WorldWideScience

Sample records for cancer gene discovery

  1. Transposons for cancer gene discovery: Sleeping Beauty and beyond

    OpenAIRE

    Collier, Lara S.; Largaespada, David A

    2007-01-01

    The use of Sleeping Beauty transposons as somatic mutagens to discover cancer genes in hematopoietic tumors and sarcomas has been documented. Here, we discuss the future of Sleeping Beauty for cancer genetic studies and the potential use of additional transposable elements for somatic mutagenesis.

  2. Discovery of signature genes in gastric cancer associated with prognosis.

    Science.gov (United States)

    Zhao, X; Cai, H; Wang, X; Ma, L

    2016-01-01

    Gene expression profiles of gastric cancer (GC) were analyzed with bioinformatics tools to identify signature genes associated with prognosis. Four gene expression data sets (accession number: GSE2685, GSE30727, GSE38932 and GSE26253) were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened out using significance analysis of microarrays (SAM) algorithm. P-value 1 were set as the threshold. A co-expression network was constructed for the GC-related genes with package WGCNA of R. Modules were disclosed with WGCNA algorithm. Survival-related signature genes were screened out via COX single-variable regression.A total of 3210 GC-related genes were identified from the 3 data sets. Significantly enriched GO biological process terms included cell death, cell proliferation, apoptosis, response to hormone and phosphorylation. Pathways like viral carcinogenesis, metabolism, EBV viral infection, and PI3K-AKT signaling pathway were significantly over-represented in the DEGs. A gene co-expression network including 2414 genes was constructed, from which 7 modules were revealed. A total of 17 genes were identified as signature genes, such as DAB2, ALDH2, CD58, CITED2, BNIP3L, SLC43A2, FAU and COL5A1.Many signature genes associated with prognosis of GC were identified in present study, some of which have been implicated in the pathogenesis of GC. These findings could not only improve the knowledge about GC, but also provide clues for clinical treatments. PMID:26774142

  3. PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice

    OpenAIRE

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S.; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie

    2010-01-01

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon/transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed the unique qualities o...

  4. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  5. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery

    Science.gov (United States)

    Moriarity, Branden S; Largaespada, David A

    2016-01-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS. PMID:26051241

  6. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie; Yang, Fang Tang; Liu, Pentao; Bradley, Allan

    2010-11-19

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability. PMID:20947725

  7. Topological and functional discovery in a gene coexpression meta-network of gastric cancer.

    Science.gov (United States)

    Aggarwal, Amit; Guo, Dong Li; Hoshida, Yujin; Yuen, Siu Tsan; Chu, Kent-Man; So, Samuel; Boussioutas, Alex; Chen, Xin; Bowtell, David; Aburatani, Hiroyuki; Leung, Suet Yi; Tan, Patrick

    2006-01-01

    Gastric cancer is a leading cause of global cancer mortality, but comparatively little is known about the cellular pathways regulating different aspects of the gastric cancer phenotype. To achieve a better understanding of gastric cancer at the levels of systems topology, functional modules, and constituent genes, we assembled and systematically analyzed a consensus gene coexpression meta-network of gastric cancer incorporating >300 tissue samples from four independent patient populations (the "gastrome"). We find that the gastrome exhibits a hierarchical scale-free architecture, with an internal structure comprising multiple deeply embedded modules associated with diverse cellular functions. Individual modules display distinct subtopologies, with some (cellular proliferation) being integrated within the primary network, and others (ribosomal biosynthesis) being relatively isolated. One module associated with intestinal differentiation exhibited a remarkably high degree of autonomy, raising the possibility that its specific topological features may contribute towards the frequent occurrence of intestinal metaplasia in gastric cancer. At the single-gene level, we discovered a novel conserved interaction between the PLA2G2A prognostic marker and the EphB2 receptor, and used tissue microarrays to validate the PLA2G2A/EphB2 association. Finally, because EphB2 is a known target of the Wnt signaling pathway, we tested and provide evidence that the Wnt pathway may also similarly regulate PLA2G2A. Many of these findings were not discernible by studying the single patient populations in isolation. Thus, besides enhancing our knowledge of gastric cancer, our results show the broad utility of applying meta-analytic approaches to genome-wide data for the purposes of biological discovery. PMID:16397236

  8. SPARCoC: a new framework for molecular pattern discovery and cancer gene identification.

    Directory of Open Access Journals (Sweden)

    Shiqian Ma

    Full Text Available It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust, which is based on a novel Common-background and Sparse-foreground Decomposition (CSD model and the Maximum Block Improvement (MBI co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust and nonnegative matrix factorization (NMF. We apply SPARCoC to the study of lung adenocarcinoma (ADCA, an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05. Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification.

  9. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  10. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng Wang

    2013-01-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer.The cancer informatics approach is a useful supplement to the traditional experimental approach.I reviewed several reports that used a bioinformatics approach to analyze the associations among aging,stem cells,and cancer by microarray gene expression profiling.The high expression of aging-or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging,stem cells,and cancer.These mechanisms are involved in cell cycle regulation,metabolic process,DNA damage response,apoptosis,p53 signaling pathway,immune/inflammatory response,and other processes,suggesting that cancer is a developmental and evolutional disease that is strongly related to aging.Moreover,these mechanisms demonstrate that the initiation,proliferation,and metastasis of cancer are associated with the deregulation of stem cells.These findings provide insights into the biology of cancer.Certainly,the findings that are obtained by the informatics approach should be justified by experimental validation.This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  11. Drug discovery in ovarian cancer.

    Science.gov (United States)

    Chase, Dana M; Mathur, Nidhee; Tewari, Krishnansu S

    2010-11-01

    Drug discovery in the ovarian cancer arena has led to the activation of several important clinical trials. Many biologic agents have come down the pipeline and are being studied in phase II trials for recurrent disease. These agents include antivascular compounds that disrupt angiogenesis through a variety of mechanisms (e.g., prevention of ligand-binding to the vascular endothelial growth factor receptor-2 (VEGF-R2), high-affinity VEGF blockade, oral inhibitors of tyrosine kinases stimulated by VEGF, inhibition of alpha5beta1 integrin, neutralization of angioproteins, etc.). Other novel drugs include oral platinum compounds as well as those that antagonize the tumor proliferation genes in the Hedgehog pathway, and that target folic acid receptors which are expressed by ovarian cancer cells. In addition, studies are underway with oral agents that inhibit the tyrosine kinase activity associated with two oncogenes (epidermal growth factor receptor (EGFR) and HER-2/neu). Finally, emerging technologies in clinical trials include nanotechnology to enhance delivery of chemotherapy to ovarian tumors, drug resistance/sensitivity assays to guide therapy, and agents that mobilize and induce proliferation of hematopoetic progenitor cells to aid in red blood cell, white blood cell, and platelet recovery following chemotherapy. The relevant patents in drug discovery of ovarian cancer are discussed. PMID:20524931

  12. Gene mutation discovery research of non-smoking lung cancer patients due to indoor radon exposure

    OpenAIRE

    Choi, Jung Ran; Park, Seong Yong; Noh, O Kyu; Koh, Young Wha; Kang, Dae Ryong

    2016-01-01

    Although the incidence and mortality for most cancers such as lung and colon are decreasing in several countries, they are increasing in several developed countries because of an unhealthy western lifestyles including smoking, physical inactivity and consumption of calorie-dense food. The incidences for lung and colon cancers in a few of these countries have already exceeded those in the United States and other western countries. Among them, lung cancer is the main cause of cancer death in wo...

  13. In-depth cDNA Library Sequencing Provides Quantitative Gene Expression Profiling in Cancer Biomarker Discovery

    Institute of Scientific and Technical Information of China (English)

    Wanling Yang; Dingge Ying; Yu-Lung Lau

    2009-01-01

    procedures may allow detection of many expres-sion features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to in-crease sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique ad-vantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  14. Functional genomics and cancer drug target discovery.

    Science.gov (United States)

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer. PMID:20521217

  15. The von Hippel-Lindau Gene: Turning Discovery Into Therapy

    OpenAIRE

    Clark, Peter E.; Cookson, Michael S.

    2008-01-01

    Mutations or aberrations of the von Hippel-Lindau gene are responsible for the hereditary neoplastic syndrome that bears the same name, as well as for the majority of sporadic clear cell renal cell carcinomas. The discovery of this gene and subsequent clarification of its mechanism of action have led to a series of targeted treatments for advanced kidney cancer and have dramatically changed how we manage this disease. The discovery of the VHL gene is a prime example of how discoveries at the ...

  16. The National Cancer Program: Driving Discovery

    Science.gov (United States)

    An overview of NCI’s role in driving cancer research discoveries: conducting and funding research in challenging areas and providing resources and leadership to national infrastructures for cancer research.

  17. Discovery – Methotrexate: Chemotherapy Treatment for Cancer

    Science.gov (United States)

    Prior to the 1950s, treatment for the majority of cancers was limited to either surgery or the use of radiation. The discovery of the use of methotrexate in curing a rare cancer marked the first time a cancer had been cured. This led to the development of many of today’s common cancer treatments.

  18. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    Directory of Open Access Journals (Sweden)

    Brandon T. Nokes, Heather E. Cunliffe, Bonnie LaFleur, David W. Mount, Robert B. Livingston, Bernard W. Futscher, Julie E. Lang

    2013-01-01

    Full Text Available Background: Inflammatory breast cancer (IBC is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection.Methods: We performed single nucleotide polymorphism (SNP genotyping for 2 variants of the ribonuclease (RNase L gene that have been correlated with the risk of prostate cancer due to a possible viral etiology. We evaluated dose-response to treatment with interferon-alpha (IFN-α; and assayed for evidence of the putative human mammary tumor virus (HMTV, which has been implicated in IBC in SUM149 cells. A bioinformatic analysis was performed to evaluate expression of RNase L in IBC and non-IBC.Results: 2 of 2 IBC cell lines were homozygous for RNase L common missense variants 462 and 541; whereas 2 of 10 non-IBC cell lines were homozygous positive for the 462 variant (p= 0.09 and 0 of 10 non-IBC cell lines were homozygous positive for the 541 variant (p = 0.015. Our real-time polymerase chain reaction (RT-PCR and Southern blot analysis for sequences of HMTV revealed no evidence of the putative viral genome.Conclusion: We discovered 2 SNPs in the RNase L gene that were homozygously present in IBC cell lines. The 462 variant was absent in non-IBC lines. Our discovery of these SNPs present in IBC cell lines suggests a possible biomarker for risk of IBC. We found no evidence of HMTV in SUM149 cells. A query of a panel of human IBC and non-IBC samples showed no difference in RNase L expression. Further studies of the RNase L 462 and 541 variants in IBC tissues are warranted to validate our in vitro findings.

  19. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis, probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan-Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11, and significantly associated with disease

  20. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer.

    Science.gov (United States)

    An, Ning; Shi, Xiaoyu; Zhang, Yueming; Lv, Ning; Feng, Lin; Di, Xuebing; Han, Naijun; Wang, Guiqi; Cheng, Shujun; Zhang, Kaitai

    2015-01-01

    Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan-Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four

  1. Discovery – Preventing Skin Cancer

    Science.gov (United States)

    Cancer research includes stopping cancer before it spreads. NCI funded the development of the Melanoma Risk Assessment Tool and the ABC method. Both help to diagnose high-risk patients and prevent melanoma earlier in the fight against skin cancer.

  2. Independent Gene Discovery and Testing

    Science.gov (United States)

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  3. Milestones in Cancer Research and Discovery

    Science.gov (United States)

    During the past 250 years, we have witnessed many landmark discoveries in our efforts to make progress against cancer, an affliction known to humanity for thousands of years. This timeline shows a few key milestones in the history of cancer research.

  4. Biological Networks for Cancer Candidate Biomarkers Discovery

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  5. Biological Networks for Cancer Candidate Biomarkers Discovery.

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  6. Gene discovery in Triatoma infestans

    Directory of Open Access Journals (Sweden)

    de Burgos Nelia

    2011-03-01

    Full Text Available Abstract Background Triatoma infestans is the most relevant vector of Chagas disease in the southern cone of South America. Since its genome has not yet been studied, sequencing of Expressed Sequence Tags (ESTs is one of the most powerful tools for efficiently identifying large numbers of expressed genes in this insect vector. Results In this work, we generated 826 ESTs, resulting in an increase of 47% in the number of ESTs available for T. infestans. These ESTs were assembled in 471 unique sequences, 151 of which represent 136 new genes for the Reduviidae family. Conclusions Among the putative new genes for the Reduviidae family, we identified and described an interesting subset of genes involved in development and reproduction, which constitute potential targets for insecticide development.

  7. Epigenetic Regulation of Cancer-Associated Genes in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kwon

    2011-01-01

    Full Text Available The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.

  8. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    OpenAIRE

    Nokes, Brandon T.; Cunliffe, Heather E; LaFleur, Bonnie; Mount, David W.; Livingston, Robert B.; Bernard W Futscher; Lang, Julie E.

    2013-01-01

    Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection. Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a ...

  9. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    OpenAIRE

    Brandon T. Nokes, Heather E. Cunliffe, Bonnie LaFleur, David W. Mount, Robert B. Livingston, Bernard W. Futscher, Julie E. Lang

    2013-01-01

    Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection.Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a p...

  10. Antibody directed enzyme prodrug therapy: Discovery of novel genes, isolation of novel gene variants and production of long acting drugs for efficient cancer treatment

    NARCIS (Netherlands)

    Goda, S.K.; AlQahtani, A.; Rashidi, F.A.; Dömling, A.

    2015-01-01

    Background: Cancer accounts for 13% of the mortality rate worldwide. Antibody-Directed Enzyme Prodrug Therapy (ADEPT) is a novel strategy to improve the selectivity of cancer treatment. The ADEPT uses the bacterial enzyme, glucarpidase to produce the antibody-enzyme complex. Also the glucarpidase is

  11. Decade in Review-Kidney Cancer Kidney cancer's decade—discoveries, therapies and opportunities

    OpenAIRE

    Linehan, W. Marston; Ricketts, Christopher J.

    2014-01-01

    Advances in kidney cancer have occurred over the past decade, including the discovery of mutations in chromatin remodeling genes and genomic heterogeneity in clear cell renal cell carcinoma (ccRCC), altered metabolic patterns in ccRCC and papillary renal cell carcinoma and the approval of drugs for patients with ccRCC.

  12. Cancer gene therapy

    OpenAIRE

    Mitrović Tatjana; Radulović Siniša

    2005-01-01

    Cancer gene therapy can be defined as transfer of nucleic acids into tumor or normal cells with aim to eradicate or reduce tumor mass by direct killing of cells, immunomodulation or correction of genetic errors, and reversion of malignant status. Initially started with lots of optimism and enthusiasm, cancer gene therapy has shown limited success in treatment of patients. This review highlights current limitations and almost endless possibilities of cancer gene therapy. The major difficulty i...

  13. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  14. The proteomics in prostate cancer biomarker discovery

    Directory of Open Access Journals (Sweden)

    V. E. Shevchenko

    2015-06-01

    Full Text Available Prostate cancer (PC represents the second most frequent type of tumor in men worldwide. Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PC patients. Markers more specific and sensitive than prostate-specific antigen are needed for PC diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PC tailored therapy. Now several possible PC biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PC detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice.This review aims to discuss the recent advances in PC proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.

  15. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and mi

  16. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  17. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  18. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Science.gov (United States)

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  19. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  20. Researchers Find 8 Immune Genes in Aggressive Brain Cancer

    Science.gov (United States)

    ... 159031.html Researchers Find 8 Immune Genes in Aggressive Brain Cancer Discovery might eventually lead to better ... tissue samples from 170 people with a less aggressive type of brain tumor. This led to the ...

  1. New discoveries in prostate cancer pathogenesis

    International Nuclear Information System (INIS)

    Background. Through PSA screening the rate of prostate cancers detected at an early stage has increased significantly; thus a decrease in mortality can be expected in the near future. Despite all scientific efforts, however, the molecular mechanisms underlying the development and progression of prostate cancer remain poorly understood. Prostate cancer is a disease of aging men and epidemiological evidence supports a major contribution to its development through diet, lifestyle and environmental factors. Genetic instability is the basic phenomenon of tissue cell cancerisation. This instability can be hereditary or due to mutations and other chromosomal aberrations acquired during life. In recent years a large number of interesting data have been collected which show the relationships between focal atrophy and genetic instability of the prostate epithelia. Atrophy can be the result of prostatitis, ischemia as well as of oxidative stress (diet). Several chromosomal aberrations typical for prostate cancer (loss of 8p22; gain of 8q24 and X) can be already detected in the epithelia of the atrophic areas. Moreover also the deactivation of a gene (GSTP1) which encodes a carcinogene-detoxification enzyme has been found in such epithelia. Conclusions. Molecular pathology is slowly revealing the links which exist among age, atherosclerosis and oxidative stress (diet), inflammation and the pathogenesis of prostate cancer. In the near future perhaps this knowledge will enable us to actively prevent this most common malignancy of elderly men. (author)

  2. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Science.gov (United States)

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  3. Systematic discovery of complex insertions and deletions in human cancers.

    Science.gov (United States)

    Ye, Kai; Wang, Jiayin; Jayasinghe, Reyka; Lameijer, Eric-Wubbo; McMichael, Joshua F; Ning, Jie; McLellan, Michael D; Xie, Mingchao; Cao, Song; Yellapantula, Venkata; Huang, Kuan-lin; Scott, Adam; Foltz, Steven; Niu, Beifang; Johnson, Kimberly J; Moed, Matthijs; Slagboom, P Eline; Chen, Feng; Wendl, Michael C; Ding, Li

    2016-01-01

    Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1, TP53, ARID1A, GATA3 and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR, whereas frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN and ATRX. Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR, MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research. PMID:26657142

  4. Systematic Discovery of Complex Indels in Human Cancers

    Science.gov (United States)

    Ye, Kai; Wang, Jiayin; Jayasinghe, Reyka; Lameijer, Eric-Wubbo; McMichael, Joshua F.; Ning, Jie; McLellan, Michael D.; Xie, Mingchao; Cao, Song; Yellapantula, Venkata; Huang, Kuan-lin; Scott, Adam; Foltz, Steven; Niu, Beifang; Johnson, Kimberly J.; Moed, Matthijs; Slagboom, P. Eline; Chen, Feng; Wendl, Michael C.; Ding, Li

    2016-01-01

    Complex indels are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here, we present a systematic analysis of somatic complex indels in the coding sequences of over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer genes (e.g., PIK3R1, TP53, ARID1A, GATA3, and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or mis-annotated (17.6%) in 2,199 samples previously reported. In-frame complex indels are enriched in PIK3R1 and EGFR while frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN, and ATRX. Further, complex indels display strong tissue specificity (e.g., VHL from kidney cancer and GATA3 from breast cancer). Finally, structural analyses support findings of previously missed, but potentially druggable mutations in EGFR, MET, and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research. PMID:26657142

  5. Computational and Experimental Approaches to Cancer Biomarker Discovery

    DEFF Research Database (Denmark)

    Krzystanek, Marcin

    Effective cancer treatment requires good biomarkers: measurable indicators of some biological state or condition that constitute the cornerstone of personalized medicine. Prognostic biomarkers provide information about the likely course of the disease, while predictive biomarkers enable prediction...... of a patient’s response to a particular treatment, thus helping to avoid unnecessary treatment and unwanted side effects in non-responding individuals.Currently biomarker discovery is facilitated by recent advances in high-throughput technologies when association between a given biological phenotype...... levels show random distribution in a given cohort. However, gene expression levels may also be affected by technical bias when the actual measurement technology or sample handling may introduce a systematic error. If the distribution of systematic errors correlates with the biological phenotype then the...

  6. Epigenetics and cancer: implications for drug discovery and safety assessment

    International Nuclear Information System (INIS)

    It is necessary to determine whether chemicals or drugs have the potential to pose a threat to human health. Research conducted over the last two decades has led to the paradigm that chemicals can cause cancer either by damaging DNA or by altering cellular growth, probably via receptor-mediated changes in gene expression. However, recent evidence suggests that gene expression can be altered markedly via several diverse epigenetic mechanisms that can lead to permanent or reversible changes in cellular behavior. Key molecular events underlying these mechanisms include the alteration of DNA methylation and chromatin, and changes in the function of cell surface molecules. Thus, for example, DNA methyltransferase enzymes together with chromatin-associated proteins such as histone modifying enzymes and remodelling factors can modify the genetic code and contribute to the establishment and maintenance of altered epigenetic states. This is relevant to many types of toxicity including but not limited to cancer. In this paper, we describe the potential for interplay between genetic alteration and epigenetic changes in cell growth regulation and discuss the implications for drug discovery and safety assessment

  7. Discovery and validation of breast cancer subtypes

    Directory of Open Access Journals (Sweden)

    Bukholm Ida RK

    2006-09-01

    Full Text Available Abstract Background Previous studies demonstrated breast cancer tumor tissue samples could be classified into different subtypes based upon DNA microarray profiles. The most recent study presented evidence for the existence of five different subtypes: normal breast-like, basal, luminal A, luminal B, and ERBB2+. Results Based upon the analysis of 599 microarrays (five separate cDNA microarray datasets using a novel approach, we present evidence in support of the most consistently identifiable subtypes of breast cancer tumor tissue microarrays being: ESR1+/ERBB2-, ESR1-/ERBB2-, and ERBB2+ (collectively called the ESR1/ERBB2 subtypes. We validate all three subtypes statistically and show the subtype to which a sample belongs is a significant predictor of overall survival and distant-metastasis free probability. Conclusion As a consequence of the statistical validation procedure we have a set of centroids which can be applied to any microarray (indexed by UniGene Cluster ID to classify it to one of the ESR1/ERBB2 subtypes. Moreover, the method used to define the ESR1/ERBB2 subtypes is not specific to the disease. The method can be used to identify subtypes in any disease for which there are at least two independent microarray datasets of disease samples.

  8. Gene therapy of liver cancer

    OpenAIRE

    Hernandez-Alcoceba, R. (Rubén); B. Sangro; Prieto, J.

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reac...

  9. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  10. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  11. Gene Therapy of Cancerous Diseases

    Directory of Open Access Journals (Sweden)

    Valenčáková, A.

    2015-11-01

    Full Text Available Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purpose of explaining effective anti-tumor immune response. Another method is suicide gene therapy, based on introducing viral or bacterial agents to tumor cells, allowing the conversion of a non-toxic compound to a lethal medication. The application of intact suppressor genes to cancer cells will avert their neoplastic behavior and will induce tumor regression. Inhibition of angiogenesis is also a promising strategy for treating oncologic patients. Mesenchymal stem cells can also be used as vectors in targeted gene therapy. An increasing list of experimental evidence shows, that therapeutically modified mesenchymal stem cells in “gene directed enzyme/prodrug therapy” can attack cancer tissue can kill tumor cells, cancer stem cells included. Bacteria are used as anti-cancer agents independently of in combination with conventional therapeutic methods.

  12. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical

    Institute of Scientific and Technical Information of China (English)

    Yuesheng ZHANG; Li TANG

    2007-01-01

    Sulforaphane (SF) is a phytochemical that displays both anticarcinogenic and anticancer activity. SF modulates many cancer-related events, including suscep-tibility to carcinogens, cell death, cell cycle, angiogenesis, invasion and metastasis.We review its discovery and development as a cancer chemopreventive agent with the intention of encouraging further research on this important compound and facilitating the identification and development of new phytochemicals for cancer prevention.

  13. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    LI YanHui; GUO Zheng; PENG ChunFang; LIU Qing; MA WenCai; WANG Jing; YAO Chen; ZHANG Min; ZHU Jing

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  14. GENE TECHNOLOGY: A NEW WAY TO TREAT CANCER

    Directory of Open Access Journals (Sweden)

    Prajapati P M.

    2012-06-01

    Full Text Available Gene therapy is the process of introducing genetic material RNA or DNA into a person's cells to fight disease. Gene therapy treats disease by either replacing damaged or missing genes with normal ones, or by providing new genes. The concept of gene therapy was born more than thirty years ago; however, new technology is opening the door to dramatically new possibilities in the treatment of cancers of all kinds. The long-term goal of cancer gene therapy is to develop treatments that attack only cancer cells, thereby eliminating adverse effects on the body and improving the possibility to cure disease. Gene therapy may someday soon make cancer a manageable disease with nominal side effects to the patients. Furthermore, since gene therapy has potential for other diseases such as cystic fibrosis, hemophilia, sickle-cell anemia, muscular dystrophy and Parkinson's, the value of research and discovery has broad applications.

  15. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  16. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  17. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    Directory of Open Access Journals (Sweden)

    Gasser Robin B

    2007-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CCA – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum than to free-living (Schmidtea mediterranea flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions

  18. Scaffold Repurposing of Old Drugs Towards New Cancer Drug Discovery.

    Science.gov (United States)

    Chen, Haijun; Wu, Jianlei; Gao, Yu; Chen, Haiying; Zhou, Jia

    2016-01-01

    As commented by the Nobelist James Black that "The most fruitful basis of the discovery of a new drug is to start with an old drug", drug repurposing represents an attractive drug discovery strategy. Despite the success of several repurposed drugs on the market, the ultimate therapeutic potential of a large number of non-cancer drugs is hindered during their repositioning due to various issues including the limited efficacy and intellectual property. With the increasing knowledge about the pharmacological properties and newly identified targets, the scaffolds of the old drugs emerge as a great treasure-trove towards new cancer drug discovery. In this review, we summarize the recent advances in the development of novel small molecules for cancer therapy by scaffold repurposing with highlighted examples. The relevant strategies, advantages, challenges and future research directions associated with this approach are also discussed. PMID:26881709

  19. Microscopy Opening Up New Cancer Discovery Avenues

    Science.gov (United States)

    Today’s high-powered microscopes are allowing researchers to study the fine details of individual cells and to peer into cells, opening up new avenues of discovery about the inner workings of cells, including the events that can cause healthy cells to tra

  20. Towards discovery-driven translational research in breast cancer

    DEFF Research Database (Denmark)

    Celis, Julio E; Moreira, José M A; Gromova, Irina;

    2005-01-01

    , promise to have a major impact on the way breast cancer will be diagnosed, treated and monitored in the future. Here we present a brief report on long-term ongoing strategies at the Danish Centre for Translational Breast Cancer Research to search for markers for early detection and targets for therapeutic......Discovery-driven translational research in breast cancer is moving steadily from the study of cell lines to the analysis of clinically relevant samples that, together with the ever increasing number of novel and powerful technologies available within genomics, proteomics and functional genomics...... biology approach to fight breast cancer....

  1. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    OpenAIRE

    G. M. Souza; M.-A. Van-Sluys; Vincentz, M.; Silva-Filho, M. C.; Menossi, M.

    2007-01-01

    Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regul...

  2. Novel venom gene discovery in the platypus

    OpenAIRE

    Mitreva, Makedonka; Papenfuss, Antony T.; Whittington, Camilla M; Locke, Devin P.; Mardis, Elaine; Wilson, Richard K.; Abubucker, Sahar; Wong, Emily Sw; Hsu, Artur; Kuchei, Philip W.; Belov, Katherine; Warren, Wesley

    2010-01-01

    Background: To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components. Results: We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores)...

  3. Bioinformatics and the discovery of gene function

    OpenAIRE

    Casari, G; Daruvar, Dea; Sander, C.; Schneider, Reinhard

    1996-01-01

    Scientific history was made in completing the yeast genuine sequence, yet its 13 Mb are a mere starting point. Two challenges loom large: to decipher the function of all genes and to describe the workings of the eukaryotic cell in full molecular detail. A combination of experimental and theoretical approaches will be brought to bear on these challenges. What will be next in yeast genome analysis from the point of view of bioinformatics?

  4. Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection

    CERN Document Server

    Chung, Audrey G; Kumar, Devinder; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2015-01-01

    Prostate cancer is the most diagnosed form of cancer in Canadian men, and is the third leading cause of cancer death. Despite these statistics, prognosis is relatively good with a sufficiently early diagnosis, making fast and reliable prostate cancer detection crucial. As imaging-based prostate cancer screening, such as magnetic resonance imaging (MRI), requires an experienced medical professional to extensively review the data and perform a diagnosis, radiomics-driven methods help streamline the process and has the potential to significantly improve diagnostic accuracy and efficiency, and thus improving patient survival rates. These radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which are selected manually and can limit their ability to fully characterize unique prostate cancer tumour phenotype. In this study, we propose a novel \\textit{discovery radiomics} framework for generating custom radiomic sequences tailored for prostate cancer detection. Discover...

  5. Cancer patient flows discovery in DRG databases

    OpenAIRE

    Jay, Nicolas; Napoli, Amedeo; Kohler, François

    2006-01-01

    In France, cancer care is evolving to the design of regional networks, so as to coordinate expertise, services and resources allocation. Existing information systems along with data-mining tools can provide better knowledge on the distribution of patient flows. We used one year data of the French Diagnosis Related Groups (DRGs) based system to perform our analysis. Formal Concept Analysis has been used to build Iceberg Lattices of cancer patient flows in the French region of Lorraine. This un...

  6. Significant cancer prevention factor extraction: an association rule discovery approach.

    Science.gov (United States)

    Nahar, Jesmin; Tickle, Kevin S; Ali, A B M Shawkat; Chen, Yi-Ping Phoebe

    2011-06-01

    Cancer is increasing the total number of unexpected deaths around the world. Until now, cancer research could not significantly contribute to a proper solution for the cancer patient, and as a result, the high death rate is uncontrolled. The present research aim is to extract the significant prevention factors for particular types of cancer. To find out the prevention factors, we first constructed a prevention factor data set with an extensive literature review on bladder, breast, cervical, lung, prostate and skin cancer. We subsequently employed three association rule mining algorithms, Apriori, Predictive apriori and Tertius algorithms in order to discover most of the significant prevention factors against these specific types of cancer. Experimental results illustrate that Apriori is the most useful association rule-mining algorithm to be used in the discovery of prevention factors. PMID:20703554

  7. Gene therapy for thyroid cancer

    International Nuclear Information System (INIS)

    Gene therapy for thyroid cancer include immunotherapy, suicide gene therapy, tumor suppressor replacement, 131I therapy by sodium/iodide symporter and antisense therapy and so on. Gene therapy has wide perspectives, but there are many problems need to be solved for clinical application

  8. Discovery and validation of breast cancer subtypes

    OpenAIRE

    Bukholm Ida RK; Noh Dong-Young; Han Wonshik; Børresen-Dale Anne-Lise; Langerød Anita; Jeffrey Stefanie S; Kapp Amy V; Nicolau Monica; Brown Patrick O; Tibshirani Robert

    2006-01-01

    Background Previous studies demonstrated breast cancer tumor tissue samples could be classified into different subtypes based upon DNA microarray profiles. The most recent study presented evidence for the existence of five different subtypes: normal breast-like, basal, luminal A, luminal B, and ERBB2+. Results Based upon the analysis of 599 microarrays (five separate cDNA microarray datasets) using a ...

  9. HOX genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kelly Zoë L

    2011-09-01

    Full Text Available Abstract The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development. Here we review a number of recent studies showing that HOX genes are strongly expressed in ovarian cancer, and that in some cases the expression of specific HOX genes is sufficient to confer a particular identity and phenotype upon cancer cells. We also review the recent advances in elucidating the different functions of HOX genes in ovarian cancer. A literature search was performed using the search terms HOX genes (including specific HOX genes, ovarian cancer and oncogenesis. Articles were accessed through searches performed in ISI Web of Knowledge, PubMed and ScienceDirect. Taken together, these studies have shown that HOX genes play a role in the oncogenesis of ovarian cancer and function in the inhibition of apoptosis, DNA repair and enhanced cell motility. The function of HOX genes in ovarian cancer oncogenesis supports their potential role as prognostic and diagnostic markers, and as therapeutic targets in this disease.

  10. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer.

    Science.gov (United States)

    Mlacki, Michal; Kikulska, Agnieszka; Krzywinska, Ewa; Pawlak, Magdalena; Wilanowski, Tomasz

    2015-11-01

    The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment. PMID:26069269

  11. Beegle: from literature mining to disease-gene discovery.

    Science.gov (United States)

    ElShal, Sarah; Tranchevent, Léon-Charles; Sifrim, Alejandro; Ardeshirdavani, Amin; Davis, Jesse; Moreau, Yves

    2016-01-29

    Disease-gene identification is a challenging process that has multiple applications within functional genomics and personalized medicine. Typically, this process involves both finding genes known to be associated with the disease (through literature search) and carrying out preliminary experiments or screens (e.g. linkage or association studies, copy number analyses, expression profiling) to determine a set of promising candidates for experimental validation. This requires extensive time and monetary resources. We describe Beegle, an online search and discovery engine that attempts to simplify this process by automating the typical approaches. It starts by mining the literature to quickly extract a set of genes known to be linked with a given query, then it integrates the learning methodology of Endeavour (a gene prioritization tool) to train a genomic model and rank a set of candidate genes to generate novel hypotheses. In a realistic evaluation setup, Beegle has an average recall of 84% in the top 100 returned genes as a search engine, which improves the discovery engine by 12.6% in the top 5% prioritized genes. Beegle is publicly available at http://beegle.esat.kuleuven.be/. PMID:26384564

  12. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein;

    2014-01-01

    cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline......The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic...... and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors....

  13. Mitigating false-positive associations in rare disease gene discovery.

    Science.gov (United States)

    Akle, Sebastian; Chun, Sung; Jordan, Daniel M; Cassa, Christopher A

    2015-10-01

    Clinical sequencing is expanding, but causal variants are still not identified in the majority of cases. These unsolved cases can aid in gene discovery when individuals with similar phenotypes are identified in systems such as the Matchmaker Exchange. We describe risks for gene discovery in this growing set of unsolved cases. In a set of rare disease cases with the same phenotype, it is not difficult to find two individuals with the same phenotype that carry variants in the same gene. We quantify the risk of false-positive association in a cohort of individuals with the same phenotype, using the prior probability of observing a variant in each gene from over 60,000 individuals (Exome Aggregation Consortium). Based on the number of individuals with a genic variant, cohort size, specific gene, and mode of inheritance, we calculate a P value that the match represents a true association. A match in two of 10 patients in MECP2 is statistically significant (P = 0.0014), whereas a match in TTN would not reach significance, as expected (P > 0.999). Finally, we analyze the probability of matching in clinical exome cases to estimate the number of cases needed to identify genes related to different disorders. We offer Rare Disease Match, an online tool to mitigate the uncertainty of false-positive associations. PMID:26378430

  14. The discovery of the microphthalmia locus and its gene, Mitf

    OpenAIRE

    Arnheiter, Heinz

    2010-01-01

    The history of the discovery of the microphthalmia locus and its gene, now called Mitf, is a testament to the triumph of serendipity. Although the first microphthalmia mutation was discovered among the descendants of a mouse that was irradiated for the purpose of mutagenesis, the mutation most likely was not radiation-induced but occurred spontaneously in one of the parents of a later breeding. Although Mitf might eventually have been identified by other molecular genetic techniques, it was f...

  15. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  16. Progress in Gene Therapy for Prostate Cancer

    OpenAIRE

    KamranAliAhmed; BrianJamesDavis; TorrenceMWilson; GregoryAWiseman; MarkJFederspiel; JohnCMorris

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our...

  17. Gene Therapy in Human Breast Cancer

    OpenAIRE

    Abaan, Ogan D.

    2002-01-01

    Gene therapy, being a novel treatment for many diseases, is readily applicable for the treatment of cancer patients. Breast cancer is the most common cancer among women. There are many clinical protocols for the treatment of breast cancer, and gene therapy is now being considered within current protocols. This review will focus on the basic concepts of cancer gene therapy strategies (suicide gene, tumor suppressor gene, anti-angiogenesis, immunotherapy, oncolytic viruses and ribozyme/antisens...

  18. Metabolomics for Biomarker Discovery in Gastroenterological Cancer

    Directory of Open Access Journals (Sweden)

    Shin Nishiumi

    2014-07-01

    Full Text Available The study of the omics cascade, which involves comprehensive investigations based on genomics, transcriptomics, proteomics, metabolomics, etc., has developed rapidly and now plays an important role in life science research. Among such analyses, metabolome analysis, in which the concentrations of low molecular weight metabolites are comprehensively analyzed, has rapidly developed along with improvements in analytical technology, and hence, has been applied to a variety of research fields including the clinical, cell biology, and plant/food science fields. The metabolome represents the endpoint of the omics cascade and is also the closest point in the cascade to the phenotype. Moreover, it is affected by variations in not only the expression but also the enzymatic activity of several proteins. Therefore, metabolome analysis can be a useful approach for finding effective diagnostic markers and examining unknown pathological conditions. The number of studies involving metabolome analysis has recently been increasing year-on-year. Here, we describe the findings of studies that used metabolome analysis to attempt to discover biomarker candidates for gastroenterological cancer and discuss metabolome analysis-based disease diagnosis.

  19. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder;

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC....

  20. Gene therapy in pancreatic cancer

    OpenAIRE

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC...

  1. Overexpression of cancer-associated genes via epigenetic derepression mechanisms in gynecologic cancer

    Directory of Open Access Journals (Sweden)

    Hae MinJeong

    2014-02-01

    Full Text Available Like other cancers, most gynecologic cancers caused by aberrant expression of cancer-related genes. Epigenetics is one of important gene expression mechanisms which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study inheritable changes in gene expression that do not alter DNA sequence, is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, microRNAs and alternative splicing have recently been identified as important regulators of epigenetic changes. These epigenetic mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and requires that all epigenetic mechanisms be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes (TSGs expression. But recently it is arising that some oncogenes or cancer-promoting genes (CPGs are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA demethylation, histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms are actively interact each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and the accumulation of these abnormal epigenetic changes makes cancer more aggressive and resistant to treatment. This review discusses epigenetic mechanisms involved

  2. Discovery of the cancer stem cell related determinants of radioresistance

    International Nuclear Information System (INIS)

    Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies

  3. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  4. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  5. Gene therapy for prostate cancer.

    Science.gov (United States)

    Tangney, Mark; Ahmad, Sarfraz; Collins, Sara A; O'Sullivan, Gerald C

    2010-05-01

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  6. 'Sunscreen' Gene May Guard Against Skin Cancer

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_158935.html 'Sunscreen' Gene May Guard Against Skin Cancer Researchers hope their ... say they've identified a so-called "sunscreen" gene that may help protect against skin cancer. They ...

  7. 'Sunscreen' Gene May Guard Against Skin Cancer

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_158935.html 'Sunscreen' Gene May Guard Against Skin Cancer Researchers hope their ... say they've identified a so-called "sunscreen" gene that may help protect against skin cancer. They ...

  8. Five New Genes Linked to Colon Cancer

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_159556.html Five New Genes Linked to Colon Cancer But researchers say it's ... 2016 (HealthDay News) -- Scientists have identified five new gene mutations that may be tied to colon cancer. ...

  9. Gene Tied to Breast Cancer Raises Uterine Cancer Risk Too

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159652.html Gene Tied to Breast Cancer Raises Uterine Cancer Risk ... June 30, 2016 (HealthDay News) -- Women with a gene mutation known as BRCA1 have an increased risk ...

  10. Psychiatric gene discoveries shape evidence on ADHD's biology

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-01-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10−4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  11. Psychiatric gene discoveries shape evidence on ADHD's biology.

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-09-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10(-4)) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  12. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  13. Specific Targeting of Gene Therapy to Prostate Cancer Using a Two-step Transcriptional Amplification System

    OpenAIRE

    Figueiredo, Marxa L.; Sato, Makoto; Johnson, Mai; Wu, Lily

    2006-01-01

    Significant advances in gene therapy have been made as a result of the improvement of gene delivery systems, discovery of new therapeutic genes, better understanding of mechanisms of disease progression, exploration and improvement of tissue-specific gene regulatory sequences, and development of better prodrug/enzyme systems. We will discuss adenoviral-based and prostate-specific cancer gene therapy, emphasizing tissue-specific promoter choices to increase gene therapy safety and specificity,...

  14. Gene Therapy Used in Cancer Treatment

    OpenAIRE

    Thomas Wirth; Seppo Ylä-Herttuala

    2014-01-01

    Cancer has been, from the beginning, a target of intense research for gene therapy approaches. Currently, more than 60% of all on-going clinical gene therapy trials worldwide are targeting cancer. Indeed, there is a clear unmet medical need for novel therapies. This is further urged by the fact that current conventional cancer therapies are frequently troubled by their toxicities. Different gene therapy strategies have been employed for cancer, such as pro-drug activating suicide gene therapy...

  15. Gensko zdravljenje raka: Cancer gene therapy:

    OpenAIRE

    Serša, Gregor; Čemažar, Maja; KOČEVAR, NINA

    2010-01-01

    Gene therapy uses genes to treat diseases. Large amount of research is based on cancer because current methods for cancer treatment have limited efficiencyand unwanted side effects. In the following article we first presentthe basic principles of gene therapy. Next, we describe the main delivery systems, which are viral and non-viral, and then the main therapeuticstrategies of cancer gene therapy. These can be divided into immunological, where we take advantage of the immune system for cancer...

  16. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    Directory of Open Access Journals (Sweden)

    G. M. Souza

    2007-12-01

    Full Text Available Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs.

  17. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  18. Cancer biomarker discovery in saliva by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kiran S. Ambatipudi

    2014-05-01

    Full Text Available The quest for biomarkers has been much pursued to aid in the early diagnosis, monitor post-treatment progress and development of targeted therapies. Nevertheless, the translation of biomarker discovery to clinical use has been limited due to multiple reasons such as the long path from discovery to clinical assays, limitation of samples and incoherent pipeline for biomarker development. To date, diagnosis of cancer has been based on biopsies and histological examinations and often becomes difficult to get repeated sampling from patients for confirmation. Consequently, it is important for clinical researchers to look at multiple body fluids and different molecular techniques to identify biomarkers. One such bodyfluid is saliva, which is easily and non-invasively collected and contains thousands of potential protein biomarkers. Moreover, recent advances in the sensitivity and specificity of mass spectrometry based proteomics hold great promise to identify potential biomarkers. This review presents an overview of the potential use of saliva and mass spectrometry for global discovery and validation of biomarkers.

  19. Recurrent gene fusions in prostate cancer: their clinical implications and uses

    NARCIS (Netherlands)

    Hessels, D.; Schalken, J.A.

    2013-01-01

    Gene fusions, resulting from chromosomal rearrangements, have been attributed to leukaemias and soft tissue sarcomas. The recent discovery of a recurrent gene fusion TMPRSS2-ERG in approximately half of the prostate cancers tested indicates that gene fusions also play a role in the onset of common e

  20. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  1. Recent patents and advances in genomic biomarker discovery for colorectal cancers.

    Science.gov (United States)

    Quyun, Chen; Ye, Zhiyun; Lin, Sheng-Cai; Lin, Biaoyang

    2010-06-01

    Colorectal cancer (CRC) is the third most common cancer in the world. Early diagnosis of colorectal cancer is the key to reducing the death rate of CRC patients. Predicting the response to current therapeutic modalities of CRC will also have a great impact on patient care. This review summarizes recent advances and patents in biomarker discovery in CRC under five major categories; including genomic changes, expression changes, mutations, epigenetic changes and microRNAs. The interesting patents include: 1) a patent for a method to differentiate normal exfoliated cells from cancer cells based on whether they were subjected to apoptosis and DNA degradation; 2) A model (PM-33 multiple molecular marker model) based on expression changes of up-regulation of the MDM2, DUSP6, and NFl genes down-regulation of the RNF4, MMD and EIF2S3 genes, which achieved an 88% sensitivity, and an 82% specificity for CRC diagnosis; 3) gene mutations in PTEN, KRAS, PIK3CA for predicting the response to anti-EGFR therapies, a common drug used for CRC treatment; 4) patents on epigenetic changes of ITGA4, SEPT9, ALX4, TFAP2E FOXL2, SARM1, ID4 etc. and many key miRNAs. Finally, future directions in the fields were commented on or suggested, including the combination of multiple categories of biomarkers and pathway central or network-based biomarker panels. PMID:20426761

  2. The Matchmaker Exchange: a platform for rare disease gene discovery.

    Science.gov (United States)

    Philippakis, Anthony A; Azzariti, Danielle R; Beltran, Sergi; Brookes, Anthony J; Brownstein, Catherine A; Brudno, Michael; Brunner, Han G; Buske, Orion J; Carey, Knox; Doll, Cassie; Dumitriu, Sergiu; Dyke, Stephanie O M; den Dunnen, Johan T; Firth, Helen V; Gibbs, Richard A; Girdea, Marta; Gonzalez, Michael; Haendel, Melissa A; Hamosh, Ada; Holm, Ingrid A; Huang, Lijia; Hurles, Matthew E; Hutton, Ben; Krier, Joel B; Misyura, Andriy; Mungall, Christopher J; Paschall, Justin; Paten, Benedict; Robinson, Peter N; Schiettecatte, François; Sobreira, Nara L; Swaminathan, Ganesh J; Taschner, Peter E; Terry, Sharon F; Washington, Nicole L; Züchner, Stephan; Boycott, Kym M; Rehm, Heidi L

    2015-10-01

    There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow. PMID:26295439

  3. Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery

    Science.gov (United States)

    Gwinn, Katrina; Corriveau, Roderick A.; Mitsumoto, Hiroshi; Bednarz, Kate; Brown, Robert H.; Cudkowicz, Merit; Gordon, Paul H.; Hardy, John; Kasarskis, Edward J.; Kaufmann, Petra; Miller, Robert; Sorenson, Eric; Tandan, Rup; Traynor, Bryan J.; Nash, Josefina; Sherman, Alex; Mailman, Matthew D.; Ostell, James; Bruijn, Lucie; Cwik, Valerie; Rich, Stephen S.; Singleton, Andrew; Refolo, Larry; Andrews, Jaime; Zhang, Ran; Conwit, Robin; Keller, Margaret A.

    2007-01-01

    Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND). It is currently incurable and treatment is largely limited to supportive care. Family history is associated with an increased risk of ALS, and many Mendelian causes have been discovered. However, most forms of the disease are not obviously familial. Recent advances in human genetics have enabled genome-wide analyses of single nucleotide polymorphisms (SNPs) that make it possible to study complex genetic contributions to human disease. Genome-wide SNP analyses require a large sample size and thus depend upon collaborative efforts to collect and manage the biological samples and corresponding data. Public availability of biological samples (such as DNA), phenotypic and genotypic data further enhances research endeavors. Here we discuss a large collaboration among academic investigators, government, and non-government organizations which has created a public repository of human DNA, immortalized cell lines, and clinical data to further gene discovery in ALS. This resource currently maintains samples and associated phenotypic data from 2332 MND subjects and 4692 controls. This resource should facilitate genetic discoveries which we anticipate will ultimately provide a better understanding of the biological mechanisms of neurodegeneration in ALS. PMID:18060051

  4. RCDB: Renal Cancer Gene Database

    Directory of Open Access Journals (Sweden)

    Ramana Jayashree

    2012-05-01

    Full Text Available Abstract Background Renal cell carcinoma or RCC is one of the common and most lethal urological cancers, with 40% of the patients succumbing to death because of metastatic progression of the disease. Treatment of metastatic RCC remains highly challenging because of its resistance to chemotherapy as well as radiotherapy, besides surgical resection. Whereas RCC comprises tumors with differing histological types, clear cell RCC remains the most common. A major problem in the clinical management of patients presenting with localized ccRCC is the inability to determine tumor aggressiveness and accurately predict the risk of metastasis following surgery. As a measure to improve the diagnosis and prognosis of RCC, researchers have identified several molecular markers through a number of techniques. However the wealth of information available is scattered in literature and not easily amenable to data-mining. To reduce this gap, this work describes a comprehensive repository called Renal Cancer Gene Database, as an integrated gateway to study renal cancer related data. Findings Renal Cancer Gene Database is a manually curated compendium of 240 protein-coding and 269 miRNA genes contributing to the etiology and pathogenesis of various forms of renal cell carcinomas. The protein coding genes have been classified according to the kind of gene alteration observed in RCC. RCDB also includes the miRNAsdysregulated in RCC, along with the corresponding information regarding the type of RCC and/or metastatic or prognostic significance. While some of the miRNA genes showed an association with other types of cancers few were unique to RCC. Users can query the database using keywords, category and chromosomal location of the genes. The knowledgebase can be freely accessed via a user-friendly web interface at http://www.juit.ac.in/attachments/jsr/rcdb/homenew.html. Conclusions It is hoped that this database would serve as a useful complement to the existing public

  5. Breast Cancer Susceptibility Gene1 (BRCA1

    Directory of Open Access Journals (Sweden)

    Wasiksiri, S.

    2002-07-01

    Full Text Available Breast Cancer Susceptibility Gene1 (BRCA1 is a tumor suppressor gene for breast and ovarian cancers. The gene locates at chromosome 17q21 and encodes for 1863 amino acids protein. It is believed that BRCA1 protein is involved in many functions such as DNA repair, centrosome replication, cell cycle checkpoint and replication of other genes. More than 800 mutations have been found in the population with an increased risk of cancer incidence in their families. Germ-line mutation of BRCA1 accounts for 5-10 percent of all breast cancer cases. Epigenetic modifications also reduce the function of normal BRCA1 gene. Several methods are used for laboratory diagnosis of cancer-related mutations. The development of breast cancer in carriers at risk with BRCA1 mutations may be prevented by suitable prevention plans such as breast cancer screening, ovarian cancer screening, surgery and cancer chemotherapy.

  6. Discovery of error-tolerant biclusters from noisy gene expression data

    Directory of Open Access Journals (Sweden)

    Gupta Rohit

    2011-11-01

    that the biclusters obtained from ET-bicluster approach not only recover larger set of genes as compared to those obtained from RAP approach but also have higher functional coherence as evaluated using the GO-based functional enrichment analysis. The statistical significance of the discovered error-tolerant biclusters as estimated by using two randomization tests, reveal that they are indeed biologically meaningful and statistically significant. For the second problem of biomarker discovery, we used four real-valued Breast Cancer microarray gene-expression data sets and evaluate the biomarkers obtained using MSigDB gene sets. Conclusions The results obtained for both the problems: functional module discovery and biomarkers discovery, clearly signifies the usefulness of the proposed ET-bicluster approach and illustrate the importance of explicitly incorporating noise/errors in discovering coherent groups of genes from gene-expression data.

  7. Highly parallel identification of essential genes in cancer cells.

    Science.gov (United States)

    Luo, Biao; Cheung, Hiu Wing; Subramanian, Aravind; Sharifnia, Tanaz; Okamoto, Michael; Yang, Xiaoping; Hinkle, Greg; Boehm, Jesse S; Beroukhim, Rameen; Weir, Barbara A; Mermel, Craig; Barbie, David A; Awad, Tarif; Zhou, Xiaochuan; Nguyen, Tuyen; Piqani, Bruno; Li, Cheng; Golub, Todd R; Meyerson, Matthew; Hacohen, Nir; Hahn, William C; Lander, Eric S; Sabatini, David M; Root, David E

    2008-12-23

    More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process. PMID:19091943

  8. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2007-01-01

    Full Text Available Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.Abbreviations: 2DE: two-dimensional gel electrophoresis; ABPP: activity-based protein profiling; CEA: carcinoembryonic antigen; CI: confidence interval; ESI: electrospray ionization; FP: fluorophosphonate; HPLC: high performance liquid chromatography; ICAT: isotope coded affi nitytags; IEF: isoelectric focusing; iTRAQ: isobaric tags for relative and absolute quantification; LCMS: combined liquid chromatography-mass spectrometry; LCMSMS: liquid chromatography tandem mass spectrometry; LOD: limit of detection; m/z: mass to charge ratio; MALDI: matrix-assisted laser desorption ionization; MS: mass spectrometry; MUDPIT: multidimensional protein identification technology; NAF: nipple aspirate fluid; PMF: peptide mass fingerprinting; PSA: prostate specifi c antigen; PTMs: post-translational modifications; RPMA: reverse phase protein microarray; SELDI: surface enhanced laser desorption ionization; TOF: time-of-flight.

  9. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques.

    Science.gov (United States)

    González-Navarro, Félix F; Belanche-Muñoz, Lluís A; Gámez-Moreno, María G; Flores-Ríos, Brenda L; Ibarra-Esquer, Jorge E; López-Morteo, Gabriel A

    2016-04-28

    Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results. PMID:26960968

  10. Discovery and validation of methylation markers for endometrial cancer.

    Science.gov (United States)

    Wentzensen, Nicolas; Bakkum-Gamez, Jamie N; Killian, J Keith; Sampson, Joshua; Guido, Richard; Glass, Andrew; Adams, Lisa; Luhn, Patricia; Brinton, Louise A; Rush, Brenda; d'Ambrosio, Lori; Gunja, Munira; Yang, Hannah P; Garcia-Closas, Montserrat; Lacey, James V; Lissowska, Jolanta; Podratz, Karl; Meltzer, Paul; Shridhar, Viji; Sherman, Mark E

    2014-10-15

    The prognosis of endometrial cancer is strongly associated with stage at diagnosis, suggesting that early detection may reduce mortality. Women who are diagnosed with endometrial carcinoma often have a lengthy history of vaginal bleeding, which offers an opportunity for early diagnosis and curative treatment. We performed DNA methylation profiling on population-based endometrial cancers to identify early detection biomarkers and replicated top candidates in two independent studies. We compared DNA methylation values of 1,500 probes representing 807 genes in 148 population-based endometrial carcinoma samples and 23 benign endometrial tissues. Markers were replicated in another set of 69 carcinomas and 40 benign tissues profiled on the same platform. Further replication was conducted in The Cancer Genome Atlas and in prospectively collected endometrial brushings from women with and without endometrial carcinomas. We identified 114 CpG sites showing methylation differences with p values of ≤ 10(-7) between endometrial carcinoma and normal endometrium. Eight genes (ADCYAP1, ASCL2, HS3ST2, HTR1B, MME, NPY and SOX1) were selected for further replication. Age-adjusted odds ratios for endometrial cancer ranged from 3.44 (95%-CI: 1.33-8.91) for ASCL2 to 18.61 (95%-CI: 5.50-62.97) for HTR1B. An area under the curve (AUC) of 0.93 was achieved for discriminating carcinoma from benign endometrium. Replication in The Cancer Genome Atlas and in endometrial brushings from an independent study confirmed the candidate markers. This study demonstrates that methylation markers may be used to evaluate women with abnormal vaginal bleeding to distinguish women with endometrial carcinoma from the majority of women without malignancy. PMID:24623538

  11. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    OpenAIRE

    Ian Collins; Jones, Alan M.

    2014-01-01

    How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS) and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from p...

  12. Gene Therapy Used in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Thomas Wirth

    2014-04-01

    Full Text Available Cancer has been, from the beginning, a target of intense research for gene therapy approaches. Currently, more than 60% of all on-going clinical gene therapy trials worldwide are targeting cancer. Indeed, there is a clear unmet medical need for novel therapies. This is further urged by the fact that current conventional cancer therapies are frequently troubled by their toxicities. Different gene therapy strategies have been employed for cancer, such as pro-drug activating suicide gene therapy, anti-angiogenic gene therapy, oncolytic virotherapy, gene therapy-based immune modulation, correction/compensation of gene defects, genetic manipulation of apoptotic and tumor invasion pathways, antisense, and RNAi strategies. Cancer types, which have been targeted with gene therapy, include brain, lung, breast, pancreatic, liver, colorectal, prostate, bladder, head and neck, skin, ovarian, and renal cancer. Currently, two cancer gene therapy products have received market approval, both of which are in China. In addition, the stimulation of the host’s immune system, using gene therapeutic approaches, has gained vast interest. The intention of this review is to point out the most commonly viral and non-viral vectors and methods used in cancer gene therapy, as well as highlight some key results achieved in clinical trials.

  13. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  14. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    OpenAIRE

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of div...

  15. Fusion genes in solid tumors:an emerging target for cancer diagnosis and treatment

    Institute of Scientific and Technical Information of China (English)

    Brittany C. Parker; Wei Zhang

    2013-01-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  16. Progress in gene therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    KamranAliAhmed

    2012-11-01

    Full Text Available Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  17. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

    Directory of Open Access Journals (Sweden)

    Craig P Giacomini

    2013-04-01

    Full Text Available Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a "breakpoint analysis" pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1, SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2, RAF1 kinase in pancreatic cancer (ATG7/RAF1 and anaplastic astrocytoma (BCL6/RAF1, EWSR1 in melanoma (EWSR1/CREM, CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6, and CLTC in breast cancer (CLTC/VMP1. Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases, with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.

  18. Gene Prioritization for Imaging Genetics Studies Using Gene Ontology and a Stratified False Discovery Rate Approach

    Science.gov (United States)

    Patel, Sejal; Park, Min Tae M.; Chakravarty, M. Mallar; Knight, Jo

    2016-01-01

    Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA2) and the Alzheimer's Disease Neuroimaging Initiative datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between 10 and 20%. Our approach demonstrates a potential method to prioritize genes based on biological systems impaired in a disease. PMID:27092072

  19. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  20. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription

    Directory of Open Access Journals (Sweden)

    Statham Aaron L

    2011-01-01

    Full Text Available Abstract Background Cancer is commonly associated with widespread disruption of DNA methylation, chromatin modification and miRNA expression. In this study, we established a robust discovery pipeline to identify epigenetically deregulated miRNAs in cancer. Results Using an integrative approach that combines primary transcription, genome-wide DNA methylation and H3K9Ac marks with microRNA (miRNA expression, we identified miRNA genes that were epigenetically modified in cancer. We find miR-205, miR-21, and miR-196b to be epigenetically repressed, and miR-615 epigenetically activated in prostate cancer cells. Conclusions We show that detecting changes in primary miRNA transcription levels is a valuable method for detection of local epigenetic modifications that are associated with changes in mature miRNA expression.

  1. HOX Genes in Pancreatic Development and Cancer

    OpenAIRE

    Sophie Gray; Hardev S Pandha; Agnieszka Michael; Richard Morgan; Gary Middleton

    2011-01-01

    The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development and which are subsequently re-expressed in many types of cancer. Some recent studies have shown that HOX genes may have key roles both in pancreatic development and in adult diseases of the pancreas, including cancer. In this review we consider recent advances in elucidating the role of HOX genes in these processes, how they may connect early developmental events to s...

  2. A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery.

    Science.gov (United States)

    Sjöström, Martin; Ossola, Reto; Breslin, Thomas; Rinner, Oliver; Malmström, Lars; Schmidt, Alexander; Aebersold, Ruedi; Malmström, Johan; Niméus, Emma

    2015-07-01

    It is of highest importance to find proteins responsible for breast cancer dissemination, for use as biomarkers or treatment targets. We established and performed a combined nontargeted LC-MS/MS and a targeted LC-SRM workflow for discovery and validation of protein biomarkers. Eighty breast tumors, stratified for estrogen receptor status and development of distant recurrence (DR ± ), were collected. After enrichment of N-glycosylated peptides, label-free LC-MS/MS was performed on each individual tumor in triplicate. In total, 1515 glycopeptides from 778 proteins were identified and used to create a map of the breast cancer N-glycosylated proteome. Based on this specific proteome map, we constructed a 92-plex targeted label-free LC-SRM panel. These proteins were quantified across samples by LC-SRM, resulting in 10 proteins consistently differentially regulated between DR+/DR- tumors. Five proteins were further validated in a separate cohort as prognostic biomarkers at the gene expression level. We also compared the LC-SRM results to clinically reported HER2 status, demonstrating its clinical accuracy. In conclusion, we demonstrate a combined mass spectrometry strategy, at large scale on clinical samples, leading to the identification and validation of five proteins as potential biomarkers for breast cancer recurrence. All MS data are available via ProteomeXchange and PASSEL with identifiers PXD001685 and PASS00643. PMID:25944384

  3. Network of Cancer Genes (NCG 3.0): integration and analysis of genetic and network properties of cancer genes

    OpenAIRE

    D'Antonio, Matteo; Pendino, Vera; Sinha, Shruti; Ciccarelli, Francesca D.

    2011-01-01

    The identification of a constantly increasing number of genes whose mutations are causally implicated in tumor initiation and progression (cancer genes) requires the development of tools to store and analyze them. The Network of Cancer Genes (NCG 3.0) collects information on 1494 cancer genes that have been found mutated in 16 different cancer types. These genes were collected from the Cancer Gene Census as well as from 18 whole exome and 11 whole-genome screenings of cancer samples. For each...

  4. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  5. Toward the discovery of itemsets with significant variations in gene expression matrices

    OpenAIRE

    Kaytoue-Uberall, Mehdi; Duplessis, Sébastien; Napoli, Amedeo

    2008-01-01

    This paper presents new syntactic constraints for itemset mining in gene expression matrices. Biologists are interested in identifying gene expression profiles which present similar quantitative variation features. A two dimensional gene expression profile representation is introduced and adapted to itemset mining allowing to control gene expression. Syntactic constraints introduce expert knowledge at the beginning of the Knowledge Discovery in Databases process and are used to discover items...

  6. Estimating the False Discovery Rate Using Mixed Normal Distribution for Identifying Differentially Expressed Genes in Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Chikuma Hamada

    2007-01-01

    Full Text Available The recent development of DNA microarray technology allows us to measure simultaneously the expression levels of thousands of genes and to identify truly correlated genes with anticancer drug response (differentially expressed genes from many candidate genes. Significance Analysis of Microarray (SAM is often used to estimate the false discovery rate (FDR, which is an index for optimizing the identifiability of differentially expressed genes, while the accuracy of the estimated FDR by SAM is not necessarily confirmed. We propose a new method for estimating the FDR assuming a mixed normal distribution on the test statistic and examine the performance of the proposed method and SAM using simulated data. The simulation results indicate that the accuracy of the estimated FDR by the proposed method and SAM, varied depending on the experimental conditions. We applied both methods to actual data comprised of expression levels of 12,625 genes of 10 responders and 14 non-responders to docetaxel for breast cancer. The proposed method identified 280 differentially expressed genes correlated with docetaxel response using a cut-off value for achieving FDR <0.01 to prevent false-positive genes, although 92 genes were previously thought to be correlated with docetaxel response ones.

  7. [Gene therapy with cytokines against cervical cancer].

    Science.gov (United States)

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  8. Gene discovery in trypanosoma vivax through GSS and comparative genomics

    International Nuclear Information System (INIS)

    Full text: Trypanosoma vivax is a hemoparasite affecting livestock industry in South America and Africa. According to Seidl et al more than 11 million cattle evaluated in more than 3 billion dollars are found in the Pantanal region of Brazil and other lowlands in Bolivia. According to the same authors, if the outbreak reported in Pocone-MT (Center-East of Brazil) had gone untreated, the estimated losses would have exceeded US$140,000 on the seven ranches, $200 million in the Pantanal and $700 million regionwide. Despite the high economic relevance of the disease caused by T. vivax, few researches on its molecular characterization has been made as compared with human trypanosomes as T. brucei spp and T. cruzi. The main reason is the difficulty to grow the parasite into laboratory rodents and 'in vitro'. Very few (West African) strains have been adapted to laboratory rodents. Furthermore, most field isolates cannot be characterized by tools as RAPD, since parasitemias are usually very low making difficult the separation of parasites from animal blood for posterior extraction of parasite DNA. These characteristics have limited the research on T. vivax during the last decades, consequently very few markers have been described for its molecular characterization. A search in Genbank showed that there are only 22 entries for T. vivax confronted with nearly 98289, 38577, 23507 available for T. brucei, T. cruzi and Leishmania, respectively. T. vivax (molecular) biology is also little understood, even considering major differences as mechanical transmission in South America and both cyclical and mechanical transmission in Africa. In a consultation with several experts on genomics, it was emphasized that T. vivax and T. congolense are underepresented species in the molecular parasitology and genomics age, then they should be considered to have their genome sequenced. In order to discovery new markers to be explored in the molecular characterization of T. vivax, we decided to

  9. Discovery of mammalian genes that participate in virus infection

    Directory of Open Access Journals (Sweden)

    Sheng Jinsong

    2004-11-01

    Full Text Available Abstract Background Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. Results Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. Conclusions Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies.

  10. Bimodal gene expression patterns in breast cancer

    OpenAIRE

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  11. Topological Features In Cancer Gene Expression Data

    OpenAIRE

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  12. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar;

    2004-01-01

    Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number of...... human genes are functionally well characterized. It is still unclear how many and which human genes respond to estrogen treatment. We propose a simple, economic, yet effective computational method to predict a subclass of estrogen responsive genes. Our method relies on the similarity of ERE frames...... across different promoters in the human genome. Matching ERE frames of a test set of 60 known estrogen responsive genes to the collection of over 18,000 human promoters, we obtained 604 candidate genes. Evaluating our result by comparison with the published microarray data and literature, we found that...

  13. Telling the story of childhood cancer: an evaluation of the Discovery Interview methodology conducted within the Queensland Children's Cancer Centre

    OpenAIRE

    Slater PJ; Philpot SP

    2016-01-01

    Penelope J Slater,1 Shoni P Philpot2 1Queensland Children's Cancer Centre, Lady Cilento Children's Hospital, Children's Health Queensland, 2Queensland Cancer Control Analysis Team, Princess Alexandra Hospital, Brisbane, QLD, Australia Abstract: This paper evaluates the process and impact of the Discovery Interview methodology developed in the National Health Service and applied in the Queensland Children's Cancer Centre. It shows how this methodology supports the family-cente...

  14. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  15. Cancer Research from Molecular Discovery to Global Health

    Science.gov (United States)

    A science writers' seminar to discuss the latest research in cancer genetics and global health efforts, including talks from leaders of NCI’s new centers of cancer genomics and global health will be held Dec. 13, 2011, at NCI.

  16. Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems

    Directory of Open Access Journals (Sweden)

    Chung I-Fang

    2008-10-01

    Full Text Available Abstract Background The Signal-to-Noise-Ratio (SNR is often used for identification of biomarkers for two-class problems and no formal and useful generalization of SNR is available for multiclass problems. We propose innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene Dominant Index and Gene Dormant Index (GDIs. These two indices lead to the concepts of dominant and dormant genes with biological significance. We use these indices to develop methodologies for discovery of dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from the literature we have shown that the GDI based method can identify dominant and dormant genes that play significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems. Results and discussion To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer. For each data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers. We then use six machine learning tools, Nearest Neighbor Classifier (NNC, Nearest Mean Classifier (NMC, Support Vector Machine (SVM classifier with linear kernel, and SVM classifier with Gaussian kernel, where both SVMs are used in conjunction with one-vs-all (OVA and one-vs-one (OVO strategies. We found GDIs to be very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets we could achieve better or comparable prediction accuracies usually with fewer marker genes than results reported in the literature using the

  17. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    OpenAIRE

    Gasser Robin B; Smout Michael J; Sripa Manop; Sripa Banchob; Mulvenna Jason; Pinlaor Porntip; Laha Thewarach; Brindley Paul J; Loukas Alex

    2007-01-01

    Abstract Background Cholangiocarcinoma (CCA) – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire tra...

  18. STAT3 Target Genes Relevant to Human Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Richard L. [Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710 (United States); Lo, Hui-Wen, E-mail: huiwen.lo@duke.edu [Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710 (United States); Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 (United States)

    2014-04-16

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers.

  19. An overview of gene therapy in head and neck cancer

    OpenAIRE

    Amit Bali; Deepika Bali; Ashutosh Sharma

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  20. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  1. The bystander effect of cancer gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lumniczky, K.; Safrany, G. (Department of Molecular and Tumour Radiobiology, National Research Institute for Radiobiology and Radiohygiene, Budapest (Hungary))

    2008-12-15

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  2. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.;

    2009-01-01

    measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for...... predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  3. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  4. Targeting Gene-Virotherapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Yuan LIU; Jing-Fa GU; Wen-Fang SHI

    2005-01-01

    Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called "targeting genevirotherapy", which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called "targeting dual gene-virotherapy" (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory.Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vectorand another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.

  5. HOX Genes in Pancreatic Development and Cancer

    Directory of Open Access Journals (Sweden)

    Sophie Gray

    2011-05-01

    Full Text Available The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development and which are subsequently re-expressed in many types of cancer. Some recent studies have shown that HOX genes may have key roles both in pancreatic development and in adult diseases of the pancreas, including cancer. In this review we consider recent advances in elucidating the role of HOX genes in these processes, how they may connect early developmental events to subsequent adult disease, and their potential both as diagnostic markers and therapeutic targets.

  6. Targeting Radiotherapy to Cancer by Gene Transfer

    OpenAIRE

    R. J. Mairs; Boyd, M.

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer ...

  7. GWAS as a Driver of Gene Discovery in Cardiometabolic Diseases.

    Science.gov (United States)

    Atanasovska, Biljana; Kumar, Vinod; Fu, Jingyuan; Wijmenga, Cisca; Hofker, Marten H

    2015-12-01

    Cardiometabolic diseases represent a common complex disorder with a strong genetic component. Currently, genome-wide association studies (GWAS) have yielded some 755 single-nucleotide polymorphisms (SNPs) encompassing 366 independent loci that may help to decipher the molecular basis of cardiometabolic diseases. Going from a disease SNP to the underlying disease mechanisms is a huge challenge because the associated SNPs rarely disrupt protein function. Many disease SNPs are located in noncoding regions, and therefore attention is now focused on linking genetic SNP variation to effects on gene expression levels. By integrating genetic information with large-scale gene expression data, and with data from epigenetic roadmaps revealing gene regulatory regions, we expect to be able to identify candidate disease genes and the regulatory potential of disease SNPs. PMID:26596674

  8. Gene expression profiling analysis of ovarian cancer

    Science.gov (United States)

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  9. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  10. Employment of Salmonella in Cancer Gene Therapy.

    Science.gov (United States)

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors. PMID:26846804

  11. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    CERN Document Server

    H, Swathi

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate ...

  12. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ian Collins

    2014-10-01

    Full Text Available How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present considers the applications of diversity-oriented synthesis (DOS, biology-oriented synthesis (BIOS and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from pluripotent or synthetically versatile building blocks. We highlight the role of diversity-oriented synthetic strategies in producing new chemical tools to interrogate cancer biology pathways through the assembly of relevant libraries and their application to phenotypic and biochemical screens. The use of diversity-oriented strategies to explore structure-activity relationships in more advanced drug discovery projects is discussed. We show how considering appropriate and variable focus in library design has provided a spectrum of DOS approaches relevant at all stages in anti-cancer drug discovery.

  13. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  14. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  15. Integrating proteomic and functional genomic technologies in discovery-driven translational breast cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Gromova, Irina;

    2003-01-01

    . Here we describe the essence of a long-term initiative undertaken by The Danish Centre for Translational Breast Cancer Research and currently underway for cancer biomarker discovery using fresh tissue biopsies and bio-fluids. The Centre is a virtual hub that brings together scientists working......The application of state-of-the-art proteomics and functional genomics technologies to the study of cancer is rapidly shifting toward the analysis of clinically relevant samples derived from patients, as the ultimate aim of translational research is to bring basic discoveries closer to the bedside...... in various areas of basic cancer research such as cell cycle control, invasion and micro-environmental alterations, apoptosis, cell signaling, and immunology, with clinicians (oncologists, surgeons), pathologists, and epidemiologists, with the aim of understanding the molecular mechanisms underlying breast...

  16. Discovery of dachshund 2 protein as a novel biomarker of poor prognosis in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nodin Björn

    2012-01-01

    Full Text Available Abstract Background The Dachshund homolog 2 (DACH2 gene has been implicated in development of the female genital tract in mouse models and premature ovarian failure syndrome, but to date, its expression in human normal and cancerous tissue remains unexplored. Using the Human Protein Atlas as a tool for cancer biomarker discovery, DACH2 protein was found to be differentially expressed in epithelial ovarian cancer (EOC. Here, the expression and prognostic significance of DACH2 was further evaluated in ovarian cancer cell lines and human EOC samples. Methods Immunohistochemical expression of DACH2 was examined in tissue microarrays with 143 incident EOC cases from two prospective, population-based cohorts, including a subset of benign-appearing fallopian tubes (n = 32. A nuclear score (NS, i.e. multiplier of staining fraction and intensity, was calculated. For survival analyses, cases were dichotomized into low (NS 3 using classification and regression tree analysis. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the impact of DACH2 expression on survival. DACH2 expression was analysed in the cisplatin sensitive ovarian cancer cell line A2780 and its cisplatin resistant derivative A2780-Cp70. The specificity of the DACH2 antibody was tested using siRNA-mediated silencing of DACH2 in A2780-Cp70 cells. Results DACH2 expression was considerably higher in the cisplatin resistant A2780-Cp70 cells compared to the cisplatin-sensitive A2780 cells. While present in all sampled fallopian tubes, DACH2 expression ranged from negative to strong in EOC. In EOC, DACH2 expression correlated with several proteins involved in DNA integrity and repair, and proliferation. DACH2 expression was significantly higher in carcinoma of the serous subtype compared to non-serous carcinoma. In the full cohort, high DACH2 expression was significantly associated with poor prognosis in univariable analysis, and in carcinoma of the serous subtype

  17. Gene Therapy in Oral Cancer: A Review

    OpenAIRE

    Kumar, M. Sathish; Masthan, K.M.K.; Babu, N. Aravindha; Dash, Kailash Chandra

    2013-01-01

    Gene therapy is the use of DNA as an agent to treat disease. Gene therapy aims at the insertion of a functional gene into the cells of a patient for the correction of an inborn error of metabolism, to alter or repair an acquired genetic abnormality, and to provide new function to the cell. Many experiments have been done with respect to its application in various diseases.Today, most of the gene therapy studies are aimed at cancer and hereditary diseases which are linked to genetic defects. C...

  18. Transcriptionally targeted gene therapy to detect and treat cancer

    OpenAIRE

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2003-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle t...

  19. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  20. Discovery – Lung Cancer Screening Saves Lives: The NLST

    Science.gov (United States)

    NCI funded the National Lung Screening Trial, an eight-year study that used new technology to detect small, aggressive tumors early enough to surgically remove them. This approach reduced lung cancer deaths among participants by 20 percent.

  1. Transforming Discovery into Health (Cancer Therapy and Obesity)

    Science.gov (United States)

    ... genetic profile of each patient's cancer." Taking on Obesity More than one-third of adults in the ... may face an even greater struggle. Since 1980, obesity has more than doubled among U.S. children ages ...

  2. Discovery – BRCA Connection to Breast and Ovarian Cancer

    Science.gov (United States)

    NCI-funded research helped identify inherited BRCA1 and BRCA2 genetic mutations and their connection to breast and ovarian cancer. From this research, a screening test was also developed to help patients make informed decisions about their health.

  3. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    OpenAIRE

    Debasish Paul; Avinash Kumar; Akshada Gajbhiye; Santra, Manas K.; Rapole Srikanth

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE,...

  4. Data mining as a discovery tool for imprinted genes.

    Science.gov (United States)

    Brideau, Chelsea; Soloway, Paul

    2012-01-01

    This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language. PMID:22907493

  5. Identification of genes associated with multiple cancers via integrative analysis

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2009-11-01

    Full Text Available Abstract Background Advancement in gene profiling techniques makes it possible to measure expressions of thousands of genes and identify genes associated with development and progression of cancer. The identified cancer-associated genes can be used for diagnosis, prognosis prediction, and treatment selection. Most existing cancer microarray studies have been focusing on the identification of genes associated with a specific type of cancer. Recent biomedical studies suggest that different cancers may share common susceptibility genes. A comprehensive description of the associations between genes and cancers requires identification of not only multiple genes associated with a specific type of cancer but also genes associated with multiple cancers. Results In this article, we propose the Mc.TGD (Multi-cancer Threshold Gradient Descent, an integrative analysis approach capable of analyzing multiple microarray studies on different cancers. The Mc.TGD is the first regularized approach to conduct "two-dimensional" selection of genes with joint effects on cancer development. Simulation studies show that the Mc.TGD can more accurately identify genes associated with multiple cancers than meta analysis based on "one-dimensional" methods. As a byproduct, identification accuracy of genes associated with only one type of cancer may also be improved. We use the Mc.TGD to analyze seven microarray studies investigating development of seven different types of cancers. We identify one gene associated with six types of cancers and four genes associated with five types of cancers. In addition, we also identify 11, 9, 18, and 17 genes associated with 4 to 1 types of cancers, respectively. We evaluate prediction performance using a Leave-One-Out cross validation approach and find that only 4 (out of 570 subjects cannot be properly predicted. Conclusion The Mc.TGD can identify a short list of genes associated with one or multiple types of cancers. The identified genes

  6. Grouped graphical Granger modeling for gene expression regulatory networks discovery

    OpenAIRE

    Lozano, Aurélie C.; Abe, Naoki; Yan LIU; Rosset, Saharon

    2009-01-01

    We consider the problem of discovering gene regulatory networks from time-series microarray data. Recently, graphical Granger modeling has gained considerable attention as a promising direction for addressing this problem. These methods apply graphical modeling methods on time-series data and invoke the notion of ‘Granger causality’ to make assertions on causality through inference on time-lagged effects. Existing algorithms, however, have neglected an important aspect of the problem—the grou...

  7. TILLING in forage grasses for gene discovery and breeding improvement.

    Science.gov (United States)

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics. PMID:26924175

  8. Adenoviral gene therapy in gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  9. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer

    Directory of Open Access Journals (Sweden)

    Stefan eMereiter

    2016-03-01

    Full Text Available Gastrointestinal (GI cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans and glycosphingolipids that are involved in cancer cell adhesion, signaling, invasion and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, as well as imaging mass spectrometry and provide an outlook to future perspectives and clinical applications.

  10. Transcriptional Targeting in Cancer Gene Therapy

    OpenAIRE

    Tracy Robson; David G. Hirst

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these stra...

  11. The Clinical Impact of Recent Advances in LC-MS for Cancer Biomarker Discovery and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Shi, Tujin; Qian, Weijun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D.; Rodland, Karin D.; Camp, David G.

    2016-01-01

    Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances in LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.

  12. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms

    OpenAIRE

    Zhang, Junhua; Zhang, Shihua

    2016-01-01

    The pathogenesis of cancer in human is still poorly understood. With the rapid development of high-throughput sequencing technologies, huge volumes of cancer genomics data have been generated. Deciphering those data poses great opportunities and challenges to computational biologists. One of such key challenges is to distinguish driver mutations, genes as well as pathways from passenger ones. Mutual exclusivity of gene mutations (each patient has no more than one mutation in the gene set) has...

  13. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    OpenAIRE

    Yadollah Omidi; Jaleh Barar

    2012-01-01

    Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy o...

  14. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  15. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  16. A bi-ordering approach to linking gene expression with clinical annotations in gastric cancer

    Directory of Open Access Journals (Sweden)

    Leckie Christopher

    2010-09-01

    Full Text Available Abstract Background In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in a single assay, provide abundant information for the investigation of interesting genes or biological pathways. However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes. Moreover, systematic tests are needed to validate the statistical and biological significance of those discoveries. Results In this paper, we develop a robust and efficient method for exploratory analysis of microarray data, which produces a number of different orderings (rankings of both genes and samples (reflecting correlation among those genes and samples. The core algorithm is closely related to biclustering, and so we first compare its performance with several existing biclustering algorithms on two real datasets - gastric cancer and lymphoma datasets. We then show on the gastric cancer data that the sample orderings generated by our method are highly statistically significant with respect to the histological classification of samples by using the Jonckheere trend test, while the gene modules are biologically significant with respect to biological processes (from the Gene Ontology. In particular, some of the gene modules associated with biclusters are closely linked to gastric cancer tumorigenesis reported in previous literature, while others are potentially novel discoveries. Conclusion In conclusion, we have developed an effective and efficient method, Bi-Ordering Analysis, to detect informative patterns in gene expression microarrays by ranking genes and samples. In addition, a number of evaluation metrics were applied to assess both the statistical and biological significance of the resulting bi-orderings. The methodology was validated on gastric cancer and lymphoma datasets.

  17. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K;

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...... that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2....

  18. Antiangiogenic gene therapy of cancer: recent developments

    OpenAIRE

    Libutti Steven K; Blazer Dan G; Tandle Anita

    2004-01-01

    Abstract With the role of angiogenesis in tumor growth and progression firmly established, considerable effort has been directed to antiangiogenic therapy as a new modality to treat human cancers. Antiangiogenic agents have recently received much widespread attention but strategies for their optimal use are still being developed. Gene therapy represents an attractive alternative to recombinant protein administration for several reasons. This review evaluates the potential advantages of gene t...

  19. Multifunctional Delivery Systems for Cancer Gene Therapy

    OpenAIRE

    McErlean, Emma M.; McCrudden, Cian M; McCarthy, Helen O.

    2015-01-01

    This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies hig...

  20. Polymorphisms in stromal genes and susceptibility to serous epithelial ovarian cancer: a report from the Ovarian Cancer Association Consortium

    OpenAIRE

    Amankwah, E.K.; Wang, Q; Schildkraut, J.M.; Tsai, Y.Y.; Ramus, S.J.; Fridley, B L; Beesley, J.; Johnatty, S E; Webb, P. M.; Chenevix-Trench, G; Dale, L.C.; D. Lambrechts; Amant, F.; Despierre, E.; Vergote, I.

    2011-01-01

    Alterations in stromal tissue components can inhibit or promote epithelial tumorigenesis. Decorin (DCN) and lumican (LUM) show reduced stromal expression in serous epithelial ovarian cancer (sEOC). We hypothesized that common variants in these genes associate with risk. Associations with sEOC among Caucasians were estimated with odds ratios (OR) among 397 cases and 920 controls in two U.S.-based studies (discovery set), 436 cases and 1,098 controls in Australia (replication set 1) and a conso...

  1. Gene Tests May Improve Therapy for Endometrial Cancer

    Science.gov (United States)

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  2. Two Genes Might Help Predict Breast Cancer Survival

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160503.html Two Genes Might Help Predict Breast Cancer Survival Research suggests ... 18, 2016 (HealthDay News) -- The activity of two genes may help predict certain breast cancer patients' chances ...

  3. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  4. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001; FINAL

    International Nuclear Information System (INIS)

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community

  5. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001

    Energy Technology Data Exchange (ETDEWEB)

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-04-30

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.

  6. Analysis of Fractal Nature of Cancer Genes

    Directory of Open Access Journals (Sweden)

    Piyushi Singh, James Rohit Runda, Devanshu Umredkar & Rahul Shrivatava - See more at: http://sciencebeingjournal.com/octa-journal-biosciences/analysis-fractal-nature-cancer-genes#sthash.cDBXfyAw.dpuf

    2013-05-01

    Full Text Available This paper is aimed to predict the fractal natures of genes of two different cancers in Homo sapiens. The cancers whose properties were studied include the cancer of Lung and Skin. Two important genes that are responsible for each of these cancers were acquired to analyze their fractal nature. Wavelet transformation had been extensively used in the process of determining the fractal nature.The mRNA sequences were collected from the NCBI database and were then pre-processed efficiently. DNA walk plots were generated for each of these sequences using an in-house program written in MATLAB language. The data so obtained was checked for fractal property using wavelet transformations using an in-house program written in Matlab. All the sequences were checked for quadratic variations with the use of Daubechies-2(DB2 wavelets. The parameters were then plotted and the nature of each cancer was obtained from the plots. We have found that the gene sequences are exhibiting multifractal nature.

  7. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  8. The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery

    Directory of Open Access Journals (Sweden)

    El-Sayed Najib M

    2010-04-01

    Full Text Available Abstract Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5. Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence

  9. Clinical adenoviral gene therapy for prostate cancer

    Czech Academy of Sciences Publication Activity Database

    Schenk, E.; Essand, M.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Danielsson, A.; Dautzenberg, I. J. C.; Dzojic, H.; Erbacher, P.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Hoeben, R.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Lindholm, L.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nilsson, B.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schooten, E.; Seymour, L.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; Veldhoven-Zweistra, J. L. M.; de Vrij, J.; van Weerden, W.; Wagner, E.; Willemsen, R.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 807-813. ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  10. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  11. Gene variant linked to lung cancer risk

    Science.gov (United States)

    A variation of the gene NFKB1, called rs4648127, is associated with an estimated 44 percent reduction in lung cancer risk. When this information, derived from samples obtained as part of a large NCI-sponsored prevention clinical trial, was compared with d

  12. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery.

    Science.gov (United States)

    Verstraeten, Aline; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart

    2016-06-01

    Marfan syndrome (MFS) is a rare, autosomal-dominant, multisystem disorder, presenting with skeletal, ocular, skin, and cardiovascular symptoms. Significant clinical overlap with other systemic connective tissue diseases, including Loeys-Dietz syndrome (LDS), Shprintzen-Goldberg syndrome (SGS), and the MASS phenotype, has been documented. In MFS and LDS, the cardiovascular manifestations account for the major cause of patient morbidity and mortality, rendering them the main target for therapeutic intervention. Over the past decades, gene identification studies confidently linked the aforementioned syndromes, as well as nonsyndromic aneurysmal disease, to genetic defects in proteins related to the transforming growth factor (TGF)-β pathway, greatly expanding our knowledge on the disease mechanisms and providing us with novel therapeutic targets. As a result, the focus of the developing pharmacological treatment strategies is shifting from hemodynamic stress management to TGF-β antagonism. In this review, we discuss the insights that have been gained in the molecular biology of MFS and related disorders over the past 25 years. PMID:26919284

  13. Gene therapy in head and neck cancer: a review

    OpenAIRE

    Chisholm, E; Bapat, U.; Chisholm, C; Alusi, G.; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed.

  14. Expression and Significance of MAGE Genes in Human Lung Cancer

    OpenAIRE

    Guangxu LI; Song, Pingping; ZHANG, BAIJIANG

    2013-01-01

    Lung cancer is one of the common malignancies with an extremely poor prognosis, because of the current diagnostic techniques are not easy to find micrometastases. Melanoma associated antigens genes (MAGE) are tumor specific antigen genes, closely related to the occurrence, development and prognosis of lung cancer. The research of MAGE genes provide a new direction for the diagnosis and treatment of lung cancer.

  15. Emerging Glycolysis Targeting and Drug Discovery from Chinese Medicine in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang

    2012-01-01

    Full Text Available Molecular-targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells have different metabolic properties from normal cells. Normal cells mostly rely upon the process of mitochondrial oxidative phosphorylation to produce energy whereas cancer cells have developed an altered metabolism that allows them to sustain higher proliferation rates. Cancer cells could predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic characteristic is known as the “Warburg Effect.” Although the exact mechanisms underlying the Warburg effect are unclear, recent progress indicates that glycolytic pathway of cancer cells could be a critical target for drug discovery. With a long history in cancer treatment, traditional Chinese medicine (TCM is recognized as a valuable source for seeking bioactive anticancer compounds. A great progress has been made to identify active compounds from herbal medicine targeting on glycolysis for cancer treatment. Herein, we provide an overall picture of the current understanding of the molecular targets in the cancer glycolytic pathway and reviewed active compounds from Chinese herbal medicine with the potentials to inhibit the metabolic targets for cancer treatment. Combination of TCM with conventional therapies will provide an attractive strategy for improving clinical outcome in cancer treatment.

  16. Proteomics in Cancer Biomarkers Discovery: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Reem M. Sallam

    2015-01-01

    Full Text Available With the introduction of recent high-throughput technologies to various fields of science and medicine, it is becoming clear that obtaining large amounts of data is no longer a problem in modern research laboratories. However, coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation, in accordance with the evidence-based systems biology, are critical factors in ensuring the emergence of good science out of these recent technologies. This review focuses on the proteomics field and its new perspectives on cancer research. Cornerstone publications that have tremendously helped scientists and clinicians to better understand cancer pathogenesis; to discover novel diagnostic and/or prognostic biomarkers; and to suggest novel therapeutic targets will be presented. The author of this review aims at presenting some of the relevant literature data that helped as a step forward in bridging the gap between bench work results and bedside potentials. Undeniably, this review cannot include all the work that is being produced by expert research groups all over the world.

  17. Tales of one gene discovery of a novel candidate receptor in mammalian taste

    OpenAIRE

    Huang, Angela Lilly

    2007-01-01

    There are five basic taste modalities in mammals: bitter, sweet, sour, salty, and Umami (taste of MSG and L-amino acids). Receptors for bitter, sweet, and Umami were previously discovered. Identities of receptors for salty and sour taste modalities remained elusive. In this dissertation, I will present: 1) development of a novel bioinformatics screen to discover candidate receptors; 2) discovery of a novel gene, PKD2L1, in taste receptor cells; 3) evidence demonstrating PKD2L1-expressing tast...

  18. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Science.gov (United States)

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  19. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  20. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification.

    Science.gov (United States)

    Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D; Rodland, Karin D; Camp, David G

    2016-01-01

    Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives. PMID:26581546

  1. Theme discovery from gene lists for identification and viewing of multiple functional groups

    Directory of Open Access Journals (Sweden)

    Wong Garry

    2005-06-01

    Full Text Available Abstract Background High throughput methods of the genome era produce vast amounts of data in the form of gene lists. These lists are large and difficult to interpret without advanced computational or bioinformatic tools. Most existing methods analyse a gene list as a single entity although it is comprised of multiple gene groups associated with separate biological functions. Therefore it is imperative to define and visualize gene groups with unique functionality within gene lists. Results In order to analyse the functional heterogeneity within a gene list, we have developed a method that clusters genes to groups with homogenous functionalities. The method uses Non-negative Matrix Factorization (NMF to create several clustering results with varying numbers of clusters. The obtained clustering results are combined into a simple graphical presentation showing the functional groups over-represented in the analyzed gene list. We demonstrate its performance on two data sets and show results that improve upon existing methods. The comparison also shows that our method creates a more simplified view that aids in discovery of biological themes within the list and discards less informative classes from the results. Conclusion The presented method and associated software are useful for the identification and interpretation of biological functions associated with gene lists and are especially useful for the analysis of large lists.

  2. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling

    OpenAIRE

    Atrih, A; Mudaliar, M A V; Zakikhani, P; Lamont, D J; Huang, J T-J; Bray, S.E.; Barton, G.; Fleming, S; Nabi, G.

    2014-01-01

    Background: Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues. Methods: Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of...

  3. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development

    Directory of Open Access Journals (Sweden)

    Vikash K. Singh

    2014-12-01

    Full Text Available Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower development. Here, we provide details of experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679 and analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013, along with additional analysis for discovery of genes involved in shoot apical meristem (SAM development. Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower development and identification of gene targets for functional and applied genomics in legumes.

  4. Nanoparticle-based targeted gene therapy for lung cancer

    OpenAIRE

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeuti...

  5. CGMD: An integrated database of cancer genes and markers

    OpenAIRE

    Jangampalli Adi Pradeepkiran; Sri Bhashyam Sainath; Konidala Kramthi Kumar; Lokanada Balasubramanyam; Kodali Vidya Prabhakar; Matcha Bhaskar

    2015-01-01

    Integrating cancer genes and markers with experimental evidence might provide valuable information for the further investigation of crosstalk between tumor genes and markers in cancer biology. To achieve this objective, we developed a database known as the Cancer Gene Marker Database (CGMD), which integrates data on tumor genes and markers based on experimental evidence. The major goal of CGMD is to provide the following: 1) current systematic treatment approaches and recent advances in diffe...

  6. Ontological Discovery Environment: a system for integrating gene-phenotype associations.

    Science.gov (United States)

    Baker, Erich J; Jay, Jeremy J; Philip, Vivek M; Zhang, Yun; Li, Zuopan; Kirova, Roumyana; Langston, Michael A; Chesler, Elissa J

    2009-12-01

    The wealth of genomic technologies has enabled biologists to rapidly ascribe phenotypic characters to biological substrates. Central to effective biological investigation is the operational definition of the process under investigation. We propose an elucidation of categories of biological characters, including disease relevant traits, based on natural endogenous processes and experimentally observed biological networks, pathways and systems rather than on externally manifested constructs and current semantics such as disease names and processes. The Ontological Discovery Environment (ODE) is an Internet accessible resource for the storage, sharing, retrieval and analysis of phenotype-centered genomic data sets across species and experimental model systems. Any type of data set representing gene-phenotype relationships, such quantitative trait loci (QTL) positional candidates, literature reviews, microarray experiments, ontological or even meta-data, may serve as inputs. To demonstrate a use case leveraging the homology capabilities of ODE and its ability to synthesize diverse data sets, we conducted an analysis of genomic studies related to alcoholism. The core of ODE's gene set similarity, distance and hierarchical analysis is the creation of a bipartite network of gene-phenotype relations, a unique discrete graph approach to analysis that enables set-set matching of non-referential data. Gene sets are annotated with several levels of metadata, including community ontologies, while gene set translations compare models across species. Computationally derived gene sets are integrated into hierarchical trees based on gene-derived phenotype interdependencies. Automated set identifications are augmented by statistical tools which enable users to interpret the confidence of modeled results. This approach allows data integration and hypothesis discovery across multiple experimental contexts, regardless of the face similarity and semantic annotation of the experimental

  7. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  8. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  9. A Gene Selection Approach based on Clustering for Classification Tasks in Colon Cancer

    Directory of Open Access Journals (Sweden)

    José Antonio CASTELLANOS GARZÓN

    2016-06-01

    Full Text Available Gene selection (GS is an important research area in the analysis of DNA-microarray data, since it involves gene discovery meaningful for a particular target annotation or able to discriminate expression profiles of samples coming from different populations. In this context, a wide number of filter methods have been proposed in the literature to identify subsets of relevant genes in accordance with prefixed targets. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem (GS remains a challenge. Hence, this paper proposes a novel approach for gene selection by using cluster techniques and filter methods on the found groupings to achieve informative gene subsets. As a result of applying our methodology to Colon cancer data, we have identified the best informative gene subset between several one subsets. According to the above, the reached results have proven the reliability of the approach given in this paper.

  10. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    Directory of Open Access Journals (Sweden)

    Nadine Norton

    Full Text Available Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988 between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads. Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol

  11. New trends in molecular and cellular biomarker discovery for colorectal cancer

    Science.gov (United States)

    Aghagolzadeh, Parisa; Radpour, Ramin

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, which is consequence of multistep tumorigenesis of several genetic and epigenetic events. Since CRC is mostly asymptomatic until it progresses to advanced stages, the early detection using effective screening approaches, selection of appropriate therapeutic strategies and efficient follow-up programs are essential to reduce CRC mortalities. Biomarker discovery for CRC based on the personalized genotype and clinical information could facilitate the classification of patients with certain types and stages of cancer to tailor preventive and therapeutic approaches. These cancer-related biomarkers should be highly sensitive and specific in a wide range of specimen(s) (including tumor tissues, patients’ fluids or stool). Reliable biomarkers which enable the early detection of CRC, can improve early diagnosis, prognosis, treatment response prediction, and recurrence risk. Advances in our understanding of the natural history of CRC have led to the development of different CRC associated molecular and cellular biomarkers. This review highlights the new trends and approaches in CRC biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches and follow-up of patients. PMID:27433083

  12. Adenoviral gene therapy in gastric cancer: A review

    OpenAIRE

    Khalighinejad, Nima; Hariri, Hesammodin; Behnamfar, Omid; Yousefi, Arash; Momeni, Amir

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promi...

  13. Highly parallel identification of essential genes in cancer cells

    OpenAIRE

    Luo, Biao; Cheung, Hiu Wing; Subramanian, Aravind; Sharifnia, Tanaz; Okamoto, Michael; Yang, Xiaoping; Hinkle, Greg; Boehm, Jesse S.; Beroukhim, Rameen; Weir, Barbara A.; Mermel, Craig; Barbie, David A; Awad, Tarif; Zhou, Xiaochuan; Nguyen, Tuyen Van

    2008-01-01

    More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such...

  14. Cell Targeting in Anti-Cancer Gene Therapy

    OpenAIRE

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene th...

  15. Gene network-based cancer prognosis analysis with sparse boosting

    OpenAIRE

    Ma, Shuangge; Huang, Yuan; Huang, Jian; Fang, Kuangnan

    2012-01-01

    High-throughput gene profiling studies have been extensively conducted, searching for markers associated with cancer development and progression. In this study, we analyse cancer prognosis studies with right censored survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis (WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets of nodes, called modules, which are tightly connected to each othe...

  16. Sense-antisense gene-pairs in breast cancer and associated pathological pathways

    Science.gov (United States)

    Grinchuk, Oleg V.; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A.; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  17. Discovering cancer genes by integrating network and functional properties

    Directory of Open Access Journals (Sweden)

    Davis David P

    2009-09-01

    Full Text Available Abstract Background Identification of novel cancer-causing genes is one of the main goals in cancer research. The rapid accumulation of genome-wide protein-protein interaction (PPI data in humans has provided a new basis for studying the topological features of cancer genes in cellular networks. It is important to integrate multiple genomic data sources, including PPI networks, protein domains and Gene Ontology (GO annotations, to facilitate the identification of cancer genes. Methods Topological features of the PPI network, as well as protein domain compositions, enrichment of gene ontology categories, sequence and evolutionary conservation features were extracted and compared between cancer genes and other genes. The predictive power of various classifiers for identification of cancer genes was evaluated by cross validation. Experimental validation of a subset of the prediction results was conducted using siRNA knockdown and viability assays in human colon cancer cell line DLD-1. Results Cross validation demonstrated advantageous performance of classifiers based on support vector machines (SVMs with the inclusion of the topological features from the PPI network, protein domain compositions and GO annotations. We then applied the trained SVM classifier to human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1. Conclusion Topological features of PPI networks, protein domain compositions and GO annotations are good predictors of cancer genes. The SVM classifier integrates multiple features and as such is useful for prioritizing candidate cancer genes for experimental validations.

  18. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  19. Synthetic time series resembling human (HeLa) cell-cycle gene expression data and application to gene regulatory network discovery

    OpenAIRE

    Tam, GHF; Hung, YS; Chang, C.

    2013-01-01

    Evaluation of gene regulatory network (GRN) discovery methods relies heavily on synthetic time series. However, synthetic data generated by traditional method deviate a lot from real data, making such evaluation questionable. Guiding by decaying sinusoids, we propose a new method that generates synthetic data resembling human (HeLa) cell-cycle gene expression data. Using the new synthetic data, a simple comparison between four GRN discovery methods reveals that Granger causality (GC) methods ...

  20. Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation.

    Science.gov (United States)

    Alymani, Nayef A; Smith, Murray D; Williams, David J; Petty, Russell D

    2010-03-01

    A priority translational research objective in cancer medicine is the discovery of novel therapeutic targets for solid tumours. Ideally, co-discovery of predictive biomarkers occurs in parallel to facilitate clinical development of agents and ultimately personalise clinical use. However, the identification of clinically useful predictive biomarkers for solid tumours has proven challenging with many initially promising biomarkers failing to translate into clinically useful applications. In particular, the 'failure' of a predictive biomarker has often only become apparent at a relatively late stage in investigation. Recently, the field has recognised the need to develop a robust clinical biomarker development methodology to facilitate the process. This review discusses the recent progress in this area focusing on the key stages in the biomarker development process: discovery, validation, qualification and implementation. Concentrating on predictive biomarkers for selecting systemic therapies for individual patients in the clinic, the advances and progress in each of these stages in biomarker development are outlined and the key remaining challenges are discussed. Specific examples are discussed to illustrate the challenges identified and how they have been addressed. Overall, we find that significant progress has been made towards a formalised biomarker developmental process. This holds considerable promise for facilitating the translation of predictive biomarkers from discovery to clinical implementation. Further enhancements could eventually be found through alignment with regulatory processes. PMID:20138504

  1. An overview of gene therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Amit Bali

    2013-01-01

    Full Text Available Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  2. MAGIC Database and Interfaces: An Integrated Package for Gene Discovery and Expression

    Directory of Open Access Journals (Sweden)

    Lee H. Pratt

    2006-03-01

    Full Text Available The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs, and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  3. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  4. Gene Expression Profiling Predicts the Development of Oral Cancer

    OpenAIRE

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer develo...

  5. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    OpenAIRE

    Erin M Siegel; Riggs, Bridget M; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and ...

  6. DETECTION OF GENE MUTATION IN SPUTUM OF LUNG CANCER PATIENT

    Institute of Scientific and Technical Information of China (English)

    ZHANG He-long; WANG Wen-liang; CUI Da-xiang

    1999-01-01

    @@ Lung cancer is a common malignant tumor, which has ahigh incidence and mortality rate. Therefore, it is necessary to seek a new method for the diagnosis, especially the early diagnosis of lung cancer. The development of molecular biology makes the gene diagnosis of lung cancer possible.PCR-SSCP was applied to detect p53 gene mutation of lung cancer patients' sputum cells and we have achieved good results.

  7. Expression and Significance of MAGE Genes in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Guangxu LI

    2013-06-01

    Full Text Available Lung cancer is one of the common malignancies with an extremely poor prognosis, because of the current diagnostic techniques are not easy to find micrometastases. Melanoma associated antigens genes (MAGE are tumor specific antigen genes, closely related to the occurrence, development and prognosis of lung cancer. The research of MAGE genes provide a new direction for the diagnosis and treatment of lung cancer.

  8. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  9. An improved procedure for gene selection from microarray experiments using false discovery rate criterion

    Directory of Open Access Journals (Sweden)

    Yang Mark CK

    2006-01-01

    Full Text Available Abstract Background A large number of genes usually show differential expressions in a microarray experiment with two types of tissues, and the p-values of a proper statistical test are often used to quantify the significance of these differences. The genes with small p-values are then picked as the genes responsible for the differences in the tissue RNA expressions. One key question is what should be the threshold to consider the p-values small. There is always a trade off between this threshold and the rate of false claims. Recent statistical literature shows that the false discovery rate (FDR criterion is a powerful and reasonable criterion to pick those genes with differential expression. Moreover, the power of detection can be increased by knowing the number of non-differential expression genes. While this number is unknown in practice, there are methods to estimate it from data. The purpose of this paper is to present a new method of estimating this number and use it for the FDR procedure construction. Results A combination of test functions is used to estimate the number of differentially expressed genes. Simulation study shows that the proposed method has a higher power to detect these genes than other existing methods, while still keeping the FDR under control. The improvement can be substantial if the proportion of true differentially expressed genes is large. This procedure has also been tested with good results using a real dataset. Conclusion For a given expected FDR, the method proposed in this paper has better power to pick genes that show differentiation in their expression than two other well known methods.

  10. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map.

    Directory of Open Access Journals (Sweden)

    Zhining Wen

    Full Text Available To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM, we used microarrays, bioinformatics and the "Connectivity Map" (CMAP to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2 cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upregulated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms

  11. Regularized gene selection in cancer microarray meta-analysis

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2009-01-01

    Full Text Available Abstract Background In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments. Results We propose a Meta Threshold Gradient Descent Regularization (MTGDR approach for gene selection in the meta analysis of cancer microarray data. The MTGDR has many advantages over existing approaches. It allows different experiments to have different experimental settings. It can account for the joint effects of multiple genes on cancer, and it can select the same set of cancer-associated genes across multiple experiments. Simulation studies and analyses of multiple pancreatic and liver cancer experiments demonstrate the superior performance of the MTGDR. Conclusion The MTGDR provides an effective way of analyzing multiple cancer microarray studies and selecting reliable cancer-associated genes.

  12. Gene Test May Spare Some Breast Cancer Patients from Chemo

    Science.gov (United States)

    ... nlm.nih.gov/medlineplus/news/fullstory_157730.html Gene Test May Spare Some Breast Cancer Patients From ... researchers report. The test is called the 21-gene recurrence score (Oncotype DX). Among women that the ...

  13. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  14. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    Directory of Open Access Journals (Sweden)

    Julia D. Suerth

    2014-12-01

    Full Text Available Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.

  15. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  16. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids

    Directory of Open Access Journals (Sweden)

    Fu Chih-Hsiung

    2011-07-01

    Full Text Available Abstract Background Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. Results To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7. Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. Conclusion Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies.

  17. Gene therapy for gastric cancer: Is it promising?

    OpenAIRE

    Sutter, Andreas P; Fechner, Henry

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer, including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological t...

  18. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  19. Gene delivery for the treatment of prostate cancer

    OpenAIRE

    Fitzgerald, Kathleen A.

    2016-01-01

    Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA...

  20. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  1. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy.

    LENUS (Irish Health Repository)

    Martin, Cara M

    2012-02-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus is the single most important etiological agent in cervical cancer. HPV contributes to neoplastic progression through the action of two viral oncoproteins E6 and E7, which interfere with critical cell cycle pathways, p53, and retinoblastoma. However, evidence suggests that HPV infection alone is insufficient to induce malignant changes and other host genetic variations are important in the development of cervical cancer. Advances in molecular biology and high throughput gene expression profiling technologies have heralded a new era in biomarker discovery and identification of molecular targets related to carcinogenesis. These advancements have improved our understanding of carcinogenesis and will facilitate screening, early detection, management, and personalised targeted therapy. In this chapter, we have described the use of high density microarrays to assess gene expression profiles in cervical cancer. Using this approach we have identified a number of novel genes which are differentially expressed in cervical cancer, including several genes involved in cell cycle regulation. These include p16ink4a, MCM 3 and 5, CDC6, Geminin, Cyclins A-D, TOPO2A, CDCA1, and BIRC5. We have validated expression of mRNA using real-time PCR and protein by immunohistochemistry.

  2. Gene Expression Correlation for Cancer Diagnosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Binbing Ling

    2014-01-01

    Full Text Available Poor prognosis for late-stage, high-grade, and recurrent cancers has been motivating cancer researchers to search for more efficient biomarkers to identify the onset of cancer. Recent advances in constructing and dynamically analyzing biomolecular networks for different types of cancer have provided a promising novel strategy to detect tumorigenesis and metastasis. The observation of different biomolecular networks associated with normal and cancerous states led us to hypothesize that correlations for gene expressions could serve as valid indicators of early cancer development. In this pilot study, we tested our hypothesis by examining whether the mRNA expressions of three randomly selected cancer-related genes PIK3C3, PIM3, and PTEN were correlated during cancer progression and the correlation coefficients could be used for cancer diagnosis. Strong correlations (0.68≤r≤1.0 were observed between PIK3C3 and PIM3 in breast cancer, between PIK3C3 and PTEN in breast and ovary cancers, and between PIM3 and PTEN in breast, kidney, liver, and thyroid cancers during disease progression, implicating that the correlations for cancer network gene expressions could serve as a supplement to current clinical biomarkers, such as cancer antigens, for early cancer diagnosis.

  3. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  4. Gene therapy for gastric cancer: Is it promising?

    Institute of Scientific and Technical Information of China (English)

    Andreas P Sutter; Henry Fechner

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer,including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy.This review provides an update of the new developments in cancer gene therapy, new principles, techniques,strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.

  5. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  6. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  7. Immuno-isolation in cancer gene therapy.

    Science.gov (United States)

    Cirone, Pasquale; Potter, Murray; Hirte, Hal; Chang, Patricia

    2006-04-01

    The implantation of genetically-modified non-autologous cells in immuno-protected microcapsules is an alternative to ex vivo gene therapy. Such cells delivering a recombinant therapeutic product are isolated from the host's immune system by being encapsulated within permselective microcapsules. This approach has been successful in pre-clinical animal studies involving delivery of hormone or enzymes to treat dwarfism, lysosomal storage disease, or hemophilia B. Recently, this platform technology has shown promise in the treatment for more complex diseases such as cancer. One of the earliest strategy was to augment the chemotherapeutic effect of a prodrug by implanting encapsulated cells that can metabolise prodrugs into cytotoxic products in close proximity to the cancer cells. More recent approaches include enhancing tumor cell death through immunotherapy, or suppressing tumor cell proliferation through anti-angiogenesis. These can be achieved by delivering single molecules of cytokines or angiostatin, respectively, by implanting microencapsulated cells engineered to secrete these recombinant products. Recent refinements of these approaches include genetic fusion of cytokines or angiostatin to additional functional groups with tumor targeting or tumor cell killing properties, thus enhancing the potency of the recombinant products. Furthermore, a COMBO strategy of implanting microencapsulated cells to deliver multiple products targeted to diverse pathways in tumor suppression also showed much promise. This review will summarise the application of microencapsulation of genetically-modified cells to cancer treatment in animal models, the efficacy of such approaches, and how these studies have led to better understanding of the biology of cancer treatment. The flexibility of this modular system involving molecular engineering, cellular genetic modification, and polymer chemistry provides potentially a huge range of application modalities, and a tremendous multi

  8. Optimal search-based gene subset selection for gene array cancer classification.

    Science.gov (United States)

    Li, Jiexun; Su, Hua; Chen, Hsinchun; Futscher, Bernard W

    2007-07-01

    High dimensionality has been a major problem for gene array-based cancer classification. It is critical to identify marker genes for cancer diagnoses. We developed a framework of gene selection methods based on previous studies. This paper focuses on optimal search-based subset selection methods because they evaluate the group performance of genes and help to pinpoint global optimal set of marker genes. Notably, this paper is the first to introduce tabu search (TS) to gene selection from high-dimensional gene array data. Our comparative study of gene selection methods demonstrated the effectiveness of optimal search-based gene subset selection to identify cancer marker genes. TS was shown to be a promising tool for gene subset selection. PMID:17674622

  9. Identification of genes involved in breast cancer and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Apostolou P

    2015-07-01

    Full Text Available Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs, which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarray

  10. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  11. Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer.

    Science.gov (United States)

    Ma, Hong; Chen, Guilin; Guo, Mingquan

    2016-04-01

    Colorectal cancer (CRC) is a leading cause of cancer-related death in the world. Clinically, early detection of the disease is the most effective approach to tackle this tough challenge. Discovery and development of reliable and effective diagnostic tools for the assessment of prognosis and prediction of response to drug therapy are urgently needed for personalized therapies and better treatment outcomes. Among many ongoing efforts in search for potential CRC biomarkers, MS-based translational proteomics provides a unique opportunity for the discovery and application of protein biomarkers toward better CRC early detection and treatment. This review updates most recent studies that use preclinical models and clinical materials for the identification of CRC-related protein markers. Some new advances in the development of CRC protein markers such as CRC stem cell related protein markers, SRM/MRM-MS and MS cytometry approaches are also discussed in order to address future directions and challenges from bench translational research to bedside clinical application of CRC biomarkers. PMID:26616366

  12. Warehousing re-annotated cancer genes for biomarker meta-analysis.

    Science.gov (United States)

    Orsini, M; Travaglione, A; Capobianco, E

    2013-07-01

    Translational research in cancer genomics assigns a fundamental role to bioinformatics in support of candidate gene prioritization with regard to both biomarker discovery and target identification for drug development. Efforts in both such directions rely on the existence and constant update of large repositories of gene expression data and omics records obtained from a variety of experiments. Users who interactively interrogate such repositories may have problems in retrieving sample fields that present limited associated information, due for instance to incomplete entries or sometimes unusable files. Cancer-specific data sources present similar problems. Given that source integration usually improves data quality, one of the objectives is keeping the computational complexity sufficiently low to allow an optimal assimilation and mining of all the information. In particular, the scope of integrating intraomics data can be to improve the exploration of gene co-expression landscapes, while the scope of integrating interomics sources can be that of establishing genotype-phenotype associations. Both integrations are relevant to cancer biomarker meta-analysis, as the proposed study demonstrates. Our approach is based on re-annotating cancer-specific data available at the EBI's ArrayExpress repository and building a data warehouse aimed to biomarker discovery and validation studies. Cancer genes are organized by tissue with biomedical and clinical evidences combined to increase reproducibility and consistency of results. For better comparative evaluation, multiple queries have been designed to efficiently address all types of experiments and platforms, and allow for retrieval of sample-related information, such as cell line, disease state and clinical aspects. PMID:23639751

  13. Men with Advanced Prostate Cancer Might Consider Gene Test

    Science.gov (United States)

    ... whether abnormal DNA repair genes could help predict disease outcomes, the scientists said. The study team consisted of researchers from Memorial Sloan Kettering Cancer Center, Fred Hutchinson Cancer Research Center in Seattle, Dana-Farber Cancer Institute in Boston, the University of Washington ...

  14. Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes

    Science.gov (United States)

    Burgess, Earle F.; Ham, Amy-Joan L.; Tabb, David L.; Billheimer, Dean; Roth, Bruce J.; Chang, Sam S.; Cookson, Michael S.; Hinton, Timothy J.; Cheek, Kristin L.; Hill, Salisha; Pietenpol, Jennifer A.

    2010-01-01

    Alpha-2 macroglobulin (A2M) functions as a universal protease inhibitor in serum and is capable of binding various cytokines and growth factors. In this study, we investigated if immunoaffinity enrichment and proteomic analysis of A2M protein complexes from human serum could improve detection of biologically relevant and novel candidate protein biomarkers in prostate cancer. Serum samples from six patients with androgen-independent, metastatic prostate cancer and six control patients without malignancy were analyzed by immunoaffinity enrichment of A2M protein complexes and MS identification of associated proteins. Known A2M substrates were reproducibly identified from patient serum in both cohorts, as well as proteins previously undetected in human serum. One example is heat shock protein 90 alpha (HSP90α), which was identified only in the serum of cancer patients in this study. Using an ELISA, the presence of HSP90α in human serum was validated on expanded test cohorts and found to exist in higher median serum concentrations in prostate cancer (n = 18) relative to control (n = 13) patients (median concentrations 50.7 versus 27.6 ng/mL, respectively, p = 0.001). Our results demonstrate the technical feasibility of this approach and support the analysis of A2M protein complexes for proteomic-based serum biomarker discovery. PMID:20107526

  15. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    Directory of Open Access Journals (Sweden)

    Md Zahidul Islam Pranjol

    2015-01-01

    Full Text Available Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  16. Targeting p53 and its domains for cancer gene therapy

    OpenAIRE

    Karina Julia Matissek

    2014-01-01

    The tumor suppressor p53 is one of the most frequently mutated proteins in human cancer and has been extensively targeted for cancer therapy. This resulted in wild type p53 gene therapeutic approval for the treatment of head and neck cancer in China. p53 mainly functions as a transcription factor and stimulates a variety of genes involved in the intrinsic and extrinsic apoptotic pathway by binding to p53 responsive elements as a t...

  17. Stem Cell Based Gene Therapy in Prostate Cancer

    OpenAIRE

    Jae Heon Kim; Hong Jun Lee; Yun Seob Song

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new ...

  18. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  19. Telling the story of childhood cancer: an evaluation of the Discovery Interview methodology conducted within the Queensland Children's Cancer Centre

    OpenAIRE

    Slater, Penelope

    2016-01-01

    Penelope J Slater,1 Shoni P Philpot2 1Queensland Children's Cancer Centre, Lady Cilento Children's Hospital, Children's Health Queensland, 2Queensland Cancer Control Analysis Team, Princess Alexandra Hospital, Brisbane, QLD, Australia Abstract: This paper evaluates the process and impact of the Discovery Interview methodology developed in the National Health Service and applied in the Queensland Children's Cancer Centre. It shows how this methodology supports ...

  20. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. PMID:27480682

  1. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  2. Gene expression profiles in liver cancer and normal liver tissues

    Institute of Scientific and Technical Information of China (English)

    Lian Xin Liu; Hong Chi Jiang; An Long Zhu; Jin Zhou; Xiu Qin Wang; Min Wu

    2000-01-01

    AIM To describe a liver cancer = specific gene expression profile and to identify genes that showed alteredexpression between liver cancer tissues and their adjacent nearly normal tissues.METHODS The cDNA probes which were labeled with a-32P dATP were synthesized from total RNA ofliver cancer and adjacent normal tissues and hybridized separately to two identical Atlas human cancer eDNAexpression array membranes containing 588 known genes.RESULTS Autoradiographic results were analyzed by specific Atlas ImageTM (version 1. 0) software.Among the 588 genes analyzed, 18 genes were found up-regulated in cancer, including TFDP2, Aktl, E2F-3etc, and 25 genes were down-regulated in cancer, including TDGF1, BAK, LAR, etc. Expression levels ofgenes that associated with the regulation of cell proliferation, apoptosis, differentiation, cell-cellinteraction, invasion regulators and eytokines altered mostly.CONCLUSION The result obtained from Atlas microarray provides a comprehensive liver cancer-specificexpression profile. The results can lead to the identification of liver cancer-specific biomarkers and may behelpful in early diagnosis and dentifiction of target genes for designing rational therapeutic strategies.

  3. A comparative review of estimates of the proportion unchanged genes and the false discovery rate

    Directory of Open Access Journals (Sweden)

    Broberg Per

    2005-08-01

    Full Text Available Abstract Background In the analysis of microarray data one generally produces a vector of p-values that for each gene give the likelihood of obtaining equally strong evidence of change by pure chance. The distribution of these p-values is a mixture of two components corresponding to the changed genes and the unchanged ones. The focus of this article is how to estimate the proportion unchanged and the false discovery rate (FDR and how to make inferences based on these concepts. Six published methods for estimating the proportion unchanged genes are reviewed, two alternatives are presented, and all are tested on both simulated and real data. All estimates but one make do without any parametric assumptions concerning the distributions of the p-values. Furthermore, the estimation and use of the FDR and the closely related q-value is illustrated with examples. Five published estimates of the FDR and one new are presented and tested. Implementations in R code are available. Results A simulation model based on the distribution of real microarray data plus two real data sets were used to assess the methods. The proposed alternative methods for estimating the proportion unchanged fared very well, and gave evidence of low bias and very low variance. Different methods perform well depending upon whether there are few or many regulated genes. Furthermore, the methods for estimating FDR showed a varying performance, and were sometimes misleading. The new method had a very low error. Conclusion The concept of the q-value or false discovery rate is useful in practical research, despite some theoretical and practical shortcomings. However, it seems possible to challenge the performance of the published methods, and there is likely scope for further developing the estimates of the FDR. The new methods provide the scientist with more options to choose a suitable method for any particular experiment. The article advocates the use of the conjoint information

  4. Text Mining in Cancer Gene and Pathway Prioritization

    OpenAIRE

    Yuan Luo; Gregory Riedlinger; Peter Szolovits

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This rev...

  5. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    OpenAIRE

    Meir, Yaa-Jyuhn J; Weirauch, Matthew T.; Yang, Herng-Shing; Chung, Pei-Cheng; Yu, Robert K.; Wu, Sareina C-Y

    2011-01-01

    Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results ...

  6. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    OpenAIRE

    Hu, Chunling; Steven N Hart; William R Bamlet; Moore, Raymond M.; Nandakumar, Kannabiran; Bruce W Eckloff; Lee, Yean K.; Petersen, Gloria M.; Robert R McWilliams; Couch, Fergus J.

    2015-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 1...

  7. Gene transfer approaches in cancer immunotherapy.

    Science.gov (United States)

    Larin, S S; Georgiev, G P; Kiselev, S L

    2004-10-01

    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  8. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    OpenAIRE

    Md Zahidul Islam Pranjol; Amin Hajitou

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent dev...

  9. Regularized gene selection in cancer microarray meta-analysis

    OpenAIRE

    Huang Jian; Ma Shuangge

    2009-01-01

    Abstract Background In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multi...

  10. Gene Therapy for Cancer Treatment: Past, Present and Future

    OpenAIRE

    Cross, Deanna; Burmester, James K.

    2006-01-01

    The broad field of gene therapy promises a number of innovative treatments that are likely to become important in preventing deaths from cancer. In this review, we discuss the history, highlights and future of three different gene therapy treatment approaches: immunotherapy, oncolytic virotherapy and gene transfer. Immunotherapy uses genetically modified cells and viral particles to stimulate the immune system to destroy cancer cells. Recent clinical trials of second and third generation vacc...

  11. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii.

    Science.gov (United States)

    Wang, Yanjie; Dong, Chunlan; Xue, Zeyun; Jin, Qijiang; Xu, Yingchun

    2016-01-15

    Paeonia ostii, an important ornamental and medicinal plant, grows normally on copper (Cu) mines with widespread Cu contamination of soils, and it has the ability to lower Cu contents in the Cu-contaminated soils. However, very little molecular information concerned with Cu resistance of P. ostii is available. In this study, high-throughput de novo transcriptome sequencing was carried out for P. ostii with and without Cu treatment using Illumina HiSeq 2000 platform. A total of 77,704 All-unigenes were obtained with a mean length of 710 bp. Of these unigenes, 47,461 were annotated with public databases based on sequence similarities. Comparative transcript profiling allowed the discovery of 4324 differentially expressed genes (DEGs), with 2207 up-regulated and 2117 down-regulated unigenes in Cu-treated library as compared to the control counterpart. Based on these DEGs, Gene Ontology (GO) enrichment analysis indicated Cu stress-relevant terms, such as 'membrane' and 'antioxidant activity'. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis uncovered some important pathways, including 'biosynthesis of secondary metabolites' and 'metabolic pathways'. In addition, expression patterns of 12 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses, suggesting that all the 12 genes were authentically involved in Cu tolerance in P. ostii. This is the first report to identify genes related to Cu stress responses in P. ostii, which could offer valuable information on the molecular mechanisms of Cu resistance, and provide a basis for further genomics research on this and related ornamental species for phytoremediation. PMID:26435192

  12. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype.

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P; Boucher, Kenneth M; Burt, Randall W; Neklason, Deborah W; Hagedorn, Curt H; Delker, Don A

    2016-06-01

    Sessile serrated colon adenoma/polyps (SSA/P) are found during routine screening colonoscopy and may account for 20% to 30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. In addition, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing (RNA-Seq) was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon, and 20 control colon specimens. Differential expression and leave-one-out cross-validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1,422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n = 12) and sporadic SSA/Ps (n = 9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability. A smaller 7-gene panel showed high sensitivity and specificity in identifying BRAF-mutant, CpG island methylator phenotype high, and MLH1-silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. Cancer Prev Res; 9(6); 456-65. ©2016 AACR. PMID:27026680

  13. Gene Therapy: A Potential Approach for Cancer Pain

    OpenAIRE

    Nicholas Boulis; Christina Krudy; Handy, Chalonda R.

    2011-01-01

    Chronic pain is experienced by as many as 9 0 % of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discus...

  14. Discovery of potential prognostic long non-coding RNA biomarkers for predicting the risk of tumor recurrence of breast cancer patients.

    Science.gov (United States)

    Zhou, Meng; Zhong, Lei; Xu, Wanying; Sun, Yifan; Zhang, Zhaoyue; Zhao, Hengqiang; Yang, Lei; Sun, Jie

    2016-01-01

    Deregulation of long non-coding RNAs (lncRNAs) expression has been proven to be involved in the development and progression of cancer. However, expression pattern and prognostic value of lncRNAs in breast cancer recurrence remain unclear. Here, we analyzed lncRNA expression profiles of breast cancer patients who did or did not develop recurrence by repurposing existing microarray datasets from the Gene Expression Omnibus database, and identified 12 differentially expressed lncRNAs that were closely associated with tumor recurrence of breast cancer patients. We constructed a lncRNA-focus molecular signature by the risk scoring method based on the expression levels of 12 relapse-related lncRNAs from the discovery cohort, which classified patients into high-risk and low-risk groups with significantly different recurrence-free survival (HR = 2.72, 95% confidence interval 2.07-3.57; p = 4.8e-13). The 12-lncRNA signature also represented similar prognostic value in two out of three independent validation cohorts. Furthermore, the prognostic power of the 12-lncRNA signature was independent of known clinical prognostic factors in at least two cohorts. Functional analysis suggested that the predicted relapse-related lncRNAs may be involved in known breast cancer-related biological processes and pathways. Our results highlighted the potential of lncRNAs as novel candidate biomarkers to identify breast cancer patients at high risk of tumor recurrence. PMID:27503456

  15. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  16. Gene Expression Profiling to Predict Outcome After Chemoradiation in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Purpose: The goal of the present study was to improve prediction of outcome after chemoradiation in advanced head and neck cancer using gene expression analysis. Materials and Methods: We collected 92 biopsies from untreated head and neck cancer patients subsequently given cisplatin-based chemoradiation (RADPLAT) for advanced squamous cell carcinomas (HNSCC). After RNA extraction and labeling, we performed dye swap experiments using 35k oligo-microarrays. Supervised analyses were performed to create classifiers to predict locoregional control and disease recurrence. Published gene sets with prognostic value in other studies were also tested. Results: Using supervised classification on the whole series, gene sets separating good and poor outcome could be found for all end points. However, when splitting tumors into training and validation groups, no robust classifiers could be found. Using Gene Set Enrichment analysis, several gene sets were found to be enriched in locoregional recurrences, although with high false-discovery rates. Previously published signatures for radiosensitivity, hypoxia, proliferation, 'wound,' stem cells, and chromosomal instability were not significantly correlated with outcome. However, a recently published signature for HNSCC defining a 'high-risk' group was shown to be predictive for locoregional control in our dataset. Conclusion: Gene sets can be found with predictive potential for locoregional control after combined radiation and chemotherapy in HNSCC. How treatment-specific these gene sets are needs further study

  17. The rapamycin-regulated gene expression signature determines prognosis for breast cancer

    Directory of Open Access Journals (Sweden)

    Tsavachidis Spiridon

    2009-09-01

    Full Text Available Abstract Background Mammalian target of rapamycin (mTOR is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes may also be used to simulate a biologic process or effects of a drug treatment. In this study, we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer. Results Colony formation and sulforhodamine B (IC50 in vitro and in vivo gene expression data identified a signature, termed rapamycin metagene index (RMI, of 31 genes upregulated by rapamycin treatment in vitro as well as in vivo (false discovery rate of 10%. In the Miller dataset, RMI did not correlate with tumor size or lymph node status. High (>75th percentile RMI was significantly associated with longer survival (P = 0.015. On multivariate analysis, RMI (P = 0.029, tumor size (P = 0.015 and lymph node status (P = 0.001 were prognostic. In van 't Veer study, RMI was not associated with the time to develop distant metastasis (P = 0.41. In the Wang dataset, RMI predicted time to disease relapse (P = 0.009. Conclusion Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment.

  18. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  19. Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    Directory of Open Access Journals (Sweden)

    Varon-Mateeva Raymonda

    2009-12-01

    Full Text Available Abstract Background Coregulator proteins are "master regulators", directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs within SRC-1 (NCoA1, SRC-3 (NCoA3, AIB1, NCoR (NCoR1, and SMRT (NCoR2, and test the most promising SNPs for associations with breast cancer risk. Methods The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans. To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840. Results Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1. Of these, 8 were found with minor allele frequency (MAF >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04. No significant associations were found with the other SNPs genotyped. Conclusions This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted.

  20. Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    International Nuclear Information System (INIS)

    Coregulator proteins are 'master regulators', directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3, AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations with breast cancer risk. The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans). To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840). Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No significant associations were found with the other SNPs genotyped. This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted

  1. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  2. Hereditary Breast Cancer: The Era of New Susceptibility Genes

    Directory of Open Access Journals (Sweden)

    Paraskevi Apostolou

    2013-01-01

    Full Text Available Breast cancer is the most common malignancy among females. 5%–10% of breast cancer cases are hereditary and are caused by pathogenic mutations in the considered reference BRCA1 and BRCA2 genes. As sequencing technologies evolve, more susceptible genes have been discovered and BRCA1 and BRCA2 predisposition seems to be only a part of the story. These new findings include rare germline mutations in other high penetrant genes, the most important of which include TP53 mutations in Li-Fraumeni syndrome, STK11 mutations in Peutz-Jeghers syndrome, and PTEN mutations in Cowden syndrome. Furthermore, more frequent, but less penetrant, mutations have been identified in families with breast cancer clustering, in moderate or low penetrant genes, such as CHEK2, ATM, PALB2, and BRIP1. This paper will summarize all current data on new findings in breast cancer susceptibility genes.

  3. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    Science.gov (United States)

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation. PMID:26739486

  4. MicroRNAs in Cancer: A Historical Perspective on the Path from Discovery to Therapy

    Directory of Open Access Journals (Sweden)

    Esteban A. Orellana

    2015-07-01

    Full Text Available Recent progress in microRNA (miRNA therapeutics has been strongly dependent on multiple seminal discoveries in the area of miRNA biology during the past two decades. In this review, we focus on the historical discoveries that collectively led to transitioning miRNAs into the clinic. We highlight the pivotal studies that identified the first miRNAs in Caenorhabditis elegans to the more recent reports that have fueled the quest to understand the use of miRNAs as markers for cancer diagnosis and prognosis. In addition, we provide insights as to how unraveling basic miRNA biology has provided a solid foundation for advancing miRNAs, such as miR-34a, therapeutically. We conclude with a brief examination of the current challenges that still need to be addressed to accelerate the path of miRNAs to the clinic: including delivery vehicles, miRNA- and delivery-associated toxicity, dosage, and off target effects.

  5. Establishment and gene expression profiling of LKB1 stable knockdown lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    SUN Lin-lin; ZHONG Dian-sheng; WU Song; BAI Hua; CHEN Zhe

    2011-01-01

    Background Lung cancer is the leading cause of cancer-related death in China. Mutation analysis reveals that LKB1 inactivation is present in 30% of non-small-cell lung cancer (NSCLC), indicating its role as a tumor suppressor. However, the molecular mechanism is still not clear. Our study attempted to establish LKB1 stable knockdown NSCLC cell line, detect alterations in gene expression and identify the genes regulated by LKB1.Methods LKB1 stable knockdown H1299 cell line was established using a lentiviral short hairpin RNA. To identify the knockdown effect, LKB1 mRNA and protein expression level were evaluated with quantitative real-time PCR and Western blotting. We treated the cell lines with 2-deoxyglucose to determine if LKB1 protein function was impacted. Gene microarray analysis was performed to detect the gene expression alterations in LKB1 stable knockdown H1299 cells.Results LKB1 mRNA and protein expression were significantly suppressed in LKB1 stable knockdown H1299 cell line. 2-DG treatment had little impact on the phosphorylation of AMPK, which is the downstream target of LKB1, indicating the loss of function of LKB1. The microarray data showed that LKB1 knockdown resulted in expression alterations of 1243 kinds of genes, including those involved in cell migration, cell proliferation and cell apoptosis.Conclusions The establishment of LKB1 stable knockdown H1299 cell line provides us with a great tool to investigate various genes regulated by LKB1 through microarray. The discovery of cell proliferation and migration-related genes regulated by LKB1 is critical for unraveling molecular mechanisms of LKB1 's role in the development and metastasis of lung cancer.

  6. ESTs from a wild Arachis species for gene discovery and marker development

    Directory of Open Access Journals (Sweden)

    da Silva Felipe R

    2007-02-01

    Full Text Available Abstract Background Due to its origin, peanut has a very narrow genetic background. Wild relatives can be a source of genetic variability for cultivated peanut. In this study, the transcriptome of the wild species Arachis stenosperma accession V10309 was analyzed. Results ESTs were produced from four cDNA libraries of RNAs extracted from leaves and roots of A. stenosperma. Randomly selected cDNA clones were sequenced to generate 8,785 ESTs, of which 6,264 (71.3% had high quality, with 3,500 clusters: 963 contigs and 2537 singlets. Only 55.9% matched homologous sequences of known genes. ESTs were classified into 23 different categories according to putative protein functions. Numerous sequences related to disease resistance, drought tolerance and human health were identified. Two hundred and six microsatellites were found and markers have been developed for 188 of these. The microsatellite profile was analyzed and compared to other transcribed and genomic sequence data. Conclusion This is, to date, the first report on the analysis of transcriptome of a wild relative of peanut. The ESTs produced in this study are a valuable resource for gene discovery, the characterization of new wild alleles, and for marker development. The ESTs were released in the [GenBank:EH041934 to EH048197].

  7. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  8. [Driver gene mutation and targeted therapy of lung cancer].

    Science.gov (United States)

    Mitsudomi, Tetsuya

    2013-03-01

    Although cancers may have many genetic alterations, there are only a few mutations actually associated with essential traits of cancer cells such as cell proliferation or evasion from apoptosis. Because cancer cells are "addicted" to these "drive genes" , pharmacologic inhibition of these gene function is highly effective. Epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI)(such as gefitinib or erlotinib)treatment of lung cancer harboring EGFR gene mutation is one of the prototypes of such therapies. Several clinical trials clearly demonstrated that progression-free survival of patients treated with EGFR-TKI is significantly longer than that of those treated by conventional platinum doublet chemotherapy. EGFR-TKI therapy dramatically changed the paradigm of lung cancer treatment. Furthermore, in 2012, crizotinib was approved for lung cancer treatment with anaplastic lymphoma kinase(ALK)gene translocation. Targeted therapies for lung cancers "addicted" to other driver gene mutations including ROS1, RET or HER2 are also under development. Through these personalized approaches, lung cancer is changing from an acute fatal disease to a more chronic disease, and eventually we might be able to cure it. PMID:23507588

  9. Discovery and validation of prognostic markers in gastric cancer by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Yue-Zheng Zhang, Lian-Hai Zhang, Yang Gao, Chao-Hua Li, Shu-Qin Jia, Ni Liu, Feng Cheng, De-Yun Niu, William CS Cho, Jia-Fu Ji, Chang-Qing Zeng

    2011-04-01

    Full Text Available AIM: To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis.METHODS: Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we analyzed the expression of 47 296 transcripts in two batches of gastric cancer patients who underwent surgical resection. Thirty-nine samples in the first batch were used as the training set to discover candidate markers correlated to overall survival, and thirty-three samples in the second batch were used for validation.RESULTS: A panel of ten genes were identified as prognostic marker in the first batch samples and classified patients into a low- and a high-risk group with significantly different survival times (P = 0.000047. This prognostic marker was then verified in an independent validation sample batch (P = 0.0009. By comparing with the traditional Tumor-node-metastasis (TNM staging system, this ten-gene prognostic marker showed consistent prognosis results. It was the only independent prognostic value by multivariate Cox regression analysis (P = 0.007. Interestingly, six of these ten genes are ribosomal proteins, suggesting a possible association between the deregulation of ribosome related gene expression and the poor prognosis.CONCLUSION: A ten-gene marker correlated with overall prognosis, including 6 ribosomal proteins, was identified and verified, which may complement the predictive value of TNM staging system.

  10. Nanoparticle-based targeted gene therapy for lung cancer

    Science.gov (United States)

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  11. Ruguo key genes and tumor driving factors identification of bladder cancer based on the RNA-seq profile

    Directory of Open Access Journals (Sweden)

    Zhang M

    2016-05-01

    Full Text Available Minglei Zhang,1 Hongyan Li,2 Di Zou,3 Ji Gao2 1Department of Orthopedics, Division of Tumor and Trauma Surgery, 2Department of Urology, China–Japan Union Hospital of Jilin University, 3Department of Nephrology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People’s Republic of China Aim: This study aimed to select several signature genes associated with bladder cancer, thus to investigate the possible mechanism in bladder cancer.Methods: The mRNA expression profile data of GSE31614, including ten bladder tissues and ten control samples, was downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs in bladder cancer samples compared with the control samples were screened using the Student’s t-test method. Functional analysis for the DEGs was analyzed using the Database for Annotation, Visualization, and Integrated Discovery from the Gene Ontology database, followed by the transcription function annotation of DEGs from Tumor-Associated Gene database. Motifs of genes that had transcription functions in promoter region were analyzed using the Seqpos.Results: A total of 1,571 upregulated and 1,507 downregulated DEGs in the bladder cancer samples were screened. ELF3 and MYBL2 involved in cell cycle and DNA replication were tumor suppressors. MEG3, APEX1, and EZH2 were related with the cell epigenetic regulation in bladder cancer. Moreover, HOXB9 and EN1 that have their own motif were the transcription factors.Conclusion: Our study has identified several key genes involved in bladder cancer. ELF3 and MYBL2 are tumor suppressers, HOXB9 and EN1 are the main regulators, while MEG3, APEX1, and EZH2 are driving factors for bladder cancer progression. Keywords: bladder cancer, differentially expressed genes, tumor driving factor, function analysis

  12. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  13. Mutator gene and hereditary non-polyposis colorectal cancer

    Science.gov (United States)

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  14. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  15. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  16. Estimation of false discovery rates in multiple testing: application to gene microarray data.

    Science.gov (United States)

    Tsai, Chen-An; Hsueh, Huey-miin; Chen, James J

    2003-12-01

    Testing for significance with gene expression data from DNA microarray experiments involves simultaneous comparisons of hundreds or thousands of genes. If R denotes the number of rejections (declared significant genes) and V denotes the number of false rejections, then V/R, if R > 0, is the proportion of false rejected hypotheses. This paper proposes a model for the distribution of the number of rejections and the conditional distribution of V given R, V / R. Under the independence assumption, the distribution of R is a convolution of two binomials and the distribution of V / R has a noncentral hypergeometric distribution. Under an equicorrelated model, the distributions are more complex and are also derived. Five false discovery rate probability error measures are considered: FDR = E(V/R), pFDR = E(V/R / R > 0) (positive FDR), cFDR = E(V/R / R = r) (conditional FDR), mFDR = E(V)/E(R) (marginal FDR), and eFDR = E(V)/r (empirical FDR). The pFDR, cFDR, and mFDR are shown to be equivalent under the Bayesian framework, in which the number of true null hypotheses is modeled as a random variable. We present a parametric and a bootstrap procedure to estimate the FDRs. Monte Carlo simulations were conducted to evaluate the performance of these two methods. The bootstrap procedure appears to perform reasonably well, even when the alternative hypotheses are correlated (rho = .25). An example from a toxicogenomic microarray experiment is presented for illustration. PMID:14969487

  17. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    Science.gov (United States)

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. PMID:24636868

  18. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  19. Polymorphisms in mitochondrial genes and prostate cancer risk

    OpenAIRE

    Wang, Liang; McDonnell, Shannon K.; Hebbring, Scott J.; Cunningham, Julie M.; SAUVER, Jennifer ST.; Cerhan, James R.; Isaya, Grazia; Schaid, Daniel J; Thibodeau, Stephen N.

    2008-01-01

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multi-functional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single nucleotide polymorphisms (SNPs) within the mitochondrial genome (mtSNPs) and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve ≥80% coverage based o...

  20. An Iron Regulatory Gene Signature Predicts Outcome in Breast Cancer

    OpenAIRE

    Miller, Lance D.; Coffman, Lan G.; Chou, Jeff W.; Black, Michael A.; Bergh, Jonas; D’Agostino, Ralph; Torti, Suzy V.; Torti, Frank M.

    2011-01-01

    Changes in iron regulation characterize the malignant state. However, the pathways that effect these changes and their specific impact on prognosis remain poorly understood. We capitalized on publicly available microarray datasets comprising 674 breast cancer cases to systematically investigate how expression of genes related to iron metabolism is linked to breast cancer prognosis. Of 61 genes involved in iron regulation, 49% were statistically significantly associated with distant metastasis...

  1. Breast Cancer Risk – Genes, Environment and Clinics

    OpenAIRE

    Fasching, P. A.; Ekici, A B; Adamietz, B. R.; Wachter, D. L.; Hein, A; Bayer, C. M.; Häberle, L.; Loehberg, C. R.; Jud, S.M.; Heusinger, K.; Rübner, M.; Rauh, C.; Bani, M. R.; Lux, M. P.; Schulz-Wendtland, R.

    2011-01-01

    The information available about breast cancer risk factors has increased dramatically during the last 10 years. In particular, studies of low-penetrance genes and mammographic density have improved our understanding of breast cancer risk. In addition, initial steps have been taken in investigating interactions between genes and environmental factors. This review concerns with actual data on this topic. Several genome-wide association studies (GWASs) with a case–control design, as well as larg...

  2. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  3. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer...... development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome...... (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR...

  4. Gene-Environment Research and Cancer Epidemiology

    Science.gov (United States)

    The Epidemiology and Genomics Research Program supports extramural research that investigates both genetic and environmental factors that may contribute to the etiology of cancer and/or impact cancer outcomes.

  5. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening

    Directory of Open Access Journals (Sweden)

    Tokudome S

    2016-05-01

    Full Text Available Shinkan Tokudome,1 Ryosuke Ando,2 Yoshiro Koda,3 1Department of Nutritional Epidemiology, National Institute of Health and Nutrition, Shinjuku-ku, Tokyo, 2Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 3Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Japan Abstract: The discoveries and application of prostate-specific antigen (PSA have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (~30%. There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC and the US Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1 adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2 improving test performance using doubling time, density, and ratio of free: total PSA; and 3 fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1 examinations of cell proliferation and cell cycle markers

  6. Tumor suppressor genes in oral cancer

    OpenAIRE

    Vinayak Gourish Naik; Prakruti Adhyaru; Ajit Gudigenavar

    2015-01-01

    The incidence of oral cancer remains high and is associated with many deaths. Several risk factors for the development of oral cancer are now well known, including smoking, drinking and consumption of smokeless tobacco products. Genetic predisposition to oral cancer has been found in certain cases but its components are not yet entirely clear. A number of genomic lesions accompany the transformation into oral cancer and a wealth of related results has appeared in recent literature. Tumor supp...

  7. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  8. Multiclass cancer classification based on gene expression comparison

    OpenAIRE

    Yang Sitan; Naiman Daniel Q.

    2014-01-01

    As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analyses, microarray-based cancer classification comprising multiple discriminatory molecular markers is an emerging trend. Such multiclass classification problems pose new methodological and computational challenges for developing novel and effective statistical approaches. In this paper, we introduce a new approach for classifying multiple disease states associated with cancer based on gene expre...

  9. Period-2: a tumor suppressor gene in breast cancer

    OpenAIRE

    Xiang, Shulin; Coffelt, Seth B.; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and,...

  10. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    Science.gov (United States)

    Hu, Chunling; Hart, Steven N.; Bamlet, William R.; Moore, Raymond M.; Nandakumar, Kannabiran; Eckloff, Bruce W.; Lee, Yean K.; Petersen, Gloria M.; McWilliams, Robert R.; Couch, Fergus J.

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first degree relative with PDAC, and 10 mutations were found in patients with first or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancer. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers, and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of pancreatic cancer patients. PMID:26483394

  11. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients.

    Science.gov (United States)

    Hu, Chunling; Hart, Steven N; Bamlet, William R; Moore, Raymond M; Nandakumar, Kannabiran; Eckloff, Bruce W; Lee, Yean K; Petersen, Gloria M; McWilliams, Robert R; Couch, Fergus J

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well-defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12-month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first-degree relative with PDAC, and 10 mutations were found in patients with first- or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancers. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of patients with pancreatic cancer. PMID:26483394

  12. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  13. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  14. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  15. DDEC: Dragon database of genes implicated in esophageal cancer

    International Nuclear Information System (INIS)

    Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new 'association hypotheses' generated based on the precompiled reports. We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is freely accessible to academic

  16. DDEC: Dragon database of genes implicated in esophageal cancer

    KAUST Repository

    Essack, Magbubah

    2009-07-06

    Background: Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Description: Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new \\'association hypotheses\\' generated based on the precompiled reports. Conclusion: We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is

  17. Polymorphic variants in hereditary pancreatic cancer genes are not associated with pancreatic cancer risk

    Science.gov (United States)

    McWilliams, Robert R.; Bamlet, William R.; de Andrade, Mariza; Rider, David N.; Couch, Fergus J.; Cunningham, Julie M.; Matsumoto, Martha E.; Rabé, Kari G.; Hammer, Traci J.; Petersen, Gloria M.

    2009-01-01

    Background Inherited risk of pancreatic cancer has been associated with mutations in several genes, including BRCA2, CDKN2A (p16), PRSS1, and PALB2. We hypothesized that common variants in these genes, single nucleotide polymorphisms (SNPs), may also influence risk for pancreatic cancer development. Methods A clinic based case-control study in non-Hispanic white persons compared 1,143 patients with pancreatic adenocarcinoma with 1,097 healthy controls. Twenty-eight genes directly and indirectly involved in the Fanconi/BRCA pathway (includes BRCA1, BRCA2, and PALB2) were identified and 248 tag-SNPs were selected. In addition, 11 SNPs in CDKN2A, PRSS1, and PRSS2 were selected. Association studies were performed at the gene level by principal components analysis, while recursive partitioning analysis was utilized to investigate pathway effects. At the individual SNP level, adjusted additive, dominant, and recessive models were investigated, and gene-environment interactions were also assessed. Results Gene level analyses showed no significant association of any genes with altered pancreatic cancer risk. Multiple single SNP analyses demonstrated associations, which will require replication. Exploratory pathway analyses by recursive partitioning demonstrated no association between SNPs and risk for pancreatic cancer. Conclusion In a candidate gene and pathway SNP association study analysis, common variations in the Fanconi/BRCA pathway and other candidate familial pancreatic cancer genes are not associated with risk for pancreatic cancer. PMID:19690177

  18. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM for gene discovery.

    Directory of Open Access Journals (Sweden)

    Basel Abu-Jamous

    Full Text Available Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM, which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM. The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.

  19. Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity.

    Science.gov (United States)

    Monier, Adam; Sudek, Sebastian; Fast, Naomi M; Worden, Alexandra Z

    2013-09-01

    Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes. PMID:23635865

  20. Mutagenesis as a Functional Genomics Platform for Pharmaceutical Alkaloid Biosynthetic Gene Discovery in Opium Poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic benzyl-isoquinoline alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has led to the establishment of alternative cash crops. Novel cDNAs encoding a growing number of biosynthetic enzymes have been isolated, and various -omics resources including EST databases and DNA microarray chips have been established. However, the full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and recently developed reverse genetics methodology, such as TILLING (Targeting Induced Local Lesions IN Genomes), with the aim of identifying biosynthetic genes that can be used to engineer opium poppy for the production of copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds with ethyl methane sulfonate (EMS) or by fast-neutron bombardment (FNB). In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate reticuline and relatively low levels of morphine, codeine and thebaine compared to wild-type plants. Two other lines showed the unusual accumulation in the latex of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine. The present status of -omics resources and functional genomics platforms available to

  1. Mutagenesis as a functional genomics platform for pharmaceutical alkaloid biosynthetic gene discovery in opium poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has created opportunities to establish alternative cash crops. Novel cDNAs encoding more than a dozen biosynthetic enzymes have been isolated, and substantial EST databases and DNA microarray chips have been established. The full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and TILLING (Targeting Induced Local Lesions IN Genomes) and with the aim of identifying biosynthetic genes that can be used to engineer opium poppy to produce copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds by fast-neutron bombardment (FNB) or with ethyl methane sulfonate (EMS). Mutagenized opium poppy plants are cultivated in a secure underground growth facility in partnership with a Canadian biotechnology company. In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate (S)- reticuline and only low levels of morphine, codeine and thebaine. Two other lines showed the unusual accumulation of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine, in the latex. The present status of -omics resources and functional genomics platforms available to

  2. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  3. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  4. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  5. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-09-01

    Full Text Available Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results: Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion: Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno­medicines into clinical applications, it is essential 1 to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s; 2 to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3 to perform an initial clinical investigation; and 4 to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno­medicine development and clinical applications.

  6. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    Science.gov (United States)

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-01-01

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. PMID:27142790

  7. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Lindsay J. Stanbridge

    2003-01-01

    Full Text Available Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.

  8. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  9. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  10. Differential expression of ZFX gene in gastric cancer

    Indian Academy of Sciences (India)

    Parvaneh Nikpour; Modjtaba Emadi-Baygi; Faezeh Mohammad-Hashem; Mohamad Reza Maracy; Shaghayegh Haghjooy-Javanmard

    2012-03-01

    Gastric cancer accounts for 8% of the total cancer cases and 10% of total cancer deaths worldwide. In Iran, gastric cancer is the leading cause of national cancer-related mortality. Most human cancers show substantial heterogeneity. The cancer stem cell (CSC) hypothesis has been proposed to reconcile this heterogeneity. ZFX encodes a member of the krueppel C2H2-type zinc-finger protein family that is required as a transcriptional regulator for self-renewal of stem cells. A total of 30 paired tissue gastric samples were examined for ZFX gene expression by quantitative real-time RT-PCR. Although the relative expression of the gene was significantly high in 47% of the examined tumour tissues, its expression was low in the others (53%). There was a statistically significant association between the ZFX gene expression and different tumour types and grades. This is the first report that shows ZFX was differentially expressed in gastric cancer. Of note, it was overexpressed in diffused-type and grade III gastric tumoural tissues. Due to this, ZFX may have the potential to be used as a target for therapeutic interventions.

  11. Smart Polymeric Nanoparticles for Cancer Gene Delivery

    OpenAIRE

    Lin, Guimei; Zhang, Hong; Huang, Leaf

    2014-01-01

    The massive amount of human genetic information already available has accelerated the identification of target genes, making gene and nucleic acid therapy the next generation of medicine. Nanoparticle (NP)-based anticancer gene therapy treatment has received significant interest in this evolving field. Recent advances in vector technology have improved gene transfection efficiencies of nonviral vectors to a level similar to viruses. This review serves as an introduction to surface modificatio...

  12. Heritable clustering and pathway discovery in breast cancer integrating epigenetic and phenotypic data

    Directory of Open Access Journals (Sweden)

    Potter Dustin

    2007-02-01

    Full Text Available Abstract Background In order to recapitulate tumor progression pathways using epigenetic data, we developed novel clustering and pathway reconstruction algorithms, collectively referred to as heritable clustering. This approach generates a progression model of altered DNA methylation from tumor tissues diagnosed at different developmental stages. The samples act as surrogates for natural progression in breast cancer and allow the algorithm to uncover distinct epigenotypes that describe the molecular events underlying this process. Furthermore, our likelihood-based clustering algorithm has great flexibility, allowing for incomplete epigenotype or clinical phenotype data and also permitting dependencies among variables. Results Using this heritable clustering approach, we analyzed methylation data obtained from 86 primary breast cancers to recapitulate pathways of breast tumor progression. Detailed annotation and interpretation are provided to the optimal pathway recapitulated. The result confirms the previous observation that aggressive tumors tend to exhibit higher levels of promoter hypermethylation. Conclusion Our results indicate that the proposed heritable clustering algorithms are a useful tool for stratifying both methylation and clinical variables of breast cancer. The application to the breast tumor data illustrates that this approach can select meaningful progression models which may aid the interpretation of pathways having biological and clinical significance. Furthermore, the framework allows for other types of biological data, such as microarray gene expression or array CGH data, to be integrated.

  13. Major cancer protein amplifies global gene expression

    Science.gov (United States)

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  14. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles for these...

  15. Text mining for literature review and knowledge discovery in cancer risk assessment and research.

    Directory of Open Access Journals (Sweden)

    Anna Korhonen

    Full Text Available Research in biomedical text mining is starting to produce technology which can make information in biomedical literature more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB - a fully integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming, requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research. Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We discuss further development and application of our technology to other types of chemical risk assessment in the future.

  16. De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development.

    Science.gov (United States)

    Yue, Hong; Wang, Le; Liu, Hui; Yue, Wenjie; Du, Xianghong; Song, Weining; Nie, Xiaojun

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which is well-adapted to extreme environments such as drought, heat, and salinity with an efficient C4 carbon fixation. Discovery and identification of genes involved in these processes will provide valuable information to improve the crop for meeting the challenge of global climate change. However, the lack of genetic resources and genomic information make gene discovery and molecular mechanism studies very difficult. Here, we sequenced and assembled the transcriptome of broomcorn millet using Illumina sequencing technology. After sequencing, a total of 45,406,730 and 51,160,820 clean paired-end reads were obtained for two genotypes Yumi No. 2 and Yumi No. 3. These reads were mixed and then assembled into 113,643 unigenes, with the length ranging from 351 to 15,691 bp, of which 62,543 contings could be assigned to 315 gene ontology (GO) categories. Cluster of orthologous groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned could map 15,514 unigenes into 202 KEGG pathways and 51,020 unigenes to 25 COG categories, respectively. Furthermore, 35,216 simple sequence repeats (SSRs) were identified in 27,055 unigene sequences, of which trinucleotides were the most abundant repeat unit, accounting for 66.72% of SSRs. In addition, 292 differentially expressed genes were identified between the two genotypes, which were significantly enriched in 88 GO terms and 12 KEGG pathways. Finally, the expression patterns of four selected transcripts were validated through quantitative reverse transcription polymerase chain reaction analysis. Our study for the first time sequenced and assembled the transcriptome of broomcorn millet, which not only provided a rich sequence resource for gene discovery and marker development in this important crop, but will also facilitate the further investigation of the molecular mechanism of its favored agronomic traits and beyond. PMID

  17. Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information.

    Science.gov (United States)

    Kurian, Allison W; Antoniou, Antonis C; Domchek, Susan M

    2016-01-01

    Recent advances in genomic technology have enabled far more rapid, less expensive sequencing of multiple genes than was possible only a few years ago. Advances in bioinformatics also facilitate the interpretation of large amounts of genomic data. New strategies for cancer genetic risk assessment include multiplex sequencing panels of 5 to more than 100 genes (in which rare mutations are often associated with at least two times the average risk of developing breast cancer) and panels of common single-nucleotide polymorphisms (SNPs), combinations of which are generally associated with more modest cancer risks (more than twofold). Although these new multiple-gene panel tests are used in oncology practice, questions remain about the clinical validity and the clinical utility of their results. To translate this increasingly complex genetic information for clinical use, cancer risk prediction tools are under development that consider the joint effects of all susceptibility genes, together with other established breast cancer risk factors. Risk-adapted screening and prevention protocols are underway, with ongoing refinement as genetic knowledge grows. Priority areas for future research include the clinical validity and clinical utility of emerging genetic tests; the accuracy of developing cancer risk prediction models; and the long-term outcomes of risk-adapted screening and prevention protocols, in terms of patients' experiences and survival. PMID:27249685

  18. Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    REG (Regenerating gene) Iα protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPARγ-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG Iα protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG Iα gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPARγ, in PPARγ-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPARγ-antagonist GW9662. Although TZDs did not inhibit the REG Iα gene promoter activity in PPARγ-non-expressing cells, PPARγ overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG Iα gene transcription through a PPARγ-dependent pathway. The TZD-induced REG Iα mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG Iα and PPARγ.

  19. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description.

    Directory of Open Access Journals (Sweden)

    Mansoor Tariq

    Full Text Available The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes.De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs categories. Kyoto Encyclopedia of Genes and Genomes (KEGG database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose.This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful

  20. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    Getchell Thomas V

    2005-04-01

    Full Text Available Abstract Background Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. Results We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities. Conclusion Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.

  1. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  2. The landscape of antisense gene expression in human cancers.

    Science.gov (United States)

    Balbin, O Alejandro; Malik, Rohit; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G; Nesvizhskii, Alexey I; Chinnaiyan, Arul M

    2015-07-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology. PMID:26063736

  3. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    Science.gov (United States)

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  4. Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation

    Science.gov (United States)

    Coppe, Alessandro; Ferrari, Francesco; Bisognin, Andrea; Danieli, Gian Antonio; Ferrari, Sergio; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Genes co-expressed may be under similar promoter-based and/or position-based regulation. Although data on expression, position and function of human genes are available, their true integration still represents a challenge for computational biology, hampering the identification of regulatory mechanisms. We carried out an integrative analysis of genomic position, functional annotation and promoters of genes expressed in myeloid cells. Promoter analysis was conducted by a novel multi-step method for discovering putative regulatory elements, i.e. over-represented motifs, in a selected set of promoters, as compared with a background model. The combination of transcriptional, structural and functional data allowed the identification of sets of promoters pertaining to groups of genes co-expressed and co-localized in regions of the human genome. The application of motif discovery to 26 groups of genes co-expressed in myeloid cells differentiation and co-localized in the genome showed that there are more over-represented motifs in promoters of co-expressed and co-localized genes than in promoters of simply co-expressed genes (CEG). Motifs, which are similar to the binding sequences of known transcription factors, non-uniformly distributed along promoter sequences and/or occurring in highly co-expressed subset of genes were identified. Co-expressed and co-localized gene sets were grouped in two co-expressed genomic meta-regions, putatively representing functional domains of a high-level expression regulation. PMID:19059999

  5. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening

    Science.gov (United States)

    Tokudome, Shinkan; Ando, Ryosuke; Koda, Yoshiro

    2016-01-01

    The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally

  6. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening.

    Science.gov (United States)

    Tokudome, Shinkan; Ando, Ryosuke; Koda, Yoshiro

    2016-01-01

    The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally

  7. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent of...

  8. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73. ISSN 0015-5500 Grant ostatní: EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  9. Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor

    Directory of Open Access Journals (Sweden)

    Abo Ryan

    2010-12-01

    Full Text Available Abstract Background In candidate-gene association studies of single nucleotide polymorphisms (SNPs, multilocus analyses are frequently of high dimensionality when considering haplotypes or haplotype pairs (diplotypes and differing modes of expression. Often, while candidate genes are selected based on their biological involvement in a given pathway, little is known about the functionality of SNPs to guide association studies. Investigators face the challenge of exploring multiple SNP models to elucidate which variants, independently or in combination, might be associated with a disease of interest. A data mining module, hapConstructor (freely-available in Genie software performs systematic construction and association testing of multilocus genotype data in a Monte Carlo framework. Our objective was to assess its utility to guide statistical analyses of haplotypes within a candidate region (or combined genotypes across candidate genes beyond that offered by a standard logistic regression approach. Methods We applied the hapConstructor method to a multilocus investigation of candidate genes involved in pro-inflammatory cytokine IL6 production, IKBKB, IL6, and NFKB1 (16 SNPs total hypothesized to operate together to alter colorectal cancer risk. Data come from two U.S. multicenter studies, one of colon cancer (1,556 cases and 1,956 matched controls and one of rectal cancer (754 cases and 959 matched controls. Results HapConstrcutor enabled us to identify important associations that were further analyzed in logistic regression models to simultaneously adjust for confounders. The most significant finding (nominal P = 0.0004; false discovery rate q = 0.037 was a combined genotype association across IKBKB SNP rs5029748 (1 or 2 variant alleles, IL6 rs1800797 (1 or 2 variant alleles, and NFKB1 rs4648110 (2 variant alleles which conferred an ~80% decreased risk of colon cancer. Conclusions Strengths of hapConstructor were: systematic identification of

  10. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya; Sandelin, Albin; Andersson, Robin; Itoh, Masayoshi; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R

    2015-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...... samples to identify transcripts that are deregulated recurrently in a broad range of cancer types. Comparing RNA-seq data from 4,055 tumors and 563 normal tissues profiled in the TCGA and FANTOM5 datasets, we identified a core transcript set with theranostic potential. Our analyses also revealed enhancer...... RNAs which are upregulated in cancer, defining promoters which overlap with repetitive elements (especially SINE/Alu and LTR/ERV1 elements) that are often upregulated in cancer. Lastly, we documented for the first time upregulation of multiple copies of the REP522 interspersed repeat in cancer. Overall...

  11. Defining Aggressive Prostate Cancer Using a 12-Gene Model

    Directory of Open Access Journals (Sweden)

    Tarek A. Bismar

    2006-01-01

    Full Text Available The critical clinical question in prostate cancer research is: How do we develop means of distinguishing aggressive disease from indolent disease? Using a combination of proteomic and expression array data, we identified a set of 36 genes with concordant dysregulation of protein products that could be evaluated in situ by quantitative immunohistochemistry. Another five prostate cancer biomarkers were included using linear discriminant analysis, we determined that the optimal model used to predict prostate cancer progression consisted of 12 proteins. Using a separate patient population, transcriptional levels of the 12 genes encoding for these proteins predicted prostate-specific antigen failure in 79 men following surgery for clinically localized prostate cancer (P = .0015. This study demonstrates that cross-platform models can lead to predictive models with the possible advantage of being more robust through this selection process.

  12. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  13. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  14. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer

    OpenAIRE

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y.; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y.; Javed, Awais; Mahmoud, Fade A.; Osarogiagbon, Raymond U.; Manne, Upender

    2016-01-01

    Background African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. ...

  15. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  16. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    OpenAIRE

    Stanbridge Lindsay J.; Dussupt Vincent; Maitland Norman J.

    2003-01-01

    Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the co...

  17. Defining Aggressive Prostate Cancer Using a 12-Gene Model1

    OpenAIRE

    Tarek A Bismar; Demichelis, Francesca; Riva, Alberto; Kim, Robert; Varambally, Sooryanarayana; He, Le; Kutok, Jeff; Aster, Jonathan C; Tang, Jeffery; Kuefer, Rainer; Hofer, Matthias D.; Febbo, Phillip G; Arul M Chinnaiyan; Mark A. Rubin

    2006-01-01

    The critical clinical question in prostate cancer research is: How do we develop means of distinguishing aggressive disease from indolent disease? Using a combination of proteomic and expression array data, we identified a set of 36 genes with concordant dysregulation of protein products that could be evaluated in situ by quantitative immunohistochemistry. Another five prostate cancer biomarkers were included using linear discriminant analysis, we determined that the optimal model used to pre...

  18. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    Science.gov (United States)

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  19. The landscape of antisense gene expression in human cancers

    OpenAIRE

    Balbin, O. Alejandro; Malik, Rohit; Dhanasekaran, Saravana M.; Prensner, John R.; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G.; NesvizhskiI, Alexey I.; Arul M Chinnaiyan

    2015-01-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts’ (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found c...

  20. Approaches to diagnose DNA mismatch repair gene defects in cancer.

    Science.gov (United States)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-02-01

    The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance

  1. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  2. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    Science.gov (United States)

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology. PMID:25012686

  3. Gene expression analysis of FABP4 in gastric cancer

    OpenAIRE

    Abdulkarim Yasin Karim

    2016-01-01

    Purpose: Gastric cancer has high incidence and mortality rate in several countries and is still one of the most frequent and lethal disease. In this study, we aimed to determine diagnostic markers in gastric cancer by molecular techniques; include mRNA expression analysis of FABP4 gene. Fatty acid binding protein 4 (FABP4) gene encodes the fatty acid binding protein found in adipocytes. The protein encoded by FABP4 are a family of small, highly conserved, cytoplasmic proteins that bind long-c...

  4. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino;

    2012-01-01

    were retrieved from the Gene Expression Omnibus (GEO) (n¿=¿111) in addition to a Danish data set (n¿=¿37). All patients had stages II and III colon cancers. A Prediction Analysis of Microarray classifier, based on the 128-gene signature and the original training set of stage I (n¿=¿65) and stage IV (n......PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material......¿=¿76) colon cancers, was reproduced. The stages II and III colon cancers were subsequently classified as either stage I-like (good prognosis) or stage IV-like (poor prognosis) and assessed by the 36 months cumulative incidence of relapse. RESULTS: In the GEO data set, results were reproducible in stage...

  5. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P;

    2005-01-01

    is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene...... expression of 101 stage II and III colorectal cancers (34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated the......-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures....

  6. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  7. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    International Nuclear Information System (INIS)

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed

  8. RET fusion gene: translation to personalized lung cancer therapy.

    Science.gov (United States)

    Kohno, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Nakaoku, Takashi; Yoh, Kiyotaka; Goto, Koichi

    2013-11-01

    Development of lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, depends in many cases on the activation of "driver" oncogenes such as KRAS, epidermal growth factor receptor (EGFR), and anaplastic lymphoma kinase (ALK). Inhibitors that target the EGFR and ALK tyrosine kinases show therapeutic effects against LADCs containing EGFR gene mutations and ALK gene fusions, respectively. Recently, we and others identified the RET fusion gene as a new targetable driver gene in LADC. The RET fusions occur in 1-2% of LADCs. Existing US Food and Drug Administration-approved inhibitors of RET tyrosine kinase show promising therapeutic effects both in vitro and in vivo, as well as in a few patients. Clinical trials are underway to investigate the therapeutic effects of RET tyrosine kinase inhibitors, such as vandetanib (ZD6474) and cabozantinib (XL184), in patients with RET fusion-positive non-small-cell lung cancer. PMID:23991695

  9. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  10. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik;

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG...... mutations, R501X and 2282del4, using blood from the Copenhagen Hospital Biobank, Denmark. Controls (n = 8050) were genotyped in previous population-based studies. Information on cervical cancer, mortality and emigration were obtained from national registers. Odds ratios (OR) were estimated by logistic...... and stratification by cancer stage. RESULTS: The primary results showed that FLG mutations were not associated with the risk of cervical cancer (6.3% of cases and 7.7% of controls were carriers; OR adjusted 0.81, 95% CI 0.57-1.14; OR adjusted+ weighted 0.96, 95% CI 0.58-1.57). Among cases, FLG mutations increased...

  11. Reproducible cancer biomarker discovery in SELDI-TOF MS using different pre-processing algorithms.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    Full Text Available BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.

  12. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    OpenAIRE

    Victoria Gonzalo; Juan José Lozano; Jenifer Muñoz; Francesc Balaguer; Maria Pellisé; Cristina Rodríguez de Miguel; Montserrat Andreu; Rodrigo Jover; Xavier Llor; M Dolores Giráldez; Teresa Ocaña; Anna Serradesanferm; Virginia Alonso-Espinaco; Mireya Jimeno; Miriam Cuatrecasas

    2010-01-01

    BACKGROUND: Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-...

  13. A Boolean-based systems biology approach to predict novel genes associated with cancer: Application to colorectal cancer

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2011-02-01

    Full Text Available Abstract Background Cancer has remarkable complexity at the molecular level, with multiple genes, proteins, pathways and regulatory interconnections being affected. We introduce a systems biology approach to study cancer that formally integrates the available genetic, transcriptomic, epigenetic and molecular knowledge on cancer biology and, as a proof of concept, we apply it to colorectal cancer. Results We first classified all the genes in the human genome into cancer-associated and non-cancer-associated genes based on extensive literature mining. We then selected a set of functional attributes proven to be highly relevant to cancer biology that includes protein kinases, secreted proteins, transcription factors, post-translational modifications of proteins, DNA methylation and tissue specificity. These cancer-associated genes were used to extract 'common cancer fingerprints' through these molecular attributes, and a Boolean logic was implemented in such a way that both the expression data and functional attributes could be rationally integrated, allowing for the generation of a guilt-by-association algorithm to identify novel cancer-associated genes. Finally, these candidate genes are interlaced with the known cancer-related genes in a network analysis aimed at identifying highly conserved gene interactions that impact cancer outcome. We demonstrate the effectiveness of this approach using colorectal cancer as a test case and identify several novel candidate genes that are classified according to their functional attributes. These genes include the following: 1 secreted proteins as potential biomarkers for the early detection of colorectal cancer (FXYD1, GUCA2B, REG3A; 2 kinases as potential drug candidates to prevent tumor growth (CDC42BPB, EPHB3, TRPM6; and 3 potential oncogenic transcription factors (CDK8, MEF2C, ZIC2. Conclusion We argue that this is a holistic approach that faithfully mimics cancer characteristics, efficiently predicts

  14. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  15. Characterization of genes involved in cancer differentiation

    OpenAIRE

    Ye, Fei

    2010-01-01

    Krebs und Differenzierung sind eng verwandte biologische Phänomene. Um molekulare Abläufe zu erforschen und an Krebsdifferenzierung beteiligte Gene zu entdecken, haben wir ein in vitro Modell entwickelt, dass die Induktion der Differenzierung in Lungenkrebszelllinien ermöglicht. Mit diesem Modell konnten wir Gene charakterisieren, die nach Induktion der Differenzierung hochreguliert werden. Die kleinzellige Lungenkarzinomzelllinie (SCLC) H526 und die nicht-kleinzellige Lungenkarzinomzelllinie...

  16. Expression of a novel immunoglobulin gene SNC73 in humar cancer and non-cancerous tissues

    Institute of Scientific and Technical Information of China (English)

    Jian-Bin Hu; Shu Zheng; Yong-Chuan Deng

    2003-01-01

    AIM: To investigate the expression of immunoglobulin gene SNC73 in malignant tumors and non-cancerous normal tissues.METHODS: Expression level of SNC73 in tumors and noncancerous tissues from the same patient was determined by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (RT-PCR-ELISA) in 90cases of malignant tumors, including colorectal cancer, gastric cancer, breast cancer, lung cancer and liver cancer. Analysis on the correlation of SNC73 expression with sex, age, site,grade of differentiation, depth of invasion, and metastases in colorectal cancer patients was made.RESULTS: Expression level of SNC73 in non-cancerous colorectal mucosa and colorectal cancerous tissues was 1.234±0.842 and 0.737±0.731, respectively (P<0.01), with the mean ratio of 7.134±14.092 (range, 0.36-59.54).Expression of SNC73 showed no significant difference among gastric cancer, breast cancer, lung cancer and liver cancer when compared with non-cancerous tissues (P>0.05). No correlation was found between SNC73 expression level and various clinicopathological factors, including sex, age, site,grade of differentiation, depth of invasion and metastases of CRC patients.CONCLUSION: Down-regulation of SNC73 expression may be a relatively specific phenomenon in colorectal cancer.SNC73 is a potential genetic marker for the carcinongenesis of colorectal cancer. The relationship of SNC73 expression and carcinogenesis of colorectal cancer merits further study.

  17. DDPC: Dragon database of genes associated with prostate cancer

    KAUST Repository

    Maqungo, Monique

    2010-09-29

    Prostate cancer (PC) is one of the most commonly diagnosed cancers in men. PC is relatively difficult to diagnose due to a lack of clear early symptoms. Extensive research of PC has led to the availability of a large amount of data on PC. Several hundred genes are implicated in different stages of PC, which may help in developing diagnostic methods or even cures. In spite of this accumulated information, effective diagnostics and treatments remain evasive. We have developed Dragon Database of Genes associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise require tedious computational analyses, (ii) it integrates data on molecular interactions, pathways, gene ontologies, gene regulation at molecular level, predicted transcription factor binding sites on promoters of PC implicated genes and transcription factors that correspond to these binding sites and (iii) it contains DrugBank data on drugs associated with PC. We believe this resource will serve as a source of useful information for research on PC. DDPC is freely accessible for academic and non-profit users via http://apps.sanbi.ac.za/ddpc/ and http://cbrc .kaust.edu.sa/ddpc/. The Author(s) 2010.

  18. Gene therapy for cancer: regulatory considerations for approval.

    Science.gov (United States)

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA. PMID:26584531

  19. Patterns and functional implications of rare germline variants across 12 cancer types

    OpenAIRE

    Lu, Charles; Xie, Mingchao; Wendl, Michael C; Wang, Jiayin; McLellan, Michael D; Mark D M Leiserson; Huang, Kuan-lin; Wyczalkowski, Matthew A.; Jayasinghe, Reyka; Banerjee, Tapahsama; Ning, Jie; Tripathi, Piyush; Zhang, Qunyuan; Niu, Beifang; Ye, Kai

    2015-01-01

    Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes w...

  20. RUNX: a trilogy of cancer genes

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2002-01-01

    The RUNX family of transcription factors plays pivotal roles during normal development and in neoplasias. Recent data involve RUNX3 as an important tumor suppressor in gastric cancers and pose interesting questions about how perturbed levels and interspecific competition among RUNX family members...

  1. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  2. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  3. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  4. Polymorphisms in stromal genes and susceptibility to serous epithelial ovarian cancer: a report from the Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Wang, Qinggang; Schildkraut, Joellen M;

    2011-01-01

    Alterations in stromal tissue components can inhibit or promote epithelial tumorigenesis. Decorin (DCN) and lumican (LUM) show reduced stromal expression in serous epithelial ovarian cancer (sEOC). We hypothesized that common variants in these genes associate with risk. Associations with sEOC among...... Caucasians were estimated with odds ratios (OR) among 397 cases and 920 controls in two U.S.-based studies (discovery set), 436 cases and 1,098 controls in Australia (replication set 1) and a consortium of 15 studies comprising 1,668 cases and 4,249 controls (replication set 2). The discovery set and...... replication set 1 (833 cases and 2,013 controls) showed statistically homogeneous (P(heterogeneity)≥0.48) decreased risks of sEOC at four variants: DCN rs3138165, rs13312816 and rs516115, and LUM rs17018765 (OR = 0.6 to 0.9; P(trend) = 0.001 to 0.03). Results from replication set 2 were statistically...

  5. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  6. Mutations in the AXIN1 gene in advanced prostate cancer

    DEFF Research Database (Denmark)

    Yardy, George W; Bicknell, David C; Wilding, Jennifer L;

    2009-01-01

    The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes...

  7. Adenovirus-derived vectors for prostate cancer gene therapy

    Czech Academy of Sciences Publication Activity Database

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805. ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  8. Gene transfer-applied cancer boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yutaka [ed.] [Mishima Institute for Dermatological Research, Kobe (Japan)

    1999-02-01

    On the basis of research progress made in basic investigations to clinical treatment in melanoma BNCT, we have advanced the present project through the application of the latest in melanogenesis research as well as cancer gene therapy. The multiple findings obtained during the fiscal years of 1997 and 1998 and contained in this current volume. (J.P.N.)

  9. Gene transfer-applied cancer boron neutron capture therapy

    International Nuclear Information System (INIS)

    On the basis of research progress made in basic investigations to clinical treatment in melanoma BNCT, we have advanced the present project through the application of the latest in melanogenesis research as well as cancer gene therapy. The multiple findings obtained during the fiscal years of 1997 and 1998 and contained in this current volume. (J.P.N.)

  10. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas; Jönsson, Mats; Bernstein, Inge; Borg, Ake; Nilbert, Mef

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  11. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Directory of Open Access Journals (Sweden)

    May Gregory D

    2010-12-01

    Full Text Available Abstract Background Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster, the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. Results A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE genes (1,036 were also found to have up-regulated expression levels in meiocytes. Conclusion These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.

  12. Polymeric oncolytic adenovirus for cancer gene therapy.

    Science.gov (United States)

    Choi, Joung-Woo; Lee, Young Sook; Yun, Chae-Ok; Kim, Sung Wan

    2015-12-10

    Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research. PMID:26453806

  13. Period-2: a tumor suppressor gene in breast cancer.

    Science.gov (United States)

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels. PMID:18334030

  14. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  15. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling; Lindebjerg, Jan; Kolvraa, Steen; Danenberg, Peter; Danenberg, Kathleen; Jakobsen, Anders

    2011-01-01

    marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor and...... promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  16. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  17. Molecular genetic, diagnosis, prevention and gene therapy in prostatic cancer: review article

    OpenAIRE

    Noori Daloii MR; Ebrahimzadeh Vesal E

    2009-01-01

    "nThe prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer), and also the second leading cause of cancer death (after lung cancer) among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes. The family history is an important risk factor for developing the disease. The genes AR, CYP...

  18. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Directory of Open Access Journals (Sweden)

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  19. Cyclin E Transgenic Mice: Discovery Tools for Lung Cancer Biology, Therapy, and Prevention

    OpenAIRE

    Freemantle, Sarah J.; Dmitrovsky, Ethan

    2010-01-01

    Lung cancer is the leading cause of cancer-related mortality in the United States and many other countries. This fact underscores the need for clinically relevant models to increase our understanding of lung cancer biology and to help design and implement preventive and more-effective therapeutic interventions for lung cancer. New murine transgenic models of non-small cell lung cancer (NSCLC) have been engineered for this purpose. In one such model, overexpression of the cell-cycle regulator ...

  20. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression

    Science.gov (United States)

    Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain. PMID:27322383

  1. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  2. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  3. Discovery of EST-SSRs in lung cancer: tagged ESTs with SSRs lead to differential amino acid and protein expression patterns in cancerous tissues.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Bakhtiarizadeh

    Full Text Available Tandem repeats are found in both coding and non-coding sequences of higher organisms. These sequences can be used in cancer genetics and diagnosis to unravel the genetic basis of tumor formation and progression. In this study, a possible relationship between SSR distributions and lung cancer was studied by comparative analysis of EST-SSRs in normal and lung cancerous tissues. While the EST-SSR distribution was similar between tumorous tissues, this distribution was different between normal and tumorous tissues. Trinucleotides tandem repeats were highly different; the number of trinucleotides in ESTs of lung cancer was 3 times higher than normal tissue. Significant negative correlation between normal and cancerous tissue showed that cancerous tissue generates different types of trinucleotides. GGC and CGC were the more frequent expressed trinucleotides in cancerous tissue, but these SSRs were not expressed in normal tissue. Similar to the EST level, the expression pattern of EST-SSRs-derived amino acids was significantly different between normal and cancerous tissues. Arg, Pro, Ser, Gly, and Lys were the most abundant amino acids in cancerous tissues, and Leu, Cys, Phe, and His were significantly more abundant in normal tissues than in cancerous tissues. Next, the putative functions of triplet SSR-containing genes were analyzed. In cancerous tissue, EST-SSRs produce different types of proteins. Chromodomain helicase DNA binding proteins were one of the major protein products of EST-SSRs in the cancerous library, while these proteins were not produced from EST-SSRs in normal tissue. For the first time, the findings of this study confirmed that EST-SSRs in normal lung tissues are different than in unhealthy tissues, and tagged ESTs with SSRs cause remarkable differences in amino acid and protein expression patterns in cancerous tissue. We suggest that EST-SSRs and EST-SSRs differentially expressed in cancerous tissue may be suitable candidate

  4. N-myc Downstream Regulated Gene 1 (NDRG1 Is Fused to ERG in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Dorothee Pflueger

    2009-08-01

    Full Text Available A step toward the molecular classification of prostate cancer was the discovery of recurrent erythroblast transformation. specific rearrangements, most commonly fusing the androgen-regulated TMPRSS2 promoter to ERG. The TMPRSS2-ERG fusion is observed in around 90% of tumors that overexpress the oncogene ERG. The goal of the current study was to complete the characterization of these ERG-overexpressing prostate cancers. Using fluorescence in situ hybridization and reverse transcription.polymerase chain reaction assays, we screened 101 prostate cancers, identifying 34 cases (34% with the TMPRSS2-ERG fusion. Seven cases demonstrated ERG rearrangement by fluorescence in situ hybridization without the presence of TMPRSS2-ERG fusion messenger RNA transcripts. Screening for known 5' partners, we determined that three cases harbored the SLC45A3-ERG fusion. To discover novel 5' partners in these ERG-overexpressing and ERG-rearranged cases, we used paired-end RNA sequencing. We first confirmed the utility of this approach by identifying the TMPRSS2-ERG fusion in a known positive prostate cancer case and then discovered a novel fusion involving the androgen-inducible tumor suppressor, NDRG1 (N-myc downstream regulated gene 1, and ERG in two cases. Unlike TMPRSS2-ERG and SCL45A3-ERG fusions, the NDRG1-ERG fusion is predicted to encode a chimeric protein. Like TMPRSS2, SCL45A3 and NDRG1 are inducible not only by androgen but also by estrogen. This study demonstrates that most ERG-overexpressing prostate cancers harbor hormonally regulated TMPRSS2-ERG, SLC45A3-ERG, or NDRG1-ERG fusions. Broader implications of this study support the use of RNA sequencing to discover novel cancer translocations.

  5. Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers.

    Science.gov (United States)

    Granados, D P; Rodenbrock, A; Laverdure, J-P; Côté, C; Caron-Lizotte, O; Carli, C; Pearson, H; Janelle, V; Durette, C; Bonneil, E; Roy, D C; Delisle, J-S; Lemieux, S; Thibault, P; Perreault, C

    2016-06-01

    Pre-clinical studies have shown that injection of allogeneic T cells primed against a single minor histocompatibility antigen (MiHA) could cure hematologic cancers (HC) without causing any toxicity to the host. However, translation of this approach in humans has been hampered by the paucity of molecularly defined human MiHAs. Using a novel proteogenomic approach, we have analyzed cells from 13 volunteers and discovered a vast repertoire of MiHAs presented by the most common HLA haplotype in European Americans: HLA-A*02:01;B*44:03. Notably, out of >6000 MiHAs, we have identified a set of 39 MiHAs that share optimal features for immunotherapy of HCs. These 'optimal MiHAs' are coded by common alleles of genes that are preferentially expressed in hematopoietic cells. Bioinformatic modeling based on MiHA allelic frequencies showed that the 39 optimal MiHAs would enable MiHA-targeted immunotherapy of practically all HLA-A*02:01;B*44:03 patients. Further extension of this strategy to a few additional HLA haplotypes would allow treatment of almost all patients. PMID:26857467

  6. Identification of novel hereditary cancer genes by whole exome sequencing.

    Science.gov (United States)

    Sokolenko, Anna P; Suspitsin, Evgeny N; Kuligina, Ekatherina Sh; Bizin, Ilya V; Frishman, Dmitrij; Imyanitov, Evgeny N

    2015-12-28

    Whole exome sequencing (WES) provides a powerful tool for medical genetic research. Several dozens of WES studies involving patients with hereditary cancer syndromes have already been reported. WES led to breakthrough in understanding of the genetic basis of some exceptionally rare syndromes; for example, identification of germ-line SMARCA4 mutations in patients with ovarian hypercalcemic small cell carcinomas indeed explains a noticeable share of familial aggregation of this disease. However, studies on common cancer types turned out to be more difficult. In particular, there is almost a dozen of reports describing WES analysis of breast cancer patients, but none of them yet succeeded to reveal a gene responsible for the significant share of missing heritability. Virtually all components of WES studies require substantial improvement, e.g. technical performance of WES, interpretation of WES results, mode of patient selection, etc. Most of contemporary investigations focus on genes with autosomal dominant mechanism of inheritance; however, recessive and oligogenic models of transmission of cancer susceptibility also need to be considered. It is expected that the list of medically relevant tumor-predisposing genes will be rapidly expanding in the next few years. PMID:26427841

  7. Association between CLN3 (Neuronal Ceroid Lipofuscinosis, CLN3 type gene expression and clinical characteristics of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Rose-Mary eBoustany

    2015-10-01

    Full Text Available Breast cancer is the most common cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. CLN3 protein (CLN3p, deficient in neurodegenerative CLN3 disease is anti-apoptotic, and defects in the CLN3 gene cause accelerated apoptosis of neurons in CLN3 disease and upregulation of ceramide. Dysregulated apoptotic pathways are often implicated in the development of the oncogenic phenotype. Predictably, CLN3 mRNA expression and CLN3 protein were upregulated in a number of human and murine breast cancer cell lines. Here, we determine CLN3 expression in non-tumor vs. tumor samples from fresh and formalin-fixed/paraffin-embedded (FFPE breast tissue and analyze the association between CLN3 overexpression and different clinicopathological characteristics of breast cancer patients. Additionally, gene expression of 28 enzymes involved in sphingolipid metabolism was determined. CLN3 mRNA is overexpressed in tumor vs. non-tumor breast tissue from FFPE and fresh samples, as well as in mouse MCF7 breast cancer compared to MCF10A normal cells. Of the clinicopathological characteristics of tumor grade, age, menopause status, estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor receptor 2 (HER2, only absence of HER2 expression correlated with CLN3 overexpression. Sphingolipid genes for ceramide synthases 2 and 6 (CerS2; CerS6, delta(4-desaturase sphingolipid 2 (DEGS2 and acidic sphingomyelinase (SMPD1 displayed higher expression levels in breast cancer vs. control tissue, whereas, ceramide galactosyltransferase (UGT8 was underexpressed in breast cancer samples. CLN3 may be a novel molecular target for cancer drug discovery with the goal of modulation of ceramide pathways.

  8. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.

    Science.gov (United States)

    Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin

    2016-05-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC. PMID:27035224

  9. Reevaluation of RINT1 as a breast cancer predisposition gene.

    Science.gov (United States)

    Li, Na; Thompson, Ella R; Rowley, Simone M; McInerny, Simone; Devereux, Lisa; Goode, David; Investigators, LifePool; Wong-Brown, Michelle W; Scott, Rodney J; Trainer, Alison H; Gorringe, Kylie L; James, Paul A; Campbell, Ian G

    2016-09-01

    Rad50 interactor 1 (RINT1) has recently been reported as an intermediate-penetrance (odds ratio 3.24) breast cancer susceptibility gene, as well as a risk factor for Lynch syndrome. The coding regions and exon-intron boundaries of RINT1 were sequenced in 2024 familial breast cancer cases previously tested negative for BRCA1, BRCA2, and PALB2 mutations and 1886 population-matched cancer-free controls using HaloPlex Targeted Enrichment Assays. Only one RINT1 protein-truncating variant was detected in a control. No excess was observed in the total number of rare variants (truncating and missense) (28, 1.38 %, vs. 27, 1.43 %. P > 0.999) or in the number of variants predicted to be pathogenic by various in silico tools (Condel, Polyphen2, SIFT, and CADD) in the cases compared to the controls. In addition, there was no difference in the incidence of classic Lynch syndrome cancers in RINT1 rare variant-carrying families compared to RINT1 wild-type families. This study had 90 % power to detect an odds ratio of at least 2.06, and the results do not provide any support for RINT1 being a moderate-penetrance breast cancer susceptibility gene, although larger studies will be required to exclude more modest effects. This study emphasizes the need for caution before designating a cancer predisposition role for any gene based on very rare truncating variants and in silico-predicted missense variants. PMID:27544226

  10. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  11. PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis

    OpenAIRE

    Su, Zao-Zhong; Goldstein, Neil I.; Jiang, Hongping; Wang, Mei-Nai; Duigou, Gregory J.; Young, Charles S. H.; Fisher, Paul B.

    1999-01-01

    Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3),...

  12. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana; Magalhães, Ana; Steentoft, Catharina; Gomes, Catarina; Vester-Christensen, Malene B; Ferreira, José Alexandre; Afonso, Luis P; Santos, Lúcio L; de Sousa, João Pinto; Mandel, Ulla; Clausen, Henrik; Vakhrushev, Sergey Y; Reis, Celso A

    2015-01-01

    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biom...

  13. Postoperative Prognosis of Breast Cancer Patients Predicted by p53 Gene Mutation in Cancer Cells Obtained by Aspiration Biopsy

    OpenAIRE

    Takashi, SATO; Hideji, Masuoka; Kazunori, Toda; Kosho, Watabe; Yukio, Nakamura; Tatsuya, Ito; Makoto, Meguro; Masaaki, Yamamoto; Tousei, Ohmura

    2007-01-01

    The method of cytological examination by fine needle aspiration biopsy (FNAB) was developed clinically in breast cancer and enabled us to prepare cancer cell nuclei for the detection of p53 gene mutation. In the expectation that this method would improve the prediction of postoperative prognosis, the observation of 10 year survival for breast cancer patients with p53 gene mutations was done. The DNA of the aspirated cells was examined preoperatively for gene alterations in 53 patients with br...

  14. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  15. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Directory of Open Access Journals (Sweden)

    Katherine C H Amrine

    Full Text Available Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups

  16. Intrinsic bias in breast cancer gene expression data sets

    International Nuclear Information System (INIS)

    While global breast cancer gene expression data sets have considerable commonality in terms of their data content, the populations that they represent and the data collection methods utilized can be quite disparate. We sought to assess the extent and consequence of these systematic differences with respect to identifying clinically significant prognostic groups. We ascertained how effectively unsupervised clustering employing randomly generated sets of genes could segregate tumors into prognostic groups using four well-characterized breast cancer data sets. Using a common set of 5,000 randomly generated lists (70 genes/list), the percentages of clusters with significant differences in metastasis latencies (HR p-value < 0.01) was 62%, 15%, 21% and 0% in the NKI2 (Netherlands Cancer Institute), Wang, TRANSBIG and KJX64/KJ125 data sets, respectively. Among ER positive tumors, the percentages were 38%, 11%, 4% and 0%, respectively. Few random lists were predictive among ER negative tumors in any data set. Clustering was associated with ER status and, after globally adjusting for the effects of ER-α gene expression, the percentages were 25%, 33%, 1% and 0%, respectively. The impact of adjusting for ER status depended on the extent of confounding between ER-α gene expression and markers of proliferation. It is highly probable to identify a statistically significant association between a given gene list and prognosis in the NKI2 dataset due to its large sample size and the interrelationship between ER-α expression and markers of proliferation. In most respects, the TRANSBIG data set generated similar outcomes as the NKI2 data set, although its smaller sample size led to fewer statistically significant results

  17. Discovery of error-tolerant biclusters from noisy gene expression data

    OpenAIRE

    Gupta Rohit; Rao Navneet; Kumar Vipin

    2011-01-01

    Abstract Background An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bi...

  18. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    OpenAIRE

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-01-01

    Background Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. Results In this study, we proposed a new method, viz., CGC-2SPR (CGC ...

  19. Plant noncoding RNA gene discovery by “single-genome comparative genomics”

    OpenAIRE

    Chen, Chong-Jian; Zhou, Hui; Chen, Yue-Qin; Qu, Liang-Hu; Gautheret, Daniel

    2011-01-01

    Plant genomes have undergone multiple rounds of duplications that contributed massively to the growth of gene families. The structure of resulting families has been studied in depth for protein-coding genes. However, little is known about the impact of duplications on noncoding RNA (ncRNA) genes. Here we perform a systematic analysis of duplicated regions in the rice genome in search of such ncRNA repeats. We observe that, just like their protein counterparts, most ncRNA genes have undergone ...

  20. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    OpenAIRE

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.; Shih, Shou-Ching

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed ...

  1. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.;

    2009-01-01

    DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA......Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  2. Mutational Profiling of Kinases in Human Tumours of Pancreatic Origin Identifies Candidate Cancer Genes in Ductal and Ampulla of Vater Carcinomas

    OpenAIRE

    Corbo, Vincenzo; Ritelli, Rossana; Barbi, Stefano; Funel, Niccola; Campani, Daniela; Bardelli, Alberto; Scarpa, Aldo

    2010-01-01

    Background Protein kinases are key regulators of cellular processes (such as proliferation, apoptosis and invasion) that are often deregulated in human cancers. Accordingly, kinase genes have been the first to be systematically analyzed in human tumors leading to the discovery that many oncogenes correspond to mutated kinases. In most cases the genetic alterations translate in constitutively active kinase proteins, which are amenable of therapeutic targeting. Tumours of the pancreas are aggre...

  3. Epigenetic changes of DNA repair genes in cancer

    Institute of Scientific and Technical Information of China (English)

    Christoph Lahtz; Gerd P. Pfeifer

    2011-01-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  4. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  5. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery

    Institute of Scientific and Technical Information of China (English)

    Nadia Nicole Ono; Monica Therese Britton; Joseph Nathaniel Fass; Charles Meyer Nicolet; Dawei Lin; Li Tian

    2011-01-01

    Pomegranate fruit peel is rich in bioactive plant natural products,such as hydrolyzable tannins and anthocyanins.Despite their documented roles in human nutrition and fruit quality,genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain.Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform.Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp).Candidate genes for hydrolyzable tannin,anthocyanin,flavonoid,terpenoid and fatty acid biosynthesis and/or regulation were identified.Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts.In addition,115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers.The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate.This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis,identifying genes controlling important agronomic traits,and discovering molecular markers in non-model specialty crop species.

  6. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  7. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue.

    Directory of Open Access Journals (Sweden)

    Lorenza Mittempergher

    Full Text Available BACKGROUND AND METHODS: Formalin Fixed Paraffin Embedded (FFPE samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF samples. Recently, the Whole Genome (WG DASL (cDNA-mediated Annealing, Selection, extension and Ligation assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material. METHODOLOGY AND PRINCIPAL FINDINGS: We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7, significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature showed very high concordance with the MammaPrint® results. CONCLUSIONS AND SIGNIFICANCE: We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research.

  8. Discovery of protein profiles for differentiated thyroid cancer using SELDI TOF MS

    International Nuclear Information System (INIS)

    Low sensitivity of diagnostic whole body iodine scintigraphy and intermediate range of serum thyroglobulin (Tg) with or without anti-Tg antibody make it difficult to select the patients with differentiated thyroid cancer who need further treatment. Surfaced Enhanced Laser Desorption /Ionization - Time of Flight - Mass Spectrometry (SELDI TOF MS) is a useful method to evaluate cancer proteome, biomarkers and patterns of biomarkers. In this preliminary study, we evaluated and developed protein profiles for the discrimination between patients with differentiated thyroid cancer and non-cancer controls using SELDI technology. Serum samples from 10 healthy controls and from 14 patients with papillary thyroid cancer before thyroidectomy were analyzed by SELDI MS. Multiple protein peaks detected were analyzed by the computer software to develop a classifier for separating cancer patients form controls. The classifier was then challenged to 24 serum samples to determine the validity and accuracy of the classification system. All patients with papillary thyroid cancer had no other concomitant cancer or thyroiditis. Their serum Tg concentration was 55.8 (1.5 - 249.7) and 2 patients had extra-thyroidal extension. According to the SELDI analysis, protein peaks at 3696 Da, 4178 Da, and 8149 Da were more prominent in cancer patients than controls in various degrees. Among those, protein peak at 4178 Da was determined as classifier by computer software, and the sensitivity, specificity and accuracy for discrimination of cancer patients from controls was 92.9% (13/14), 90% (9/10) and 91.7% respectively. This preliminary study suggests that serum protein profiles of differentiated thyroid cancer can be used for differentiation between cancer patients and non-cancer controls. And further clinical studies in various test sets will offer useful information in selecting patients who require treatment

  9. Correlating overrepresented upstream motifs to gene expression a computational approach to regulatory element discovery in eukaryotes

    CERN Document Server

    Caselle, M; Provero, P

    2002-01-01

    Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulat...

  10. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mitochondrial genome libraries of HL-type sterile line(A) and maintainer line(B) have been constructed.Mitochondrial gene, atp6, was used to screen libraries, due to the different Southern and Northern blot results between sterile and maintainer line. Sequencing analysis of positive clones proved that there were two copies of atp6 gene in sterile line and only one in maintainer line. One copy of atpt6 in sterile line was same to that in maintainer line; the other showed different flanking sequence from the 49th nucleotide downstream of the termination codon of atp6 gene. A new chimeric gene, orfH79, was found in the region. OrfH79 had homology to mitochondrial gene coxⅡ and orfl07, and was special to HL-sterile cytoplasm.``

  11. Natural Genetic Variation in Cassava (Manihot esculenta Crantz) Landraces: A Tool for Gene Discovery

    International Nuclear Information System (INIS)

    Cassava landraces are the earliest form of the modern cultivars and represent the first step in cassava domestication. Our forward genetic analysis uses this resource to discover spontaneous mutations in the sucrose/ starch and carotenoid synthesis/accumulation and to develop both an evolutionary and breeding perspective of gene function related to those traits. Biochemical phenotype variants for the synthesis and accumulation of carotenoid, free sugar and starch were identified. Six subtractive cDNA libraries were prepared to construct a high quality (phred > 20) EST database with 1,645 entries. Macroarray and micro-array analysis was performed to identify differentially expressed genes aiming to identify candidate genes related to sugary phenotype and carotenoid diversity. cDNA sequence for gene coding for specific enzymes in the two pathways was obtained. Gene expression analysis for coding specific enzymes was performed by RNA blot and Real Time PCR analysis. Chromoplast-associated proteins of yellow storage root were fractionated and a peptide sequence database with 906 entries sequences (MASCOT validated) was constructed. For the sucrose/starch, metabolism a sugary class of cassava was identified, carrying a mutation in the BEI and GBSS genes. For the pigmented cassava, a pink color phenotype showed absence of expression of the gene CasLYB, while an intense yellow phenotype showed a down regulation of the gene CasHYb. Heat shock proteins were identified as the major proteins associated with carotenoid. Genetic diversity for the GBSS gene in the natural population identified 22 haplotypes and a large nucleotide diversity in four subsets of population. Single segregating population derived from F2, half-sibling and S1 population showed segregation for sugary phenotype (93% of individuals), waxy phenotype (38% of individuals) and glycogen like starch (2% of individuals). Here we summarize our current results for the genetic analysis of these variants and recent

  12. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  13. Serotype Chimeric Human Adenoviruses for Cancer GeneTherapy

    Directory of Open Access Journals (Sweden)

    Akseli Hemminki

    2010-09-01

    Full Text Available Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus,enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.

  14. Molecular biomarker discovery and physiological assessment of skeletal muscle in cancer cachexia

    OpenAIRE

    Stephens, Nathan Andrew

    2014-01-01

    Cachexia affects up to two thirds of all cancer patients with progressive disease. It is a syndrome characterised by weight-loss, anorexia, fatigue, asthenia, peripheral oedema, and is responsible for around 20% of cancer deaths. Cachectic patients suffer loss of both muscle mass and adipose tissue (with comparative sparing of visceral protein) and the lean tissue loss appears resistant to nutritional support. Progress in the treatment of cancer cachexia has been hampered due t...

  15. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies and challenges

    OpenAIRE

    Pan, Sheng; Brentnall, Teresa A.; Kelly, Kimberly; Chen, Ru

    2013-01-01

    Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances of proteomics technology, especially quantitative proteomics, have stimulated a great interest to apply this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic t...

  16. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    Science.gov (United States)

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  17. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence. PMID:27525940

  18. Seed-based systematic discovery of specific transcription factor target genes.

    Science.gov (United States)

    Mrowka, Ralf; Blüthgen, Nils; Fähling, Michael

    2008-06-01

    Reliable prediction of specific transcription factor target genes is a major challenge in systems biology and functional genomics. Current sequence-based methods yield many false predictions, due to the short and degenerated DNA-binding motifs. Here, we describe a new systematic genome-wide approach, the seed-distribution-distance method, that searches large-scale genome-wide expression data for genes that are similarly expressed as known targets. This method is used to identify genes that are likely targets, allowing sequence-based methods to focus on a subset of genes, giving rise to fewer false-positive predictions. We show by cross-validation that this method is robust in recovering specific target genes. Furthermore, this method identifies genes with typical functions and binding motifs of the seed. The method is illustrated by predicting novel targets of the transcription factor nuclear factor kappaB (NF-kappaB). Among the new targets is optineurin, which plays a key role in the pathogenesis of acquired blindness caused by adult-onset primary open-angle glaucoma. We show experimentally that the optineurin gene and other predicted genes are targets of NF-kappaB. Thus, our data provide a missing link in the signalling of NF-kappaB and the damping function of optineurin in signalling feedback of NF-kappaB. We present a robust and reliable method to enhance the genome-wide prediction of specific transcription factor target genes that exploits the vast amount of expression information available in public databases today. PMID:18485006

  19. Natural genetic variation in cassava (Manihot esculenta Crantz) landraces as a tool for gene discovery

    International Nuclear Information System (INIS)

    Cassava landraces are the earliest form of the modern cultivars and represents the first step in cassava domestication. Our forward genetic analysis uses this resource to discover spontaneous mutations in the sucrose/starch and carotenoid synthesis/accumulation and to develop both evolutionary and breeding perspective of gene function related to those traits. Biochemical phenotype variants for the synthesis and accumulation of carotenoid, free sugar and starch were identified. Six subtractive cDNA libraries were prepared to construct a high quality (phred > 20) EST database with 1645 entries. Macroarray analysis was performed to identify differentially expressed gene aiming to identify candidate gene related to sugary phenotype. cDNA sequence for gene coding for specific enzymes in the two pathways were obtained. Gene expression analysis for coding specific enzymes was performed by RNA blot and Real Time PCR analysis. Chromoplastassociated proteins of yellow storage root were fractionated and a peptide sequence data base with 906 entries sequences (MASCOT validated) was constructed. For the sucrose/starch metabolism a sugary class of cassava was identified carrying mutation in the BEI and GBSS mutation. For the pigmented cassava a pink color phenotype showed absence of expression of the gene CasLYB while an intense yellow phenotype showed a down regulation of the gene CasHYb. Heat shock proteins were identified as the major proteins associated with chromoplast. Genetic diversity for the GBSS gene in the natural population identified 22 haplotype and a large nucleotide diversity in four subset of population. Single segregating population derived from F2, half sib and S1 population showed segregation for sugary phenotype (93% of the individuals), waxy phenotype (38% of the individuals) and glycogen like starch (2% of the individuals). Here we summarize our current results for the genetic analysis of this variants and recent progress in the direction of mapping of

  20. A computational approach to identifying gene-microRNA modules in cancer.

    Science.gov (United States)

    Jin, Daeyong; Lee, Hyunju

    2015-01-01

    MicroRNAs (miRNAs) play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM) data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM. PMID:25611546

  1. A computational approach to identifying gene-microRNA modules in cancer.

    Directory of Open Access Journals (Sweden)

    Daeyong Jin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM.

  2. EFFECTIVE NEW CANCER THERAPIES WHICH ARE INDEPENDENT OF P53 GENE STATUS

    OpenAIRE

    Takahashi, Akihisa; Ohnishi, Ken; Kondo, Natsuko; Mori, Eiichiro; Noda, Taichi; Ohnishi, Takeo

    2010-01-01

    The gene product of the tumor suppressor gene p53 is known to play an important role in cancer therapy. The p53 molecule induces cell-cycle arrest, apoptosis and DNA repair after cells are subjected to cancer therapies involving ionizing radiation, hyperthermia and anti-cancer drugs. Patients with cancers bearing mutated (m) p53 or deleted p53 gene often have a poorer prognosis than those with cancers bearing wild-type (wt) p53 gene. We reported that efficient cell lethality by ionizing radia...

  3. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  4. Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related species.

    Science.gov (United States)

    Dang, Thu Thuy T; Onoyovwi, Akpevwe; Farrow, Scott C; Facchini, Peter J

    2012-01-01

    Benzylisoquinoline alkaloids (BIAs) are a large, diverse group of ∼2500 specialized plant metabolites. Many BIAs display potent pharmacological activities, including the narcotic analgesics codeine and morphine, the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine, the antimicrobial agents sanguinarine and berberine, and the muscle relaxant (+)-tubocurarine. Opium poppy remains the sole commercial source for codeine, morphine, and a variety of semisynthetic drugs, including oxycodone and buprenorphine, derived primarily from the biosynthetic pathway intermediate thebaine. Recent advances in transcriptomics, proteomics, and metabolomics have created unprecedented opportunities for isolating and characterizing novel BIA biosynthetic genes. Here, we describe the application of next-generation sequencing and cDNA microarrays for selecting gene candidates based on comparative transcriptome analysis. We outline the basic mass spectrometric techniques to perform deep proteome and targeted metabolite analyses on BIA-producing plant tissues and provide methodologies for functionally characterizing biosynthetic gene candidates through in vitro enzyme assays and transient gene silencing in planta. PMID:22999177

  5. Gene-Expression-Based Predictors for Breast Cancer.

    Science.gov (United States)

    Gupta, Arjun; Mutebi, Miriam; Bardia, Aditya

    2015-10-01

    An important and often complicated management decision in early stage hormone receptor (HR)-positive breast cancer relates to the use of adjuvant systemic chemotherapy. Although traditional clinicopathologic markers exist, tremendous progress has been achieved in the field of predictive biomarkers and genomics with both prognostic and predictive capabilities to identify patients who will potentially benefit from additional therapy. The use of these genomic tests in the neoadjuvant setting is also being studied and may lead to these tests providing clinical benefit even earlier in the disease course. Landmark articles published in the last few years have expanded our knowledge of breast cancer genomics to an unprecedented level, and mutational analysis via next-generation sequencing methods allows the identification of molecular targets for novel targeted therapeutic agents and clinical trials testing efficacy of targeted therapies, such as PI3K inhibitors, in addition to endocrine therapy for HR-positive breast cancer, are ongoing. We provide an in-depth review on the role of gene expression-based predictors in early stage breast cancer and an overview of future directions, including next-generation sequencing. Over the coming years, we anticipate a significant increase in utilization of genomic-based predictors for individualized selection and duration of endocrine therapy with and without genotype-driven targeted therapy, and a major decrease in the use of chemotherapy, possibly even leading to a chemotherapy-free road for early stage HR-positive breast cancer. PMID:26215189

  6. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  7. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue

    Directory of Open Access Journals (Sweden)

    Jacob Kruger Jensen

    2013-06-01

    Full Text Available The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk. This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180, and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.

  8. Pattern Discovery using Fuzzy FP-growth Algorithm from Gene Expression Data

    OpenAIRE

    Sabita Barik; Debahuti Mishra; Shruti Mishra; Sandeep Ku. Satapathy; Amiya Ku. Rath; Milu Acharya

    2010-01-01

    Abstract- The goal of microarray experiments is to identify genes that are differentially transcribed with respect to different biological conditions of cell cultures and samples. Hence, method of data analysis needs to be carefully evaluated such as clustering, classification, prediction etc. In this paper, we have proposed an efficient frequent pattern based clustering to find the gene which forms frequent patterns showing similar phenotypes leading to specific symptoms for specific disease...

  9. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue.

    Science.gov (United States)

    Jensen, Jacob K; Johnson, Nathan; Wilkerson, Curtis G

    2013-01-01

    The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage. PMID:23761806

  10. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  11. Cytochrome P450-based cancer gene therapy: current status.

    Science.gov (United States)

    Kan, On; Kingsman, Susan; Naylor, Stuart

    2002-12-01

    Results from a number of preclinical studies have demonstrated that a P450-based gene-directed enzyme prodrug therapy (GDEPT) strategy for the treatment of cancer is both safe and efficacious. This strategy has now moved forward into the clinic. At least two different approaches using different delivery methods (retroviral vector MetXia [Oxford BioMedica] and encapsulated P450 expressing cells), different cytochrome P450 isoforms (human CYP2B6 versus rat CYP2B1) and different prodrugs (cyclophosphamide [CPA] versus ifosfamide [IFA]) have concluded Phase I/II clinical trial with encouraging results. In the future, P450-based GDEPT can potentially be further enhanced by improved vectors for P450 gene delivery and disease-targeted promoters for focused gene expression at the target site. In addition, there is scope for developing synthetic P450s and their respective prodrugs to improve both enzyme kinetics and the profile of the active moiety. PMID:12517265

  12. Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

    Directory of Open Access Journals (Sweden)

    Gustavo A Gomez

    Full Text Available The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

  13. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  14. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    OpenAIRE

    Chou, Wei-Chun; Cheng, An-Lin; Brotto, Marco; Chuang, Chun-Yu

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy,...

  15. Monitoring of gene transfer for cancer therapy with radioactive isotopes

    International Nuclear Information System (INIS)

    Gene therapy for cancer has recently been developed, and four approaches are currently being evaluated in experimental and clinical studies: 1) protection of normal tissue, such as bone marrow, which are normally targets for cytotoxic drugs; 2) improvement of the host antitumor response by increasing the antitumor activity of tumor-infiltrating immuno-competent cells or by modifying the tumor cells to enhance their immunogenicity; 3) reversion of the malignant phenotype either by suppression of oncogene expression or by introduction of normal tumor suppressor genes; 4) direct killing of tumor cells by the transfer of cytotoxic or prodrug-activating genes. Monitoring of gene therapy by assessing metabolic effects or the uptake of a specific substance with radioactive isotopes is reviewed. The author's experience is mostly described: uptake measurements with 11 Cthymidine, 18FDG, 3-D-methylglucose, and methionine in the presence of different concentrations of ganciclovir after transfection of a rat hepatoma cell line with a retroviral vector containing the HSVtk gene. Non-suicide reporter gene approaches are also discussed. (K.H.)

  16. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-03-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  17. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging.

    Directory of Open Access Journals (Sweden)

    Fang Yao

    Full Text Available The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV from early stage (stages I-II cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests.

  18. Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Xihong Li

    Full Text Available BACKGROUND: The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq technology provides a powerful and efficient method for transcript analysis and immune gene discovery. METHODS/PRINCIPAL FINDINGS: A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 10(8 cfu·mL(-1 was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr database. For function classification and pathway assignment, 18,734 (36.00% unigenes were categorized to three Gene Ontology (GO categories, 12,243 (23.51% were classified to 25 Clusters of Orthologous Groups (COG, and 8,983 (17.25% were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. CONCLUSIONS/SIGNIFICANCE: This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab.

  19. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  20. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2010-10-01

    A genomics approach was used to identify nutritionally regulated genes involved in growth of fast skeletal muscle in Atlantic salmon (Salmo salar L.). Forward and reverse subtractive cDNA libraries were prepared comparing fish with zero growth rates to fish growing rapidly. We produced 7,420 ESTs and assembled them into nonredundant clusters prior to annotation. Contigs representing 40 potentially unrecognized nutritionally responsive candidate genes were identified. Twenty-three of the subtractive library candidates were also differentially regulated by nutritional state in an independent fasting-refeeding experiment and their expression placed in the context of 26 genes with established roles in muscle growth regulation. The expression of these genes was also determined during the maturation of a primary myocyte culture, identifying 13 candidates from the subtractive cDNA libraries with putative roles in the myogenic program. During early stages of refeeding DNAJA4, HSPA1B, HSP90A, and CHAC1 expression increased, indicating activation of unfolded protein response pathways. Four genes were considered inhibitory to myogenesis based on their in vivo and in vitro expression profiles (CEBPD, ASB2, HSP30, novel transcript GE623928). Other genes showed increased expression with feeding and highest in vitro expression during the proliferative phase of the culture (FOXD1, DRG1) or as cells differentiated (SMYD1, RTN1, MID1IP1, HSP90A, novel transcript GE617747). The genes identified were associated with chromatin modification (SMYD1, RTN1), microtubule stabilization (MID1IP1), cell cycle regulation (FOXD1, CEBPD, DRG1), and negative regulation of signaling (ASB2) and may play a role in the stimulation of myogenesis during the transition from a catabolic to anabolic state in skeletal muscle. PMID:20663983

  1. Regulation of Metformin Response by Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Daniela Buac

    2013-12-01

    Full Text Available Adenosine monophosphate-activated protein kinase (AMPK, a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115, a novel Really Interesting New Gene (RING finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA enhanced phosphorylated AMPKα1 (pAMPKα1. The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (dephosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone.

  2. Combination therapy of murine liver cancer with IL-12 gene and HSV-TK gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the synergistic anti-tumor effects of murine IL-12 gene and HSV-TK gene therapy in mice bearing liver cancer. Methods: Mouse liver cancer MM45T. Li (H-2d) cells were transfected with retroviral vector containing IL-12 gene or HSV-TK gene insert. Gene-modified liver cancer cells, MM45T. Li/IL-12 and MM45T. Li/TK, with stable expression of IL-12 and TK were obtained. Balb/c mice were inoculated subcutaneously with 2′ 105 MM45T. Li cells. When the tumor reached a size of 0.5-1.0 cm, a mixture of MM45T.Li/TK cells and 60Co-irradiated MM45T. Li/IL-12 cell were injected intratumoraly. Ganciclovir (GCV) was injected ip (40 mg.kg-1.d-1) for 10 days. Intratumoral injection of 60Co-irradiated MM45T. Li/IL-12 cells was repeated twice in one week apart. Mice with distant tumors were treated according to the same protocol. CTL activity of spleen cells was measured by 51Cr-release assay and phenotype of tumor infiltrating lymphocytes by immunohistochemical staining. Results: In mice treated with MM45T. Li/IL-12 or MM45T. Li/TK+GCV individually led to moderate reduction in tumor growth, but neither could eradicate the tumor completely, while in 60% of mice treated with a mixture of MM45T. Li/IL-12 and MM45T. Li/TK cells plus GCV, complete tumor regression was observed, with no tumor recurrence for two months. The growth of distant tumor was also inhibited significantly in mice similarly treated. Most of the mice received combined gene therapy plus GCV had abundant CD4+, CD8+T lymphocyte infiltration. Their CTL activity was significantly higher than in mice received single gene therapy. Conclusion Combination therapy with IL-12 gene and HSV-TK gene plus GCV is effective for mouse liver cancer.

  3. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells

    OpenAIRE

    Chang, Shufang; Guo, Juan; Sun, Jiangchuan; Zhu, Shenyin; Yan, Yu; Zhu, Yi; Li, Min; Wang, Zhigang; Xu, Ronald X

    2012-01-01

    Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid micr...

  4. Use of model organism and disease databases to support matchmaking for human disease gene discovery.

    Science.gov (United States)

    Mungall, Christopher J; Washington, Nicole L; Nguyen-Xuan, Jeremy; Condit, Christopher; Smedley, Damian; Köhler, Sebastian; Groza, Tudor; Shefchek, Kent; Hochheiser, Harry; Robinson, Peter N; Lewis, Suzanna E; Haendel, Melissa A

    2015-10-01

    The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases. PMID:26269093

  5. Natural and man-made V-gene repertoires for antibody discovery.

    Science.gov (United States)

    Finlay, William J J; Almagro, Juan C

    2012-01-01

    Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process. PMID:23162556

  6. Polymorphism discovery and association analyses of the interferon genes in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Lam Alex C

    2006-02-01

    Full Text Available Abstract Background The aetiology of the autoimmune disease type 1 diabetes (T1D involves many genetic and environmental factors. Evidence suggests that innate immune responses, including the action of interferons, may also play a role in the initiation and/or pathogenic process of autoimmunity. In the present report, we have adopted a linkage disequilibrium (LD mapping approach to test for an association between T1D and three regions encompassing 13 interferon alpha (IFNA genes, interferon omega-1 (IFNW1, interferon beta-1 (IFNB1, interferon gamma (IFNG and the interferon consensus-sequence binding protein 1 (ICSBP1. Results We identified 238 variants, most, single nucleotide polymorphisms (SNPs, by sequencing IFNA, IFNB1, IFNW1 and ICSBP1, 98 of which where novel when compared to dbSNP build 124. We used polymorphisms identified in the SeattleSNP database for INFG. A set of tag SNPs was selected for each of the interferon and interferon-related genes to test for an association between T1D and this complex gene family. A total of 45 tag SNPs were selected and genotyped in a collection of 472 multiplex families. Conclusion We have developed informative sets of SNPs for the interferon and interferon related genes. No statistical evidence of a major association between T1D and any of the interferon and interferon related genes tested was found.

  7. An ensemble method for gene discovery based on DNA microarray data

    Institute of Scientific and Technical Information of China (English)

    LI Xia; RAO Shaoqi; ZHANG Tianwen; GUO Zheng; ZHANG Qingpu; Kathy L. MOSER; Eric J. TOPOL

    2004-01-01

    The advent of DNA microarray technology has offered the promise of casting new insights onto deciphering secrets of life by monitoring activities of thousands of genes simultaneously.Current analyses of microarray data focus on precise classification of biological types,for example,tumor versus normal tissues.A further scientific challenging task is to extract disease-relevant genes from the bewildering amounts of raw data,which is one of the most critical themes in the post-genomic era,but it is generally ignored due to lack of an efficient approach.In this paper,we present a novel ensemble method for gene extraction that can be tailored to fulfill multiple biological tasks including(i)precise classification of biological types;(ii)disease gene mining; and(iii)target-driven gene networking.We also give a numerical application for(i)and(ii)using a public microarrary data set and set aside a separate paper to address(iii).

  8. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  9. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100

  10. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled. PMID:27289100

  11. Molecular portraits: the evolution of the concept of transcriptome-based cancer signatures

    OpenAIRE

    Modelska, Angelika; Quattrone, Alessandro; Re, Angela

    2015-01-01

    Cancer results from dysregulation of multiple steps of gene expression programs. We review how transcriptome profiling has been widely explored for cancer classification and biomarker discovery but resulted in limited clinical impact. Therefore, we discuss alternative and complementary omics approaches.

  12. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2005-06-01

    Full Text Available Abstract Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A, could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold, and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase. Additionally, SPUVE 23 (serine protease 23 that is pro-tumorigenic was significantly downregulated (10 ± 1-fold. Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line

  13. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  14. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Science.gov (United States)

    2010-04-01

    ... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is... Profiling Test System for Breast Cancer Prognosis.” See § 866.1(e) for the availability of this...

  15. Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data

    Directory of Open Access Journals (Sweden)

    J. Sunil Rao

    2007-01-01

    Full Text Available In gene selection for cancer classifi cation using microarray data, we define an eigenvalue-ratio statistic to measure a gene’s contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalueratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.

  16. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation.

    Science.gov (United States)

    Balint, Eva; Lapointe, David; Drissi, Hicham; van der Meijden, Caroline; Young, Daniel W; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2003-05-15

    osteogenic phenotype is recognized by 8 h, reflected by downregulation of most myogenic-related genes and induction of a spectrum of signaling proteins and enzymes facilitating synthesis and assembly of an extracellular skeletal environment. These genes included collagens Type I and VI and the small leucine rich repeat family of proteoglycans (e.g., decorin, biglycan, osteomodulin, fibromodulin, and osteoadherin/osteoglycin) that reached peak expression at 24 h. With extracellular matrix development, the bone phenotype was further established from 16 to 24 h by induction of genes for cell adhesion and communication and enzymes that organize the bone ECM. Our microarray analysis resulted in the discovery of a class of genes, initially described in relation to differentiation of astrocytes and oligodendrocytes that are functionally coupled to signals for cellular extensions. They include nexin, neuropilin, latexin, neuroglian, neuron specific gene 1, and Ulip; suggesting novel roles for these genes in the bone microenvironment. This global analysis identified a multistage molecular and cellular cascade that supports BMP-2-mediated osteoblast differentiation. PMID:12704803

  17. Genetic polymorphism of the OPG gene associated with breast cancer

    International Nuclear Information System (INIS)

    The receptor activator of NF-κB (RANK), its ligand (RANKL) and osteoprotegerin (OPG) have been reported to play a role in the pathophysiological bone turnover and in the pathogenesis of breast cancer. Based on this we investigated the role of single nucleotide polymorphisms (SNPs) within RANK, RANKL and OPG and their possible association to breast cancer risk. Genomic DNA was obtained from Caucasian participants consisting of 307 female breast cancer patients and 396 gender-matched healthy controls. We studied seven SNPs in the genes of OPG (rs3102735, rs2073618), RANK (rs1805034, rs35211496) and RANKL (rs9533156, rs2277438, rs1054016) using TaqMan genotyping assays. Statistical analyses were performed using the χ2-tests for 2 x 2 and 2 x 3 tables. The allelic frequencies (OR: 1.508 CI: 1.127-2.018, p=0.006) and the genotype distribution (p=0.019) of the OPG SNP rs3102735 differed significantly between breast cancer patients and healthy controls. The minor allele C and the corresponding homo- and heterozygous genotypes are more common in breast cancer patients (minor allele C: 18.4% vs. 13.0%; genotype CC: 3.3% vs. 1.3%; genotype CT: 30.3% vs. 23.5%). No significantly changed risk was detected in the other investigated SNPs. Additional analysis showed significant differences when comparing patients with invasive vs. non-invasive tumors (OPG rs2073618) as well as in terms of tumor localization (RANK rs35211496) and body mass index (RANKL rs9533156 and rs1054016). This is the first study reporting a significant association of the SNP rs3102735 (OPG) with the susceptibility to develop breast cancer in the Caucasian population

  18. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  19. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  20. Large-Scale Discovery of Disease-Disease and Disease-Gene Associations.

    Science.gov (United States)

    Gligorijevic, Djordje; Stojanovic, Jelena; Djuric, Nemanja; Radosavljevic, Vladan; Grbovic, Mihajlo; Kulathinal, Rob J; Obradovic, Zoran

    2016-01-01

    Data-driven phenotype analyses on Electronic Health Record (EHR) data have recently drawn benefits across many areas of clinical practice, uncovering new links in the medical sciences that can potentially affect the well-being of millions of patients. In this paper, EHR data is used to discover novel relationships between diseases by studying their comorbidities (co-occurrences in patients). A novel embedding model is designed to extract knowledge from disease comorbidities by learning from a large-scale EHR database comprising more than 35 million inpatient cases spanning nearly a decade, revealing significant improvements on disease phenotyping over current computational approaches. In addition, the use of the proposed methodology is extended to discover novel disease-gene associations by including valuable domain knowledge from genome-wide association studies. To evaluate our approach, its effectiveness is compared against a held-out set where, again, it revealed very compelling results. For selected diseases, we further identify candidate gene lists for which disease-gene associations were not studied previously. Thus, our approach provides biomedical researchers with new tools to filter genes of interest, thus, reducing costly lab studies. PMID:27578529

  1. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Science.gov (United States)

    Verma, Mohit; Ghangal, Rajesh; Sharma, Raghvendra; Sinha, Alok K; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  2. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals.

  3. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses.

    Science.gov (United States)

    Jiao, Yinping; Burke, John; Chopra, Ratan; Burow, Gloria; Chen, Junping; Wang, Bo; Hayes, Chad; Emendack, Yves; Ware, Doreen; Xin, Zhanguo

    2016-07-01

    Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches. PMID:27354556

  4. Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes

    OpenAIRE

    Burgess, Earle F.; Ham, Amy-Joan L.; Tabb, David L.; Billheimer, Dean; Roth, Bruce J.; Chang, Sam S.; Cookson, Michael S.; Hinton, Timothy J.; Cheek, Kristin L.; Hill, Salisha; Jennifer A Pietenpol

    2008-01-01

    Alpha-2 macroglobulin (A2M) functions as a universal protease inhibitor in serum and is capable of binding various cytokines and growth factors. In this study, we investigated if immunoaffinity enrichment and proteomic analysis of A2M protein complexes from human serum could improve detection of biologically relevant and novel candidate protein biomarkers in prostate cancer. Serum samples from six patients with androgen-independent, metastatic prostate cancer and six control patients without ...

  5. Aromatase inhibitors in breast cancer: the discovery of new computational design and biochemical evaluation

    OpenAIRE

    Neves, Marco André Coelho das

    2009-01-01

    Continuous exposure to high levels of endogenous estrogens is associated with increased risks of developing breast cancer. In this sense, aromatase, the cytochrome P450 enzyme involved in the conversion of androgens, testosterone and androstenedione, into estrogens, estradiol and estrone, is an important target for the endocrine treatment of breast cancer in postmenopausal women. Aromatase inhibition is achieved either with compounds structurally related to the androstenedio...

  6. Blood-based lung cancer biomarkers identified through proteomic discovery in cancer tissues, cell lines and conditioned medium

    OpenAIRE

    Birse, Charles E; Lagier, Robert J.; Fitzhugh, William; Harvey I Pass; Rom, William N.; Eric S. Edell; Aaron O. Bungum; Maldonado, Fabien; Jett, James R.; Mesri, Mehdi; Sult, Erin; Joseloff, Elizabeth; Li, Aiqun; Heidbrink, Jenny; Dhariwal, Gulshan

    2015-01-01

    Background Support for early detection of lung cancer has emerged from the National Lung Screening Trial (NLST), in which low-dose computed tomography (LDCT) screening reduced lung cancer mortality by 20 % relative to chest x-ray. The US Preventive Services Task Force (USPSTF) recently recommended annual screening for the high-risk population, concluding that the benefits (life years gained) outweighed harms (false positive findings, abortive biopsy/surgery, radiation exposure). In making the...

  7. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  8. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    OpenAIRE

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were rep...

  9. Discovery and identification of Serum Amyloid A protein elevated in lung cancer serum

    Institute of Scientific and Technical Information of China (English)

    DAI SongWei; WANG XiaoMin; LIU LiYun; LIU JiFu; WU ShanShan; HUANG LingYun; XIAO XueYuan; HE DaCheng

    2007-01-01

    Two hundred and eighteen serum samples from 175 lung cancer patients and 43 healthy individuals were analyzed by using Surface Enhaced Laser Desorption/lonization Time of Flight Mass Spectrometry (SELDI-TOF-MS). The data analyzed by both Biomarker WizardTM and Biomarker PatternsTM software showed that a protein peak with the molecular weight of 11.6 kDa significantly increased in lung cancer.Meanwhile, the level of this biomarker was progressively increased with the clinical stages of lung cancer. The candidate biomarker was then obtained from tricine one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis by matching the molecular weight with peaks on WCX2 chips and was identified as Serum Amyloid A protein (SAA) by MALDI/MS-MS and database searching. It was further validated in the same serum samples by immunoprecipitation with commercial SAA antibody.To confirm the SAA differential expression in lung cancer patients, the same set of serum samples was measured by ELISA assay. The result showed that at the cutoff point 0.446 (OD value) on the Receiver Operating Characteristic (ROC) curve, SAA could better discriminate lung cancer from healthy individuals with sensitivity of 84.1% and specificity of 80%. These findings demonstrated that SAA could be characterized as a biomarker related to pathological stages of lung cancer.

  10. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

    Directory of Open Access Journals (Sweden)

    Steinfeld Israel

    2009-02-01

    Full Text Available Abstract Background Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results. Results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression. GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms. Conclusion GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. GOrilla is publicly available at: http://cbl-gorilla.cs.technion.ac.il

  11. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    Full Text Available BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000. The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite

  12. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    Science.gov (United States)

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  13. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Srinivasan Ramamurthy

    2009-11-01

    candidate genes and their expression profile showed predominance in specific stress-challenged libraries. Conclusion Generated set of chickpea ESTs serves as a resource of high quality transcripts for gene discovery and development of functional markers associated with abiotic stress tolerance that will be helpful to facilitate chickpea breeding. Mapping of gene-based markers in chickpea will also add more anchoring points to align genomes of chickpea and other legume species.

  14. Gene-gene and gene-environment interactions in prostate, breast and colorectal cancer

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov

    The incidence of cancer in the western world has increased steeply during the last 50 years. For three of the most prevalent cancer types in Denmark, prostate, breast and colorectal cancer (PC, BC and CRC, respectively), only a small fraction (1-15%) of the incidences are caused by highly penetrant...... as having strong influence on carcinogenesis. Therefore, very frequent, low effect polymorphisms may have a greater contribution on a population level in combination with environmental factors. Indeed, several dietary and life style factors are now well-established risk factors for different cancer types...... and lifestyle factors may provide information about the underlying mechanisms and reveal new biological pathways. The aim of this PhD thesis was to investigate relevant risk factors in relation to the three major cancer types in Denmark: PC, BC and CRC, respectively. The two major risk factors examined...

  15. A novel strategy for cancer gene therapy: RNAi

    Institute of Scientific and Technical Information of China (English)

    PAN Qiuwei; CAI Rong; LIU Xinyuan; QIAN Cheng

    2006-01-01

    RNA interference (RNAi) induces genesilencing at a level of posttranscription mediated bydouble stranded RNA. There are numerous methods for delivery of small double-stranded interference RNA (siRNA) to the target cells, including nonviral and viral vectors. Among these methods, viral vectors are the more efficient vehicles. The expression of short hairpin RNA (shRNA) by viral vectors in target cells can be cut by Dicer enzyme to become ~21 bp siRNA, which could guide degradation of cognate mRNA. RNAi technology can be directed against cancer using a variety of strategies, including the inhibition of overexpressed oncogenes, promoting apoptosis, regulating cell cycle, antiangiogenesis and enhancing the efficacy of chemotherapy and radiotherapy. Since RNAi technology has become an excellent strategy for cancer gene therapy, this review outlines the latest developments and applications of such a novel technology.

  16. Genotype, phenotype and cancer: Role of low penetrance genes and environment in tumour susceptibility

    Indian Academy of Sciences (India)

    Ashwin Kotnis; Rajiv Sarin; Rita Mulherkar

    2005-02-01

    Role of heredity and lifestyle in sporadic cancers is well documented. Here we focus on the influence of low penetrance genes and habits, with emphasis on tobacco habit in causing head and neck cancers. Role of such gene-environment interaction can be well studied in individuals with multiple primary cancers. Thus such a biological model may elucidate that cancer causation is not solely due to genetic determinism but also significantly relies on lifestyle of the individual.

  17. Significances of RET Fusion Gene in Non-small Cell Lung Cancer

    OpenAIRE

    Liu, Jingjing; Minghong BI

    2013-01-01

    Lung cancer is the leading cause of cancer-related death worldwide, molecular target therapy has become a hot research direction of non-small cell lung cancer (NSCLC) treatment. RET fusion gene with an identifiable clinical pathological features, is present in some subsets of lung cancer, and its treatment is effective by RET inhibitor, suggesting that RET fusion gene may be a new target for individualized treatment to the subgroup of NSCLC. This article reviews the structural characteristics...

  18. Human synthetic lethal inference as potential anti-cancer target gene detection

    OpenAIRE

    Solé Ricard V; Munteanu Andreea; Conde-Pueyo Nuria; Rodríguez-Caso Carlos

    2009-01-01

    Abstract Background Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since exi...

  19. Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles

    OpenAIRE

    Bock Axelsen, Jacob; Lotem, Joseph; Sachs, Leo; Domany, Eytan

    2007-01-01

    We have analyzed gene expression in different normal human tissues and different types of solid cancers derived from these tissues. The cancers analyzed include brain (astrocytoma and glioblastoma), breast, colon, endometrium, kidney, liver, lung, ovary, prostate, skin, and thyroid cancers. Comparing gene expression in each normal tissue to 12 other normal tissues, we identified 4,917 tissue-selective genes that were selectively expressed in different normal tissues. We also identified 2,929 ...

  20. An Integrated Approach to Gene Discovery and Marker Development in Atlantic Cod (Gadus morhua)

    OpenAIRE

    Bowman, Sharen; Hubert, Sophie; Higgins, Brent; Stone, Cynthia; Kimball, Jennifer; Borza, Tudor; Bussey, Jillian Tarrant; Simpson, Gary; Kozera, Catherine; Curtis, Bruce A.; Hall, Jennifer R.; Hori, Tiago S.; Feng, Charles Y.; Rise, Marlies; Booman, Marije

    2010-01-01

    Atlantic cod is a species that has been overexploited by the capture fishery. Programs to domesticate this species are underway in several countries, including Canada, to provide an alternative route for production. Selective breeding programs have been successfully applied in the domestication of other species, with genomics-based approaches used to augment conventional methods of animal production in recent years. Genomics tools, such as gene sequences and sets of variable markers, also hav...