova, Natalia N.; Bermisheva, Marina; Prokovieva, Darya; Farahtdinova, Albina; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana; Chen, Xiaoqing; Beesley, Jonathan; Lambrechts, Diether; Zhao, Hui; Neven, Patrick; Wildiers, Hans; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Fredericksen, Zachary; Giles, Graham G.; Baglietto, Laura; McLean, Catriona A.; Severi, Gianluca; Offit, Kenneth; Robson, Mark; Gaudet, Mia M.; Vijai, Joseph; Alnaes, Grethe Grenaker; Kristensen, Vessela; Borresen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Figueroa, Jonine D.; Garcia-Closas, Montserrat; Lissowska, Jolanta; Sherman, Mark E.; Hooning, Maartje; Martens, John W. M.; Seynaeve, Caroline; Collee, Margriet; Hall, Per; Humpreys, Keith; Czene, Kamila; Liu, Jianjun; Cox, Angela; Brock, Ian W.; Cross, Simon S.; Reed, Malcolm W. R.; Ahmed, Shahana; Ghoussaini, Maya; Pharoah, Paul D. P.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Zlowocka, Elzbieta; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Shen, Chen-Yang; Yu, Jyh-Cherng; Hsu, Huan-Ming; Hou, Ming-Feng; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Trentham-Dietz, Amy; Newcomb, Polly A.; Titus, Linda; Egan, Kathleen M.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Humphreys, Manjeet K.; Morrison, Jonathan; Chang-Claude, Jenny; Easton, Douglas F.; Dunning, Alison M.

    2012-01-01

    The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europea

  12. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis.

    Science.gov (United States)

    Gibson, William J; Hoivik, Erling A; Halle, Mari K; Taylor-Weiner, Amaro; Cherniack, Andrew D; Berg, Anna; Holst, Frederik; Zack, Travis I; Werner, Henrica M J; Staby, Kjersti M; Rosenberg, Mara; Stefansson, Ingunn M; Kusonmano, Kanthida; Chevalier, Aaron; Mauland, Karen K; Trovik, Jone; Krakstad, Camilla; Giannakis, Marios; Hodis, Eran; Woie, Kathrine; Bjorge, Line; Vintermyr, Olav K; Wala, Jeremiah A; Lawrence, Michael S; Getz, Gad; Carter, Scott L; Beroukhim, Rameen; Salvesen, Helga B

    2016-08-01

    Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites. PMID:27348297

  13. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara;

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  14. Genome-wide association study yields variants at 20p12.2 that associate with urinary bladder cancer

    NARCIS (Netherlands)

    Rafnar, T.; Sulem, P.; Thorleifsson, G.; Vermeulen, S.; Helgason, H.; Saemundsdottir, J.; Gudjonsson, S.A.; Sigurdsson, A.; Stacey, S.N.; Gudmundsson, J.; Johannsdottir, H.; Alexiusdottir, K.; Petursdottir, V.; Nikulasson, S.; Geirsson, G.; Jonsson, T.; Aben, K.K.H.; Grotenhuis, A.J.; Verhaegh, G.W.C.T.; Dudek, A.M.D.; Witjes, J.A.; Heijden, A.G. van der; Vrieling, A.; Galesloot, T.E.; Juan, A. de; Panadero, A.; Rivera, F.; Hurst, C.; Bishop, D.T.; Sak, S.C.; Choudhury, A.; Teo, M.T.; Arici, C.; Carta, A.; Toninelli, E.; Verdier, P. de; Rudnai, P.; Gurzau, E; Koppova, K.; Keur, K.A. van der; Lurkin, I.; Goossens, M.; Kellen, E.; Guarrera, S.; Russo, A.; Critelli, R.; Sacerdote, C.; Vineis, P.; Krucker, C.; Zeegers, M.P.; Gerullis, H.; Ovsiannikov, D.; Volkert, F.; Hengstler, J.G.; Selinski, S.; Magnusson, O.T.; Masson, G.; Kong, A.; Gudbjartsson, D.; Lindblom, A.; Zwarthoff, E.; Porru, S.; Golka, K.; Buntinx, F.; Matullo, G.; Kumar, R.; Mayordomo, J.I.; Steineck, D.G.; Kiltie, A.E.; Jonsson, E.; Radvanyi, F.; Knowles, M.A.; Thorsteinsdottir, U.; Kiemeney, B.; Stefansson, K.

    2014-01-01

    Genome-wide association studies (GWAS) of urinary bladder cancer (UBC) have yielded common variants at 12 loci that associate with risk of the disease. We report here the results of a GWAS of UBC including 1670 UBC cases and 90 180 controls, followed by replication analysis in additional 5266 UBC ca

  15. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    OpenAIRE

    Deodutta Roy; Marisa Morgan; Changwon Yoo; Alok Deoraj; Sandhya Roy; Vijay Kumar Yadav; Mohannad Garoub; Hamza Assaggaf; Mayur Doke

    2015-01-01

    We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC) and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PC...

  16. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprisi

  17. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men

    DEFF Research Database (Denmark)

    Petrovics, Gyorgy; Li, Hua; Stümpel, Tanja;

    2015-01-01

    Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a syst......, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.......Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present...... a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole...

  18. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice

    DEFF Research Database (Denmark)

    Lund, Anders H; Turner, Geoffrey; Trubetskoy, Alla;

    2002-01-01

    We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration ...

  19. University of Victoria Genome British Columbia Proteomics Centre Partners with CPTAC - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    University of Victoria Genome British Columbia Proteomics Centre, a leader in proteomic technology development, has partnered with the U.S. National Cancer Institute (NCI) to make targeted proteomic assays accessible to the community through NCI’s CPTAC Assay Portal.

  20. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia

    OpenAIRE

    Lan, Qing; Hsiung, Chao A.; Matsuo, Keitaro; Hong, Yun-Chul; Seow, Adeline; Wang, Zhaoming; Hosgood, H Dean; Chen, Kexin; Wang, Jiu-Cun; Chatterjee, Nilanjan; Hu, Wei; Wong, Maria Pik; Zheng, Wei; Caporaso, Neil; PARK, JAE YONG

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan, and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10-6) in an additional 1,099 cases and 2,913 controls. We identified three...