WorldWideScience

Sample records for cancer gene mutations

  1. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  2. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  3. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG...... mutations, R501X and 2282del4, using blood from the Copenhagen Hospital Biobank, Denmark. Controls (n = 8050) were genotyped in previous population-based studies. Information on cervical cancer, mortality and emigration were obtained from national registers. Odds ratios (OR) were estimated by logistic...... and stratification by cancer stage. RESULTS: The primary results showed that FLG mutations were not associated with the risk of cervical cancer (6.3% of cases and 7.7% of controls were carriers; OR adjusted 0.81, 95% CI 0.57-1.14; OR adjusted+ weighted 0.96, 95% CI 0.58-1.57). Among cases, FLG mutations increased...

  4. Olaparib Approved for Breast Cancers with BRCA Gene Mutations

    Science.gov (United States)

    The Food and Drug Administration has approved olaparib (Lynparza®) to treat metastatic breast cancers that have inherited mutations in the BRCA1 or BRCA2 genes as well as a companion diagnostic test for selecting candidates for the therapy.

  5. Mutations in the AXIN1 gene in advanced prostate cancer

    DEFF Research Database (Denmark)

    Yardy, George W; Bicknell, David C; Wilding, Jennifer L

    2009-01-01

    The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes...

  6. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    Science.gov (United States)

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  7. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    Atoum, Manar F.; Al-Kayed, Sameer A.

    2004-01-01

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  8. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    Science.gov (United States)

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  9. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers.

    Science.gov (United States)

    Win, Aung Ko; Parry, Susan; Parry, Bryan; Kalady, Matthew F; Macrae, Finlay A; Ahnen, Dennis J; Young, Graeme P; Lipton, Lara; Winship, Ingrid; Boussioutas, Alex; Young, Joanne P; Buchanan, Daniel D; Arnold, Julie; Le Marchand, Loïc; Newcomb, Polly A; Haile, Robert W; Lindor, Noralane M; Gallinger, Steven; Hopper, John L; Jenkins, Mark A

    2013-06-01

    Despite regular surveillance colonoscopy, the metachronous colorectal cancer risk for mismatch repair (MMR) gene mutation carriers after segmental resection for colon cancer is high and total or subtotal colectomy is the preferred option. However, if the index cancer is in the rectum, management decisions are complicated by considerations of impaired bowel function. We aimed to estimate the risk of metachronous colon cancer for MMR gene mutation carriers who underwent a proctectomy for index rectal cancer. This retrospective cohort study comprised 79 carriers of germline mutation in a MMR gene (18 MLH1, 55 MSH2, 4 MSH6, and 2 PMS2) from the Colon Cancer Family Registry who had had a proctectomy for index rectal cancer. Cumulative risks of metachronous colon cancer were calculated using the Kaplan-Meier method. During median 9 years (range 1-32 years) of observation since the first diagnosis of rectal cancer, 21 carriers (27 %) were diagnosed with metachronous colon cancer (incidence 24.25, 95 % confidence interval [CI] 15.81-37.19 per 1,000 person-years). Cumulative risk of metachronous colon cancer was 19 % (95 % CI 9-31 %) at 10 years, 47 (95 % CI 31-68 %) at 20 years, and 69 % (95 % CI 45-89 %) at 30 years after surgical resection. The frequency of surveillance colonoscopy was 1 colonoscopy per 1.16 years (95 % CI 1.01-1.31 years). The AJCC stages of the metachronous cancers, where available, were 72 % stage I, 22 % stage II, and 6 % stage III. Given the high metachronous colon cancer risk for MMR gene mutation carriers diagnosed with an index rectal cancer, proctocolectomy may need to be considered.

  10. p53 gene mutation hotspots in skin cancer and ultraviolet induced mutation

    International Nuclear Information System (INIS)

    Ikehata, Hironobu

    1998-01-01

    Presence of certain hotspots is known in the mutation of p53 gene in skin cancer, which are codons 177, 196, 245, 248, 278 and 282 located in the exon 5-8. In these regions, mutations like C to T and CC to TT are frequent and thereby suggest that they are resulted from pyrimidine-dimers produced by ultraviolet light (UV). In cyclobutane pyrimidine dimerization (CPD), conversion of cytosine to thymine by deamination is suggested to be the primary reaction. Although studies using UVC (254 nm) suggesting that the mutation hotspots are low repair efficiency regions could not completely explain the all hotspots, those using UVB and sunlight (UVB and UVA) revealed that CPD was efficiently produced even in such regions as not explained by studies with UVC alone. Therefore, the latter studies are conceivably reasonable since the skin cancer is induced by natural sunlight. Exon 5-8 DNA is completely methylated and the absorption coefficient of 5-methylcytosine is 5-6 times as large as that of cytosine at wavelength around 290 nm. These indicate the importance of UVB in mutation of mammalian cells possessing the ability to methylate DNA. (K.H.)

  11. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  12. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  13. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  14. Mutational analysis of the BRCA1 gene in 30 Czech ovarian cancer ...

    Indian Academy of Sciences (India)

    Ovarian cancer is one of the most severe of oncological diseases. Inherited mutations in cancer susceptibility genes play a causal role in 5–10% of newly diagnosed tumours. BRCA1 and BRCA2 gene alterations are found in the majority of these cases. The aim of this study was to analyse the BRCA1 gene in the ovarian ...

  15. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  16. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  17. The landscape of cancer genes and mutational processes in breast cancer

    NARCIS (Netherlands)

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; van Loo, Peter; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; Lee, Ming Ta Michael; Shen, Chen-Yang; tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van 't Veer, Laura; Foekens, John

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis(1), and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast

  18. MUTATIONS OF THE SMARCB1 GENE IN HUMAN CANCERS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhaylenko

    2016-01-01

    Full Text Available In the recent years, the full exome sequencing helped to reveal a  set of mutations in the genes that are not oncogenes or tumor suppressor genes by definition, but play an important role in carcinogenesis and encode proteins involved in chromatin remodeling. Among chromatin remodeling systems, which operate through the ATP-dependent mechanism, the complex SWI/ SNF attracts the great attention. The complex consists of the catalytic ATPase (SMARCA2/4, a group of conservative core subunits (SMARCB1, SMARCC1/2, and variant subunits. Abnormalities in the genes coding for each of these components have been identified as driver mutations in various human tumors. The SMARCB1 gene is of interest for practical oncogenetics, with its typical genotype-phenotype correlations. Germinal inactivating mutations (frameshift insertions/deletions, full deletions of the gene, nonsense mutations lead to development of rhabdoid tumors in the kidneys and the brain in children in their first years of life, or even in utero. These tumors are highly malignant (Rhabdoid Tumor Predisposition Syndrome 1 – RTPS1. If a mutation carrier survives his/hers four years of life without manifestation RTPS1 with a missense mutation or has the mutation in the "hot spot" of the first or the last exon, then he/she will not develop rhabdoid tumors, but after 20 years of life, shwannomatosis may develop as multiple benign tumors of peripheral nerves. Finally, some point mutations in the exons 8–9 can result in Coffin-Siris syndrome characterized by mental retardation and developmental disorders, but no neoplasms. In this regard, rational referral of patients for direct DNA diagnostics of each of the described disease entities plays an important role, based on respective minimal criteria, as well as necessity of further development of NGS technologies (full genome and full exome sequencing that are able to sequence not only individual exons, but all candidate genes of the

  19. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  20. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Heikkilä, Pirjo

    2010-01-01

    The causal role of work-related exposure to wood dust in the development of sinonasal cancer has long been established by numerous epidemiologic studies. To study molecular changes in these tumors, we analyzed TP53 gene mutations in 358 sinonasal cancer cases with or without occupational exposure...... affected the ORs only slightly. Smoking did not influence the occurrence of TP53 mutation; however, it was associated with multiple mutations (p = 0.03). As far as we are aware, this is the first study to demonstrate a high prevalence of TP53 mutation-positive cases in a large collection of sinonasal...... cancers with data on occupational exposure. Our results indicate that mutational mechanisms, in particular TP53 mutations, are associated with work-related exposure to wood dust in sinonasal cancer....

  1. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Ainur R. Akilzhanova

    2013-05-01

    Full Text Available Background: A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Kazakhstan women. Aim: To evaluate the role of BRCA1/2 mutations in Kazakhstan women presenting with sporadic breast cancer. Methods: We investigated the distribution and nature of polymorphisms in BRCA1 and BRCA2 entire coding regions in 156 Kazakhstan sporadic breast cancer cases and 112 age-matched controls using automatic direct sequencing. Results: We identified 22 distinct variants, including 16 missense mutations and 6 polymorphisms in BRCA1/2 genes. In BRCA1, 9 missense mutations and 3 synonymous polymorphisms were observed. In BRCA2, 7 missense mutations and 3 polymorphisms were detected. There was a higher prevalence of observed mutations in Caucasian breast cancer cases compared to Asian cases (p<0.05; higher frequencies of sequence variants were observed in Asian controls. No recurrent or founder mutations were observed in BRCA1/2 genes. There were no statistically significant differences in age at diagnosis, tumor histology, size of tumor, and lymph node involvement between women with breast cancer with or without the BRCA sequence alterations. Conclusions: Considering the majority of breast cancer cases are sporadic, the present study will be helpful in the evaluation of the need for the genetic screening of BRCA1/2 mutations and reliable genetic counseling for Kazakhstan sporadic breast cancer patients. Evaluation of common polymorphisms and mutations and breast cancer risk in families with genetic predisposition to breast cancer is ongoing in another current investigation. 

  2. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  3. Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kylie L. Gorringe

    2008-11-01

    Full Text Available Chromodomain, helicase, DNA binding 5 (CHD5 is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04. The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  4. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  5. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome.

    Science.gov (United States)

    Yurgelun, Matthew B; Allen, Brian; Kaldate, Rajesh R; Bowles, Karla R; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B; Wenstrup, Richard J; Hartman, Anne-Renee; Syngal, Sapna

    2015-09-01

    Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. We performed germline analysis with a 25-gene, next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All patients had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain clinical significance (VUS). We also analyzed data on patients' personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Of the 1260 patients, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%-90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%-10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%-7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P = .0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. A total of 479 individuals had 1 or more VUS (38%; 95% CI, 35%-41%). In individuals with suspected Lynch syndrome, multigene panel testing identified high-penetrance mutations in cancer predisposition genes, many

  6. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    Science.gov (United States)

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  7. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2016-05-01

    25 other candidate genes in the Fanconi anemia-BRCA pathway: ATR, BABAM1, BAP1, BLM, BRCC3, BRE, CHEK1, ERCC1, ERCC4 (FANCQ), FANCA , FANCB, FANCC...AWARD NUMBER: W81XWH-13-1-0484 TITLE: Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and...DNA repair genes on small core biopsy specimens iv) begun accessioning samples from the phase 2 rucaparib trial (Ariel 2, NCT01891344). 15

  8. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  9. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Kornel E Schuebel

    2007-09-01

    Full Text Available We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken.

  10. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    Science.gov (United States)

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  11. Low prevalence of CHEK2 gene mutations in multiethnic cohorts of breast cancer patients in Malaysia.

    Science.gov (United States)

    Mohamad, Suriati; Isa, Nurismah Md; Muhammad, Rohaizak; Emran, Nor Aina; Kitan, Nor Mayah; Kang, Peter; Kang, In Nee; Taib, Nur Aishah Mohd; Teo, Soo Hwang; Akmal, Sharifah Noor

    2015-01-01

    CHEK2 is a protein kinase that is involved in cell-cycle checkpoint control after DNA damage. Germline mutations in CHEK2 gene have been associated with increase in breast cancer risk. The aim of this study is to identify the CHEK2 gene germline mutations among high-risk breast cancer patients and its contribution to the multiethnic population in Malaysia. We screened the entire coding region of CHEK2 gene on 59 high-risk breast cancer patients who tested negative for BRCA1/2 germline mutations from UKM Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Sequence variants identified were screened further in case-control cohorts consisting of 878 unselected invasive breast cancer patients (180 Malays, 526 Chinese and 172 Indian) and 270 healthy individuals (90 Malays, 90 Chinese and 90 Indian). By screening the entire coding region of the CHEK2 gene, two missense mutations, c.480A>G (p.I160M) and c.538C>T (p.R180C) were identified in two unrelated patients (3.4%). Further screening of these missense mutations on the case-control cohorts unveiled the variant p.I160M in 2/172 (1.1%) Indian cases and 1/90 (1.1%) Indian control, variant p.R180C in 2/526 (0.38%) Chinese cases and 0/90 Chinese control, and in 2/180 (1.1%) of Malay cases and 1/90 (1.1%) of Malay control. The results of this study suggest that CHEK2 mutations are rare among high-risk breast cancer patients and may play a minor contributing role in breast carcinogenesis among Malaysian population.

  12. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers

    International Nuclear Information System (INIS)

    Ingvarsson, Sigurdur; Sigbjornsdottir, Bjarnveig I; Huiping, Chen; Hafsteinsdottir, Sigridur H; Ragnarsson, Gisli; Barkardottir, Rosa B; Arason, Adalgeir; Egilsson, Valgardur; Bergthorsson, Jon TH

    2002-01-01

    Mutations in the CHK2 gene at chromosome 22q12.1 have been reported in families with Li-Fraumeni syndrome. Chk2 is an effector kinase that is activated in response to DNA damage and is involved in cell-cycle pathways and p53 pathways. We screened 139 breast tumors for loss of heterozygosity at chromosome 22q, using seven microsatellite markers, and screened 119 breast tumors with single-strand conformation polymorphism and DNA sequencing for mutations in the CHK2 gene. Seventy-four of 139 sporadic breast tumors (53%) show loss of heterozygosity with at least one marker. These samples and 45 tumors from individuals carrying the BRCA2 999del5 mutation were screened for mutations in the CHK2 gene. In addition to putative polymorphic regions in short mononucleotide repeats in a non-coding exon and intron 2, a germ line variant (T59K) in the first coding exon was detected. On screening 1172 cancer patients for the T59K sequence variant, it was detected in a total of four breast-cancer patients, two colon-cancer patients, one stomach-cancer patient and one ovary-cancer patient, but not in 452 healthy individuals. A tumor-specific 5' splice site mutation at site +3 in intron 8 (TTgt [a → c]atg) was also detected. We conclude that somatic CHK2 mutations are rare in breast cancer, but our results suggest a tumor suppressor function for CHK2 in a small proportion of breast tumors. Furthermore, our results suggest that the T59K CHK2 sequence variant is a low-penetrance allele with respect to tumor growth

  13. Profile of TP53 gene mutations in sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Suitiala, Tuula

    2010-01-01

    databases for head and neck squamous cell carcinoma (24%). Characteristically, in our SNC series, the mutations were scattered over a large number of codons, codon 248 being the most frequent target of base substitution. Codon 135 was the second most frequently mutated codon; this nucleotide position has...

  14. Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas

    OpenAIRE

    Chan, Sock Hoai; Lim, Weng Khong; Ishak, Nur Diana Binte; Li, Shao-Tzu; Goh, Wei Lin; Tan, Gek San; Lim, Kiat Hon; Teo, Melissa; Young, Cedric Ng Chuan; Malik, Simeen; Tan, Mann Hong; Teh, Jonathan Yi Hui; Chin, Francis Kuok Choon; Kesavan, Sittampalam; Selvarajan, Sathiyamoorthy

    2017-01-01

    Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13....

  15. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  16. Endocrine metabolic disorders in patients with breast cancer, carriers of BRCA1 gene mutations.

    Science.gov (United States)

    Berstein, L M; Boyarkina, M P; Vasilyev, D A; Poroshina, T E; Kovalenko, I G; Imyanitov, E N; Semiglazov, V F

    2012-03-01

    Two groups of breast cancer patients (53±2 years) in clinical remission receiving no specific therapy were examined: group 1, with BRCA1 gene mutations (N=11) and group 2, without mutations of this kind (N=11). The two groups did not differ by insulinemia and glycemia, insulin resistance index, blood levels of thyrotropic hormone, sex hormone-binding globulin, insulin-like growth factor-1, triglycerides, or lipoproteins. In group 1, blood estradiol level was higher. Intensive glucose-induced generation of reactive oxygen species in these patients was associated with a decrease of cholesterolemia, of the C-peptide/insulin proportion, and a trend to higher urinary excretion of 4-hydroxyestrone, one of the most genotoxic catecholestrogens. BRCA1 gene mutations in breast cancer patients were associated with signs of estrogenization and a pro-genotoxic shift in the estrogen and glucose system, which could modulate the disease course and requires correction.

  17. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  18. Comprehensive Characterization of Cancer Driver Genes and Mutations

    NARCIS (Netherlands)

    Bailey, Matthew H.; Tokheim, Collin; Porta-Pardo, Eduard; Sengupta, Sohini; Bertrand, Denis; Weerasinghe, Amila; Colaprico, Antonio; Wendl, Michael C.; Kim, Jaegil; Reardon, Brendan; Ng, Patrick Kwok Shing; Jeong, Kang Jin; Cao, Song; Wang, Zixing; Gao, Jianjiong; Gao, Qingsong; Wang, Fang; Liu, Eric Minwei; Mularoni, Loris; Rubio-Perez, Carlota; Nagarajan, Niranjan; Cortés-Ciriano, Isidro; Zhou, Daniel Cui; Liang, Wen Wei; Hess, Julian M.; Yellapantula, Venkata D.; Tamborero, David; Gonzalez-Perez, Abel; Suphavilai, Chayaporn; Ko, Jia Yu; Khurana, Ekta; Park, Peter J.; Van Allen, Eliezer M.; Liang, Han; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Lawrence, Michael S.; Godzik, Adam; Lopez-Bigas, Nuria; Stuart, Josh; Wheeler, David; Getz, Gad; Chen, Ken; Lazar, Alexander J.; Mills, Gordon B.; Karchin, Rachel; Ding, Li

    2018-01-01

    Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising

  19. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  20. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  1. Association of two mutations in the CHEK2 gene with breast cancer

    International Nuclear Information System (INIS)

    Bogdanova, N.; Enben-Dubrowinskaja, N.; Doerk, T.; Feshchenko, S.; Lazyuk, G.I.; Rogov, Yu.I.

    2005-01-01

    Cell-cycle checkpoint kinase 2 (CHEK2) is a central mediator of cellular responses to DNA damage. Ionizing radiation activates the CHEK2 protein via ATM-mediated phosphorylation and activated CHEK2 kinase can phosphorylate several substrates, including Cdc25A, p53 and E2F1, which mediate cell cycle arrest and apoptosis. CHEK2 phosphorylation of the breast cancer susceptibility protein BRCA1 regulates DNA double-strand break repair, and deletion of CHEK2 potentiate the incidence of mammary carcinomas in BRCA1 conditional mutant mice. A truncating variant of CHEK2, the 1100 delC mutation, has been identified as a low-penetrance breast-cancer susceptibility allele. Heterozygous 1100 delC carriers have an approximately 2-fold increased risk for breast cancer. The role of variants in CHEK2 other than 1100 delC is less clear. To assess the role of these CHEK2 variants in breast cancer, we conducted an association study of the I157T and IVS211G>A mutations in breast cancer case-control settings from the Belarus populations. Our series consisted of 424 breast cancer patients and 307 population controls. The missense substitution I157T was identified in 24/424 cases (5.7%) vs. 4/307 controls (1.3%; OR 54.5, 95% CI 1.6-13.2, p 5 0.005) in investigated cohorts. The splicing mutation IVS211G > A was infrequent, being observed 4/424 patients (0.9%). Heterozygous CHEK2 mutation carriers tended to be diagnosed at an earlier age, but these differences did not reach statistical significance. Family history of breast cancer did not differ between carriers and non carriers. Our data indicate that the I157T allele, and possibly the IVS211G > A allele, of the CHEK2 gene contribute to inherited breast cancer susceptibility. (authors)

  2. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    Science.gov (United States)

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer. Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; P trend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; P trend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR . ©2016 American Association for Cancer Research.

  3. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    Science.gov (United States)

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC

  4. Recurrently Mutated Genes Differ between Leptomeningeal and Solid Lung Cancer Brain Metastases.

    Science.gov (United States)

    Li, Yingmei; Liu, Boxiang; Connolly, Ian David; Kakusa, Bina Wasunga; Pan, Wenying; Nagpal, Seema; Montgomery, Stephen B; Hayden Gephart, Melanie

    2018-03-29

    When compared with solid brain metastases from NSCLC, leptomeningeal disease (LMD) has unique growth patterns and is rapidly fatal. Patients with LMD do not undergo surgical resection, limiting the tissue available for scientific research. In this study we performed whole exome sequencing on eight samples of LMD to identify somatic mutations and compared the results with those for 26 solid brain metastases. We found that taste 2 receptor member 31 gene (TAS2R31) and phosphodiesterase 4D interacting protein gene (PDE4DIP) were recurrently mutated among LMD samples, suggesting involvement in LMD progression. Together with a retrospective review of the charts of an additional 44 patients with NSCLC LMD, we discovered a surprisingly low number of KRAS mutations (n = 4 [7.7%]) but a high number of EGFR mutations (n = 33 [63.5%]). The median interval for development of LMD from NSCLC was shorter in patients with mutant EGFR (16.3 months) than in patients with wild-type EGFR (23.9 months) (p = 0.017). Targeted analysis of recurrent mutations thus presents a useful complement to the existing diagnostic tool kit, and correlations of EGFR in LMD and KRAS in solid metastases suggest that molecular distinctions or systemic treatment pressure underpin the differences in growth patterns within the brain. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    Science.gov (United States)

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  6. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  7. Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer.

    Directory of Open Access Journals (Sweden)

    Sandra Kohlhase

    Full Text Available The ERCC4 protein forms a structure-specific endonuclease involved in the DNA damage response. Different cancer syndromes such as a subtype of Xeroderma pigmentosum, XPF, and recently a subtype of Fanconi Anemia, FA-Q, have been attributed to biallelic ERCC4 gene mutations. To investigate whether monoallelic ERCC4 gene defects play some role in the inherited component of breast cancer susceptibility, we sequenced the whole ERCC4 coding region and flanking untranslated portions in a series of 101 Byelorussian and German breast cancer patients selected for familial disease (set 1, n = 63 or for the presence of the rs1800067 risk haplotype (set 2, n = 38. This study confirmed six known and one novel exonic variants, including four missense substitutions but no truncating mutation. Missense substitution p.R415Q (rs1800067, a previously postulated breast cancer susceptibility allele, was subsequently screened for in a total of 3,698 breast cancer cases and 2,868 controls from Germany, Belarus or Russia. The Gln415 allele appeared protective against breast cancer in the German series, with the strongest effect for ductal histology (OR 0.67; 95%CI 0.49; 0.92; p = 0.003, but this association was not confirmed in the other two series, with the combined analysis yielding an overall Mantel-Haenszel OR of 0.94 (95% CI 0.81; 1.08. There was no significant effect of p.R415Q on breast cancer survival in the German patient series. The other three detected ERCC4 missense mutations included two known rare variants as well as a novel substitution, p.E17V, that we identified on a p.R415Q haplotype background. The p.E17V mutation is predicted to be probably damaging but was present in just one heterozygous patient. We conclude that the contribution of ERCC4/FANCQ coding mutations to hereditary breast cancer in Central and Eastern Europe is likely to be small.

  8. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  9. Study the Molecular Association between a Deletion Mutation in CHEK2 gene (5395 bp and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manijeh Jalilvand

    2015-07-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer among women and the second most common cause of cancer death. Genetic factors play an important role in the development of breast cancer. Among these genetic factors, CHEk2 (checkpoint kinase 2 gene, as a tumor suppressor gene, plays a critical role in DNA repair. Germline mutations in CEHK2 result in the loss of this feature. One of the mutations in CHEK2 gene is a 5395 bp deletion mutation which has been associated with the increasing risk of Breast Cancer in some populations in the world.  In the present study, we investigated the association between a 5395 bp deletion mutation in CHEK2 gene and the risk of Breast Cancer in the women of an Iranian population. Methods: Pathologic information of 38 cases under the age of 45 and 62 cases over the age of 45 referring to surgery ward of Milad Hospital in Tehran were extracted. 100 healthy controls were included in the study as well. After obtaining informed consent, 5 mL whole blood was taken DNA was successfully isolated. Multiplex PCR was used to investigate the association between a 5395bp deletion mutation in CHEK2 gene and increasing risk of Breast Cancer among patients. Results: The 5395bp deletion mutation in CHEK2 gene was not found in any of the participating groups of patients or heathy controls. Conclusion: The present study revealed that there is no significant relation between increasing the risk of Breast Cancer and bearing large deletion mutation in exon 9 and exon 10 of CHECK2 gene.

  10. Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers.

    Science.gov (United States)

    Pritchard, Antonia L; Johansson, Peter A; Nathan, Vaishnavi; Howlie, Madeleine; Symmons, Judith; Palmer, Jane M; Hayward, Nicholas K

    2018-01-01

    While a number of autosomal dominant and autosomal recessive cancer syndromes have an associated spectrum of cancers, the prevalence and variety of cancer predisposition mutations in patients with multiple primary cancers have not been extensively investigated. An understanding of the variants predisposing to more than one cancer type could improve patient care, including screening and genetic counselling, as well as advancing the understanding of tumour development. A cohort of 57 patients ascertained due to their cutaneous melanoma (CM) diagnosis and with a history of two or more additional non-cutaneous independent primary cancer types were recruited for this study. Patient blood samples were assessed by whole exome or whole genome sequencing. We focussed on variants in 525 pre-selected genes, including 65 autosomal dominant and 31 autosomal recessive cancer predisposition genes, 116 genes involved in the DNA repair pathway, and 313 commonly somatically mutated in cancer. The same genes were analysed in exome sequence data from 1358 control individuals collected as part of non-cancer studies (UK10K). The identified variants were classified for pathogenicity using online databases, literature and in silico prediction tools. No known pathogenic autosomal dominant or previously described compound heterozygous mutations in autosomal recessive genes were observed in the multiple cancer cohort. Variants typically found somatically in haematological malignancies (in JAK1, JAK2, SF3B1, SRSF2, TET2 and TYK2) were present in lymphocyte DNA of patients with multiple primary cancers, all of whom had a history of haematological malignancy and cutaneous melanoma, as well as colorectal cancer and/or prostate cancer. Other potentially pathogenic variants were discovered in BUB1B, POLE2, ROS1 and DNMT3A. Compared to controls, multiple cancer cases had significantly more likely damaging mutations (nonsense, frameshift ins/del) in tumour suppressor and tyrosine kinase genes and

  11. High Resolution Melting Analysis for Detecting p53 Gene Mutations in Patients with Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Zhihong CHEN

    2011-10-01

    Full Text Available Background and objective It has been proven that p53 gene was related to many human cancers. The mutations in p53 gene play an important role in carcinogensis and mostly happened in exon 5-8. The aim of this study is to establish a high resolution melting (HRM assay to detect p53 mutations from patients with non-small cell lung cancer (NSCLC, to investigate the characteristics of p53 gene mutations, and to analyze the relationship between p53 mutations and evolution regularity of pathogenesis. Methods p53 mutations in exon 5-8 were detected by HRM assay on DNA insolated from 264 NSCLC samples derived from tumor tissues and 54 control samples from pericancerous pulmonary tissues. The mutation samples by the HRM assay were confirmed by sequencing technique. Samples which were positive by HRM but wild type by sequencing were further confirmed by sub-clone and sequencing. Results No mutation was found in 54 pericancerous pulmonary samples by HRM assay. 104 of the 264 tumor tissues demonstrated mutation curves by HRM assay, 102 samples were confirmed by sequencing, including 95 point mutations and 7 frame shift mutations by insertion or deletion. The mutation rate of p53 gene was 39.4%. The mutation rate from exon 5-8 were 11.7%, 8%, 12.5% and 10.6%, respectively and there was no statistically significant difference between them (P=0.35. p53 mutations were significantly more frequent in males than that in females, but not related to the other clinicopathologic characteristics. Conclusion The results indicate that HRM is a sensitive in-tube methodology to detect for mutations in clinical samples. The results suggest that the arising p53 mutations in NSCLC may be due to spontaneous error in DNA synthesis and repair.

  12. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  13. Mutation analysis of the MDM4 gene in German breast cancer patients

    International Nuclear Information System (INIS)

    Reincke, Scarlett; Govbakh, Lina; Wilhelm, Bettina; Jin, Haiyan; Bogdanova, Natalia; Bremer, Michael; Karstens, Johann H; Dörk, Thilo

    2008-01-01

    MDM4 is a negative regulator of p53 and cooperates with MDM2 in the cellular response to DNA damage. It is unknown, however, whether MDM4 gene alterations play some role in the inherited component of breast cancer susceptibility. We sequenced the whole MDM4 coding region and flanking untranslated regions in genomic DNA samples obtained from 40 German patients with familial breast cancer. Selected variants were subsequently screened by RFLP-based assays in an extended set of breast cancer cases and controls. Our resequencing study uncovered two MDM4 coding variants in 4/40 patients. Three patients carried a silent substitution at codon 74 that was linked with another rare variant in the 5'UTR. No association of this allele with breast cancer was found in a subsequent screening of 133 patients with bilateral breast cancer and 136 controls. The fourth patient was heterozygous for the missense substitution D153G which is located in a less conserved region of the MDM4 protein but may affect a predicted phosphorylation site. The D153G substitution only partially segregated with breast cancer in the family and was not identified on additional 680 chromosomes screened. This study did not reveal clearly pathogenic mutations although it uncovered two new unclassified variants at a low frequency. We conclude that there is no evidence for a major role of MDM4 coding variants in the inherited susceptibility towards breast cancer in German patients

  14. Molecular analysis of the eighteen most frequent mutations in the BRCA1 gene in 63 Chilean breast cancer families

    Directory of Open Access Journals (Sweden)

    LILIAN JARA

    2004-01-01

    Full Text Available BRCA1 gene mutations account for nearly all families with multiple cases of both early onset breast and/or ovarian cancer and about 30% of hereditary breast cancer. Although to date more than 1,237 distinct mutations, polymorphisms, and variants have been described, several mutations have been found to be recurrent in this gene. We have analyzed 63 Chilean breast/ovarian cancer families for eighteen frequent BRCA1 mutations. The analysis of the five exons and two introns in which these mutations are located was made using mismatch PCR assay, ASO hybridization assay, restriction fragment analysis, allele specific PCR assay and direct sequentiation techniques. Two BRCA1 mutations (185delAG and C61G and one variant of unknown significance (E1250K were found in four of these families. Also, a new mutation (4185delCAAG and one previously described polymorphism (E1038G were found in two other families. The 185delAG was found in a 3.17 % of the families and the others were present only in one of the families of this cohort. Therefore these mutations are not prominent in the Chilean population. The variant of unknown significance and the polymorphism detected could represent a founder effect of Spanish origin

  15. Relationship Between Mutations In BRCA1 And BRCA2 Genes And Breast Cancer Prevalence Among Egyptian Women

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.K.

    2009-01-01

    Breast cancer represents the most common cancer of women in the world and it is a biologically heterogeneous disease influenced by complex interactions between multiple genetic and environmental risk factors. In Egypt, breast cancer is classified as the first rank cancer case among women. The present study included 55 patients with breast cancer from Upper Egypt of which 40 patients had sporadic and 15 had familial breast cancers. Mutations in DNA of exons 10 and 11 of BRCA1 and BRCA2 were detected by single strand conformation polymorphisms (SSCPs) and sequencing. Moreover, BRCA1 protein expression was detected by immunostaining technique and correlation between risk factors and incidence rate of breast cancer. The results revealed 5 mutations (unclassified variants); three mutations (60%) were recorded internationally in Breast Information Cancer (BIC), one of them was 1767 C→T(550 Asn→His) and previously recorded in the Arabic world and the other 2 novel mutations were 1663 T→ C(479 Asp→Gly) and del AG 6079. The results obtained in the present study also demonstrated that the increase of the negative immunostaining of ''BRCA1'' protein in the tumour cells of BRCA1 mutation carriers was comparable to familial and sporadic breast cancer non-carrier. Accurate estimation of the relative frequency of BRCA1 and BRCA2 mutations in Egyptian breast cancer patients could not be deduced from the results of this relatively small pilot study. More studies with larger numbers of patients are needed to clarify the relation between BRCA1 and BRCA2 gene mutations and the prediction of breast cancer in Egypt.

  16. Novel mutations in the BRCA1 and BRCA2 genes in Iranian women with early-onset breast cancer

    International Nuclear Information System (INIS)

    Yassaee, Vahid R; Zeinali, Sirous; Harirchi, Iraj; Jarvandi, Soghra; Mohagheghi, Mohammad A; Hornby, David P; Dalton, Ann

    2002-01-01

    Breast cancer is the most common female malignancy and a major cause of death in middle-aged women. So far, germline mutations in the BRCA1 and BRCA2 genes in patients with early-onset breast and/or ovarian cancer have not been identified within the Iranian population. With the collaboration of two main centres for cancer in Iran, we obtained clinical information, family history and peripheral blood from 83 women under the age of 45 with early-onset breast cancer for scanning of germline mutations in the BRCA1 and BRCA2 genes. We analysed BRCA1 exons 11 and BRCA2 exons 10 and 11 by the protein truncation test, and BRCA1 exons 2, 3, 5, 13 and 20 and BRCA2 exons 9, 17, 18 and 23 with the single-strand conformation polymorphism assay on genomic DNA amplified by polymerase chain reaction. Ten sequence variants were identified: five frameshifts (putative mutations – four novel); three missense changes of unknown significance and two polymorphisms, one seen commonly in both Iranian and British populations. Identification of these novel mutations suggests that any given population should develop a mutation database for its programme of breast cancer screening. The pattern of mutations seen in the BRCA genes seems not to differ from other populations studied. Early-onset breast cancer (less than 45 years) and a limited family history is sufficient to justify mutation screening with a detection rate of over 25% in this group, whereas sporadic early-onset breast cancer (detection rate less than 5%) is unlikely to be cost-effective

  17. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  18. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy

    Science.gov (United States)

    Li, Lu; Douville, Christopher; Wang, Yuxuan; Cohen, Joshua David; Taheri, Diana; Silliman, Natalie; Schaefer, Joy; Ptak, Janine; Dobbyn, Lisa; Papoli, Maria; Kinde, Isaac; Afsari, Bahman; Tregnago, Aline C; Bezerra, Stephania M; VandenBussche, Christopher; Fujita, Kazutoshi; Ertoy, Dilek; Cunha, Isabela W; Yu, Lijia; Bivalacqua, Trinity J; Grollman, Arthur P; Diaz, Luis A; Karchin, Rachel; Danilova, Ludmila; Huang, Chao-Yuan; Shun, Chia-Tung; Turesky, Robert J; Yun, Byeong Hwa; Rosenquist, Thomas A; Pu, Yeong-Shiau; Hruban, Ralph H; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Ken W

    2018-01-01

    Current non-invasive approaches for detection of urothelial cancers are suboptimal. We developed a test to detect urothelial neoplasms using DNA recovered from cells shed into urine. UroSEEK incorporates massive parallel sequencing assays for mutations in 11 genes and copy number changes on 39 chromosome arms. In 570 patients at risk for bladder cancer (BC), UroSEEK was positive in 83% of those who developed BC. Combined with cytology, UroSEEK detected 95% of patients who developed BC. Of 56 patients with upper tract urothelial cancer, 75% tested positive by UroSEEK, including 79% of those with non-invasive tumors. UroSEEK detected genetic abnormalities in 68% of urines obtained from BC patients under surveillance who demonstrated clinical evidence of recurrence. The advantages of UroSEEK over cytology were evident in low-grade BCs; UroSEEK detected 67% of cases whereas cytology detected none. These results establish the foundation for a new non-invasive approach for detection of urothelial cancer. PMID:29557778

  19. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry.

    Science.gov (United States)

    Pande, Mala; Wei, Chongjuan; Chen, Jinyun; Amos, Christopher I; Lynch, Patrick M; Lu, Karen H; Lucio, Laura A; Boyd-Rogers, Stephanie G; Bannon, Sarah A; Mork, Maureen E; Frazier, Marsha L

    2012-09-01

    The spectrum of cancers seen in a hospital based Lynch syndrome registry of mismatch repair gene mutation carriers was examined to determine the distribution of cancers and examine excess cancer risk. Overall there were 504 cancers recorded in 368 mutation carriers from 176 families. These included 236 (46.8 %) colorectal and 268 (53.2 %) extracolonic cancers. MLH1 mutation carriers had a higher frequency of colorectal cancers whereas MSH2, MSH6 and PMS2 mutation carriers had more extracolonic cancers although these differences were not statistically significant. Men had fewer extracolonic cancers than colorectal (45.3 vs. 54.7 %), whereas women had more extracolonic than colorectal cancers (59.0 vs. 41.0 %). The mean age at diagnosis overall for extracolonic cancers was older than for colorectal, 49.1 versus 44.8 years (P ≤ 0.001). As expected, the index cancer was colorectal in 58.1 % of patients and among the extracolonic index cancers, endometrial was the most common (13.8 %). A significant number of non-Lynch syndrome index cancers were recorded including breast (n = 5) prostate (n = 3), thyroid (n = 3), cervix (n = 3), melanoma (n = 3), and 1 case each of thymoma, sinus cavity, and adenocarcinoma of the lung. However, standardized incidence ratios calculated to assess excess cancer risk showed that only those cancers known to be associated with Lynch syndrome were significant in our sample. We found that Lynch syndrome patients can often present with cancers that are not considered part of Lynch syndrome. This has clinical relevance both for diagnosis of Lynch syndrome and surveillance for cancers of different sites during follow-up of these patients.

  20. Cancer Risks Associated With Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2017-05-01

    swishere@uw.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...their relatives to better understand the genetic contribution to ovarian cancer and will focus on exome sequencing 30 families in year 3. 15. SUBJECT...BRCA1/2) account for about 15% of OC. Inherited loss of function mutations in other related genes account for another 5-6% of cases, but less is

  1. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio......PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members...... of the International Society for Gastrointestinal Hereditary Tumours, requesting information regarding patients with HNPCC-associated SBC and germ line mismatch repair gene mutations. RESULTS: The study population consisted of 85 HNPCC patients with identified mismatch repair gene mutations and SBCs. SBC was the first...... HNPCC-associated malignancy in 14 of 41 (34.1%) patients for whom a personal history of HNPCC-associated cancers was available. The study population harbored 69 different germ line mismatch repair gene mutations, including 31 mutations in MLH1, 34 in MSH2, 3 in MSH6, and 1 in PMS2. We compared...

  2. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2018-04-01

    Full Text Available Considering that mutations in known prostate cancer (PrCa predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  3. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations.

    Science.gov (United States)

    Jara, Lilian; Morales, Sebastian; de Mayo, Tomas; Gonzalez-Hormazabal, Patricio; Carrasco, Valentina; Godoy, Raul

    2017-10-06

    Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understanding of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specific moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribution and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as compared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.

  4. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  5. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  6. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  7. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  8. Ancient Genes Establish Stress-Induced Mutation as a Hallmark of Cancer

    NARCIS (Netherlands)

    Cisneros, L; Bussey, K; Orr, A; Miočević, M.; Lineweaver, C; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms

  9. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  10. Spectrum of EGFR gene mutations in Vietnamese patients with non-small cell lung cancer.

    Science.gov (United States)

    Vu, Hoang Anh; Xinh, Phan Thi; Ha, Hua Thi Ngoc; Hanh, Ngo Thi Tuyet; Bach, Nguyen Duc; Thao, Doan Thi Phuong; Dat, Ngo Quoc; Trung, Nguyen Sao

    2016-03-01

    Epidermal growth factor receptor (EGFR) mutational status is a crucial biomarker for prediction of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Although these mutations have been well characterized in other countries, little is known about the frequency or spectrum of EGFR mutations in Vietnamese NSCLC patients. Using Sanger DNA sequencing, we investigated mutations in EGFR exons 18-21 from 332 patients diagnosed with NSCLC at University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. DNA was extracted from formalin-fixed, paraffin-embedded tissues, followed by PCR amplification and sequencing. EGFR mutations were detected in 135 samples (40.7%), of which eight samples carried double mutations. In total, 46 different types of EGFR mutations were found, including six novel mutations (p.K713E, p.K714R, p.P794S, p.R803W, p.P848S, and p.K867E). Among the four exons investigated, exon 19 was most frequently mutated (63 out of 332 patients, 19%), with the p.E746_A750del appearing in 43 samples. Exon 21 was mutated in 56 samples (16.9%), of which 47 were p.L858R. Each of exons 18 and 20 was mutated in 12 samples (3.6%). The frequency of EGFR mutations was higher in females than in males (48.9% vs 35%, P = 0.012), but not statistically different between adenocarcinomas and other histological types of NSCLC (41.3% vs 34.5%, P = 0.478). DNA sequencing detected EGFR mutations with high frequency and revealed a broad spectrum of mutation type in Vietnamese patients with NSCLC. © 2015 Wiley Publishing Asia Pty Ltd.

  11. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Rems Miran

    2009-08-01

    Full Text Available Abstract Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC, it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  12. The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations

    Directory of Open Access Journals (Sweden)

    Parmigiani Giovanni

    2009-08-01

    Full Text Available Abstract Background A major challenge in computational biology is to extract knowledge about the genetic nature of disease from high-throughput data. However, an important obstacle to both biological understanding and clinical applications is the "black box" nature of the decision rules provided by most machine learning approaches, which usually involve many genes combined in a highly complex fashion. Achieving biologically relevant results argues for a different strategy. A promising alternative is to base prediction entirely upon the relative expression ordering of a small number of genes. Results We present a three-gene version of "relative expression analysis" (RXA, a rigorous and systematic comparison with earlier approaches in a variety of cancer studies, a clinically relevant application to predicting germline BRCA1 mutations in breast cancer and a cross-study validation for predicting ER status. In the BRCA1 study, RXA yields high accuracy with a simple decision rule: in tumors carrying mutations, the expression of a "reference gene" falls between the expression of two differentially expressed genes, PPP1CB and RNF14. An analysis of the protein-protein interactions among the triplet of genes and BRCA1 suggests that the classifier has a biological foundation. Conclusion RXA has the potential to identify genomic "marker interactions" with plausible biological interpretation and direct clinical applicability. It provides a general framework for understanding the roles of the genes involved in decision rules, as illustrated for the difficult and clinically relevant problem of identifying BRCA1 mutation carriers.

  13. Genetic Mutations in Cancer

    Science.gov (United States)

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  14. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer.

    Science.gov (United States)

    Lee, Dae-Won; Han, Sae-Won; Cha, Yongjun; Bae, Jeong Mo; Kim, Hwang-Phill; Lyu, Jaemyun; Han, Hyojun; Kim, Hyoki; Jang, Hoon; Bang, Duhee; Huh, Iksoo; Park, Taesung; Won, Jae-Kyung; Jeong, Seung-Yong; Park, Kyu Joo; Kang, Gyeong Hoon; Kim, Tae-You

    2017-09-15

    Colorectal cancer (CRC) develops through the alteration of several critical pathways. This study was aimed at evaluating the influence of critical pathways on survival outcomes for patients with CRC. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways of CRC (WNT, P53, RTK-RAS, phosphatidylinositol-4,5-bisphosphate 3-kinase [PI3K], and transforming growth factor β [TGF-β]) was performed for 516 patients with stage III or high-risk stage II CRC treated with surgery followed by adjuvant fluoropyrimidine and oxaliplatin chemotherapy. The associations between critical pathway mutations and relapse-free survival (RFS) and overall survival were analyzed. The associations were further analyzed according to the tumor location. The mutation rates for the WNT, P53, RTK-RAS, PI3K, and TGF-β pathways were 84.5%, 69.0%, 60.7%, 30.0%, and 28.9%, respectively. A mutation in the PI3K pathway was associated with longer RFS (adjusted hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.36-0.99), whereas a mutation in the RTK-RAS pathway was associated with shorter RFS (adjusted HR, 1.60; 95% CI, 1.01-2.52). Proximal tumors showed a higher mutation rate than distal tumors, and the mutation profile was different according to the tumor location. The mutation rates of Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA), and B-Raf proto-oncogene serine/threonine kinase (BRAF) were higher in proximal tumors, and the mutation rates of adenomatous polyposis coli (APC), tumor protein 53 (TP53), and neuroblastoma RAS viral oncogene homolog (NRAS) were higher in distal tumors. The better RFS with the PI3K pathway mutation was significant only for proximal tumors, and the worse RFS with the RTK-RAS pathway mutation was significant only for distal tumors. A PI3K pathway mutation was associated with better RFS for CRC patients treated with adjuvant chemotherapy, and an RTK

  15. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    Science.gov (United States)

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of

  16. Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    2018-05-01

    Full Text Available Summary: Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs—with none, one, or both genetic lesions—we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases. : Papapetrou and colleagues develop a comprehensive panel of isogenic iPSC lines with SRSF2 P95L mutation and chr7q deletion. They use these cells to identify cellular phenotypes contributed by each genetic lesion and therapeutic vulnerabilities specific to each one and develop expandable hematopoietic progenitor cell lines to facilitate drug discovery. Keywords: induced pluripotent stem cells, myelodysplastic syndrome, CRISPR/Cas9, gene editing, mutational cooperation, splicing factor mutations, spliceosomal mutations, SRSF2, chr7q deletion

  17. KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with Sanger sequencing.

    Science.gov (United States)

    French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B

    2011-08-17

    Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  19. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    International Nuclear Information System (INIS)

    Campbell, Ian G; Choong, David; Chenevix-Trench, Georgia

    2004-01-01

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  20. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population.

    Directory of Open Access Journals (Sweden)

    Rupal Sinha

    Full Text Available Colorectal cancer (CRC development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12 and MGMT methylation (p-value <0.049. Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044 and methylated RASSF1A (p-values 0.034, 0.044, FHIT (p-values 0.001, 0.047 and MGMT (p-values 0.018, 0.044 genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025. Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.

  1. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis.

    Science.gov (United States)

    Le Morvan, Marine; Zinovyev, Andrei; Vert, Jean-Philippe

    2017-06-01

    Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.

  2. Less frequently mutated genes in colorectal cancer: evidences from next-generation sequencing of 653 routine cases.

    Science.gov (United States)

    Malapelle, Umberto; Pisapia, Pasquale; Sgariglia, Roberta; Vigliar, Elena; Biglietto, Maria; Carlomagno, Chiara; Giuffrè, Giuseppe; Bellevicine, Claudio; Troncone, Giancarlo

    2016-09-01

    The incidence of RAS/RAF/PI3KA and TP53 gene mutations in colorectal cancer (CRC) is well established. Less information, however, is available on other components of the CRC genomic landscape, which are potential CRC prognostic/predictive markers. Following a previous validation study, ion-semiconductor next-generation sequencing (NGS) was employed to process 653 routine CRC samples by a multiplex PCR targeting 91 hotspot regions in 22 CRC significant genes. A total of 796 somatic mutations in 499 (76.4%) tumours were detected. Besides RAS/RAF/PI3KA and TP53, other 12 genes showed at least one mutation including FBXW7 (6%), PTEN (2.8%), SMAD4 (2.1%), EGFR (1.2%), CTNNB1 (1.1%), AKT1 (0.9%), STK11 (0.8%), ERBB2 (0.6%), ERBB4 (0.6%), ALK (0.2%), MAP2K1 (0.2%) and NOTCH1 (0.2%). In a routine diagnostic setting, NGS had the potential to generate robust and comprehensive genetic information also including less frequently mutated genes potentially relevant for prognostic assessments or for actionable treatments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  4. Mutations and polymorphisms in TP53 gene--an overview on the role in colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Poláková, Veronika; Pardini, Barbara; Vodičková, Ludmila; Hemminki, K.; Kumar, R.; Vodička, Pavel (ed.)

    2012-01-01

    Roč. 27, č. 2 (2012), s. 211-218 ISSN 0267-8357 R&D Projects: GA ČR GP305/09/P194; GA ČR GAP304/10/1286 Grant - others:GA UK(CZ) GA96908/B/2008 Institutional research plan: CEZ:AV0Z50390512 Keywords : TP53 mutations * TP53 polymorphisms * cancer risk Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.500, year: 2012

  5. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  6. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK)

    NARCIS (Netherlands)

    Pijpe, Anouk; Andrieu, Nadine; Easton, Douglas F.; Kesminiene, Ausrele; Cardis, Elisabeth; Noguès, Catherine; Gauthier-Villars, Marion; Lasset, Christine; Fricker, Jean-Pierre; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Rosalind A.; Paterson, Joan; Manders, Peggy; van Asperen, Christi J.; Ausems, Margreet G. E. M.; Meijers-Heijboer, Hanne; Thierry-Chef, Isabelle; Hauptmann, Michael; Goldgar, David; Rookus, Matti A.; van Leeuwen, Flora E.; Fourme, Emmanuelle; Lidereau, Rosette; Stevens, Denise; Stoppa-Lyonnet, Dominique; Chompret, Agnès; Berthet, Pascaline; Luporsi, Elisabeth; Bonadona, Valérie; Gauducheau, René; de Sienne, Catherine; Lortholary, Alain; Frénay, Marc; Faivre, Laurence; Sobol, Hagay; Huiart, Laetitia; Longy, Michel; Nguyen, Tan Dat; Gladieff, Laurence; Guimbaud, Rosine; Gesta, Paul; Vennin, Philippe; Adenis, Claude; Chevrier, Annie; Rossi, Annick; Perrin, Jean; Bignon, Yves-Jean; Limacher, Jean-Marc; Dugast, Catherine; Courlancy, Polyclinique; Demange, Liliane; Zattara-Cannoni, Hélène; Dreyfus, Hélène; Noruzinia, Mehrdad; Venat-Bouvet, Laurence; Cook, Margaret; Oliver, Clare; Gregory, Helen; Cole, Trevor; Burgess, Lucy; Rogers, Mark; Hughes, Lisa; Brewer, Carole; Davidson, Rosemarie; Bradshaw, Nicola; Izatt, Louise; Pichert, Gabriella; Langman, Caroline; Chu, Carol; Miller, Julie; Evans, Gareth; Lalloo, Fiona; Shenton, Andrew; Side, Lucy; Bancroft, Elizabeth; Page, Elizabeth; Castro, Elena; Houlston, Richard; Rahman, Nazneen; Shanley, Susan; Cook, Jackie; Baxter, Lauren; Hodgson, Shirley; Goff, Sheila; Eccles, Diana; Verhoef, Senno; Brohet, Richard; Hogervorst, Frans; van 't Veer, Laura; van Leeuwen, Flora; Rookus, Matti; Collée, Margriet; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; Tollenaar, Rob; van Asperen, Christi; Wijnen, Juul; Devilee, Peter; Ligtenberg, Marjolijn; Ausems, Margreet; van der Luijt, Rob; Aalfs, Cora; van Os, Theo; Gille, Hans; Gomez-Garcia, Encarna; Blok, Rien; Oosterwijk, Jan; van der Hout, Annemiek; Vasen, Hans; van Leeuwen, Inge

    2012-01-01

    To estimate the risk of breast cancer associated with diagnostic radiation in carriers of BRCA1/2 mutations. Retrospective cohort study (GENE-RAD-RISK). Three nationwide studies (GENEPSO, EMBRACE, HEBON) in France, United Kingdom, and the Netherlands, 1993 female carriers of BRCA1/2 mutations

  7. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  8. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  9. The study of mutations of low penetrates candidate genes, participating in appearance of breast cancer in patients from different regions of Belarus

    International Nuclear Information System (INIS)

    Myasnikov, S.O.; Bogdanova, N.V.; Bokut', S.B.; Feshchenko, S.P.

    2003-01-01

    Breast cancer is the most widespread malignancy in the world. It is supposed, that all factors influencing on breast cancer onset can be divided into 4 groups: environmental factors, state of woman's health, heredity and concomitant disease. The inherited disposition towards breast cancer is complex, and many genetic variants and polymorphisms have been postulated to play a role in this condition. Despite genes with a high penetrance, known some genes with a low penetrance, such as ATM, CHEK2 and XRCC4. Ionizing radiation is for long being recognized as a potent carcinogen. The link between exposition to high doses of radiation and a subsequent development of breast cancer has been shown in numerous epidemiological studies. Because mutations in the known genes explain less than half of all multiple-case families, other genes involved in these repair pathways are now under current investigation in many different labs worldwide to define their role in breast cancer predisposition. The purpose of this paper is to study mutations of low penetrate candidate genes, participating in appearance of breast cancer in Byelorussian patients. This study is for the first time reveals the mutations of breast cancer genes in the Byelorussian population. Were used such methods as extraction of DNA, PCR, ARMAS-PCR and restriction analysis for this study. As a result of the work frequent mutations of CHEK2 and XRCC4 were found in family cases. It is shown that following methods are useful for cancer risk prediction for patients and their blood relatives. (authors)

  10. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  11. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    Science.gov (United States)

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  12. Exome mutation burden predicts clinical outcome in ovarian cancer carrying mutated BRCA1 and BRCA2 genes

    DEFF Research Database (Denmark)

    Birkbak, Nicolai Juul; Kochupurakkal, Bose; Gonzalez-Izarzugaza, Jose Maria

    2013-01-01

    drugs and relative to non-mutation carriers present a favorable clinical outcome following therapy. Genome sequencing studies have shown a high number of mutations in the tumor genome in patients carrying BRCA1 or BRCA2 mutations (mBRCA). The present study used exome-sequencing and SNP 6 array data...... between low Nmut and shorter PFS and OS in mBRCA HGSOC by Cox regression and Kaplan-Meier analyses. The association was also significant when the analysis was limited to germline BRCA1 or BRCA2 mutated patients with SNP array-determined loss of heterozygosity of the BRCA1 or BRCA2 locus in the tumors....... In the mBRCA HGSOC tumors, Nmut was correlated with the genome fraction with loss of heterozygosity and with number of telomeric allelic imbalance, genomic measures evaluating chromosomal instability. However, no significant association between Nmut and PFS or OS was found in HGSOC carrying wild-type BRCA1...

  13. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.

    Science.gov (United States)

    Cheng, Feixiong; Zhao, Junfei; Fooksa, Michaela; Zhao, Zhongming

    2016-07-01

    Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics. We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network. We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1). In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  14. Evaluation and identification of factors related to KRAS and BRAF gene mutations in colorectal cancer: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Li Lin

    2016-01-01

    Conclusion: The meta-analysis reveals that KRAS has a slightly higher mutation rate in MSI-L/MSS tumors. Moreover, BRAF mutations have higher detection rates in right-sided colorectal cancer, which suggests that BRAF mutations are likely in CIMP-H tumors. Therefore, based on these findings, the molecular diagnostic tests to be conducted in colorectal cancer patients can be determined according to the location/clinical features of the tumor.

  15. Unambiguous detection of multiple TP53 gene mutations in AAN-associated urothelial cancer in Belgium using laser capture microdissection.

    Directory of Open Access Journals (Sweden)

    Selda Aydin

    Full Text Available In the Balkan and Taiwan, the relationship between exposure to aristolochic acid and risk of urothelial neoplasms was inferred from the A>T genetic hallmark in TP53 gene from malignant cells. This study aimed to characterize the TP53 mutational spectrum in urothelial cancers consecutive to Aristolochic Acid Nephropathy in Belgium. Serial frozen tumor sections from female patients (n=5 exposed to aristolochic acid during weight-loss regimen were alternatively used either for p53 immunostaining or laser microdissection. Tissue areas with at least 60% p53-positive nuclei were selected for microdissecting sections according to p53-positive matching areas. All areas appeared to be carcinoma in situ. After DNA extraction, mutations in the TP53 hot spot region (exons 5-8 were identified using nested-PCR and sequencing. False-negative controls consisted in microdissecting fresh-frozen tumor tissues both from a patient with a Li-Fraumeni syndrome who carried a p53 constitutional mutation, and from KRas mutated adenocarcinomas. To rule out false-positive results potentially generated by microdissection and nested-PCR, a phenacetin-associated urothelial carcinoma and normal fresh ureteral tissues (n=4 were processed with high laser power. No unexpected results being identified, molecular analysis was pursued on malignant tissues, showing at least one mutation in all (six different mutations in two patients, with 13/16 exonic (nonsense, 2; missense, 11 and 3/16 intronic (one splice site mutations. They were distributed as transitions (n=7 or transversions (n=9, with an equal prevalence of A>T and G>T (3/16 each. While current results are in line with A>T prevalence previously reported in Balkan and Taiwan studies, they also demonstrate that multiple mutations in the TP53 hot spot region and a high frequency of G>T transversion appear as a complementary signature reflecting the toxicity of a cumulative dose of aristolochic acid ingested over a short period

  16. Splice site mutations in mismatch repair genes and risk of cancer in the general population

    DEFF Research Database (Denmark)

    Thomsen, Mette; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2013-01-01

    We tested the hypothesis that splice site variations in MSH2 and MLH1 are associated with increased risk of hereditary non-polyposis colorectal cancer (HNPCC) and of cancer in general in the general population. In a cohort of 154 HNPCC patients with sequenced MSH2 and MLH1, we identified four...... possible splice-site mutations, which we subsequently genotyped in more than 9,000 individuals from the general population. Allele frequencies in the general population were 0 % for 942+3A>T in MSH2, 0.05 % for 307-19A>G, 0.005 % for 1,667+(2-8)del(taaatca);ins(attt), and 4.4 % for 1039-8T>A in MLH1. Odds...... ratios for HNPCC in a case-control design were 419 (95 % CI: 53-18,900) for 942+3A>T in MSH2, 19 (5-72) for 307-19A>G, 194 (21-1,768) for 1,667+(2-8)del(taaatca); ins(attt), and 0.3 (0.1-0.7) for 1,039-8T>A in MLH1. In the general population, incidence rate ratios for 1,039-8T>A carriers versus...

  17. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  18. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  19. Analysis of 6174delT Mutation in BRCA2 Gene by Mutagenically Separated PCR Among Libyan Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Lamia Elfandi

    2016-03-01

    Full Text Available Background: Breast cancer is the most common malignancy among women. It is estimated that 1 in 10 women worldwide is affected by breast cancer during their lifetime. In 5 to 10% of breast cancer patients, the disease results from a hereditary predisposition, which can be attributable to mutations in either of two tumor suppressor genes, BRCA1 and BRCA2 to a large extent. BRCA2 6174delT mutation constitutes the common mutant alleles which predispose to hereditary breast cancer in the Ashkenazi population with a reported carrier frequency of 1.52%. In this study, we investigated the presence of the 6174delT mutation of the BRCA2 gene in Libyan woman affected with breast cancer and compared the results with those of other population groups.Methods: Eighty- five Libyan women with breast cancer in additions to 5 relatives of the patients (healthy individuals were recruited to this study. We obtained clinical information, family history, and peripheral blood for DNA extraction and analyzed the data using multiplex mutagenic polymerase chain reaction (MS-PCR for detection of 6174delT mutation in the BRCA2 gene. Results: The 6174delT of the BRCA2 gene was not detected either in the 85 patients with breast cancer (18 with familial breast cancer and 67 with sporadic breast cancer nor in the 5 healthy individuals. Conclusions: The present study showed that the 6174delT of the BRCA2 gene was not detectable using mutagenic PCR in the Libyan patients with breast cancer and can be considered to be exceedingly rare

  20. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing.

    Science.gov (United States)

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2014-04-01

    The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.

  1. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review.

    Science.gov (United States)

    Jerzak, K J; Mancuso, T; Eisen, A

    2018-04-01

    Despite the fact that heterozygosity for a pathogenic ATM variant is present in 1%-2% of the adult population, clinical guidelines to inform physicians and genetic counsellors about optimal management in that population are lacking. In this narrative review, we describe the challenges and controversies in the management of women who are heterozygous for a pathogenic ATM variant with respect to screening for breast and other malignancies, to choices for systemic therapy, and to decisions about radiation therapy. Given that the lifetime risk for breast cancer in women who are heterozygous for a pathogenic ATM variant is likely greater than 25%, those women should undergo annual mammographic screening starting at least by 40 years of age. For women in this group who have a strong family history of breast cancer, earlier screening with both magnetic resonance imaging and mammography should be considered. High-quality data to inform the management of established breast cancer in carriers of pathogenic ATM variants are lacking. Although deficiency in the ATM gene product might confer sensitivity to dna-damaging pharmaceuticals such as inhibitors of poly (adp-ribose) polymerase or platinum agents, prospective clinical trials have not been conducted in the relevant patient population. Furthermore, the evidence with respect to radiation therapy is mixed; some data suggest increased toxicity, and other data suggest improved clinical benefit from radiation in women who are carriers of a pathogenic ATM variant. As in the 2017 U.S. National Comprehensive Cancer Network guidelines, we recommend high-risk imaging for women in Ontario who are heterozygous for a pathogenic ATM variant. Currently, ATM carrier status should not influence decisions about systemic or radiation therapy in the setting of an established breast cancer diagnosis.

  2. Distribution of human papilloma virus type 16 E6/E7 gene mutation in cervical precancer or cancer: A case control study in Guizhou Province, China.

    Science.gov (United States)

    Yang, Yingjie; Ren, Jie; Zhang, Qizhu

    2016-02-01

    HPV-16 varies geographically and is correlated with cervical cancer genesis and progression. This study aimed to determine the distribution of HPV-16 E6/E7 genetic variation in patients with invasive cervical cancer or precancer in Guizhou Province, China. A case-control study was designed, and the distribution of HPV-16 E6/E7 genetic variation was compared among women with cervical cancer, precancer, and sexually active without cervical lesion. HPV infection was detected through flow-through hybridization and gene chip techniques to determine the prevalence of HPV 16 E6/E7 genetic variation. Among 90 specimens (30 cervical cancer, 30 precancer, 30 controls), 81 were subjected to HPV-16 E6/E7 gene sequencing. The rates of DNA sequence mutation and amino acid mutation were 76.5% (62/81) and 66.7% (54/81), respectively. Both E6 and E7 genes showed higher mutation rate than their prototypes. The prevalence of E6/E7 mutation significantly differed between the cervical cancer and the controls (P prevalent in cervical cancer or precancer than those in the controls. The possible correlation between genetic variation and cancerigenesis may be used to design an HPV vaccine for cervical carcinoma. © 2015 Wiley Periodicals, Inc.

  3. [677T mutation of the MTHFR gene in adenomas and colorectal cancer in a population sample from the Northeastern Mexico. Preliminary results].

    Science.gov (United States)

    Delgado-Enciso, I; Martínez-Garza, S G; Rojas-Martínez, A; Ortiz-López, R; Bosques-Padilla, F; Calderón-Garcidueñas, A L; Zárate-Gómez, M; Barrera-Saldaña, H A

    2001-01-01

    Adequate intake of folates has been associated to low prevalence of colon cancer. Methylenetetrahydrofolate reductase enzyme (MTHFR) plays an important role in folate metabolism. The role of the 677 mutation at the MTHFR gene in the risk for colorectal cancer remains controversial. A recent report established that this mutation has a high prevalence in the healthy Mexican population. To analyze the prevalence of 677T MTHFR mutation in patients with colorectal cancer and controls without chronic gastrointestinal disorders. Seventy-four colorectal cancer, 32 adenomas and 110 normal samples were analyzed. Patients and controls were matched for sex and age. For each sample, DNA isolation, PCR, and mutation detection by restriction enzyme digestion were performed to determine the allele at the 677 position in the MTHFR gene. Genotype 677C/677C was found in 18.7, 20.3, and 30.9% in adenomas, cancer lesions and controls, respectively. Frequencies of the 677C/677T genotype were 59.4, 56.7, and 47.3%, in adenomas, cancer lesions, and controls, respectively. Genotype 677T/677T was found in 21.9, 23.0, and 21.8% in adenomas, cancer lesions, and controls, respectively. The odds ratio between genotypes carrying the mutation (T/T and C/T) and normal genotype (CC) was 1.81 (IC 95% 0.97-3.3), chi 2 = 3.5, p = 0.06. Our results showed that persons who carry the 677T mutation at MTHFR locus have a tendency for an increased risk for colorectal cancer. This study supports the basic concept that low levels of folic acid contribute with the colorectal cancer pathogenesis. Our lack of statistic significance may be due to reduced sample size.

  4. Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology

    Science.gov (United States)

    Paget, Vincent; Lechevrel, Mathilde; André, Véronique; Le Goff, Jérémie; Pottier, Didier; Billet, Sylvain; Garçon, Guillaume; Shirali, Pirouz; Sichel, François

    2012-01-01

    Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers. PMID:22319594

  5. Detection of high frequency of mutations in a breast and/or ovarian cancer cohort: implications of embracing a multi-gene panel in molecular diagnosis in India.

    Science.gov (United States)

    Mannan, Ashraf U; Singh, Jaya; Lakshmikeshava, Ravikiran; Thota, Nishita; Singh, Suhasini; Sowmya, T S; Mishra, Avshesh; Sinha, Aditi; Deshwal, Shivani; Soni, Megha R; Chandrasekar, Anbukayalvizhi; Ramesh, Bhargavi; Ramamurthy, Bharat; Padhi, Shila; Manek, Payal; Ramalingam, Ravi; Kapoor, Suman; Ghosh, Mithua; Sankaran, Satish; Ghosh, Arunabha; Veeramachaneni, Vamsi; Ramamoorthy, Preveen; Hariharan, Ramesh; Subramanian, Kalyanasundaram

    2016-06-01

    Breast and/or ovarian cancer (BOC) are among the most frequently diagnosed forms of hereditary cancers and leading cause of death in India. This emphasizes on the need for a cost-effective method for early detection of these cancers. We sequenced 141 unrelated patients and families with BOC using the TruSight Cancer panel, which includes 13 genes strongly associated with risk of inherited BOC. Multi-gene sequencing was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. We were able to detect pathogenic mutations in 51 (36.2%) cases, out of which 19 were novel mutations. When we considered familial breast cancer cases only, the detection rate increased to 52%. When cases were stratified based on age of diagnosis into three categories, ⩽40 years, 40-50 years and >50 years, the detection rates were higher in the first two categories (44.4% and 53.4%, respectively) as compared with the third category, in which it was 26.9%. Our study suggests that next-generation sequencing-based multi-gene panels increase the sensitivity of mutation detection and help in identifying patients with a high risk of developing cancer as compared with sequential tests of individual genes.

  6. BRCA1 and BRCA2 gene mutations in breast cancer among west ...

    African Journals Online (AJOL)

    There is an increase in the prevalence of cancer in Africa, while cancer was previously related to the industrialized countries. In fact, until today studies are scanty in all the African regions to find out more about the reality of the disease. However, in West Africa, there are few reports on the genetic factors of breast cancer.

  7. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    Directory of Open Access Journals (Sweden)

    Lincer Robert

    2010-10-01

    Full Text Available Abstract Background Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. Case presentation A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2 on day 1 and 8 every 21 days as well as daily erlotinib (100 mg. After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. Conclusion This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  9. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    International Nuclear Information System (INIS)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-01-01

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status

  10. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report.

    Science.gov (United States)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-10-20

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  11. Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps.

    Science.gov (United States)

    Castiella, Agustin; Múgica, Fernando; Zapata, Eva; Zubiaurre, Leire; Iribarren, Arantxa; de Juan, M Dolores; Alzate, Luis; Gil, Ines; Urdapilleta, Gregorio; Otazua, Pedro; Emparanza, José Ignacio

    2015-09-01

    A cohort study of patients included in the Basque Country colorectal cancer (CRC) screening programme was carried out to assess the risk of adenomatous polyps and CRC (P-CRC) associated with HFE gene mutations, with gender and with iron biomarkers (serum ferritin (SF), iron (Fe) and transferrin saturation index (TSI)). Among 432 included patients (mean age 59.8 years), 263 were men (60.9 %) and 169 women (39.1 %). P-CRC were identified in 221 patients (51.2 %) and no polyps (NP) in 211 patients (48.8 %). HFE mutations were identified in 43.8 % of the patients. C282Y/wt genotypic frequency was 6.8 % in the P-CRC group and 1.4 % in the NP group (p < 0.05). The allelic frequency was 3.8 versus 1.2 % (p < 0.05). For laboratory, all three iron biomarkers showed a statistically significant difference: mean Fe, 91.29 ± 34 for P-CRC and 80.81 ± 30.59 for NP group. Mean TSI for P-CRC was 24.95 ± 8.90 and 22.74 ± 8.79 for NP group. Mean SF 308.09 ± 536.32 for P-CRC and 177.55 ± 159.95 for NP group. In a multivariate logistic regression analysis, only male gender (odds ratio (OR) = 2.04, 1.29-3.22), SF (OR = 1.001, 1.0004-1.003) and Fe (OR = 1.01, 1.004-1.02) were related with the presence of CRC and adenoma. Men gender and raised serum iron biomarkers increase the risk of P-CRC.

  12. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  13. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  14. Identification of Variants in Breast Cancer Susceptibility Genes and Determination of Functional and Clinical Significance of Novel Mutations

    Science.gov (United States)

    2014-10-01

    to cause other cancer susceptibility (CDKN2A, MLH1, MSH2, MSH6, PMS2 ); 3) genes known or postulated to be moderate penetrance cancer susceptibility...susceptibility (CDKN2A, MLH1, MSH2, MSH6, PMS2 ); 3) genes known or postulated to be moderate penetrance cancer susceptibility genes (ATM, BARD1, BRIP1...three patients in TP53 and 12 patients in MLH1, MSH2, MSH6, or PMS2 ; no VUSs were found in CDH1, CDKN2A, STK11 or PTEN. Three additional patients each

  15. Genes in FRA16D and FRA7G Mutated in Prostate Cancer.

    Science.gov (United States)

    1999-06-01

    also known as pancreatic CPs. the digestive enzymes involved in the hydrolysis of alimentary proteins, which are expressed and secreted into the...Institute site at the National Center of Biotechnology Information (NCBI) Human gene map Project at HYPERLINK http://www.ncbi.nlm.nih.gov/cgi-bin

  16. Colorectal cancer risk and patients' survival: influence of polymorphisms in genes somatically mutated in colorectal tumors

    Czech Academy of Sciences Publication Activity Database

    Huhn, S.; Bevier, M.; Pardini, Barbara; Naccarati, Alessio; Vodičková, Ludmila; Novotný, J.; Vodička, Pavel; Hemminki, K.; Försti, A.

    2014-01-01

    Roč. 25, č. 6 (2014), s. 759-769 ISSN 0957-5243 R&D Projects: GA ČR(CZ) GAP304/12/1585; GA ČR GAP304/10/1286 Grant - others:GA MŠk(CZ) Prvouk-P27/LF1/1 Institutional support: RVO:68378041 Keywords : colorectal cancer * risk * survival Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.735, year: 2014

  17. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  18. Absence of p53 gene mutations in mice colon pre-cancerous stage induced by o-nitrotoluene

    Directory of Open Access Journals (Sweden)

    Nahed A Hussien

    2014-01-01

    Conclusion: The results from the present study indicate that point mutations in the p53 gene, in the coding region (exons 5-8 and outside it (exons 10, 11, are not involved in the development of the colon precancerous stage induced by o-nt in mice.

  19. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    Science.gov (United States)

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  20. Clinical follow up of mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes.

    Science.gov (United States)

    Calderón-Garcidueñas, Ana Laura; Ruiz-Flores, Pablo; Cerda-Flores, Ricardo M; Barrera-Saldaña, Hugo A

    2005-01-01

    This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC). A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA). The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1) a mutation screening by heteroduplex analysis (HA) of BRCA1 and BRCA2 genes and 2) a sequence analysis. Of 22 patients, 14 (63.6%) showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCAI (exon 11, 3587delT) and the other in the BRCA2 gene (exon 11, 2664InsA). These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.

  1. Cancer3D: understanding cancer mutations through protein structures.

    Science.gov (United States)

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. A Comparison Between Denaturing Gradient Gel Electrophoresis and Denaturing High Performance Liquid Chromatography in Detecting Mutations in Genes Associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC and the Identification of 9 New Mutations Previously Unidentified by DGGE

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff J

    2003-12-01

    Full Text Available Abstract Denaturing high performance liquid chromatography is a relatively new method by which heteroduplex structures formed during the PCR amplification of heterozygote samples can be rapidly identified. The use of this technology for mutation detection in hereditary non-polyposis colorectal cancer (HNPCC has the potential to appreciably shorten the time it takes to analyze genes associated with this disorder. Prior to acceptance of this method for screening genes associated with HNPCC, assessment of the reliability of this method should be performed. In this report we have compared mutation and polymorphism detection by denaturing gradient gel electrophoresis (DGGE with denaturing high performance liquid chromatography (DHPLC in a set of 130 families. All mutations/polymorphisms representing base substitutions, deletions, insertions and a 23 base pair inversion were detected by DHPLC whereas DGGE failed to identify four single base substitutions and a single base pair deletion. In addition, we show that DHPLC has been used for the identification of 5 different mutations in exon 7 of hMSH2 that could not be detected by DGGE. From this study we conclude that DHPLC is a more effective and rapid alternative to the detection of mutations in hMSH2 and hMLH1 with the same or better accuracy than DGGE. Furthermore, this technique offers opportunities for automation, which have not been realised for the majority of other methods of gene analysis.

  3. Higher occurrence of childhood cancer in families with germline mutations in BRCA2, MMR and CDKN2A genes

    DEFF Research Database (Denmark)

    Magnusson, S.; Borg, A.; Kristoffersson, U.

    2008-01-01

    The contribution of hereditary factors for development of childhood tumors is limited to some few known syndromes associated with predominance of tumors in childhood. Occurrence of childhood tumors in hereditary cancer syndromes such as BRCA1/2 associated breast and ovarian cancer, DNA-mismatch r......-mismatch repair (MMR) genes associated hereditary non polyposis colorectal cancer and CDKN2A associated familial malignant melanoma are very little studied. Herein we report the prevalence of childhood tumors (diagnosed...

  4. Wilms’ Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    Science.gov (United States)

    Paschka, Peter; Marcucci, Guido; Ruppert, Amy S.; Whitman, Susan P.; Mrózek, Krzysztof; Maharry, Kati; Langer, Christian; Baldus, Claudia D.; Zhao, Weiqiang; Powell, Bayard L.; Baer, Maria R.; Carroll, Andrew J.; Caligiuri, Michael A.; Kolitz, Jonathan E.; Larson, Richard A.; Bloomfield, Clara D.

    2008-01-01

    Purpose To analyze the prognostic impact of Wilms’ tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. Results Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITDnegative/NPM1mutated as low risk v FLT3-ITDpositive and/or NPM1wild-type as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. Conclusion We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML. PMID:18559874

  5. Ameliorating effect of wheat bran, Beta-carotene and Curcumin on K-ras gene mutations and expression of ntioxidant enzymes in rat colon cancer

    International Nuclear Information System (INIS)

    Tarek Elmaghraby, T.; Korraa, S.S.; Maher, M.M.; Hassan, N.H.A.

    2010-01-01

    In Egypt, colon cancer has unique characterises differ than other countries, more than third cases happen in people under 40 years, with advanced stage, high grade tumors that carry more mutations . This may be return to increase pollution in food and water. The aim of the present study, is the investigation of the role of some natural products approaches for colorectal carcinoma including curcumin, wheat bran and β-Carotene. Accordingly, animals were injected with 1,2-dimethylhydrazine hydrochloride (DMH) and/or dually exposed to ionizing radiation to induce colorectal cancer. The frequency of mutation of K-ras gene, the level activity of SOD, GpX antioxidant enzymes and expression of SOD1, SOD2 and GpX1 in tissue of 120 colon rats from 10 different treated groups were studied. Curcumin, wheat bran and D-carotene have inhibition effect on formation of colon cancer and decrease the mutations in K-ras gene. Moreover, they have ameliorating effect on antioxidants enzymes activities and expressions. The present study revealed that wheat bran and D-carotene have better effect than curcumin.

  6. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer. Keywords: Oncology, Cancer research, Genetics, Computational biology

  7. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  8. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due...... to alterations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In the diagnostic setting, sub classification of HCA is based primarily on immunohistochemical analyzes, and has had an increasing impact on choice of treatment and individual prognostic assessment....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  9. PMS2 mutations in childhood cancer.

    Science.gov (United States)

    De Vos, Michel; Hayward, Bruce E; Charlton, Ruth; Taylor, Graham R; Glaser, Adam W; Picton, Susan; Cole, Trevor R; Maher, Eamonn R; McKeown, Carole M E; Mann, Jill R; Yates, John R; Baralle, Diana; Rankin, Julia; Bonthron, David T; Sheridan, Eamonn

    2006-03-01

    Until recently, the PMS2 DNA mismatch repair gene has only rarely been implicated as a cancer susceptibility locus. New studies have shown, however, that earlier analyses of this gene have had technical limitations and also that the genetic behavior of mutant PMS2 alleles is unusual, in that, unlike MLH1 or MSH2 mutations, PMS2 mutations show low heterozygote penetrance. As a result, a dominantly inherited cancer predisposition has not been a feature reported in families with PMS2 mutations. Such families have instead been ascertained through childhood-onset cancers in homozygotes or through apparently sporadic colorectal cancer in heterozygotes. We present further information on the phenotype associated with homozygous PMS2 deficiency in 13 patients from six families of Pakistani origin living in the United Kingdom. This syndrome is characterized by café-au-lait skin pigmentation and a characteristic tumor spectrum, including leukemias, lymphomas, cerebral malignancies (such as supratentorial primitive neuroectodermal tumors, astrocytomas, and glioblastomas), and colorectal neoplasia with an onset in early adult life. We present evidence for a founder effect in five families, all of which carried the same R802-->X mutation (i.e., arginine-802 to stop) in PMS2. This cancer syndrome can be mistaken for neurofibromatosis type 1, with important management implications including the risk of the disorder occurring in siblings and the likelihood of tumor development in affected individuals.

  10. "Guys Don't Have Breasts": The Lived Experience of Men Who Have BRCA Gene Mutations and Are at Risk for Male Breast Cancer.

    Science.gov (United States)

    Skop, Michelle; Lorentz, Justin; Jassi, Mobin; Vesprini, Danny; Einstein, Gillian

    2018-02-01

    Men with BRCA1 or BRCA2 gene mutations are at increased risk of developing breast cancer and may have an indication for breast cancer screening using mammography. Since breast cancer is often viewed as a woman's disease, visibilizing and understanding men's experience of having a BRCA mutation and specifically, of screening for breast cancer through mammography, were the objectives of this research study. The theoretical framework of interpretive phenomenology guided the process of data collection, coding, and analysis. Phenomenology is both a philosophy and research method which focuses on understanding the nature of experience from the perspectives of people experiencing a phenomenon, the essence of and commonalities among people's experiences, and the ways in which people experience the world through their bodies. Data were collected via in-depth interviews with a purposive sample of 15 male participants recruited from the Male Oncology Research and Education (MORE) Program. This article reports findings about participants' use of gender-specific language to describe their breasts, awareness of the ways in which their bodies changed overtime, and experiences of undergoing mammograms. This study is the first to describe men with BRCA's perceptions of their breasts and experiences of mammography in a high-risk cancer screening clinic. This study sheds light on an under-researched area-breasts and masculinities-and could potentially lead to improved clinical understanding of men's embodied experiences of BRCA, as well as suggestions for improving the delivery of male breast cancer screening services.

  11. Mutations and epimutations in the origin of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  12. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  13. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  14. The role of mutation in the new cancer paradigm

    Directory of Open Access Journals (Sweden)

    Prehn Richmond T

    2005-04-01

    Full Text Available Abstract The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.

  15. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  16. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    National Research Council Canada - National Science Library

    Bovbjerg, Dana

    2001-01-01

    The purpose of the research supported by this IDEA grant award, is to provide the first critical test of the possibility that variability in the strength of immune surveillance mechanisms against cancer...

  17. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    National Research Council Canada - National Science Library

    Bovbjerg, Dana

    2002-01-01

    The purpose of the research supported by this IDEA grant award, is to provide the first critical test of the possibility that variability in the strength of immune surveillance mechanisms against cancer...

  18. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    National Research Council Canada - National Science Library

    Bovbjerg, Dana

    2000-01-01

    The purpose of the research supported by this IDEA grant award, is to provide the first critical test of the possibility that variability in the strength of immune surveillance mechanisms against cancer...

  19. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    National Research Council Canada - National Science Library

    Bovbjerg, Dana

    1999-01-01

    The purpose of the research supported by this IDEA grant award, is to provide the first critical test of the possibility that variability in the strength of immune surveillance mechanisms against cancer...

  20. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  1. Immunotherapy Targets Common Cancer Mutation

    Science.gov (United States)

    In a study of an immune therapy for colorectal cancer that involved a single patient, researchers identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene.

  2. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  3. Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients

    International Nuclear Information System (INIS)

    Miao, Liyun; Zhang, Deping; Liu, Hongbing; Song, Yong; Wang, Yongsheng; Zhu, Suhua; Shi, Minke; Li, Yan; Ding, Jingjing; Yang, Jun; Ye, Qing; Cai, Hourong

    2014-01-01

    Although many of the recently approved genomically targeted therapies have improved outcomes for patients in non–small-cell lung cancer (NSCLC) with lung adenocarcinoma, little is known about the genomic alterations that drive lung squamous cell cancer (SCC) and development of effective targeted therapies in lung SCC is a promising area to be further investigated. Discoidin domain receptor 2 (DDR2), is a novel receptor tyrosine kinases that respond to several collagens and involved in tissue repair, primary and metastatic cancer progression. Expression of DDR2 mRNA was analyzed in 54 lung SCC tissues by qRT-PCR. Over-expression approaches were used to investigate the biological functions of DDR2 and its’ mutations in lung SCC cells. Conventional Sanger sequencing was used to investigate the mutations of DDR2 gene in 86 samples. The effect of DDR2 and its’ mutations on proliferation was evaluated by MTT and colony formation assays; cell migration and invasion was evaluated by trasnwell assays. Lung SCC cells stably transfected with pEGFP-DDR2 WT, pEGFP-DDR2-S131C or empty vector were injection into nude mice to study the effect of DDR2 and its’ mutation on tumorigenesis in vivo. Protein and mRNA expression levels of E-cadherin and MMP2 were determined by qRT-PCR and western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed). In this study, we found that DDR2 mRNA levels were significantly decreased in 54 lung SCC tissues compared with normal lung tissues. Moreover, there were 3 novel DDR2 mutations (G531V, S131C, T681I) in 4 patients and provide the mutation rate of 4.6% in the 86 patients with lung SCC. The mutation of S131C in DDR2 could promote lung SCC cells proliferation, migration and invasion via inducing MMP-2, but reducing E-cadherin expression. These data indicated that the novel DDR2 mutation may contribute to the development and progression of lung SCC and this effect may be associated

  4. Acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw

    Directory of Open Access Journals (Sweden)

    Dominik Olejniczak

    2016-03-01

    Full Text Available Aim of the study : To check the degree of acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw Material and methods : This study involved 562 women between 20 and 77 years of age, all of whom were patients visiting gynaecologists practising in clinics in the City of Warsaw. The studied population was divided into six age categories. The study method was a diagnostic poll conducted with the use of an original questionnaire containing 10 multiple-choice questions. Results: Nearly 70% of the women showed an interest in taking a test to detect predispositions to develop breast and ovarian cancer. More than 10% did not want to take such a test, while every fifth women was undecided. No statistically significant differences between the respondents’ willingness to pay and education were found (p = 0.05. The most frequent answer given by women in all groups was that the amount to pay was too high. Such an answer was given by 52.17% of women with primary education, 65.22% of women with vocational education, 58.61% of women with secondary education, and 41.62% of women with higher education. Conclusions : Women with a confirmed increased risk of developing breast and/or ovarian cancer due to inter alia the presence of BRCA1 and BRCA2 gene mutations should pay particular attention to 1 st and 2 nd level prophylaxis.

  5. Acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw

    Science.gov (United States)

    Dera, Paulina; Religioni, Urszula; Duda-Zalewska, Aneta; Deptała, Andrzej

    2016-01-01

    Aim of the study To check the degree of acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw Material and methods This study involved 562 women between 20 and 77 years of age, all of whom were patients visiting gynaecologists practising in clinics in the City of Warsaw. The studied population was divided into six age categories. The study method was a diagnostic poll conducted with the use of an original questionnaire containing 10 multiple-choice questions. Results Nearly 70% of the women showed an interest in taking a test to detect predispositions to develop breast and ovarian cancer. More than 10% did not want to take such a test, while every fifth women was undecided. No statistically significant differences between the respondents’ willingness to pay and education were found (p = 0.05). The most frequent answer given by women in all groups was that the amount to pay was too high. Such an answer was given by 52.17% of women with primary education, 65.22% of women with vocational education, 58.61% of women with secondary education, and 41.62% of women with higher education. Conclusions Women with a confirmed increased risk of developing breast and/or ovarian cancer due to inter alia the presence of BRCA1 and BRCA2 gene mutations should pay particular attention to 1st and 2nd level prophylaxis. PMID:27095945

  6. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    Science.gov (United States)

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  7. Mutation Clusters from Cancer Exome.

    Science.gov (United States)

    Kakushadze, Zura; Yu, Willie

    2017-08-15

    We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.

  8. Analysis of significantly mutated genes as a clinical tool for the diagnosis in a case of lung cancer.

    Science.gov (United States)

    Miyashita, Yoshihiro; Hirotsu, Yosuke; Tsutsui, Toshiharu; Higashi, Seishi; Sogami, Yusuke; Kakizaki, Yumiko; Goto, Taichiro; Amemiya, Kenji; Oyama, Toshio; Omata, Masao

    2017-01-01

    Bronchoendoscopic examination is not necessarily comfortable procedure and limited by its sensitivity, depending on the location and size of the tumor lesion. Patients with a non-diagnostic bronchoendoscopic examination often undergo further invasive examinations. Non-invasive diagnostic tool of lung cancer is desired. A 72-year-old man had a 3.0 cm × 2.5 cm mass lesion in the segment B1 of right lung. Cytological examination of sputum, bronchial washing and curetted samples were all "negative". We could confirm a diagnosis of lung cancer after right upper lung lobe resection pathologically, and also obtained concordant results by genomic analysis using cytological negative samples from airways collected before operation. Genetic analysis showed mutational profiles of both resected specimens and samples from airways were identical. These data clearly indicated the next generation sequencing (NGS) may yield a diagnostic tool to conduct "precision medicine".

  9. BRCA1 and TP53 Gene-Mutations: Family Predisposition and Radioecological Risk of Developing Breast Cancer.

    Science.gov (United States)

    Apsalikov, Bakytbek; Manambaeva, Zukhra; Ospanov, Erlan; Massabayeva, Meruyert; Zhabagin, Kuantkan; Zhagiparova, Zhanar; Maximov, Vladymir; Voropaeva, Elena; Apsalikov, Kazbek; Belikhina, Tatiana; Abdrahmanov, Ramil; Cherepkova, Elena; Tanatarov, Sayat; Massadykov, Adilzhan; Urazalina, Naylia

    2016-01-01

    Frequencies of polymorphisms of genes BRCA1 and TP53 in breast cancer (BC) patients with a BC family history and radiation history were assessed and compared in the Semey region of Kazakhstan. The study included 60 women directly irradiated by the activities of the Semipalatinsk test site with a calculated effective equivalent dose of 500 mSv and their first generation descendants (group BC+Her+Exp); 65 women with family BC and absence of radiological history - the effective equivalent dose due to anthropogenic sources not exceeding 50 mSv (group BC+Her-Exp). The comparison group consisted of 65 women patients with breast cancer without family and radiological history (BC-Her-Exp). The control group comprised 60 women without breast cancer and without family and radiological history (nonBC). We carried out the genotyping of the polymorphisms c.2311T>C, c.4308T>C and 5382insC of the BRCA1 gene and rs1042522 of the TP53 gene. The frequency of the polymorphism c.2311T>C was significantly higher in patients of the group BC+Her+Exp than in healthy women, and of the polymorphism 5382insC in BC+Her+Exp compared to all other groups. The frequency of the rs1042522 polymorphism of TP53 was significantly higher in all groups of patients with breast cancer compared with the control group. Differences between groups of women with breast cancer were significant only in BC+Her+Exp vs. BC+Her-Exp. Combinations of polymorphisms of the genes BRCA1 and TP53 predominated in women with a family and radiological history.

  10. No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer

    International Nuclear Information System (INIS)

    Spurdle, Amanda B; Hopper, John L; Chen, Xiaoqing; McCredie, Margaret RE; Giles, Graham G; Newman, Beth; Chenevix-Trench, Georgia; Khanna, KumKum

    2002-01-01

    There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women

  11. Signatures of mutational processes in human cancer

    NARCIS (Netherlands)

    Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjord, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinsk, M.; Jager, N.; Jones, D.T.; Knappskog, S.; Kool, M.; Lakhani, S.R.; Lopez-Otin, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdes-Mas, R.; Buuren, M.M. van; Veer, L. van 't; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Schlooz-Vries, M.S.; Tol, J.J. van; Laarhoven, H.W. van; Sweep, F.C.; Bult, P.; et al.,

    2013-01-01

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362

  12. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  13. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  14. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  15. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  16. Extreme assay sensitivity in molecular diagnostics further unveils intratumour heterogeneity in metastatic colorectal cancer as well as artifactual low-frequency mutations in the KRAS gene.

    Science.gov (United States)

    Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina

    2017-07-25

    Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts.

  17. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations

    NARCIS (Netherlands)

    Sijmons, Rolf H.; Hofstra, Robert M. W.

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive

  18. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  19. SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts

    Directory of Open Access Journals (Sweden)

    Mirjam Blattner

    2014-01-01

    Full Text Available BACKGROUND: Recurrent mutations in the Speckle-Type POZ Protein (SPOP gene occur in up to 15% of prostate cancers. However, the frequency and features of cancers with these mutations across different populations is unknown. OBJECTIVE: To investigate SPOP mutations across diverse cohorts and validate a series of assays employing high-resolution melting (HRM analysis and Sanger sequencing for mutational analysis of formalin-fixed paraffin-embedded material. DESIGN, SETTING, AND PARTICIPANTS: 720 prostate cancer samples from six international cohorts spanning Caucasian, African American, and Asian patients, including both prostate-specific antigen-screened and unscreened populations, were screened for their SPOP mutation status. Status of SPOP was correlated to molecular features (ERG rearrangement, PTEN deletion, and CHD1 deletion as well as clinical and pathologic features. RESULTS AND LIMITATIONS: Overall frequency of SPOP mutations was 8.1% (4.6% to 14.4%, SPOP mutation was inversely associated with ERG rearrangement (P < .01, and SPOP mutant (SPOPmut cancers had higher rates of CHD1 deletions (P < .01. There were no significant differences in biochemical recurrence in SPOPmut cancers. Limitations of this study include missing mutational data due to sample quality and lack of power to identify a difference in clinical outcomes. CONCLUSION: SPOP is mutated in 4.6% to 14.4% of patients with prostate cancer across different ethnic and demographic backgrounds. There was no significant association between SPOP mutations with ethnicity, clinical, or pathologic parameters. Mutual exclusivity of SPOP mutation with ERG rearrangement as well as a high association with CHD1 deletion reinforces SPOP mutation as defining a distinct molecular subclass of prostate cancer.

  20. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes

    Czech Academy of Sciences Publication Activity Database

    Farkas, S. A.; Vymetálková, Veronika; Vodičková, Ludmila; Vodička, Pavel; Torbjörn, K. N.

    2014-01-01

    Roč. 6, č. 2 (2014), s. 179-191 ISSN 1750-1911 R&D Projects: GA ČR GPP304/11/P715; GA ČR(CZ) GAP304/12/1585; GA MZd NT14329 Institutional support: RVO:68378041 Keywords : CpG * DNA repair genes * sporadic colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.649, year: 2014

  1. Mutation update for the PORCN gene

    NARCIS (Netherlands)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo; Lampe, Anne; Gabbett, Michael T.; Ousager, Lillian Bomme; van der Smagt, Jasper J.; Soller, Maria; Stattin, Eva-Lena; Mannens, Marcel A. M. M.; Smigiel, Robert; Hennekam, Raoul C.

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum,

  2. Mutational analysis and clinical correlation of metastatic colorectal cancer.

    Science.gov (United States)

    Russo, Andrea L; Borger, Darrell R; Szymonifka, Jackie; Ryan, David P; Wo, Jennifer Y; Blaszkowsky, Lawrence S; Kwak, Eunice L; Allen, Jill N; Wadlow, Raymond C; Zhu, Andrew X; Murphy, Janet E; Faris, Jason E; Dias-Santagata, Dora; Haigis, Kevin M; Ellisen, Leif W; Iafrate, Anthony J; Hong, Theodore S

    2014-05-15

    Early identification of mutations may guide patients with metastatic colorectal cancer toward targeted therapies that may be life prolonging. The authors assessed tumor genotype correlations with clinical characteristics to determine whether mutational profiling can account for clinical similarities, differences, and outcomes. Under Institutional Review Board approval, 222 patients with metastatic colon adenocarcinoma (n = 158) and rectal adenocarcinoma (n = 64) who underwent clinical tumor genotyping were reviewed. Multiplexed tumor genotyping screened for >150 mutations across 15 commonly mutated cancer genes. The chi-square test was used to assess genotype frequency by tumor site and additional clinical characteristics. Cox multivariate analysis was used to assess the impact of genotype on overall survival. Broad-based tumor genotyping revealed clinical and anatomic differences that could be linked to gene mutations. NRAS mutations were associated with rectal cancer versus colon cancer (12.5% vs 0.6%; P colon cancer (13% vs 3%; P = .024) and older age (15.8% vs 4.6%; P = .006). TP53 mutations were associated with rectal cancer (30% vs 18%; P = .048), younger age (14% vs 28.7%; P = .007), and men (26.4% vs 14%; P = .03). Lung metastases were associated with PIK3CA mutations (23% vs 8.7%; P = .004). Only mutations in BRAF were independently associated with decreased overall survival (hazard ratio, 2.4; 95% confidence interval, 1.09-5.27; P = .029). The current study suggests that underlying molecular profiles can differ between colon and rectal cancers. Further investigation is warranted to assess whether the differences identified are important in determining the optimal treatment course for these patients. © 2014 American Cancer Society.

  3. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    Science.gov (United States)

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  4. Gene mutations in children with chronic pancreatitis.

    Science.gov (United States)

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  5. Mutation update for the PORCN gene

    DEFF Research Database (Denmark)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum......, the pentalogy of Cantrell and Limb-Body Wall Complex. Here we present a review of the published mutations in the PORCN gene to date and report on seven new mutations together with the corresponding clinical data. Based on the review we have created a Web-based locus-specific database that lists all identified...... variants and allows the inclusion of future reports. The database is based on the Leiden Open (source) Variation Database (LOVD) software, and is accessible online at http://www.lovd.nl/porcn. At present, the database contains 106 variants, representing 68 different mutations, scattered along the whole...

  6. A mutation at IVS1 + 5 of the von Hippel-Lindau gene resulting in intron retention in transcripts is not pathogenic in a patient with a tongue cancer?: case report

    Directory of Open Access Journals (Sweden)

    Asakawa Takeshi

    2012-03-01

    Full Text Available Abstract Background Von Hippel-Lindau disease (VHL is a dominantly inherited familial cancer syndrome predisposing the patient to a variety of malignant and benign neoplasms, most frequently hemangioblastoma, renal cell carcinoma, pheochromocytoma, and pancreatic tumors. VHL is caused by mutations of the VHL tumor suppressor gene on the short arm of chromosome 3, and clinical manifestations develop if both alleles are inactivated according to the two-hit hypothesis. VHL mutations are more frequent in the coding region and occur occasionally in the splicing region of the gene. Previously, we reported that the loss of heterozygosity (LOH of the VHL gene is common in squamous cell carcinoma tissues of the tongue. Case Presentation We describe a case of squamous cell carcinoma in the tongue caused by a point mutation in the splicing region of the VHL gene and discuss its association with VHL disease. Sequence analysis of DNA extracted from the tumor and peripheral blood of the patient with squamous cell carcinoma revealed a heterozygous germline mutation (c. 340 + 5 G > C in the splice donor sequence in intron 1 of the VHL gene. RT-PCR analysis of the exon1/intron1 junction in RNA from tumor tissue detected an unspliced transcript. Analysis of LOH using a marker with a heterozygous mutation of nucleotides (G or C revealed a deletion of the mutant C allele in the carcinoma tissues. Conclusions The fifth nucleotide G of the splice donor site of the VHL gene is important for the efficiency of splicing at that site. The development of tongue cancer in this patient was not associated with VHL disease because the mutation occurred in only a single allele of the VHL gene and that allele was deleted in tumor cells.

  7. Thyroglobulin Gene Mutation with Cold Nodule on Thyroid Scintigraphy

    Directory of Open Access Journals (Sweden)

    Toshio Kahara

    2012-01-01

    Full Text Available Thyroglobulin gene mutation is a rare cause of congenital hypothyroidism, but thyroglobulin gene mutations are thought to be associated with thyroid cancer development. A 21-year-old Japanese man treated with levothyroxine for congenital hypothyroidism had an enlarged thyroid gland with undetectable serum thyroglobulin despite elevated serum TSH level. The patient was diagnosed with thyroglobulin gene mutation, with compound heterozygosity for Gly304Cys missense mutation and Arg432X nonsense mutation. Ultrasonography showed a hypovascular large tumor in the left lobe that appeared as a cold nodule on thyroid scintigraphy. He underwent total thyroidectomy, but pathological study did not reveal findings of thyroid carcinoma, but rather a hyperplastic nodule with hemorrhage. Strong cytoplasmic thyroglobulin immunostaining was observed, but sodium iodide symporter immunostaining was hardly detected in the hyperplastic nodule. The clinical characteristics of patients with thyroglobulin gene mutations are diverse, and some patients are diagnosed by chance on examination of goiter in adults. The presence of thyroid tumors that appear as cold nodules on thyroid scintigraphy should consider the potential for thyroid carcinoma, if the patient has relatively low serum thyroglobulin concentration in relation to the degree of TSH without thyroglobulin autoantibody.

  8. Meat and fish consumption, APC gene mutations and hMLH1 expression in colon and rectal cancer: a prospective cohort study (the Netherlands)

    NARCIS (Netherlands)

    Luchtenborg, M.; Weijenberg, M.P.; Goeij, de A.F.P.M.; Wark, P.A.; Brink, M.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Bruine, de A.P.; Goldbohm, R.A.; Veer, van 't P.; Brandt, van den P.A.

    2005-01-01

    Objective:The aim of this study was to investigate the associations between meat and fish consumption and APC mutation status and hMLH1 expression in colon and rectal cancer. Methods:The associations were investigated in the Netherlands Cohort Study, and included 434 colon and 154 rectal cancer

  9. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study.

    LENUS (Irish Health Repository)

    Abdul-Jalil, Khairun I

    2014-08-01

    Locally advanced rectal cancer (LARC: T3\\/4 and\\/or node-positive) is treated with preoperative\\/neoadjuvant chemoradiotherapy (CRT), but responses are not uniform. The phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and related pathways are implicated in rectal cancer tumorigenesis. Here, we investigated the association between genetic mutations in these pathways and LARC clinical outcomes.

  10. Impact of 226C>T MSH2 gene mutation on cancer phenotypes in two HNPCC-associated highly-consanguineous families from Kuwait: emphasis on premarital genetic testing.

    Science.gov (United States)

    Marafie, Makia J; Al-Awadi, Sadiqa; Al-Mosawi, Fatemah; Elshafey, Alaa; Al-Ali, Waleed; Al-Mulla, Fahd

    2009-01-01

    Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is one of the commonest cancer susceptibility syndromes. It is characterized by early onset colon cancer and a variety of extracolonic tumours. Germline mutations in the DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS1, and PMS2) are responsible for this disorder. Identifying an affected individual depends on the tumour histopathology, family history that fulfils the Amsterdam and/or Bethesda criteria, tumour immunohistochemistry, microsatellite instability, and finally molecular analysis of an affected member. It is a laborious, time consuming and expensive procedure, which needs the effort of a multi-disciplinary team. However, once the diagnosis is established and germline defect is identified, other high risk pre-symptomatic carriers could be offered intensive surveillance and management as a preventive measure against cancer development. Here, we present two large highly consanguineous HNPCC-families from Kuwait in whom a founder MSH2 mutation was identified. The relationship between this mutation and cancer expressivity in two large consanguineous families harbouring other genetic defects is discussed. Moreover, we shed light on the challenges pertaining to diagnosis, screening, premarital counselling of couples and prenatal diagnosis of offspring with biallelic MSH2 gene mutation.

  11. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  12. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    Science.gov (United States)

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  14. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    International Nuclear Information System (INIS)

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  15. Filaggrin loss-of-function mutations and incident cancer

    DEFF Research Database (Denmark)

    Skaaby, T; Husemoen, L L N; Thyssen, J P

    2014-01-01

    BACKGROUND: Loss-of-function mutations in the filaggrin gene (FLG) could have opposing effects on cancer risk, as mutations are associated with both 10% higher serum vitamin D levels, which may protect against cancer, and with impaired skin barrier function, which may lead to higher cancer...... (HR 1·09, 95% CI 0·61-1·94), urinary cancer (HR 1·30, 95% CI 0·51-3·29), malignant melanoma (HR 1·03, 95% CI 0·41-2·58) and NMSC (HR 0·70, 95% CI 0·47-1·05). Among participants aged over 60 years at baseline, we found statistically significant lower risks of all cancers and NMSC among FLG mutation...

  16. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  17. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  18. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    Schubert, Elizabeth

    1998-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  19. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    King, Mary

    1997-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  20. Mutations in ATM, Radiation Exposure and Breast Cancer Risk Among Black and White Women

    National Research Council Canada - National Science Library

    Schubert, Elizabeth

    1999-01-01

    .... An important and unresolved question of breast cancer etiology is whether there are other genes which have a more moderate effect on breast cancer risk, possibly involving more women than do other inherited mutations...

  1. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  2. Gene-guided Gefitinib switch maintenance therapy for patients with advanced EGFR mutation-positive Non-small cell lung cancer: an economic analysis

    International Nuclear Information System (INIS)

    Zhu, Jun; Li, Te; Wang, Xiaohui; Ye, Ming; Cai, Jian; Xu, Yuejuan; Wu, Bin

    2013-01-01

    Maintenance therapy with gefitinib notably improves survival in patients with advanced non-small cell lung cancer (NSCLC) and EGFR mutation-positive tumors, but the economic impact of this practice is unclear. A decision-analytic model was developed to simulate 21-day patient transitions in a 10-year time horizon. The clinical data were primarily obtained from the results of a pivotal phase III trial that assessed gefitinib maintenance treatment in patients with advanced NSCLC. The cost data were derived from the perspective of the Chinese health care system. The primary outcome was the incremental cost-effectiveness ratio (ICER) at a willingness-to-pay (WTP) threshold of 3 times the per capita GDP of China. Sensitivity analyses were used to explore the impact of uncertainty regarding the results. The impact of the gefitinib patient assistance program (GPAP) was evaluated. After EGFR genotyping, gefitinib maintenance treatment for advanced NSCLC with EGFR mutations increased the life expectancy by 0.74 years and 0.46 QALYs compared with routine follow-up at an additional cost of $26,149.90 USD ($7,178.20 with the GPAP). The ICER for gefitinib maintenance was $57,066.40 and $15,664.80 per QALY gained (at a 3% discount rate) without and with the GPAP, respectively. The utility of progression free survival, the hazard ratio of progression-free survival for gefitinib treatment and the cost of gefitinib per dose were the three factors that had the greatest influence on the results. These results indicate that gene-guided maintenance therapy with gefitinib with the GPAP might be a cost-effective treatment option

  3. Gene-guided Gefitinib switch maintenance therapy for patients with advanced EGFR mutation-positive Non-small cell lung cancer: an economic analysis

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2013-01-01

    Full Text Available Abstract Background Maintenance therapy with gefitinib notably improves survival in patients with advanced non-small cell lung cancer (NSCLC and EGFR mutation-positive tumors, but the economic impact of this practice is unclear. Methods A decision-analytic model was developed to simulate 21-day patient transitions in a 10-year time horizon. The clinical data were primarily obtained from the results of a pivotal phase III trial that assessed gefitinib maintenance treatment in patients with advanced NSCLC. The cost data were derived from the perspective of the Chinese health care system. The primary outcome was the incremental cost-effectiveness ratio (ICER at a willingness-to-pay (WTP threshold of 3 times the per capita GDP of China. Sensitivity analyses were used to explore the impact of uncertainty regarding the results. The impact of the gefitinib patient assistance program (GPAP was evaluated. Results After EGFR genotyping, gefitinib maintenance treatment for advanced NSCLC with EGFR mutations increased the life expectancy by 0.74 years and 0.46 QALYs compared with routine follow-up at an additional cost of $26,149.90 USD ($7,178.20 with the GPAP. The ICER for gefitinib maintenance was $57,066.40 and $15,664.80 per QALY gained (at a 3% discount rate without and with the GPAP, respectively. The utility of progression free survival, the hazard ratio of progression-free survival for gefitinib treatment and the cost of gefitinib per dose were the three factors that had the greatest influence on the results. Conclusions These results indicate that gene-guided maintenance therapy with gefitinib with the GPAP might be a cost-effective treatment option.

  4. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, nois...... patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer....

  5. Age-related cancer mutations associated with clonal hematopoietic expansion

    Science.gov (United States)

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D.; Johnson, Kimberly J.; Wendl, Michael C.; McMichael, Joshua F.; Schmidt, Heather K.; Yellapantula, Venkata; Miller, Christopher A.; Ozenberger, Bradley A.; Welch, John S.; Link, Daniel C.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Chen, Feng; Wilson, Richard K.; Ley, Timothy J.; Ding, Li

    2015-01-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. We analyzed blood-derived sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant, initiating events that cause clonal hematopoietic expansion. PMID:25326804

  6. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers : A study of hereditary nonpolyposis colorectal cancer families

    NARCIS (Netherlands)

    Vasen, HFA; Stormorken, A; Menko, FH; Nagengast, FM; Kleibeuker, JH; Griffioen, G; Taal, BG; Moller, P; Wijnen, JT

    2001-01-01

    Purpose: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  8. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families.

    NARCIS (Netherlands)

    Vasen, H.F.; Stormorken, A.; Menko, F.H.; Nagengast, F.M.; Kleibeuker, J.H.; Griffioen, G.; Taal, B.G.; Moller, P.; Wijnen, J.T.

    2001-01-01

    PURPOSE: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease characterized by the clustering of colorectal cancer, endometrial cancer, and various other cancers. The disease is caused by mutations in DNA-mismatch-repair (MMR) genes, most frequently in MLH1, MSH2, and

  9. Law-medicine interfacing: patenting of human genes and mutations.

    Science.gov (United States)

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  10. Germline mutations of BRCA1 gene exon 11 are not associated with platinum response neither with survival advantage in patients with primary ovarian cancer: understanding the clinical importance of one of the biggest human exons. A study of the Tumor Bank Ovarian Cancer (TOC) Consortium.

    Science.gov (United States)

    Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid

    2016-09-01

    Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.

  11. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)

    2013-11-29

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  12. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    International Nuclear Information System (INIS)

    Murtaza, B.N.; Bibi, A.; Rashid, M.U.; Khan, Y.I.; Chaudri, M.S.; Shakoori, A.R.

    2013-01-01

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients

  13. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  15. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    Science.gov (United States)

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  16. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  17. Rapid detection of most frequent Slovenian germ-line mutations in BRCA1 gene using real-time PCR and melting curve analysis

    International Nuclear Information System (INIS)

    Novakovic, S.; Stegel, V.

    2005-01-01

    Background. Detection of inherited mutations in cancer susceptibility genes is of great importance in some types of cancers including the colorectal cancer (mutations of APC gene in familial adenomatous polyposis - FAP, mutations in mismatch repair genes in hereditary nonpolyposis colorectal cancer - HNPCC), malignant melanoma (mutations in CDKN2A and CDK4 genes) and breast cancer (mutations in BRCA1 and BRCA2 genes). Methods. This article presents the technical data for the detection of five mutations in BRCA1 gene in breast cancer patients and their relatives. The mutations - 1806C>T, 300T>G, 300T>A, 310G>A, 5382insC - were determined by the real-time PCR and the melting curve analysis. Results and conclusion. In comparison to direct sequencing, this method proved to be sensitive and rapid enough for the routine daily determination of mutations in DNA isolated from the peripheral blood. (author)

  18. Spectrum of mismatch repair gene mutations and clinical presentation of Hispanic individuals with Lynch syndrome.

    Science.gov (United States)

    Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N

    2017-04-01

    Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.

  19. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance

    NARCIS (Netherlands)

    Hendriks, Yvonne M. C.; Wagner, Anja; Morreau, Hans; Menko, Fred; Stormorken, Astrid; Quehenberger, Franz; Sandkuijl, Lodewijk; Møller, Pal; Genuardi, Maurizio; van Houwelingen, Hans; Tops, Carli; van Puijenbroek, Marjo; Verkuijlen, Paul; Kenter, Gemma; van Mil, Anneke; Meijers-Heijboer, Hanne; Tan, Gita B.; Breuning, Martijn H.; Fodde, Riccardo; Wijnen, Juul Th; Bröcker-Vriends, Annette H. J. T.; Vasen, Hans

    2004-01-01

    BACKGROUND & AIMS: Hereditary nonpolyposis colorectal carcinoma (HNPCC) is caused by a mutated mismatch repair (MMR) gene. The aim of our study was to determine the cumulative risk of developing cancer in a large series of MSH6 mutation carriers. METHODS: Mutation analysis was performed in 20

  20. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  1. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  2. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk

    NARCIS (Netherlands)

    Broeke, S.W. ten; Brohet, R.M.; Tops, C.M.; Klift, H.M. van der; Velthuizen, M.E.; Bernstein, I.; Capella Munar, G.; Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.; Menko, F.H.; Lindblom, A.; Mensenkamp, A.R.; Moller, P.; Os, T.A. van; Rahner, N.; Redeker, B.J.; Sijmons, R.H.; Spruijt, L.; Suerink, M.; Vos, Y.J.; Wagner, A.; Hes, F.J.; Vasen, H.F.A.; Nielsen, M.; Wijnen, J.T.

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98

  3. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  4. Lynch Syndrome Caused by Germline PMS2 Mutations : Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capella Munar, Gabriel; Garcia, Encarna Gomez; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; Van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  5. Prevalence of BRCA1 mutations in familial and sporadic greek ovarian cancer cases.

    Directory of Open Access Journals (Sweden)

    Alexandra V Stavropoulou

    Full Text Available Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23-24 and exon 24. In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6% of familial cancer cases and in 27/592 (4.6% of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%. The majority of BRCA1 carriers (71.2% presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.

  6. Novel nonsense mutation of BRCA2 gene in a Moroccan man with ...

    African Journals Online (AJOL)

    Background: Breast cancer is the most common cancer in women worldwide. About 5 to 10% of cases are due to an inherited predisposition in two major genes, BRCA1 and BRCA2, transmitted as an autosomal dominant form. Male breast cancer is rare and is mainly due to BRCA2 than BRCA1 germline mutations.

  7. Effect of BRCA germline mutations on breast cancer prognosis

    Science.gov (United States)

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  8. Mutation scanning of peach floral genes

    Directory of Open Access Journals (Sweden)

    Wilde H Dayton

    2011-05-01

    Full Text Available Abstract Background Mutation scanning technology has been used to develop crop species with improved traits. Modifications that improve screening throughput and sensitivity would facilitate the targeted mutation breeding of crops. Technical innovations for high-resolution melting (HRM analysis are enabling the clinic-based screening for human disease gene polymorphism. We examined the application of two HRM modifications, COLD-PCR and QMC-PCR, to the mutation scanning of genes in peach, Prunus persica. The targeted genes were the putative floral regulators PpAGAMOUS and PpTERMINAL FLOWER I. Results HRM analysis of PpAG and PpTFL1 coding regions in 36 peach cultivars found one polymorphic site in each gene. PpTFL1 and PpAG SNPs were used to examine approaches to increase HRM throughput. Cultivars with SNPs could be reliably detected in pools of twelve genotypes. COLD-PCR was found to increase the sensitivity of HRM analysis of pooled samples, but worked best with small amplicons. Examination of QMC-PCR demonstrated that primary PCR products for further analysis could be produced from variable levels of genomic DNA. Conclusions Natural SNPs in exons of target peach genes were discovered by HRM analysis of cultivars from a southeastern US breeding program. For detecting natural or induced SNPs in larger populations, HRM efficiency can be improved by increasing sample pooling and template production through approaches such as COLD-PCR and QMC-PCR. Technical advances developed to improve clinical diagnostics can play a role in the targeted mutation breeding of crops.

  9. Finding cancer driver mutations in the era of big data research.

    Science.gov (United States)

    Poulos, Rebecca C; Wong, Jason W H

    2018-04-02

    In the last decade, the costs of genome sequencing have decreased considerably. The commencement of large-scale cancer sequencing projects has enabled cancer genomics to join the big data revolution. One of the challenges still facing cancer genomics research is determining which are the driver mutations in an individual cancer, as these contribute only a small subset of the overall mutation profile of a tumour. Focusing primarily on somatic single nucleotide mutations in this review, we consider both coding and non-coding driver mutations, and discuss how such mutations might be identified from cancer sequencing datasets. We describe some of the tools and database that are available for the annotation of somatic variants and the identification of cancer driver genes. We also address the use of genome-wide variation in mutation load to establish background mutation rates from which to identify driver mutations under positive selection. Finally, we describe the ways in which mutational signatures can act as clues for the identification of cancer drivers, as these mutations may cause, or arise from, certain mutational processes. By defining the molecular changes responsible for driving cancer development, new cancer treatment strategies may be developed or novel preventative measures proposed.

  10. Major gene mutations and domestication of plants

    International Nuclear Information System (INIS)

    Ashri, A.

    1989-01-01

    From the approximately 200,000 species of flowering plants known, only about 200 have been domesticated. The process has taken place in many regions over long periods. At present there is great interest in domesticating new species and developing new uses for existing ones in order to supply needed food, industrial raw materials, etc. It is proposed that major gene mutations were important in domestication; many key characters distinguishing cultivated from related wild species are controlled by one or very few major genes. The deliberate effort to domesticate new species requires at least the following: identification of needs and potential sources, establishment of suitable niches, choice of taxa to be domesticated, specification of the desired traits and key characters to be modified, as well as the potential role of induced mutations. (author). 14 refs

  11. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  12. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.

    Science.gov (United States)

    Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan

    2009-01-01

    Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.

  13. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome: Implications for Stratified Surveillance Strategies.

    Science.gov (United States)

    Ryan, Neil A J; Morris, Julie; Green, Kate; Lalloo, Fiona; Woodward, Emma R; Hill, James; Crosbie, Emma J; Evans, D Gareth

    2017-12-01

    Lynch syndrome is caused by dominantly inherited germline mutations that predispose individuals to colorectal, endometrial, ovarian, and other cancers through inactivation of the cellular mismatch repair system. Lynch syndrome–associated cancers are amenable to surveillance strategies that may improve survival. The age at which surveillance should start is disputed. To determine whether mutated gene and type of mutation influence age at onset of Lynch syndrome–associated cancers. A retrospective cohort study of individuals with Lynch syndrome–associated colorectal, endometrial, and/or ovarian cancers whose medical records were included in the clinical database of a large quaternary referral center for genomic medicine in the Northwest of England. Mutated gene (MLH1, MSH2, MSH6, and/or PMS2) and type of mutation (truncating, splicing, or large rearrangement). Age at cancer diagnosis. A total of 1063 individuals with proven Lynch syndrome were included, 495 male and 568 female (mean age 52 years; age range, 10-93 years [children were included in the database, but no children developed cancer]). There were 546 men and women with colorectal cancer, 162 women with endometrial cancer, and 49 women with ovarian cancer; mean follow-up was 68.2 months. Among MLH1 mutation carriers, mutations in MLH1 were associated with colorectal cancer in 249 (61%) of 409 men and women; endometrial cancer in 53 of 196 (27%) women; and ovarian cancer in 15 (8%) of 196 women. Among MSH2 mutation carriers, mutations in MSH2 (the most prevalent mutations overall) were most commonly associated with female-specific cancers: endometrial cancer in 83 (30%) of 279 women; ovarian cancer in 28 (10%) of 279 women; and colorectal cancer in 239 (50%) 479 men and women. Mutations in MSH6 were less prevalent, and MSH6 mutation carriers presented with colorectal and endometrial cancer at later ages than carriers of mutations in MSH2 or MLH1. When stratified by mutation type, women with truncating

  14. Towards linked open gene mutations data

    Science.gov (United States)

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  15. Towards linked open gene mutations data.

    Science.gov (United States)

    Zappa, Achille; Splendiani, Andrea; Romano, Paolo

    2012-03-28

    With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on

  16. Characteristics of gene mutation in Chinese patients with hereditary hemochromatosis

    Directory of Open Access Journals (Sweden)

    LYU Tingxia

    2016-08-01

    Full Text Available ObjectiveTo investigate the characteristics of gene mutation in Chinese patients with hereditary hemochromatosis (HH. MethodsA total of 9 patients with HH who visited Beijing Friendship Hospital, Capital Medical University from January 2013 to December 2015 were enrolled. The genomic DNA was extracted, and PCR amplification and Sanger sequencing were performed for all the exons of four genotypes of HH, i.e., HFE (type Ⅰ, HJV (type ⅡA, HAMP (type ⅡB, TFR2 (type Ⅲ, and SLC40A1 (type Ⅳ to analyze gene mutations. A total of 50 healthy subjects were enrolled as control group to analyze the prevalence of identified gene mutations in a healthy population. ResultsOf all patients, 2 had H63D mutation of HFE gene in type Ⅰ HH, 1 had E3D mutation of HJV gene in type ⅡA HH, 2 had I238M mutation of TFR2 gene in type Ⅲ HH, and 1 had IVS 3+10 del GTT splice mutation of SLC40A1 gene in type Ⅳ HH. No patients had C282Y mutation of HFE gene in type Ⅰ HH which was commonly seen in European and American populations. Five patients had no missense mutation or splice mutation. In addition, it was found in a family that a HH patient had E3D mutation of HJV gene, H63D mutation of HFE gene, and I238M mutation of TFR2 gene, but the healthy brother and sister carrying two of these mutations did not had the phenotype of HH. ConclusionHH gene mutations vary significantly across patients of different races, and non-HFE-HH is dominant in the Chinese population. There may be HH genes which are different from known genes, and further investigation is needed.

  17. When knowledge of a heritable gene mutation comes out of the blue: treatment-focused genetic testing in women newly diagnosed with breast cancer.

    Science.gov (United States)

    Meiser, B; Quinn, V F; Gleeson, M; Kirk, J; Tucker, K M; Rahman, B; Saunders, C; Watts, K J; Peate, M; Geelhoed, E; Barlow-Stewart, K; Field, M; Harris, M; Antill, Y C; Mitchell, G

    2016-11-01

    Selection of women for treatment-focused genetic testing (TFGT) following a new diagnosis of breast cancer is changing. Increasingly a patient's age and tumour characteristics rather than only their family history are driving access to TFGT, but little is known about the impact of receiving carrier-positive results in individuals with no family history of cancer. This study assesses the role of knowledge of a family history of cancer on psychosocial adjustment to TFGT in both women with and without mutation carrier-positive results. In-depth semistructured interviews were conducted with 20 women who had undergone TFGT, and who had been purposively sampled to represent women both family history and carrier status, and subjected to a rigorous qualitative analysis. It was found that mutation carriers without a family history reported difficulties in making surgical decisions quickly, while in carriers with a family history, a decision regarding surgery, electing for bilateral mastectomy (BM), had often already been made before receipt of their result. Long-term adjustment to a mutation-positive result was hindered by a sense of isolation not only by those without a family history but also those with a family history who lacked an affected relative with whom they could identify. Women with a family history who had no mutation identified and who had not elected BM reported a lack of closure following TFGT. These findings indicate support deficits hindering adjustment to positive TFGT results for women with and without a family history, particularly in regard to immediate decision-making about risk-reducing surgery.

  18. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms

    Science.gov (United States)

    Tenedini, E; Bernardis, I; Artusi, V; Artuso, L; Roncaglia, E; Guglielmelli, P; Pieri, L; Bogani, C; Biamonte, F; Rotunno, G; Mannarelli, C; Bianchi, E; Pancrazzi, A; Fanelli, T; Malagoli Tagliazucchi, G; Ferrari, S; Manfredini, R; Vannucchi, A M; Tagliafico, E

    2014-01-01

    With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score. PMID:24150215

  19. Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation

    OpenAIRE

    JORDI SALAS; NURIA LASO; SERGI MAS; M. JOSE LAFUENTE; XAVIER CASTERAD; MANUEL TRIAS; ANTONIO BALLESTA; RAFAEL MOLINA; CARLOS ASCASO; SHICHUN ZHENG; JOHN K. WIENCKE; AMALIA LAFUENTE

    2004-01-01

    Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation BACKGROUND: The diversity of the Mediterranean diet and the heterogeneity of acquired genetic alterations in colorectal cancer (CRC) led us to examine the possible association between dietary factors and mutations, such as Ki-ras mutations, in genes implicated in the pathogenesis of these neoplasms. PATIENTS AND METHODS: The study was based on 246 cases and 296 controls. For th...

  20. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomi...

  1. Collodion Baby with TGM1 gene mutation

    Directory of Open Access Journals (Sweden)

    Sharma D

    2015-09-01

    Full Text Available Deepak Sharma,1 Basudev Gupta,2 Sweta Shastri,3 Aakash Pandita,1 Smita Pawar4 1Department of Neonatology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, 2Department of Pediatrics, Civil Hospital, Palwal, Haryana, 3Department of Pathology, NKP Salve Medical College, Nagpur, Maharashtra, 4Department of Obstetrics and Gynaecology, Fernandez Hospital, Hyderguda, Hyderabad, Andhra Pradesh, IndiaAbstract: Collodion baby (CB is normally diagnosed at the time of birth and refers to a newborn infant that is delivered with a lambskin-like membrane encompassing the total body surface. CB is not a specific disease entity, but is a common phenotype in conditions like harlequin ichthyosis, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, and trichothiodystrophy. We report a CB that was brought to our department and later diagnosed to have TGM1 gene c.984+1G>A mutation. However, it could not be ascertained whether the infant had lamellar ichthyosis or congenital ichthyosiform erythroderma (both having the same mutation. The infant was lost to follow-up.Keywords: cellophane membrane, c.984+1G>A mutation, lamellar ichthyosis, nonbullous congenital ichthyosiform erythroderma, parchment membrane, TGM1 gene

  2. HFE gene mutations in coronary atherothrombotic disease

    Directory of Open Access Journals (Sweden)

    Calado R.T.

    2000-01-01

    Full Text Available Although iron can catalyze the production of free radicals involved in LDL lipid peroxidation, the contribution of iron overload to atherosclerosis remains controversial. The description of two mutations in the HFE gene (Cys282Tyr and His63Asp related to hereditary hemochromatosis provides an opportunity to address the question of the association between iron overload and atherosclerosis. We investigated the prevalence of HFE mutations in 160 survivors of myocardial infarction with angiographically demonstrated severe coronary atherosclerotic disease, and in 160 age-, gender- and race-matched healthy control subjects. PCR amplification of genomic DNA followed by RsaI and BclI restriction enzyme digestion was used to determine the genotypes. The frequency of the mutant Cys282Tyr allele was identical among patients and controls (0.022; carrier frequency, 4.4%, whereas the mutant His63Asp allele had a frequency of 0.143 (carrier frequency, 27.5% in controls and of 0.134 (carrier frequency, 24.5% in patients. Compound heterozygotes were found in 2 of 160 (1.2% controls and in 1 of 160 (0.6% patients. The finding of a similar prevalence of Cys282Tyr and His63Asp mutations in the HFE gene among controls and patients with coronary atherothrombotic disease, indirectly questions the possibility of an association between hereditary hemochromatosis and atherosclerosis.

  3. Introduction: Cancer Gene Networks.

    Science.gov (United States)

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  4. Sentinel and other mutational effects in offspring of cancer survivors

    International Nuclear Information System (INIS)

    Mulvihill, J.J.

    1990-01-01

    To date, no agent has been documented to cause germ cell mutation in human beings, with the possible exception of radiation causing abnormal meiotic chromosomes in testes. For studies in humans, mutation epidemiologists prefer the cohort approach, starting with an exposed population and looking for mutations that may be expressed in offspring as variants in health, chromosomes, proteins, or nucleic acids. Currently patients with cancer are the cohort exposed to the largest doses of potential mutagens, i.e., radiotherapy and drugs. In 12 large studies with over 825 patients and 1573 pregnancies, 46 (4%) of 1240 liveborns had a major birth defect, a rate comparable to that in the general population. One of these was a classic sentinel phenotype, i.e., a new sporadic case of a dominant mendelian syndrome. In collaboration with 5 U.S. cancer registries, we interviewed a retrospective cohort of 2383 patients diagnosed with cancer under age 20 years, from 1945 through 1975. Records were sought to verify major genetic disease, defined as a cytogenetic or single gene disorder or 1 of 15 isolated birth defects. In 2308 offspring of survivors, 5 had a chromosomal syndrome, 11 had a single gene disorder, and 62 had at least one major malformation. Among 4722 offspring of sibling controls, the respective numbers were 7, 12, and 127, nonsignificant differences. 7% of the parents of the offspring with possibly new mutations received potentially mutagenic therapy, compared with 12% of parents of normal children. Since pregnancy in or by cancer survivors is still a rare event, future efforts to document germ cell mutation may be best studied through international cooperation coupled with diverse laboratory measures of mutation

  5. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  6. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  7. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-05-01

    Full Text Available Abstract Background Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs and circulating tumor DNAs (ctDNA. Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. Methods We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. Results Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II and late stage (III and IV cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177 of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that

  8. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  9. TP53 Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Akira Mogi

    2011-01-01

    Full Text Available The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.

  10. Identification of coding and non-coding mutational hotspots in cancer genomes.

    Science.gov (United States)

    Piraino, Scott W; Furney, Simon J

    2017-01-05

    The identification of mutations that play a causal role in tumour development, so called "driver" mutations, is of critical importance for understanding how cancers form and how they might be treated. Several large cancer sequencing projects have identified genes that are recurrently mutated in cancer patients, suggesting a role in tumourigenesis. While the landscape of coding drivers has been extensively studied and many of the most prominent driver genes are well characterised, comparatively less is known about the role of mutations in the non-coding regions of the genome in cancer development. The continuing fall in genome sequencing costs has resulted in a concomitant increase in the number of cancer whole genome sequences being produced, facilitating systematic interrogation of both the coding and non-coding regions of cancer genomes. To examine the mutational landscapes of tumour genomes we have developed a novel method to identify mutational hotspots in tumour genomes using both mutational data and information on evolutionary conservation. We have applied our methodology to over 1300 whole cancer genomes and show that it identifies prominent coding and non-coding regions that are known or highly suspected to play a role in cancer. Importantly, we applied our method to the entire genome, rather than relying on predefined annotations (e.g. promoter regions) and we highlight recurrently mutated regions that may have resulted from increased exposure to mutational processes rather than selection, some of which have been identified previously as targets of selection. Finally, we implicate several pan-cancer and cancer-specific candidate non-coding regions, which could be involved in tumourigenesis. We have developed a framework to identify mutational hotspots in cancer genomes, which is applicable to the entire genome. This framework identifies known and novel coding and non-coding mutional hotspots and can be used to differentiate candidate driver regions from

  11. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    Science.gov (United States)

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  12. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries

    Science.gov (United States)

    Kwong, Ava; Shin, Vivian Y; Ho, John C W; Kang, Eunyoung; Nakamura, Seigo; Teo, Soo-Hwang; Lee, Ann S G; Sng, Jen-Hwei; Ginsburg, Ophira M; Kurian, Allison W; Weitzel, Jeffrey N; Siu, Man-Ting; Law, Fian B F; Chan, Tsun-Leung; Narod, Steven A; Ford, James M; Ma, Edmond S K; Kim, Sung-Won

    2015-01-01

    Approximately 5%–10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer. PMID:26187060

  13. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  14. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

    International Nuclear Information System (INIS)

    O’Donnell, Patrick; Shieh, Felice; Wei, Wen; Lawrence, H Jeffrey; Wu, Lin; Schilling, Robert; Bloom, Kenneth; Maltzman, Warren; Anderson, Steven; Soviero, Stephen; Ferguson, Jane; Shyu, Johnny; Current, Robert; Rehage, Taraneh; Tsai, Julie; Christensen, Mari; Tran, Ha Bich; Chien, Sean Shih-Chang

    2013-01-01

    Epidermal growth factor receptor (EGFR) gene mutations identify patients with non-small cell lung cancer (NSCLC) who have a high likelihood of benefiting from treatment with anti-EGFR tyrosine kinase inhibitors. Sanger sequencing is widely used for mutation detection but can be technically challenging, resulting in longer turn-around-time, with limited sensitivity for low levels of mutations. This manuscript details the technical performance verification studies and external clinical reproducibility studies of the cobas EGFR Mutation Test, a rapid multiplex real-time PCR assay designed to detect 41 mutations in exons 18, 19, 20 and 21. The assay’s limit of detection was determined using 25 formalin-fixed paraffin-embedded tissue (FFPET)-derived and plasmid DNA blends. Assay performance for a panel of 201 specimens was compared against Sanger sequencing with resolution of discordant specimens by quantitative massively parallel pyrosequencing (MPP). Internal and external reproducibility was assessed using specimens tested in duplicate by different operators, using different reagent lots, instruments and at different sites. The effects on the performance of the cobas EGFR test of endogenous substances and nine therapeutic drugs were evaluated in ten FFPET specimens. Other tests included an evaluation of the effects of necrosis, micro-organisms and homologous DNA sequences on assay performance, and the inclusivity of the assay for less frequent mutations. A >95% hit rate was obtained in blends with >5% mutant alleles, as determined by MPP analysis, at a total DNA input of 150 ng. The overall percent agreement between Sanger sequencing and the cobas test was 96.7% (negative percent agreement 97.5%; positive percent agreement 95.8%). Assay repeatability was 98% when tested with two operators, instruments, and reagent lots. In the external reproducibility study, the agreement was > 99% across all sites, all operators and all reagent lots for 11/12 tumors tested. Test

  15. IMPLICATION DE CERTAINES MUTATIONS DANS LES GENES BRCA1 ET BRCA2 SUR LA PRÉDISPOSITION AU CANCER DU SEIN ET AU CANCER OVARIEN

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2007-08-01

    Full Text Available Le cancer du sein, ainsi que celui ovarien, est une maladie fréquente chez les femmes, ayant un traitement assez difficile et, malheureusement, de sérieuses répercutions sur le physique ; c’est pourquoi il s’avère essentiel que la maladie soit dépistée dès les phases précoces. La prédisposition génétique est responsable de 5% des cancers et de 25% des cas apparus avant l’age de 30 ans [Breast Cancer Linkage Consortium, 1997]. Nous présentons ici l’implication des gènes suppresseurs des tumeurs BRCA1 et BRCA2 sur cette prédisposition.

  16. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility....

  17. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-w...

  18. A patient with Werner syndrome and adiponectin gene mutation.

    Science.gov (United States)

    Hashimoto, Naotake; Hatanaka, Sachiko; Yokote, Koutaro; Kurosawa, Hiroko; Yoshida, Tomohiko; Iwai, Rie; Takahashi, Hidenori; Yoshida, Katsuya; Horie, Atsuya; Sakurai, Kenichi; Yagui, Kazuo; Saito, Yasushi; Yoshida, Shouji

    2007-01-01

    Werner syndrome is a premature aging disease characterized by genomic instability and increased cancer risk. Here, we report a 45-year-old diabetic man as the first Werner syndrome patient found to have an adiponectin gene mutation. Showing graying and loss of hair, skin atrophy, and juvenile cataract, he was diagnosed with Werner syndrome type 4 by molecular analysis. His serum adiponectin concentration was low. In the globular domain of the adiponectin gene, I164T in exon 3 was detected. When we examined effects of pioglitazone (15 mg/day) on serum adiponectin multimer and monomer concentrations using selective assays, the patient's relative percentage increased in adiponectin concentration was almost same as that in the 18 diabetic patients without an adiponectin mutation, but the absolute adiponectin concentration was half of those seen in diabetic patients treated with the same pioglitazone dose who had no adiponectin mutation. The response suggested that pioglitazone treatment might help to prevent future Werner syndrome-related acceleration of atherosclerosis. Present and further clinical relevant to atherosclerosis in this patient should be imformative concerning the pathogenesis and treatment of atherosclerosis in the presence of hypoadiponectinemia and insulin resistance.

  19. ASSOCIATION OF HFE GENE MUTATION IN THALASSEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tiwari

    2016-11-01

    Full Text Available BACKGROUND Thalassemia major patients are dependent on frequent blood transfusion and consequently develop iron overload. HFE gene mutations (C282Y, H63D and S65C in hereditary haemochromatosis has been shown to be associated with iron overload. The study aims at finding the association of HFE gene mutations in β-thalassemia major patients. MATERIALS AND METHODS A descriptive observational pilot study was conducted including fifty diagnosed -thalassemia major cases. DNA analysis by PCR-RFLP method for HFE gene mutations was performed. RESULTS Only H63D mutation (out of three HFE gene mutations was detected in 8 out of 50 cases. Observed frequency of H63D mutation was 16%. While frequency of C282Y and S65C were 0% each. CONCLUSION The frequency of HFE mutation in -thalassemia major is not very common.

  20. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1......, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were...

  1. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-01-01

    Full Text Available In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (pG and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold increase in breast cancer risk was associated with g.9793680G>A (p<0.009. Similarly ~14-fold increased risk was associated with Val159Gly (p<0.01, ~17-fold with Gly221Arg (p<0.005, and ~18-fold with Ser326Cys (p<0.004 in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p<0.01 increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer.

  2. [Study of gene mutation in 62 hemophilia A children].

    Science.gov (United States)

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  3. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    Science.gov (United States)

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.

    Science.gov (United States)

    Zhang, Xiaofei; Shimodaira, Hideki; Soeda, Hiroshi; Komine, Keigo; Takahashi, Hidekazu; Ouchi, Kota; Inoue, Masahiro; Takahashi, Masanobu; Takahashi, Shin; Ishioka, Chikashi

    2016-12-01

    The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

  5. Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer.

    Science.gov (United States)

    Mantere, T; Haanpää, M; Hanenberg, H; Schleutker, J; Kallioniemi, A; Kähkönen, M; Parto, K; Avela, K; Aittomäki, K; von Koskull, H; Hartikainen, J M; Kosma, V-M; Laasanen, S-L; Mannermaa, A; Pylkäs, K; Winqvist, R

    2015-07-01

    Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  7. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  8. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  9. Hereditary non-polyposis colorectal cancer : Identification of mutation carriers and assessing pathogenicity of mutations

    NARCIS (Netherlands)

    Niessen, RC; Sijmons, RH; Berends, MJW; Ou, J; Hofstra, RNW; Kleibeuker, JH

    2004-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC), also referred to as Lynch syndrome, is an autosomal dominantly inherited disorder that is characterized by susceptibility to colorectal cancer and extracolonic malignancies, in particular endometrial cancer. HNPCC is caused by pathogenic mutations

  10. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  11. Coexistence of K-ras mutations and HPV infection in colon cancer

    Directory of Open Access Journals (Sweden)

    Tezol Ayda

    2006-05-01

    Full Text Available Abstract Background Activation of the ras genes or association with human papillomavirus infection have been extensively studied in colorectal cancer. However, the correlation between K-ras mutations and HPV in colorectal cancer has not been investigated yet. In this study we aimed to investigate the presence of K-ras mutations and their correlation with HPV infection in colon cancer. Methods K-ras mutations were analyzed by a mutagenic PCR assay and digestion with specific restriction enzymes to distinguish the wild-type and mutant codons. HPV infection was analyzed by PCR amplification and hybridization with specific probes by Southern blotting. Stattistical analyses were performed by the chi-square and Fisher's exact tests Results HPV gene fragments were detected in 43 tumors and 17 normal tissue samples. HPV 18 was the prevalent type in the tumor tissue. A mutation at codon 12 of the K-ras gene was present in 31 patients. 56% of the HPV-positive tumors also harbored a K-ras mutation. Codon 13 mutations were not observed. These data indicate that infection with high risk HPV types and mutational activation of the K-ras gene are frequent events in colorectal carcinogenesis. Conclusion Our findings suggest that mutational activation of the K-ras gene is a common event in colon carcinogenesis and that HPV infection may represent an important factor in the development of the premalignant lesions leading to the neoplastic phenotype.

  12. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome...

  13. Germinal and somatic mutations in cancer

    International Nuclear Information System (INIS)

    Knudson, A.G. Jr.

    1977-01-01

    The role of germinal and somatic mutations in carcinogenesis leads to the conclusion that environmental carcinogens probably exert their effects via somatic mutations. Susceptibility to this process may itself be genetically determined, so we may deduce that two groups, one genetic and one non-genetic, are included in the 'environmental' class. Other individuals seem to acquire cancer even in the absence of such environmental agents, and these too may be classified into a genetic and a non-genetic group. It has been estimated that in industrial countries, the environmental groups include 70-80% of all cancer cases, but we are only beginning to know how to separate the genetic and non-genetic subgroups. The genetic subgroup of the 'non-environmental' group is very small, probably of the order of magnitude of 1-2% for cancer as a whole. The remainder, about 25%, comprises a non-genetic, non-environmental subgroup that seems to arise as a consequence of 'spontaneous' somatic mutations. The incidence of these 'background' cancers is what we should combat with preventive and therapeutic measures

  14. Can gene fusions serve for fingerprints of radiogenic cancers?

    International Nuclear Information System (INIS)

    Nakamura, Nori

    2016-01-01

    It has been recognized that malignancies in blood cells often bear specific chromosome translocations or gene fusions. In recent years, the presence of fusion genes became to be known also among solid cancers as driver mutations. However, representative solid cancers bearing specific gene fusions are limited to cancers of thyroid, prostate, and sarcomas among which only thyroid cancer risk is known to be related to radiation exposures. On the other hand, it is extremely rare to find recurrent reciprocal translocations among common cancers such as in the lung, stomach, breast, and colon, which form a major component of radiation risks. It is therefore unlikely that radiation increases the risk of cancer by inducing specific translocations (gene fusions) but more likely through induction of mutations (including deletions). Although gene fusions could play a role in radiation carcinogenesis, it does not seem good enough to serve for a radiation fingerprint. (author)

  15. Distinct effects of the recurrent Mlh1G67R mutation on MMR functions, cancer, and meiosis

    OpenAIRE

    Avdievich, Elena; Reiss, Cora; Scherer, Stefan J.; Zhang, Yongwei; Maier, Sandra M.; Jin, Bo; Hou, Harry; Rosenwald, Andreas; Riedmiller, Hubertus; Kucherlapati, Raju; Cohen, Paula E.; Edelmann, Winfried; Kneitz, Burkhard

    2008-01-01

    Mutations in the human DNA mismatch repair (MMR) gene MLH1 are associated with hereditary nonpolyposis colorectal cancer (Lynch syndrome, HNPCC) and a significant proportion of sporadic colorectal cancer. The inactivation of MLH1 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of DNA damaging agents. To study the effect of MLH1 missense mutations on cancer susceptibility, we generated a mouse line carrying the ...

  16. Recurrent and founder mutations in the PMS2 gene.

    Science.gov (United States)

    Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A

    2013-03-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.

  17. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  18. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    Science.gov (United States)

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  19. APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

    NARCIS (Netherlands)

    Giardiello, F. M.; Petersen, G. M.; Piantadosi, S.; Gruber, S. B.; Traboulsi, E. I.; Offerhaus, G. J.; Muro, K.; Krush, A. J.; Booker, S. V.; Luce, M. C.; Laken, S. J.; Kinzler, K. W.; Vogelstein, B.; Hamilton, S. R.

    1997-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP. Mutations of the APC gene were compared with the occurrence of seven

  20. Mutations du gene de la filamine et syndromes malformatifs | Koffi ...

    African Journals Online (AJOL)

    Filamin is a cytoskeletal protein that occurs in the control of cytoskeleton structure and activity, the modulation of cell shape and migration as well as in the maintaining of cell shape. Mutations in the genes FLNA and FLNB provoke diverse malformative diseases in human. Mutations in the gene FLNA cause four X-Linked ...

  1. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  2. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer.

    Science.gov (United States)

    Pritchard, Colin C; Morrissey, Colm; Kumar, Akash; Zhang, Xiaotun; Smith, Christina; Coleman, Ilsa; Salipante, Stephen J; Milbank, Jennifer; Yu, Ming; Grady, William M; Tait, Jonathan F; Corey, Eva; Vessella, Robert L; Walsh, Tom; Shendure, Jay; Nelson, Peter S

    2014-09-25

    A hypermutated subtype of advanced prostate cancer was recently described, but prevalence and mechanisms have not been well-characterized. Here we find that 12% (7 of 60) of advanced prostate cancers are hypermutated, and that all hypermutated cancers have mismatch repair gene mutations and microsatellite instability (MSI). Mutations are frequently complex MSH2 or MSH6 structural rearrangements rather than MLH1 epigenetic silencing. Our findings identify parallels and differences in the mechanisms of hypermutation in prostate cancer compared with other MSI-associated cancers.

  3. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  4. Assessment of SLX4 Mutations in Hereditary Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Sohela Shah

    Full Text Available SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose polymerase (PARP inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA, FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823* mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF1%], of which 22 (5 novel and 17 rare were predicted to be damaging by Polyphen2 (score = 0.65-1. We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC, campthothecin (CPT, and PARP inhibitor (Olaparib the p.W823* SLX4 mutant failed to do so.Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.

  5. Higher prevalence of KRAS mutations in colorectal cancer in Saudi ...

    African Journals Online (AJOL)

    We studied retrospectively tumor samples of 83 Saudi metastatic CRC patients for KRAS mutations in codon 12 and codon 13, to evaluate the relevance of KRAS mutation positive colorectal cancers with metastatic sites. KRAS mutation was observed in 42.2% (35/83) patients with CRC. The most common mutations were in ...

  6. [Detection of RAS genes mutation using the Cobas® method in a private laboratory of pathology: Medical and economical study in comparison to a public platform of molecular biology of cancer].

    Science.gov (United States)

    Albertini, Anne-Flore; Raoux, Delphine; Neumann, Frédéric; Rossat, Stéphane; Tabet, Farid; Pedeutour, Florence; Duranton-Tanneur, Valérie; Kubiniek, Valérie; Vire, Olivier; Weinbreck, Nicolas

    In France, determination of the mutation status of RAS genes for predictive response to anti-EGFR targeted treatments is carried out by public platforms of molecular biology of cancer created by the French National Cancer Institute. This study aims to demonstrate the feasibility of these analyses by a private pathology laboratory (MEDIPATH) as per the requirements of accreditation. We retrospectively studied the mutation status of KRAS and NRAS genes in 163 cases of colorectal metastatic cancer using the Cobas ® technique. We compared our results to those prospectively obtained through pyrosequencing and allelic discrimination by the genetic laboratory of solid tumors at the Nice University Hospital (PACA-EST regional platform). The results of both series were identical: 98.7% positive correlation; negative correlation of 93.1%; overall correlation of 95.7% (Kappa=0.92). This study demonstrates the feasibility of molecular analysis in a private pathology laboratory. As this practice requires a high level of guarantee, its accreditation, according to the NF-EN-ISO15189 quality compliance French standard, is essential. Conducting molecular analysis in this context avoids the steps of routing the sample and the result between the pathology laboratory and the platform, which reduces the overall time of rendering the result. In conclusion, the transfer of some analysis from these platforms to private pathology laboratories would allow the platforms to be discharged from a part of routine testing and therefore concentrate their efforts to the development of new analyses constantly required to access personalized medicine. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  8. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  9. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  10. Somatic mutation analysis of MYH11 in breast and prostate cancer

    International Nuclear Information System (INIS)

    Alhopuro, Pia; Karhu, Auli; Winqvist, Robert; Waltering, Kati; Visakorpi, Tapio; Aaltonen, Lauri A

    2008-01-01

    MYH11 (also known as SMMHC) encodes the smooth-muscle myosin heavy chain, which has a key role in smooth muscle contraction. Inversion at the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. We have previously shown that MYH11 mutations occur in human colorectal cancer, and may also be associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 underlying the zebrafish meltdown phenotype characterized by disrupted intestinal architecture. Recently, MYH1 and MYH9 have been identified as candidate breast cancer genes in a systematic analysis of the breast cancer genome. The aim of this study was to investigate the role of somatic MYH11 mutations in two common tumor types; breast and prostate cancers. A total of 155 breast cancer and 71 prostate cancer samples were analyzed for those regions in MYH11 (altogether 8 exons out of 42 coding exons) that harboured mutations in colorectal cancer in our previous study. In breast cancer samples only germline alterations were observed. One prostate cancer sample harbored a frameshift mutation c.5798delC, which we have previously shown to result in a protein with unregulated motor activity. Little evidence for a role of somatic MYH11 mutations in the formation of breast or prostate cancers was obtained in this study

  11. P53 Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    2006-01-01

    Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis) after deoxyribonucleic acid (DNA) damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. P53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pair changes ( point mutations), which result in amino acid substitutions or truncated forms of the p53 protein, and are widely distributed throughout the evolutionary conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular carcinogens and

  12. Chromosomal radiosensitivity in breast cancer patients and BRCA1 and 2 mutation carriers

    International Nuclear Information System (INIS)

    Vral, Anne

    2004-01-01

    Enhanced chromosomal radiosensitivity is observed in significant proportions of cancer patients. In breast cancer patients, this elevated sensitivity is confirmed in several independent studies with the G2 assay as well as with the GO micronucleus (MN) assay for peripheral blood lymphocytes (PBL). Enhanced chromosomal radiosensitivity is a common feature of sporadic breast cancer patients as well as breast cancer patients with a family history of the disease. Segregation analysis showed Mendelian heritability of chromosomal radiosensitivity. As mutations in the highly penetrant breast cancer predisposing genes, BRCA1 and 2, are only present in about 3-5 % of familial breast cancer patients, they cannot solely account for the high proportion of radiosensitive cases found among all breast cancer patients. A review on chromosomal radiosensitivity in BRCA1 and 2 mutation carriers shows that breast cancer patients with a BRCAl or 2 mutation are on the average more radiosensitive than healthy individuals, but not different from breast cancer patients without a BRCA mutation. The radiation response of healthy BRCA1/2 mutation carriers, on the contrary, is not significantly different from controls. Most studies performed on wild type and BRCA +/- EBV lymphoblastoid cell lines also could not demonstrate any differences in MN response between both groups. These findings suggest that mutations in BRCA 1 and 2 are not playing a major role in chromosomal radiosensitivity as measured by G2 and MN assay. The enhanced sensitivity observed in a substantial proportion of breast cancer patients, irrespective of a BRCA1/2 mutation or not, suggests that this feature may be related to the presence of other mutations in low penetrance breast cancer predisposing genes, which may be involved in the process of DNA damage. (author)

  13. Rapidly progressive adenomatous polyposis in a patient with germline mutations in both the APC and MLH1 genes: the worst of two worlds.

    NARCIS (Netherlands)

    Scheenstra, R; Rijcken, FE; Koornstra, JJ; Hollema, H; Fodde, R; Menko, F.H.; Sijmons, RH; Bijleveld, CM; Kleibeuker, J.H.

    2003-01-01

    The two most common inherited forms of colorectal cancer are familial adenomatous polyposis and hereditary non-polyposis colorectal cancer. Simultaneous inheritance of both an APC gene mutation and a mismatch repair gene (for example, MLH1) mutation has never been described. In the present case

  14. Somatic mutations in breast and serous ovarian cancer young patients : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Encinas, Giselly; Maistro, Simone; Pasini, Fatima Solange; Hirata Katayama, Maria Lucia; Brentani, Maria Mitzi; de Bock, Geertruida Hendrika; Azevedo Koike Folgueira, Maria Aparecida

    2015-01-01

    Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC). Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of

  15. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.

    Science.gov (United States)

    Baris, Hagit N; Barnes-Kedar, Inbal; Toledano, Helen; Halpern, Marisa; Hershkovitz, Dov; Lossos, Alexander; Lerer, Israela; Peretz, Tamar; Kariv, Revital; Cohen, Shlomi; Half, Elizabeth E; Magal, Nurit; Drasinover, Valerie; Wimmer, Katharina; Goldberg, Yael; Bercovich, Dani; Levi, Zohar

    2016-03-01

    Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis. © 2015 Wiley Periodicals, Inc.

  16. Role of BRCA2 mutation status on overall survival among breast cancer patients from Sardinia

    International Nuclear Information System (INIS)

    Budroni, Mario; Palmieri, Giuseppe; Cesaraccio, Rosaria; Coviello, Vincenzo; Sechi, Ornelia; Pirino, Daniela; Cossu, Antonio; Tanda, Francesco; Pisano, Marina; Palomba, Grazia

    2009-01-01

    Germline mutations in BRCA1 or BRCA2 genes have been demonstrated to increase the risk of developing breast cancer. Conversely, the impact of BRCA mutations on prognosis and survival of breast cancer patients is still debated. In this study, we investigated the role of such mutations on breast cancer-specific survival among patients from North Sardinia. Among incident cases during the period 1997–2002, a total of 512 breast cancer patients gave their consent to undergo BRCA mutation screening by DHPLC analysis and automated DNA sequencing. The Hakulinen, Kaplan-Meier, and Cox regression methods were used for both relative survival assessment and statistical analysis. In our series, patients carrying a germline mutation in coding regions and splice boundaries of BRCA1 and BRCA2 genes were 48/512 (9%). Effect on overall survival was evaluated taking into consideration BRCA2 carriers, who represented the vast majority (44/48; 92%) of mutation-positive patients. A lower breast cancer-specific overall survival rate was observed in BRCA2 mutation carriers after the first two years from diagnosis. However, survival rates were similar in both groups after five years from diagnosis. No significant difference was found for age of onset, disease stage, and primary tumour histopathology between the two subsets. In Sardinian breast cancer population, BRCA2 was the most affected gene and the effects of BRCA2 germline mutations on patients' survival were demonstrated to vary within the first two years from diagnosis. After a longer follow-up observation, breast cancer-specific rates of death were instead similar for BRCA2 mutation carriers and non-carriers

  17. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  18. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

    Science.gov (United States)

    Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A

    2018-05-01

    The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading to poor prognosis in this subtype. KRAS mutations are associated with adverse outcome in epithelial (CMS2/CMS3) MSS tumors.

  19. Mutations of the Norrie gene in Korean ROP infants.

    Science.gov (United States)

    Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup

    2002-12-01

    The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.

  20. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines

    DEFF Research Database (Denmark)

    Liu, Ying; Bodmer, Walter F

    2006-01-01

    A comprehensive analysis of the TP53 gene and its protein status was carried out on a panel of 56 colorectal cancer cell lines. This analysis was based on a combination of denaturing HPLC mutation screening of all exons of the p53 gene, sequencing the cDNA, and assessing the function of the p53 p...

  1. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families

    Directory of Open Access Journals (Sweden)

    Novakovic Srdjan

    2008-09-01

    Full Text Available Abstract Background Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations. The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families. Methods The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i probands with at least two first degree relatives with breast and ovarian cancer; (ii probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family. Results Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%. Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene. The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of

  2. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    Directory of Open Access Journals (Sweden)

    Fernández-Rodríguez Juana

    2012-03-01

    Full Text Available Abstract Background Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes in a set of controls (138 women and 146 men did not detect seven of them. Conclusions Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.

  3. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, Juana; Schindler, Detlev; Capellá, Gabriel; Brunet, Joan; Lázaro, Conxi; Pujana, Miguel Angel; Quiles, Francisco; Blanco, Ignacio; Teulé, Alex; Feliubadaló, Lídia; Valle, Jesús del; Salinas, Mónica; Izquierdo, Àngel; Darder, Esther

    2012-01-01

    Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease

  4. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk.

    Science.gov (United States)

    ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M; van der Klift, Heleen M; Velthuizen, Mary E; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G W; Menko, Fred H; Lindblom, Annika; Mensenkamp, Arjen R; Moller, Pal; van Os, Theo A; Rahner, Nils; Redeker, Bert J W; Sijmons, Rolf H; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J; Wagner, Anja; Hes, Frederik J; Vasen, Hans F; Nielsen, Maartje; Wijnen, Juul T

    2015-02-01

    The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Data were collected from 98 PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks. Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52 years, and there was a significant difference in mean age of CRC between the probands (mean, 47 years; range, 26 to 68 years) and other family members with a PMS2 mutation (mean, 58 years; range, 31 to 86 years; P PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and between families, suggesting the influence of genetic modifiers and lifestyle factors on cancer risks. © 2014 by American Society of Clinical Oncology.

  5. First report of a de novo germline mutation in the MLH1 gene

    NARCIS (Netherlands)

    Stulp, Rein P; Vos, Yvonne J; Mol, Bart; Karrenbeld, Arend; de Raad, Monique; van der Mijle, Huub J C; Sijmons, Rolf H

    2006-01-01

    Hereditary non-polyposis colorectal carcinoma (HNPCC) is an autosomal dominant disorder associated with colorectal and endometrial cancer and a range of other tumor types. Germline mutations in the DNA mismatch repair (MMR) genes, particularly MLH1, MSH2, and MSH6, underlie this disorder. The vast

  6. Genaesthics : Breast Surgery in BRCA1/2 Gene Mutation Carriers

    NARCIS (Netherlands)

    V.M.T. van Verschuer (Victorien)

    2017-01-01

    markdownabstractThe present thesis focuses on breast surgery in BRCA1/2 gene mutation carriers. The topics that are studied vary broadly, representing the multiple disciplines that are involved in the diagnostic work-up and treatment of BRCA1/2-associated breast cancer. The first part contains

  7. Ferredoxin Gene Mutation in Iranian Trichomonas Vaginalis Isolates

    Directory of Open Access Journals (Sweden)

    Soudabeh Heidari

    2013-09-01

    Full Text Available Background: Trichomonas vaginalis causes trichomoniasis and metronidazole is its chosen drug for treatment. Ferredoxin has role in electron transport and carbohydrate metabolism and the conversion of an inactive form of metronidazole (CO to its active form (CPR. Ferredoxin gene mutations reduce gene expression and increase its resistance to metronidazole. In this study, the frequency of ferredoxin gene mutations in clinical isolates of T.vaginalis in Tehran has been studied.Methods: Forty six clinical T. vaginalis isolates of vaginal secretions and urine sediment were collected from Tehran Province since 2011 till 2012. DNA was extracted and ferredoxin gene was amplified by PCR technique. The ferredoxin gene PCR products were sequenced to determine gene mutations.Results: In four isolates (8.69% point mutation at nucleotide position -239 (the translation start codon of the ferredoxin gene were detected in which adenosine were converted to thymine.Conclusion: Mutation at nucleotide -239 ferredoxin gene reduces translational regulatory protein’s binding affinity which concludes reduction of ferredoxin expression. For this reduction, decrease in activity and decrease in metronidazole drug delivery into the cells occur. Mutations in these four isolates may lead to resistance of them to metronidazole.

  8. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    Science.gov (United States)

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  9. Amelogenesis Imperfecta and Screening of Mutation in Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Fernanda Veronese Oliveira

    2014-01-01

    Full Text Available The aim of this study was to report the clinical findings and the screening of mutations of amelogenin gene of a 7-year-old boy with amelogenesis imperfecta (AI. The genomic DNA was extracted from saliva of patient and his family, followed by PCR and direct DNA sequencing. The c.261C>T mutation was found in samples of mother, father, and brother, but the mutation was not found in the sequence of the patient. This mutation is a silent mutation and a single-nucleotide polymorphism (rs2106416. Thus, it is suggested that the mutation found was not related to the clinical presence of AI. Further research is necessary to examine larger number of patients and genes related to AI.

  10. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    Science.gov (United States)

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  11. Gene Expression of the EGF System-a Prognostic Model in Non-Small Cell Lung Cancer Patients Without Activating EGFR Mutations

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, Birgitte; Folkersen, Birgitte Holst; Rasmussen, Torben Riis

    2016-01-01

    OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands is a l.......17-6.47], P model that takes the complexity of the EGF system into account and shows that this model is a strong prognostic marker in NSCLC patients.......OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands...... is a likely explanation. The aim of this study is to demonstrate that the combined network of receptors and ligands from the EGF system is a prognostic marker. MATERIAL AND METHODS: Gene expression of the receptors EGFR, HER2, HER3, HER4, and the ligands AREG, HB-EGF, EPI, TGF-α, and EGF was measured...

  12. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  13. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  14. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  15. Mutational and Evolutionary Analyses of Bovine Reprimo Gene ...

    African Journals Online (AJOL)

    It can therefore be concluded that bovine RPRM gene contained 4 transition mutations and 5 indels that can be used in marker assisted selection. Evolutionary findings also demonstrated the existence of a divergent evolution between bovine RPRM gene and RPRM gene of fishes and frog. Keywords: Identity, phylogeny ...

  16. Small Mutations of the DMD Gene in Taiwanese Families

    Directory of Open Access Journals (Sweden)

    Hsiao-Lin Hwa

    2008-06-01

    Conclusion: Most identified mutations either led to a predictable premature stop codon or resulted in splicing defects, which caused defective function of dystrophin. Our findings extend the mutation spectrum of the DMD gene. Molecular characterization of the affected families is important for genetic counseling and prenatal diagnosis.

  17. High incidence of GJB2 gene mutations among assortatively mating ...

    Indian Academy of Sciences (India)

    High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications. Amritkumar Pavithra, Justin Margret Jeffrey, Jayasankaran Chandru, Arabandi Ramesh and C. R. Srikumari Srisailapathy. J. Genet. 93, 207–213. Table 1. Consolidated table of GJB2 mutation status ...

  18. Homozygous mutation in the NPHP3 gene causing foetal nephronophthisis

    DEFF Research Database (Denmark)

    Abdullah, Uzma; Farooq, Muhammad; Fatima, Ambrin

    2017-01-01

    We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation...

  19. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    Science.gov (United States)

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  20. Genaesthics : Breast Surgery in BRCA1/2 Gene Mutation Carriers

    OpenAIRE

    Verschuer, Victorien

    2017-01-01

    markdownabstractThe present thesis focuses on breast surgery in BRCA1/2 gene mutation carriers. The topics that are studied vary broadly, representing the multiple disciplines that are involved in the diagnostic work-up and treatment of BRCA1/2-associated breast cancer. The first part contains studies on molecular and prognostic tumor characteristics in breast cancer. The thesis continues with an anatomical study on safety of prophylactic mastectomy, and finishes with studies on aesthetics an...

  1. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    Science.gov (United States)

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  2. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN .... Three novel AR gene mutations associated with AIS in XY sex-reversed females. Ta b le. 1 . ( contd. ) ..... disease, 1st edition. Springer Science + ...

  3. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    Science.gov (United States)

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  5. Discovery of cancer common and specific driver gene sets

    Science.gov (United States)

    2017-01-01

    Abstract Cancer is known as a disease mainly caused by gene alterations. Discovery of mutated driver pathways or gene sets is becoming an important step to understand molecular mechanisms of carcinogenesis. However, systematically investigating commonalities and specificities of driver gene sets among multiple cancer types is still a great challenge, but this investigation will undoubtedly benefit deciphering cancers and will be helpful for personalized therapy and precision medicine in cancer treatment. In this study, we propose two optimization models to de novo discover common driver gene sets among multiple cancer types (ComMDP) and specific driver gene sets of one certain or multiple cancer types to other cancers (SpeMDP), respectively. We first apply ComMDP and SpeMDP to simulated data to validate their efficiency. Then, we further apply these methods to 12 cancer types from The Cancer Genome Atlas (TCGA) and obtain several biologically meaningful driver pathways. As examples, we construct a common cancer pathway model for BRCA and OV, infer a complex driver pathway model for BRCA carcinogenesis based on common driver gene sets of BRCA with eight cancer types, and investigate specific driver pathways of the liquid cancer lymphoblastic acute myeloid leukemia (LAML) versus other solid cancer types. In these processes more candidate cancer genes are also found. PMID:28168295

  6. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.

    Science.gov (United States)

    Vural, Suleyman; Wang, Xiaosheng; Guda, Chittibabu

    2016-08-26

    The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic strategies. Several classification strategies based on ER/PR/HER2 expression or the expression profiles of a panel of genes have helped, but such methods often produce misleading results due to their dynamic nature. In contrast, somatic DNA mutations are relatively stable and lead to initiation and progression of many sporadic cancers. Hence in this study, we explore the use of gene mutation profiles to classify, characterize and predict the subgroups of breast cancers. We analyzed the whole exome sequencing data from 358 ethnically similar breast cancer patients in The Cancer Genome Atlas (TCGA) project. Somatic and non-synonymous single nucleotide variants identified from each patient were assigned a quantitative score (C-score) that represents the extent of negative impact on the gene function. Using these scores with non-negative matrix factorization method, we clustered the patients into three subgroups. By comparing the clinical stage of patients, we identified an early-stage-enriched and a late-stage-enriched subgroup. Comparison of the mutation scores of early and late-stage-enriched subgroups identified 358 genes that carry significantly higher mutations rates in the late stage subgroup. Functional characterization of these genes revealed important functional gene families that carry a heavy mutational load in the late state rich subgroup of patients. Finally, using the identified subgroups, we also developed a supervised classification model to predict the stage of the patients. This study demonstrates that gene mutation profiles can be effectively used with unsupervised machine-learning methods to identify clinically distinguishable breast cancer subgroups. The classification model developed in this method could provide a reasonable

  7. The Potential Contribution of BRCA Mutations to Early Onset and Familial Breast Cancer in Uzbekistan.

    Science.gov (United States)

    Abdikhakimov, Abdulla; Tukhtaboeva, Mukaddas; Adilov, Bakhtiyar; Turdikulova, Shahlo

    2016-01-01

    Breast cancer is the most common malignancy in women and affects approximately 1 out of 8 females in the US. Risk of developing breast cancer is strongly influenced by genetic factors. Germ-line mutations in BRCA1 and BRCA2 genes are associated with 5-10% of breast cancer incidence. To reduce the risk of developing cancer and to increase the likelihood of early detection, carriers of BRCA1 or BRCA2 mutations are offered surveillance programs and effective preventive medical interventions. Identification of founder mutations of BRCA1/2 in high risk communities can have a significant impact on the management of hereditary cancer at the level of the national healthcare systems, making genetic testing more affordable and cost-effective. BRCA1 and BRCA2 mutations in breast cancer patients have not been characterized in the Uzbek population. This pilot study aimed to investigate the contribution of BRCA1 and BRCA2 mutation to early onset and familial cases of breast cancer in Uzbekistan. A total of 67 patients with breast cancer and 103 age-matched disease free controls were included in this study. Utilizing SYBR Green based real-time allele-specific PCR, we have analyzed DNA samples of patients with breast cancer and disease free controls to identify the following BRCA1 and BRCA2 mutations: BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT. Three unrelated samples (4.5%) were found to be positive for the heterozygous 5382insCBRCA1 mutation, representing a possible founder mutation in the Uzbek population, supporting the need for larger studies examining the contribution of this mutation to breast cancer incidence in Uzbekistan. We did not find BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, and BRCA2 6174delT mutations. This preliminary evidence suggests a potential contribution of BRCA1 5382insC mutation to breast cancer development in Uzbek population. Taking into account a high disease penetrance in carriers of BRCA1 mutation, it seems

  8. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mutational profile of KIT and PDGFRA genes in gastrointestinal stromal tumors in Peruvian samples

    Directory of Open Access Journals (Sweden)

    José Buleje

    2015-02-01

    Full Text Available Introduction: Gastrointestinal stromal tumors (GISTs are mesenchymal neoplasms usually caused by somatic mutations in the genes KIT (c-KIT or PDGFRA. Mutation characterization has become an important exam for GIST patients because it is useful in predicting the response to the inhibitors of receptor tyrosine kinase (RTK. Objectives: The aim of this study was to determine the frequency of KIT and PDGFRA mutations in 25 GIST samples collected over two years at two national reference hospitals in Peru. There were 21 samples collected from the Instituto Nacional de Enfermedades Neoplásicas (INEN, national cancer center and 4 samples collected from Hospital A. Loayza. Methods and materials: In this retrospective study, we performed polymerase chain reaction (PCR amplification and deoxyribonucleic acid (DNA sequencing of KIT (exons 9, 11, 13, and 17 and PDGFRA (exons 12 and 18 genes in 20 FFPE (formalin-fixed, paraffin-embedded and 5 frozen GIST samples. Results: We report 21 mutations, including deletions, duplications, and missense, no mutations in 2 samples, and 2 samples with no useful DNA for further analysis. Eighty-six percent of these mutations were located in exon 11 of KIT, and 14 % were located in exon 18 of PDGFRA. Conclusions: Our study identified mutations in 21 out of 25 GIST samples from 2 referential national hospitals in Peru, and the mutation proportion follows a global tendency observed from previous studies (i.e., the majority of samples presented KIT mutations followed by a minor percentage of PDGFRA mutations. This study presents the first mutation data of the KIT and PDGFRA genes from Peruvian individuals with GIST.

  10. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    International Nuclear Information System (INIS)

    Kast, Karin; Schackert, Hans K; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin

    2012-01-01

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes

  11. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Karin [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schackert, Hans K [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Neuhann, Teresa M [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Medical Genetic Center, Munich (Germany); Görgens, Heike [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Becker, Kerstin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Keller, Katja [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Klink, Barbara [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Aust, Daniela [Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Distler, Wolfgang [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schröck, Evelin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany)

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  12. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Directory of Open Access Journals (Sweden)

    Kast Karin

    2012-11-01

    Full Text Available Abstract Background Hereditary Breast and Ovarian Cancer Syndrome (HBOCS and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR genes MLH1, MSH2, MSH6 or PMS2 are very rare. Case presentation We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Conclusions Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  13. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer.

    Science.gov (United States)

    Kast, Karin; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin; Schackert, Hans K

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  14. Mutation inactivation of Nijmegen breakage syndrome gene (NBS1 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Nijmegen breakage syndrome (NBS with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin, involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC. Eight missense NBS1 mutations were identified in six of 64 (9.4% HCCs and two of 18 (11.1% ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.

  15. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  16. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  17. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  18. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.

    Science.gov (United States)

    Fennell, Lochlan J; Clendenning, Mark; McKeone, Diane M; Jamieson, Saara H; Balachandran, Samanthy; Borowsky, Jennifer; Liu, John; Kawamata, Futoshi; Bond, Catherine E; Rosty, Christophe; Burge, Matthew E; Buchanan, Daniel D; Leggett, Barbara A; Whitehall, Vicki L J

    2018-01-01

    The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers

  19. Colorectal Adenomatous Polyposis: Heterogeneity of Susceptibility Gene Mutations and Phenotypes in a Cohort of Italian Patients.

    Science.gov (United States)

    Marabelli, Monica; Molinaro, Valeria; Abou Khouzam, Raefa; Berrino, Enrico; Panero, Mara; Balsamo, Antonella; Venesio, Tiziana; Ranzani, Guglielmina Nadia

    2016-12-01

    Colorectal adenomatous polyposis entailing cancer predisposition is caused by constitutional mutations in different genes. APC is associated with the familial adenomatous polyposis (FAP/AFAP) and MUTYH with the MUTYH-associated polyposis (MAP), while POLE and POLD1 mutations cause the polymerase proofreading-associated polyposis (PPAP). We screened for mutations in patients with multiple adenomas/FAP: 121 patients were analyzed for APC and MUTYH mutations, and 36 patients were also evaluated for POLE and POLD1 gene mutations. We found 20 FAP/AFAP, 15 MAP, and no PPAP subjects: pathogenic mutations proved to be heterogeneous, and included 5 APC and 1 MUTYH novel mutations. The mutation detection rate was significantly different between patients with 5-100 polyps and those with >100 polyps (p = 8.154 × 10 -7 ), with APC mutations being associated with an aggressive phenotype (p = 1.279 × 10 -9 ). Mean age at diagnosis was lower in FAP/AFAP compared to MAP (p = 3.055 × 10 -4 ). Mutation-negative probands showed a mean age at diagnosis that was significantly higher than FAP/AFAP (p = 3.46986 × 10 -7 ) and included 45.3% of patients with <30 polyps and 70.9% of patients with no family history. This study enlarges the APC and MUTYH mutational spectra, and also evaluated variants of uncertain significance, including the MUTYH p.Gln338His mutation. Moreover this study underscores the phenotypic heterogeneity and genotype-phenotype correlations in a cohort of Italian patients.

  20. Cancer risks for MLH1 and MSH2 mutation carriers

    OpenAIRE

    Dowty, James G.; Win, Aung K.; Buchanan, Daniel D.; Lindor, Noralane M.; Macrae, Finlay A.; Clendenning, Mark; Antill, Yoland C.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steve; Le Marchand, Loic; Newcomb, Polly A.; Haile, Robert W.; Young, Graeme P.; James, Paul A.

    2013-01-01

    We studied 17,576 members of 166 MLH1 and 224 MSH2 mutation-carrying families from the Colon Cancer Family Registry. Average cumulative risks of colorectal cancer (CRC), endometrial cancer (EC) and other cancers for carriers were estimated using modified segregation analysis conditioned on ascertainment criteria. Heterogeneity in risks was investigated using a polygenic risk modifier. Average CRC cumulative risks to age 70 years (95% confidence intervals) for MLH1 and MSH2 mutation carriers, ...

  1. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  2. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  3. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  4. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  5. Contribution of Germline Mutations in the RAD51B>, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population

    DEFF Research Database (Denmark)

    Song, Honglin; Dicks, Ed; Ramus, Susan J

    2015-01-01

    Screening Study (UK_FOCSS) after quality-control analysis. RESULTS: In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P

  6. Interleukin-7 receptor-α gene mutations are not detected in adult T-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rozovski, Uri; Li, Ping; Harris, David; Ohanian, Maro; Kantarjian, Hagop; Estrov, Zeev

    2014-01-01

    Somatic mutations in cancer cell genes are classified according to their functional significance. Those that provide the malignant cells with significant advantage are collectively referred to as driver mutations and those that do not, are the passenger mutations. Accordingly, analytical criteria to distinguish driver mutations from passenger mutations have been recently suggested. Recent studies revealed mutations in interleukin-7 receptor-α (IL7R) gene in 10% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and in only a few cases of pediatric B-ALL. IL7R mutations are also frequently found in patients with lung cancer, but whereas in pediatric T-ALL IL7R mutations are “drivers” (consisting of gain-of-function mutations within a narrow 50-base pair interval at exon 6 that confer cytokine-independent cell growth and promote tumor transformation), in lung cancer, mutations are substitution mutations randomly distributed across the gene and are probably only “passenger” events. Because the treatment response of adult T-ALL is significantly poorer than that of childhood T-ALL and because exon 6 IL7R mutations play a role in the pathogenesis of childhood T-ALL, we sought to determine how the pattern of IL7R mutations varies between adult and childhood T-ALL. To that end, we sequenced the 50-base pair interval in exon 6 of the IL7R of DNA obtained from bone marrow samples of 35 randomly selected adult patients with T-ALL. Our analysis revealed that none of these 35 samples carried an IL7R mutation in exon 6. Whether differences in the genetic makeup of adult and childhood T-ALL explain the differential response to therapy remains to be determined

  7. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  8. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  9. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  10. Ataxia Telangiectasia–Mutated Gene Polymorphisms and Acute Normal Tissue Injuries in Cancer Patients After Radiation Therapy: A Systematic Review and Meta-analysis

    International Nuclear Information System (INIS)

    Dong, Lihua; Cui, Jingkun; Tang, Fengjiao; Cong, Xiaofeng; Han, Fujun

    2015-01-01

    Purpose: Studies of the association between ataxia telangiectasia–mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. Methods and Materials: Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. Results: The meta-analysis was conducted on the ATM polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. Conclusions: Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was

  11. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device... Guidance Document: CFTR Gene Mutation Detection System.” See § 866.1(e) for the availability of this...

  12. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer

    Science.gov (United States)

    Win, Aung Ko; Jenkins, Mark A.; Dowty, James G.; Antoniou, Antonis C.; Lee, Andrew; Giles, Graham G.; Buchanan, Daniel D.; Clendenning, Mark; Rosty, Christophe; Ahnen, Dennis J.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steven; Le Marchand, Loïc; Haile, Robert W.; Potter, John D.; Zheng, Yingye; Lindor, Noralane M.; Newcomb, Polly A.; Hopper, John L.; MacInnis, Robert J.

    2016-01-01

    Background While high-risk mutations in identified major susceptibility genes (DNA mismatch repair genes and MUTYH) account for some familial aggregation of colorectal cancer, their population prevalence and the causes of the remaining familial aggregation are not known. Methods We studied the families of 5,744 colorectal cancer cases (probands) recruited from population cancer registries in the USA, Canada and Australia and screened probands for mutations in mismatch repair genes and MUTYH. We conducted modified segregation analyses using the cancer history of first-degree relatives, conditional on the proband’s age at diagnosis. We estimated the prevalence of mutations in the identified genes, the prevalence of and hazard ratio for unidentified major gene mutations, and the variance of the residual polygenic component. Results We estimated that 1 in 279 of the population carry mutations in mismatch repair genes (MLH1= 1 in 1946, MSH2= 1 in 2841, MSH6= 1 in 758, PMS2= 1 in 714), 1 in 45 carry mutations in MUTYH, and 1 in 504 carry mutations associated with an average 31-fold increased risk of colorectal cancer in unidentified major genes. The estimated polygenic variance was reduced by 30–50% after allowing for unidentified major genes and decreased from 3.3 for age colorectal cancer. Impact Our findings could aid gene discovery and development of better colorectal cancer risk prediction models. PMID:27799157

  13. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC

    Science.gov (United States)

    Schell, Michael J.; Yang, Mingli; Teer, Jamie K.; Lo, Fang Yin; Madan, Anup; Coppola, Domenico; Monteiro, Alvaro N. A.; Nebozhyn, Michael V.; Yue, Binglin; Loboda, Andrey; Bien-Willner, Gabriel A.; Greenawalt, Danielle M.; Yeatman, Timothy J.

    2016-01-01

    Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC. PMID:27302369

  14. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  15. HFE gene mutations and Wilson's disease in Sardinia.

    Science.gov (United States)

    Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi

    2010-03-01

    Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (PHFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.

  16. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  17. Mutation analysis of the preproghrelin gene

    DEFF Research Database (Denmark)

    Larsen, Lesli H; Gjesing, Anette P; Sørensen, Thorkild I A

    2005-01-01

    To investigate the preproghrelin gene for variants and their association with obesity and type 2 diabetes.......To investigate the preproghrelin gene for variants and their association with obesity and type 2 diabetes....

  18. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  19. The IARC TP53 mutation database: a resource for studying the significance of TP53 mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Magali Olivier

    2007-02-01

    Full Text Available

    The tumor suppressor gene TP53 is frequently inactivated by gene mutations in many types of human sporadic cancers, and inherited TP53 mutations predispose to a wide spectrum of early-onset tumors (Li-Fraumeni et Li-Fraumenilike Syndromes. All TP53 gene variations (somatic and germline mutations, as well as polymorphisms that are reported in the scientific literature or in SNP databases are compiled in the IARC TP53 Database. This database provides structured data and analysis tools to study mutation patterns in human cancers and cell-lines and to investigate the clinical impact of mutations. It contains annotations related to the clinical and pathological characteristics of tumors, as well as the demographics and carcinogen exposure of patients. The IARC TP53 web site (http://www-p53.iarc.fr/ provides a search interface for the core database and includes a comprehensive user guide, a slideshow on TP53 mutations in human cancer, protocols and references for sequencing TP53 gene, and links to relevant publications and bioinformatics databases. The database interface allows download of entire data sets and propose various tools for the selection, analysis and downloads of specific sets of data according to user's query.

    Recently, new annotations on the functional properties of mutant p53 proteins have been integrated in this database. Indeed, the most frequent TP53 alterations observed in cancers (75% are missense mutations that result in the production of a mutant protein that differ from the wildtype by one single amino-acid. The characterization of the biological activities of these mutant proteins is thus very important. Over the last ten years, a great amount of systematic data has been generated from experimental assays performed in

  20. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  1. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  2. Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events

    DEFF Research Database (Denmark)

    Serizawa, Reza R; Ralfkiaer, Ulrik; Steven, Kenneth

    2011-01-01

    The bladder cancer genome harbors numerous oncogenic mutations and aberrantly methylated gene promoters. The aim of our study was to generate a profile of these alterations and investigate their use as biomarkers in urine sediments for noninvasive detection of bladder cancer. We systematically sc...... noninvasive, DNA-based detection of bladder cancer....

  3. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  4. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    Science.gov (United States)

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  5. A novel mutation of the fibrillin gene causing Ectopia lentis

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. (National Public Health Institute, Helsinki (Finland)); Child, A. (St. George' s Hospital Medical School, London (United Kingdom)); Peltonen, L. (Duncan Guthrie Institute, Glasgow, Scotland (United Kingdom))

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  6. Hemochromatosis (HFE gene mutations in Brazilian chronic hemodialysis patients

    Directory of Open Access Journals (Sweden)

    F.V. Perícole

    2005-09-01

    Full Text Available Patients with chronic renal insufficiency (CRI have reduced hemoglobin levels, mostly as a result of decreased kidney production of erythropoietin, but the relation between renal insufficiency and the magnitude of hemoglobin reduction has not been well defined. Hereditary hemochromatosis is an inherited disorder of iron metabolism. The importance of the association of hemochromatosis with treatment for anemia among patients with CRI has not been well described. We analyzed the frequency of the C282Y and H63D mutations in the HFE gene in 201 Brazilian individuals with CRI undergoing hemodialysis. The analysis of the effects of HFE mutations on iron metabolism and anemia with biochemical parameters was possible in 118 patients of this study (hemoglobin, hematocrit, ferritin levels, transferrin saturation, and serum iron. A C282Y heterozygous mutation was found in 7/201 (3.4% and H63D homozygous and heterozygous mutation were found in 2/201 (1.0% and 46/201 (22.9%, respectively. The allelic frequencies of the HFE mutations (0.017 for C282Y mutation and 0.124 for H63D mutation did not differ between patients with CRI and healthy controls. Regarding the biochemical parameters, no differences were observed between HFE heterozygous and mutation-negative patients, although ferritin levels were not higher among patients with the H63D mutation (P = 0.08. From what we observed in our study, C282Y/H63D HFE gene mutations are not related to degrees of anemia or iron stores in CRI patients receiving intravenous iron supplementation (P > 0.10. Nevertheless, the present data suggest that the H63D mutation may have an important function as a modulating factor of iron overload in these patients.

  7. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    Science.gov (United States)

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes

    Directory of Open Access Journals (Sweden)

    Angela Toss

    2015-01-01

    Full Text Available More than one-fifth of ovarian tumors have hereditary susceptibility and, in about 65–85% of these cases, the genetic abnormality is a germline mutation in BRCA genes. Nevertheless, several other suppressor genes and oncogenes have been associated with hereditary ovarian cancers, including the mismatch repair (MMR genes in Lynch syndrome, the tumor suppressor gene, TP53, in the Li-Fraumeni syndrome, and several other genes involved in the double-strand breaks repair system, such as CHEK2, RAD51, BRIP1, and PALB2. The study of genetic discriminators and deregulated pathways involved in hereditary ovarian syndromes is relevant for the future development of molecular diagnostic strategies and targeted therapeutic approaches. The recent development and implementation of next-generation sequencing technologies have provided the opportunity to simultaneously analyze multiple cancer susceptibility genes, reduce the delay and costs, and optimize the molecular diagnosis of hereditary tumors. Particularly, the identification of mutations in ovarian cancer susceptibility genes in healthy women may result in a more personalized cancer risk management with tailored clinical and radiological surveillance, chemopreventive approaches, and/or prophylactic surgeries. On the other hand, for ovarian cancer patients, the identification of mutations may provide potential targets for biologic agents and guide treatment decision-making.

  9. Whole genomes redefine the mutational landscape of pancreatic cancer.

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  10. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  11. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  12. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder

    DEFF Research Database (Denmark)

    Gui, Yaoting; Guo, Guangwu; Huang, Yi

    2011-01-01

    frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.......Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we...

  13. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Iver Nordentoft

    2014-06-01

    Full Text Available Bladder cancer (or urothelial cell carcinoma [UCC] is characterized by field disease (malignant alterations in surrounding mucosa and frequent recurrences. Whole-genome, exome, and transcriptome sequencing of 38 tumors, including four metachronous tumor pairs and 20 superficial tumors, identified an APOBEC mutational signature in one-third. This was biased toward the sense strand, correlated with mean expression level, and clustered near breakpoints. A > G mutations were up to eight times more frequent on the sense strand (p < 0.002 in [ACG]AT contexts. The patient-specific APOBEC signature was negatively correlated to repair-gene expression and was not related to clinicopathological parameters. Mutations in gene families and single genes were related to tumor stage, and expression of chromatin modifiers correlated with survival. Evolutionary and subclonal analyses of early/late tumor pairs showed a unitary origin, and discrete tumor clones contained mutated cancer genes. The ancestral clones contained Pik3ca/Kdm6a mutations and may reflect the field-disease mutations shared among later tumors.

  14. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  15. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  16. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Bancroft, Elizabeth K; Page, Elizabeth C; Castro, Elena

    2014-01-01

    AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng......BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening....../ml were offered prostate biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. RESULTS AND LIMITATIONS: We...

  17. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  18. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    Science.gov (United States)

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  19. GPR143 gene mutation analysis in pediatric patients with albinism.

    Science.gov (United States)

    Trebušak Podkrajšek, Katarina; Stirn Kranjc, Branka; Hovnik, Tinka; Kovač, Jernej; Battelino, Tadej

    2012-09-01

    X-linked ocular albinism type 1 is difficult to differentiate clinically from other forms of albinism in young patients. X-linked ocular albinism type 1 is caused by mutations in the GPR143 gene, encoding melanosome specific G-protein coupled receptor. Patients typically present with moderately to severely reduced visual acuity, nystagmus, strabismus, photophobia, iris translucency, hypopigmentation of the retina, foveal hypoplasia and misrouting of optic nerve fibers at the chiasm. Following clinical ophthalmological evaluation, GPR143 gene mutational analyses were performed in a cohort of 15 pediatric male patients with clinical signs of albinism. Three different mutations in the GPR143 gene were identified in four patients, including a novel c.886G>A (p.Gly296Arg) mutation occurring "de novo" and a novel intronic c.360 + 5G>A mutation, identified in two related boys. Four patients with X-linked ocular albinism type 1 were identified from a cohort of 15 boys with clinical signs of albinism using mutation detection methods. Genetic analysis offers the possibility of early definitive diagnosis of ocular albinism type 1 in a significant portion of boys with clinical signs of albinism.

  20. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  1. Somatic mutations in mismatch repair genes in sporadic gastric carcinomas are not a cause but a consequence of the mutator phenotype

    NARCIS (Netherlands)

    Pinto, Mafalda; Wub, Ying; Mensink, Rob G. J.; Cirnes, Luis; Seruca, Raquel; Hofstra, Robert M. W.

    2008-01-01

    In hereditary nonpolyposis colorectal cancer (HNPCC), patients' mismatch repair (MMR) gene mutations cause MMR deficiency, leading to microsatellite instability (MSI-H). MSI-H is also found in a substantial fraction of sporadic gastric carcinomas (SGC), mainly due to MLH1 promoter hypermethylation,

  2. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene

    International Nuclear Information System (INIS)

    Tanaka, Hisashi; Hayashi, Akihito; Morimoto, Takeshi; Taima, Kageaki; Tanaka, Yoshihito; Shimada, Michiko; Kurose, Akira; Takanashi, Shingo; Okumura, Ken

    2012-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitor (TKI) is used for the patients with EGFR-mutant lung cancer. Recently, phase III studies in the patients with EGFR-mutant demonstrated that EGFR-TKI monotherapy improved progression-free survival compared with platinum-doublet chemotherapy. The echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion oncogene represents one of the newest molecular targets in non-small cell lung cancer (NSCLC). Patients who harbor EML4-ALK fusions have been associated with a lack of EGFR or KRAS mutations. We report a 39-year-old patient diagnosed as adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. We treated this patient with erlotinib as the third line therapy, but no clinical benefit was obtained. We experienced a rare case with EGFR mutation and EML4-ALK. Any clinical benefit using EGFR-TKI was not obtained in our case. The therapeutic choice for the patients with more than one driver mutations is unclear. We needs further understanding of the lung cancer molecular biology and the biomarker infomation

  3. Common ataxia telangiectasia mutated haplotypes and risk of breast cancer: a nested case–control study

    International Nuclear Information System (INIS)

    Tamimi, Rulla M; Hankinson, Susan E; Spiegelman, Donna; Kraft, Peter; Colditz, Graham A; Hunter, David J

    2004-01-01

    The ataxia telangiectasia mutated (ATM) gene is a tumor suppressor gene with functions in cell cycle arrest, apoptosis, and repair of DNA double-strand breaks. Based on family studies, women heterozygous for mutations in the ATM gene are reported to have a fourfold to fivefold increased risk of breast cancer compared with noncarriers of the mutations, although not all studies have confirmed this association. Haplotype analysis has been suggested as an efficient method for investigating the role of common variation in the ATM gene and breast cancer. Five biallelic haplotype tagging single nucleotide polymorphisms are estimated to capture 99% of the haplotype diversity in Caucasian populations. We conducted a nested case–control study of breast cancer within the Nurses' Health Study cohort to address the role of common ATM haplotypes and breast cancer. Cases and controls were genotyped for five haplotype tagging single nucleotide polymorphisms. Haplotypes were predicted for 1309 cases and 1761 controls for which genotype information was available. Six unique haplotypes were predicted in this study, five of which occur at a frequency of 5% or greater. The overall distribution of haplotypes was not significantly different between cases and controls (χ 2 = 3.43, five degrees of freedom, P = 0.63). There was no evidence that common haplotypes of ATM are associated with breast cancer risk. Extensive single nucleotide polymorphism detection using the entire genomic sequence of ATM will be necessary to rule out less common variation in ATM and sporadic breast cancer risk

  4. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  5. Prevalence of PALB2 mutations in breast cancer patients in multi-ethnic Asian population in Malaysia and Singapore.

    Science.gov (United States)

    Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang

    2013-01-01

    The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.

  6. The Effect of Reproductive Factors on Breast Cancer Presentation in Women Who Are BRCA Mutation Carrier.

    Science.gov (United States)

    Kim, Ju-Yeon; Moon, Hyeong-Gon; Kang, Young-Joon; Han, Wonshik; Noh, Woo-Chul; Jung, Yongsik; Moon, Byung-In; Kang, Eunyoung; Park, Sung-Shin; Lee, Min Hyuk; Park, Bo Young; Lee, Jong Won; Noh, Dong-Young

    2017-09-01

    Germline mutations in the BRCA1 and BRCA2 genes confer increased risks for breast cancers. However, the clinical presentation of breast cancer among women who are carriers of the BRCA1 or BRCA2 ( BRCA1/2 carriers) mutations is heterogenous. We aimed to identify the effects of the reproductive histories of women with the BRCA1/2 mutations on the clinical presentation of breast cancer. We retrospectively analyzed clinical data on women with proven BRCA1 and BRCA2 mutations who were recruited to the Korean Hereditary Breast Cancer study, from 2007 to 2014. Among the 736 women who were BRCA1/2 mutation carriers, a total of 483 women had breast cancers. Breast cancer diagnosis occurred at significantly younger ages in women who experienced menarche at ≤14 years of age, compared to those who experienced menarche at >14 years of age (37.38±7.60 and 43.30±10.11, respectively, p women with the BRCA2 mutation. The prevalence of advanced stages (stage II or III vs. stage I) of disease in parous women was higher than in nulliparous women (68.5% vs. 55.2%, p =0.043). This association was more pronounced in women with the BRCA2 mutation (hazard ratio, 2.67; p =0.014). Our results suggest that reproductive factors, such as the age of onset of menarche and the presence of parity, are associated with the clinical presentation patterns of breast cancer in BRCA1/2 mutation carriers.

  7. Prostate cancer in a male with Holt-Oram syndrome: first clinical association of the TBX5 mutation.

    LENUS (Irish Health Repository)

    Aherne, Noel J

    2013-08-05

    Holt-Oram syndrome is an autosomal dominant disorder which is caused by mutations of TBX5 and is characterised by cardiac and skeletal abnormalities. TBX5 is part of the T-box gene family and is thought to upregulate tumour cell proliferation and metastasis when mutated. We report the first clinical case of prostate cancer in an individual with Holt Oram syndrome.

  8. Deep learning of mutation-gene-drug relations from the literature.

    Science.gov (United States)

    Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo

    2018-01-25

    Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be

  9. TINF2 Gene Mutation in a Patient with Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    T. W. Hoffman

    2016-01-01

    Full Text Available Pulmonary fibrosis is a frequent manifestation of telomere syndromes. Telomere gene mutations are found in up to 25% and 3% of patients with familial disease and sporadic disease, respectively. The telomere gene TINF2 encodes an eponymous protein that is part of the shelterin complex, a complex involved in telomere protection and maintenance. A TINF2 gene mutation was recently reported in a family with pulmonary fibrosis. We identified a heterozygous Ser245Tyr mutation in the TINF2 gene of previously healthy female patient that presented with progressive cough due to pulmonary fibrosis as well as panhypogammaglobulinemia at age 52. Retrospective multidisciplinary evaluation classified her as a case of possible idiopathic pulmonary fibrosis. Telomere length-measurement indicated normal telomere length in the peripheral blood compartment. This is the first report of a TINF2 mutation in a patient with sporadic pulmonary fibrosis, which represents another association between TINF2 mutations and this disease. Furthermore, this case underlines the importance of telomere dysfunction and not telomere length alone in telomere syndromes and draws attention to hypogammaglobulinemia as a manifestation of telomere syndromes.

  10. BRCA2 Mutations in 154 Finnish Male Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Kirsi Syrjäkoski

    2004-09-01

    Full Text Available The etiology and pathogenesis of male breast cancer (MBC are poorly known. This is due to the fact that the disease is rare, and large-scale genetic epidemiologic studies have been difficult to carry out. Here, we studied the frequency of eight recurrent Finnish BRCA2 founder mutations in a large cohort of 154 MBC patients (65% diagnosed in Finland from 1967 to 1996. Founder mutations were detected in 10 patients (6.5%, eight of whom carried the 9346(-2 A>G mutation. Two novel mutations (4075 delGT and 5808 del5 were discovered in a screening of the entire BRCA2 coding region in 34 samples. However, these mutations were not found in the rest of the 120 patients studied. Patients with positive family history of breast and/or ovarian cancer were often BRCA2 mutation carriers (44%, whereas those with no family history showed a low frequency of involvement (3.6%; P < .0001. Finally, we found only one Finnish MBC patient with 999 dell, the most common founder mutation in Finnish female breast cancer (FBC patients, and one that explains most of the hereditary FBC and MBC cases in Iceland. The variation in BRCA2 mutation spectrum between Finnish MBC patients and FBC patients in Finland and breast cancer patients in Iceland suggests that modifying genetic and environmental factors may significantly influence the penetrance of MBC and FBC in individuals carrying germline BRCA2 mutations in some populations.

  11. An effect from anticipation also in hereditary nonpolyposis colorectal cancer families without identified mutations

    DEFF Research Database (Denmark)

    Timshel, Susanne; Therkildsen, Christina; Bendahl, Pär-Ola

    2009-01-01

    the Amsterdam criteria for HNPCC and showed normal MMR function and/or lack of disease-predisposing MMR gene mutation. In total, 319 cancers from 212 parent-child pairs in 99 families were identified. A paired t-test and a bivariate statistical model were used to assess anticipation. Both methods demonstrated...

  12. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    Science.gov (United States)

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  13. Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant Fanconi Anemia Genes

    OpenAIRE

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, inclu...

  14. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    Science.gov (United States)

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  15. ATM/RB1 mutations predict shorter overall survival in urothelial cancer.

    Science.gov (United States)

    Yin, Ming; Grivas, Petros; Emamekhoo, Hamid; Mendiratta, Prateek; Ali, Siraj; Hsu, JoAnn; Vasekar, Monali; Drabick, Joseph J; Pal, Sumanta; Joshi, Monika

    2018-03-30

    Mutations of DNA repair genes, e.g. ATM/RB1 , are frequently found in urothelial cancer (UC) and have been associated with better response to cisplatin-based chemotherapy. Further external validation of the prognostic value of ATM/RB1 mutations in UC can inform clinical decision making and trial designs. In the discovery dataset, ATM/RB1 mutations were present in 24% of patients and were associated with shorter OS (adjusted HR 2.67, 95% CI, 1.45-4.92, p = 0.002). There was a higher mutation load in patients carrying ATM/RB1 mutations (median mutation load: 6.7 versus 5.5 per Mb, p = 0.072). In the validation dataset, ATM/RB1 mutations were present in 22.2% of patients and were non-significantly associated with shorter OS (adjusted HR 1.87, 95% CI, 0.97-3.59, p = 0.06) and higher mutation load (median mutation load: 8.1 versus 7.2 per Mb, p = 0.126). Exome sequencing data of 130 bladder UC patients from The Cancer Genome Atlas (TCGA) dataset were analyzed as a discovery cohort to determine the prognostic value of ATM/RB1 mutations. Results were validated in an independent cohort of 81 advanced UC patients. Cox proportional hazard regression analysis was performed to calculate the hazard ratio (HR) and 95% confidence interval (CI) to compare overall survival (OS). ATM/RB1 mutations may be a biomarker of poor prognosis in unselected UC patients and may correlate with higher mutational load. Further studies are required to determine factors that can further stratify prognosis and evaluate predictive role of ATM/RB1 mutation status to immunotherapy and platinum-based chemotherapy.

  16. Clinical follow up of Mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes Estudio de seguimiento clínico de mujeres mexicanas con cáncer de mama de inicio temprano y mutaciones en los genes BRCA1 y BRCA2

    Directory of Open Access Journals (Sweden)

    Ana Laura Calderón-Garcidueñas

    2005-04-01

    Full Text Available OBJECTIVE: This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC. MATERIAL AND METHODS: A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA. The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1 a mutation screening by heteroduplex analysis (HA of BRCA1 and BRCA2 genes and 2 a sequence analysis. RESULTS: Of 22 patients, 14 (63.6% showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCA1 (exon 11, 3587delT and the other in the BRCA2 gene (exon 11, 2664InsA. CONCLUSIONS: These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.OBJETIVO: Describir la presencia de mutaciones en los genes BRCA1 y BRCA2 y la evolución clínica de un grupo de mujeres con carcinoma mamario de inicio temprano (CMIT. MATERIAL Y MÉTODOS: Se realizó un estudio hospitalario, prospectivo, en una muestra de 22 pacientes con CMIT (siete en etapa clínica IIA, ocho en la IIB y siete en etapa IIIA. Las pacientes fueron atendidas en un hospital del noreste de México en 1997 y se realizó un seguimiento clínico durante cinco años. El análisis molecular incluyó: 1 análisis heterodúplex (AH para detectar bandas variantes en la secuencia de ADN de los genes BRCA1 y BRCA2, y 2 análisis de secuenciación. RESULTADOS: De 22 pacientes, 14 (63.6% mostraron banda variante por AH en los genes BRCA1 y BRCA2: ocho polimorfismos, cuatro mutaciones de significado incierto y dos mutaciones noveles con proteína truncada, una en BRCA1 (exón 11, 3587delT y otra en BRCA2 (exón 11, 2664Ins

  17. Profiling of oligosaccharides and p53 gene mutation in Filipino breast tumors

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Vera, Azucena C.; Magno, Jose Donato A.; Cruz, Michael Joseph B.; Prodigalidad, Abelardo-Alan T.; Jacinto, Sonia D.

    2010-01-01

    Majority of patients are diagnosed with benign tumors, however, such benign tumors can progress to an invasive disease. Since carbohydrate-mediated cell-cell adhesion and proliferative potential play crucial roles in tumorigenesis and tumor aggressive behavior, we analyzed the qualitative changes in oligosaccharide expression and analyzed for presence of mutation in the tumor suppressor p53 gene, the most mutated gene in all human cancers. Forty-three (43) breast tumors were screened for p53 mutation in exons 2-11 using polymerase chain reaction (PCR)-amplification coupled to temporal temperature gradient electrophoresis (TTGE). Paraffin-embedded tissues were stained with biotinylated-glycoproteins containing the following sugar groups: mannose (Man), lactose (Lac), fucoidan (Fuc), N-acetyl-glucosamine (GlcNac), N-acetyl-b-galactosamine (GalNAc) and hyaluronic acid (Hya). Expression of carbohydrate receptors was significantly elevated (p=0.003) in malignant compared with benign tumors, particularly at receptors for GalNAc, lac and Fuc. No change in overall glycan signatures using our panel of neoglycoconjugates was noted when grouped according to p53 mutation status in both benign and malignant cases. Although the prognostic value of carbohydrate-receptors in breast cancer has not been validated to date, our results indicate that benign and malignant tumors can be defined by their affinities to our battery of neoglyconjugates. However, result from our reverse lectin histochemistry failed to correlated glycan signature with presence of p53 mutations. (author)

  18. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Directory of Open Access Journals (Sweden)

    Monteiro Santos Erika

    2012-02-01

    Full Text Available Abstract Background Lynch syndrome (LS is the most common form of inherited predisposition to colorectal cancer (CRC, accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1, mutS homolog 2 (MSH2, postmeiotic segregation increased 1 (PMS1, post-meiotic segregation increased 2 (PMS2 and mutS homolog 6 (MSH6. Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846, Barnetson (0.850, MMRpro (0.821 and Wijnen (0.807 models did not present significant statistical difference. The Myriad model presented lower AUC (0.704 than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad and 0.87 (Wijnen and specificity ranged from 0 (Myriad to 0.38 (Barnetson. Conclusions The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  19. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Santos, Erika Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Silva Junior, Wilson Araujo da [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Carraro, Dirce Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Rossi, Benedito Mauro; Valentin, Mev Dominguez [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Carneiro, Felipe [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Oliveira, Ligia Petrolini de [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Nakagawa, Wilson Toshihiko [Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Gomy, Israel [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Faria Ferraz, Victor Evangelista de [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil)

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  20. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    International Nuclear Information System (INIS)

    Monteiro Santos, Erika Maria; Silva Junior, Wilson Araujo da; Carraro, Dirce Maria; Rossi, Benedito Mauro; Valentin, Mev Dominguez; Carneiro, Felipe; Oliveira, Ligia Petrolini de; Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; Faria Ferraz, Victor Evangelista de

    2012-01-01

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models

  1. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer.

    Science.gov (United States)

    Rothé, F; Laes, J-F; Lambrechts, D; Smeets, D; Vincent, D; Maetens, M; Fumagalli, D; Michiels, S; Drisis, S; Moerman, C; Detiffe, J-P; Larsimont, D; Awada, A; Piccart, M; Sotiriou, C; Ignatiadis, M

    2014-10-01

    Molecular screening programs use next-generation sequencing (NGS) of cancer gene panels to analyze metastatic biopsies. We interrogated whether plasma could be used as an alternative to metastatic biopsies. The Ion AmpliSeq™ Cancer Hotspot Panel v2 (Ion Torrent), covering 2800 COSMIC mutations from 50 cancer genes was used to analyze 69 tumor (primary/metastases) and 31 plasma samples from 17 metastatic breast cancer patients. The targeted coverage for tumor DNA was ×1000 and for plasma cell-free DNA ×25 000. Whole blood normal DNA was used to exclude germline variants. The Illumina technology was used to confirm observed mutations. Evaluable NGS results were obtained for 60 tumor and 31 plasma samples from 17 patients. When tumor samples were analyzed, 12 of 17 (71%, 95% confidence interval (CI) 44% to 90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1 or IDH2 gene. When plasma samples were analyzed, 12 of 17 (71%, 95% CI: 44-90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1, IDH2 and SMAD4. All mutations were confirmed. When we focused on tumor and plasma samples collected at the same time-point, we observed that, in four patients, no mutation was identified in either tumor or plasma; in nine patients, the same mutations was identified in tumor and plasma; in two patients, a mutation was identified in tumor but not in plasma; in two patients, a mutation was identified in plasma but not in tumor. Thus, in 13 of 17 (76%, 95% CI 50% to 93%) patients, tumor and plasma provided concordant results whereas in 4 of 17 (24%, 95% CI 7% to 50%) patients, the results were discordant, providing complementary information. Plasma can be prospectively tested as an alternative to metastatic biopsies in molecular screening programs. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology

  2. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    Full Text Available Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials. Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  3. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  5. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  6. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001.PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  7. A mutational comparison of adult and adolescent and young adult (AYA) colon cancer.

    Science.gov (United States)

    Tricoli, James V; Boardman, Lisa A; Patidar, Rajesh; Sindiri, Sivasish; Jang, Jin S; Walsh, William D; McGregor, Paul M; Camalier, Corinne E; Mehaffey, Michele G; Furman, Wayne L; Bahrami, Armita; Williams, P Mickey; Lih, Chih-Jian; Conley, Barbara A; Khan, Javed

    2018-03-01

    It is possible that the relative lack of progress in treatment outcomes among adolescent and young adult (AYA) patients with cancer is caused by a difference in disease biology compared with the corresponding diseases in younger and older individuals. There is evidence that colon cancer is more aggressive and has a poorer prognosis in AYA patients than in older adult patients. To further understand the molecular basis for this difference, whole-exome sequencing was conducted on a cohort of 30 adult, 30 AYA, and 2 pediatric colon cancers. A statistically significant difference in mutational frequency was observed between AYA and adult samples in 43 genes, including ROBO1, MYC binding protein 2 (MYCBP2), breast cancer 2 (early onset) (BRCA2), MAP3K3, MCPH1, RASGRP3, PTCH1, RAD9B, CTNND1, ATM, NF1; KIT, PTEN, and FBXW7. Many of these mutations were nonsynonymous, missense, stop-gain, or frameshift mutations that were damaging. Next, RNA sequencing was performed on a subset of the samples to confirm the mutations identified by exome sequencing. This confirmation study verified the presence of a significantly greater frequency of damaging mutations in AYA compared with adult colon cancers for 5 of the 43 genes (MYCBP2, BRCA2, PHLPP1, TOPORS, and ATR). The current results provide the rationale for a more comprehensive study with a larger sample set and experimental validation of the functional impact of the identified variants along with their contribution to the biologic and clinical characteristics of AYA colon cancer. Cancer 2018;124:1070-82. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome

    OpenAIRE

    De Vos, Michel; Hayward, Bruce E.; Picton, Susan; Sheridan, Eamonn; Bonthron, David T.

    2004-01-01

    We investigated a family with an autosomal recessive syndrome of café-au-lait patches and childhood malignancy, notably supratentorial primitive neuroectodermal tumor. There was no cancer predisposition in heterozygotes; nor was there bowel cancer in any individual. However, autozygosity mapping indicated linkage to a region of 7p22 surrounding the PMS2 mismatch-repair gene. Sequencing of genomic PCR products initially failed to identify a PMS2 mutation. Genome searches then revealed a previo...

  9. Genetic screening of the FLCN gene identify six novel variants and a Danish founder mutation

    DEFF Research Database (Denmark)

    Rossing, Maria; Albrechtsen, Anders; Skytte, Anne-Bine

    2016-01-01

    Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this stu...... understanding of BHD syndrome and management of BHD patients.Journal of Human Genetics advance online publication, 13 October 2016; doi:10.1038/jhg.2016.118....

  10. Autoantibodies directed to centromere protein F in a patient with BRCA1 gene mutation

    OpenAIRE

    Moghaddas, Fiona; Joshua, Fredrick; Taylor, Roberta; Fritzler, Marvin J.; Toh, Ban Hock

    2016-01-01

    Background Autoantibodies directed to centromere protein F were first reported in 1993 and their association with malignancy has been well documented. Case We present the case of a 48-year-old Caucasian female with a BRCA1 gene mutation associated with bilateral breast cancer. Antinuclear autoantibody immunofluorescence performed for workup of possible inflammatory arthropathy showed a high titre cell cycle related nuclear speckled pattern, with subsequent confirmation by addressable laser be...

  11. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  12. TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Kaori Shima

    Full Text Available Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study. Cox proportional hazards model was used to compute mortality hazard ratio (HR, adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP, LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072 of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159 and 30% (48/158 of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI, 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI in colorectal carcinoma.

  13. Validation of a Multiplex Allele-Specific Polymerase Chain Reaction Assay for Detection of KRAS Gene Mutations in Formalin-Fixed, Paraffin-Embedded Tissues from Colorectal Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Sirirat Seekhuntod

    Full Text Available Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC. The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR assay to detect KRAS mutations.We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D. We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay.Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%, G12D (25.83% and G12V (12.50% in codon 12.The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues.

  14. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-07-01

    Full Text Available Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.

  15. Glaucoma and Cytochrome P4501B1 Gene Mutations

    Directory of Open Access Journals (Sweden)

    Mukesh Tanwar

    2010-01-01

    Full Text Available Developmental anomalies of the ocular anterior chamber angle may lead to an incomplete development of the structures that form the conventional aqueous outflow pathway. Thus, disorders that present with such dysfunction tend to be associated with glaucoma. Among them, Axenfeld-Rieger (ARS malformation is a rare clinical entity with an estimated prevalence of one in every 200,000 individuals. The changes in eye morphogenesis in ARS are highly penetrant and are associated with 50% risk of development of glaucoma. Mutations in the cytochrome P4501B1 (CYP1B1 gene have been reported to be associated with primary congenital glaucoma and other forms of glaucoma and mutations in pituitary homeobox 2 (PITX2 gene have been identified in ARS in various studies. This case was negative for PITX2 mutations and compound heterozygote for CYP1B1 mutations. Clinical manifestations of this patient include bilateral elevated intraocular pressure (>40 mmHg with increased corneal diameter (>14 mm and corneal opacity. Patient also had iridocorneal adhesions, anteriorly displaced Schwalbe line, anterior insertion of iris, broad nasal bridge and protruding umbilicus. This is the first study from north India reporting CYP1B1 mutations in Axenfeld-Rieger syndrome with bilateral buphthalmos and early onset glaucoma. Result of this study supports the role of CYP1B1 as a causative gene in ASD disorders and its role in oculogenesis.

  16. Major gene mutations in fruit tree domestication

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.

    1989-01-01

    Though fruit gathering from the wild began long before domestication, fruit tree domestication started only after the establishment of grain agriculture. Banana, fig, date, grape and olive were among the first fruit trees domesticated. Most fruit trees are outbreeders, highly heterozygous and vegetatively propagated. Knowledge of genetics and economic traits controlled by major genes is limited. Ease of vegetative propagation has played a prominent part in domestication; advances in propagation technology will play a role in domestication of new crops. Changes toward domestication affected by major genes include self-fertility in peach, apricot and sour cherry, while the emergence of self-fertile almond populations is more recent and due probably to introgression from Amygdalus webbii. Self-compatibility in the sweet cherry has been attained only by pollen irradiation. A single gene controls sex in Vitis. Wild grapes are dioecious, with most domesticated cultivars hermaphrodite, and only a few females. In the papaya changes from dioecism to hermaphroditism have also occurred. Self-compatible systems have also been selected during domestication in Rubus. Changes towards parthenocarpy and seedlessness during domestication occurred in the banana, citrus, grape, fig and pineapple. In the banana, parthenocarpy is due to three complementary dominant genes; stenospermocarpy in the grape depends on two complementary recessive genes; parthenocarpy and sterility in citrus seems more complicated; however, it can be induced in genetic material of suitable background with ease by irradiation. Presence of persistent syconia in the fig is controlled by a mutant allele P dominant to wild +. Thornlessness in blackberry is recessive, while in the pineapple spineless forms are dominant. Changes affecting fruit composition owing to major genes include the disappearance of amygdalin present in bitter almonds (bitter kernel recessive to sweet), shell hardness in almond, and a recessive

  17. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes.

    Science.gov (United States)

    Dobbins, Sara E; Broderick, Peter; Chubb, Daniel; Kinnersley, Ben; Sherborne, Amy L; Houlston, Richard S

    2016-10-01

    Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.

  18. Blocking DNA Repair in Advanced BRCA-Mutated Cancer

    Science.gov (United States)

    In this trial, patients with relapsed or refractory advanced cancer and confirmed BRCA mutations who have not previously been treated with a PARP inhibitor will be given BMN 673 by mouth once a day in 28-day cycles.

  19. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    Science.gov (United States)

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement.

    Science.gov (United States)

    Kim, Sung Jin; Kim, Ju Hyun; Yang, Bitna; Jeong, Jin-Sook; Lee, Seong-Wook

    2017-02-01

    Mutations in the KRAS gene, which persistently activate RAS function, are most frequently found in many types of human cancers. Here, we proposed and verified a new approach against cancers harboring the KRAS mutation with high cancer selectivity and efficient anti-cancer effects based on targeted RNA replacement. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically target and reprogram the mutant KRAS G12V transcript to induce therapeutic gene activity in cells. Adenoviral vectors containing the specific ribozymes with downstream suicide gene were constructed and then infection with the adenoviruses specifically downregulated KRAS G12V expression and killed KRAS G12V-harboring cancer cells additively upon pro-drug treatment, but it did not affect the growth of wild-type KRAS-expressing cells. Minimal liver toxicity was noted when the adenoviruses were administered systemically in vivo. Importantly, intratumoral injection of the adenoviruses with pro-drug treatment specifically and significantly impeded the growth of xenografted tumors harboring KRAS G12V through a trans-splicing reaction with the target RNA. In contrast, xenografted tumors harboring wild-type KRAS were not affected by the adenoviruses. Therefore, RNA replacement with a mutant KRAS-targeting trans-splicing ribozyme is a potentially useful therapeutic strategy to combat tumors harboring KRAS mutation. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  1. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  2. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  3. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  4. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  5. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Ziegler

    2011-11-01

    Full Text Available This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip. Biochip hybridization identified 17 (21% samples to carry a KRAS mutation of which 16 (33% were adenocarcinomas and 1 (3% was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.

  6. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  7. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  8. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism

  9. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Doerfler, Arnd; Kinning, Esther; Megarbane, Andre; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Doerr, Helmuth-Guenther; Reis, Andre

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss- of- function mutations in the centrosomal pericentrin ( PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial

  10. Two novel mutations in ILDR1 gene cause autosomal recessive ...

    Indian Academy of Sciences (India)

    In a recent screening programme on hearing loss (HL), we examined 17 common autosomal recessive nonsyndromic hearing loss (ARNSHL) genes in every consanguineous Ira- nian family with ARNSHL that was referred to our centre. We first screened GJB2 mutations and then utilized a panel of three to four short ...

  11. Rare suprasellar chordoid meningioma with INI1 gene mutation ...

    African Journals Online (AJOL)

    Background: Chordoid Meningioma is a rare brain tumour characterized genetically by loss of genetic material from chromosome 22q at cytogenetic level resulting in mutation of NF2 gene. Objectives and case report: In the present report, we described a rare case of suprasellar chordoid meningioma, which presented in a ...

  12. Hypocaeruloplasminaemia with heteroallelic caeruloplasmin gene mutation: MRI of the brain

    International Nuclear Information System (INIS)

    Daimon, M.; Moriai, S.; Susa, S.; Yamatani, K.; Kato, T.; Hosoya, T.

    1999-01-01

    We present two patients with hypocaeruloplasminaemia and a heteroallelic caeruloplasmin gene mutation (HypoCPGM). These patients had diabetes mellitus and tremor of the hands, respectively. T2-weighted fast spin-echo MRI showed mildly reduced intensity of the putamen, much more marked on echo-planar imaging. (orig.) (orig.)

  13. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  14. Advances in sarcoma gene mutations and therapeutic targets.

    Science.gov (United States)

    Gao, Peng; Seebacher, Nicole A; Hornicek, Francis; Guo, Zheng; Duan, Zhenfeng

    2018-01-01

    Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management. Published by Elsevier Ltd.

  15. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  16. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Matar, S.N.A.

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  17. BRCA1 and BRCA2mutations in breast cancer patients from Venezuela

    Directory of Open Access Journals (Sweden)

    Karlena Lara

    2012-01-01

    Full Text Available A sample of 58 familial breast cancer patients from Venezuela were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIM no. 113705 and BRCA2 (MIM no. 600185 genes by using conformation-sensitive gel electrophoresis. Ashkenazi Jewish founder mutations were not found in any of the samples. We identified 6 (10.3% and 4 (6.9% patients carrying germline mutations in BRCA1 and BRCA2, respectively. Four pathogenic mutations were found in BRCA1, one is a novel mutation (c.951_952insA, while the other three had been previously reported (c.1129_1135insA, c.4603G>T and IVS20+1G>A. We also found 4 pathogenic mutations in BRCA2, two novel mutations (c.2732_2733insA and c.3870_3873delG and two that have been already reported (c.3036_3039delACAA and c.6024_6025_delTA. In addition, 17 variants of unknown significance (6 BRCA1 variants and 11 BRCA2 variants, 5 BRCA2 variants with no clinical importance and 22 polymorphisms (12 in BRCA1 and10 in BRCA2 were also identified. This is the first genetic study on BRCA gene mutations conducted in breast cancer patients from Venezuela. The ethnicity of our population, as well as the heterogeneous and broad spectrum of BRCA genes mutations, must be considered to optimize genetic counseling and disease prevention in affected families.

  18. Identification of Genetic Susceptibility to Childhood Cancer through Analysis of Genes in Parallel

    Science.gov (United States)

    Plon, Sharon E.; Wheeler, David A.; Strong, Louise C.; Tomlinson, Gail E.; Pirics, Michael; Meng, Qingchang; Cheung, Hannah C.; Begin, Phyllis R.; Muzny, Donna M.; Lewis, Lora; Biegel, Jaclyn A.; Gibbs, Richard A.

    2011-01-01

    Clinical cancer genetic susceptibility analysis typically proceeds sequentially beginning with the most likely causative gene. The process is time consuming and the yield is low particularly for families with unusual patterns of cancer. We determined the results of in parallel mutation analysis of a large cancer-associated gene panel. We performed deletion analysis and sequenced the coding regions of 45 genes (8 oncogenes and 37 tumor suppressor or DNA repair genes) in 48 childhood cancer patients who also (1) were diagnosed with a second malignancy under age 30, (2) have a sibling diagnosed with cancer under age 30 and/or (3) have a major congenital anomaly or developmental delay. Deleterious mutations were identified in 6 of 48 (13%) families, 4 of which met the sibling criteria. Mutations were identified in genes previously implicated in both dominant and recessive childhood syndromes including SMARCB1, PMS2, and TP53. No pathogenic deletions were identified. This approach has provided efficient identification of childhood cancer susceptibility mutations and will have greater utility as additional cancer susceptibility genes are identified. Integrating parallel analysis of large gene panels into clinical testing will speed results and increase diagnostic yield. The failure to detect mutations in 87% of families highlights that a number of childhood cancer susceptibility genes remain to be discovered. PMID:21356188

  19. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  20. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  1. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  2. Geographical distribution of β-globin gene mutations in Syria.

    Science.gov (United States)

    Murad, Hossam; Moasses, Faten; Dabboul, Amir; Mukhalalaty, Yasser; Bakoor, Ahmad Omar; Al-Achkar, Walid; Jarjour, Rami A

    2018-04-11

    Objectives β-Thalassemia disease is caused by mutations in the β-globin gene. This is considered as one of the common genetic disorders in Syria. The aim of this study was to identify the geographical distribution of the β-thalassemia mutations in Syria. Methods β-Globin gene mutations were characterized in 636 affected patients and 94 unrelated carriers using the amplification refractory mutations system-polymerase chain reaction technique and DNA sequencing. Results The study has revealed the presence of 38 β-globin gene mutations responsible for β-thalassemia in Syria. Important differences in regional distribution were observed. IVS-I.110 [G > A] (22.2%), IVS-I.1 [G > A] (17.8%), Cd 39 [C > T] (8.2%), IVS-II.1 [G > A] (7.6%), IVS-I.6 [T > C] (7.1%), Cd 8 [-AA] (6%), Cd 5 [-CT] (5.6%) and IVS-I.5 [G > C] (4.1%) were the eight predominant mutations found in our study. The coastal region had higher relative frequencies (37.9 and 22%) than other regions. A clear drift in the distribution of the third common Cd 39 [C > T] mutation in the northeast region (34.8%) to the northwest region (2.5%) was noted, while the IVS-I.5 [G > C] mutation has the highest prevalence in north regions. The IVS-I.6 [T > C] mutation had a distinct frequency in the middle region. Ten mutations -86 [C > G], -31 [A > G], -29 [A > G], 5'UTR; +22 [G > A], CAP + 1 [A > C], Codon 5/6 [-TG], IVS-I (-3) or codon 29 [C > T], IVS-I.2 [T > A], IVS-I.128 [T > G] and IVS-II.705 [T > G] were found in Syria for the first time. Conclusions These data will significantly facilitate the population screening, genetic counseling and prenatal diagnosis in Syrian population.

  3. FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.

    Directory of Open Access Journals (Sweden)

    Denis L Jardim

    Full Text Available FBXW7 is a tumor suppressor gene responsible for the degradation of several proto-oncogenes. Preclinical data suggest that FBXW7 mutations sensitize cells to mTOR inhibitors. Clinicopathologic characteristics of cancer patients with FBXW7 mutations and their responses to mTOR inhibitors remain unknown.Using multiplex gene panels we evaluated how the FBXW7 mutation affected the cancer phenotype of patients referred to a phase I clinic starting January 2012. Whenever possible patients positive for FBXW7 mutation were treated with regimens containing an mTOR inhibitors and their outcomes were reviewed.FBXW7 mutations were detected in 17 of 418 patients (4.0%. Among tumor types with more than 10 patients tested, FBXW7 mutations occurred in colorectal cancer (7/49; 14.3%, squamous cell cancer of head and neck (2/18; 11.1%, liver (1/13; 7.7%, and ovarian cancers (1/40; 2.5%. No one clinical, pathological or demographic feature was characteristic of the FBXW7-mutated patient population. The mutation occurred in isolation in only 2/17 (12% patients, and KRAS was frequently found as a concomitant mutation, especially in patients with colorectal cancer (6/7; 86%. Ten patients were treated on a protocol containing an mTOR inhibitor, with a median time to treatment failure of 2.8 months (range, 1.3-6.8. One patient with liver cancer (fibrolamellar subtype continues to have a prolonged stable disease for 6.8+ months.In patients with advanced cancers, somatic mutations in FBXW7 usually occur with other simultaneous molecular aberrations, which can contribute to limited therapeutic efficacy of mTOR inhibitors.

  4. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  5. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

    Directory of Open Access Journals (Sweden)

    Shibata Darryl

    2010-01-01

    Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.

  6. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells

    NARCIS (Netherlands)

    Chan, M.F.; van Amerongen, R.; Nijjar, T.; Cuppen, E.; Jones, P.A.; Laird, P.W.

    2001-01-01

    Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by

  7. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  8. Induced marker gene mutations in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1989-01-01

    Full text: Non-fluorescent root mutants in soybean are useful as markers in genetic studies. 13 such mutants were detected among more than 150 000 seedlings derived from soybean lines treated with 6 mutagens. One of them, derived from variety 'Williams' treated with 20 kR gamma rays, did not correspond to the already known spontaneous non-fluorescent mutants. It was assigned the identification no. T285 and the gene symbol fr5. The other mutants corresponded with known loci fr1, fr2 or fr4. (author)

  9. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 U