WorldWideScience

Sample records for cancer gene discovery

  1. Transposons for cancer gene discovery: Sleeping Beauty and beyond

    OpenAIRE

    Collier, Lara S.; Largaespada, David A

    2007-01-01

    The use of Sleeping Beauty transposons as somatic mutagens to discover cancer genes in hematopoietic tumors and sarcomas has been documented. Here, we discuss the future of Sleeping Beauty for cancer genetic studies and the potential use of additional transposable elements for somatic mutagenesis.

  2. Discovery of signature genes in gastric cancer associated with prognosis.

    Science.gov (United States)

    Zhao, X; Cai, H; Wang, X; Ma, L

    2016-01-01

    Gene expression profiles of gastric cancer (GC) were analyzed with bioinformatics tools to identify signature genes associated with prognosis. Four gene expression data sets (accession number: GSE2685, GSE30727, GSE38932 and GSE26253) were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened out using significance analysis of microarrays (SAM) algorithm. P-value 1 were set as the threshold. A co-expression network was constructed for the GC-related genes with package WGCNA of R. Modules were disclosed with WGCNA algorithm. Survival-related signature genes were screened out via COX single-variable regression.A total of 3210 GC-related genes were identified from the 3 data sets. Significantly enriched GO biological process terms included cell death, cell proliferation, apoptosis, response to hormone and phosphorylation. Pathways like viral carcinogenesis, metabolism, EBV viral infection, and PI3K-AKT signaling pathway were significantly over-represented in the DEGs. A gene co-expression network including 2414 genes was constructed, from which 7 modules were revealed. A total of 17 genes were identified as signature genes, such as DAB2, ALDH2, CD58, CITED2, BNIP3L, SLC43A2, FAU and COL5A1.Many signature genes associated with prognosis of GC were identified in present study, some of which have been implicated in the pathogenesis of GC. These findings could not only improve the knowledge about GC, but also provide clues for clinical treatments. PMID:26774142

  3. PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice

    OpenAIRE

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S.; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie

    2010-01-01

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon/transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed the unique qualities o...

  4. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  5. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery

    Science.gov (United States)

    Moriarity, Branden S; Largaespada, David A

    2016-01-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS. PMID:26051241

  6. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie; Yang, Fang Tang; Liu, Pentao; Bradley, Allan

    2010-11-19

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability. PMID:20947725

  7. Topological and functional discovery in a gene coexpression meta-network of gastric cancer.

    Science.gov (United States)

    Aggarwal, Amit; Guo, Dong Li; Hoshida, Yujin; Yuen, Siu Tsan; Chu, Kent-Man; So, Samuel; Boussioutas, Alex; Chen, Xin; Bowtell, David; Aburatani, Hiroyuki; Leung, Suet Yi; Tan, Patrick

    2006-01-01

    Gastric cancer is a leading cause of global cancer mortality, but comparatively little is known about the cellular pathways regulating different aspects of the gastric cancer phenotype. To achieve a better understanding of gastric cancer at the levels of systems topology, functional modules, and constituent genes, we assembled and systematically analyzed a consensus gene coexpression meta-network of gastric cancer incorporating >300 tissue samples from four independent patient populations (the "gastrome"). We find that the gastrome exhibits a hierarchical scale-free architecture, with an internal structure comprising multiple deeply embedded modules associated with diverse cellular functions. Individual modules display distinct subtopologies, with some (cellular proliferation) being integrated within the primary network, and others (ribosomal biosynthesis) being relatively isolated. One module associated with intestinal differentiation exhibited a remarkably high degree of autonomy, raising the possibility that its specific topological features may contribute towards the frequent occurrence of intestinal metaplasia in gastric cancer. At the single-gene level, we discovered a novel conserved interaction between the PLA2G2A prognostic marker and the EphB2 receptor, and used tissue microarrays to validate the PLA2G2A/EphB2 association. Finally, because EphB2 is a known target of the Wnt signaling pathway, we tested and provide evidence that the Wnt pathway may also similarly regulate PLA2G2A. Many of these findings were not discernible by studying the single patient populations in isolation. Thus, besides enhancing our knowledge of gastric cancer, our results show the broad utility of applying meta-analytic approaches to genome-wide data for the purposes of biological discovery. PMID:16397236

  8. SPARCoC: a new framework for molecular pattern discovery and cancer gene identification.

    Directory of Open Access Journals (Sweden)

    Shiqian Ma

    Full Text Available It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust, which is based on a novel Common-background and Sparse-foreground Decomposition (CSD model and the Maximum Block Improvement (MBI co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust and nonnegative matrix factorization (NMF. We apply SPARCoC to the study of lung adenocarcinoma (ADCA, an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05. Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification.

  9. ETS gene fusions in prostate cancer: from discovery to daily clinical practice.

    NARCIS (Netherlands)

    Tomlins, S.A.; Bjartell, A.; Chinnaiyan, A.M.; Jenster, G.; Nam, R.K.; Rubin, M.A.; Schalken, J.A.

    2009-01-01

    CONTEXT: In 2005, fusions between the androgen-regulated transmembrane protease serine 2 gene, TMPRSS2, and E twenty-six (ETS) transcription factors were discovered in prostate cancer. OBJECTIVE: To review advances in our understanding of ETS gene fusions, focusing on challenges affecting translatio

  10. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  11. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng Wang

    2013-01-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer.The cancer informatics approach is a useful supplement to the traditional experimental approach.I reviewed several reports that used a bioinformatics approach to analyze the associations among aging,stem cells,and cancer by microarray gene expression profiling.The high expression of aging-or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging,stem cells,and cancer.These mechanisms are involved in cell cycle regulation,metabolic process,DNA damage response,apoptosis,p53 signaling pathway,immune/inflammatory response,and other processes,suggesting that cancer is a developmental and evolutional disease that is strongly related to aging.Moreover,these mechanisms demonstrate that the initiation,proliferation,and metastasis of cancer are associated with the deregulation of stem cells.These findings provide insights into the biology of cancer.Certainly,the findings that are obtained by the informatics approach should be justified by experimental validation.This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  12. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling.

    Science.gov (United States)

    Wang, Xiaosheng

    2013-04-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer. The cancer informatics approach is a useful supplement to the traditional experimental approach. I reviewed several reports that used a bioinformatics approach to analyze the associations among aging, stem cells, and cancer by microarray gene expression profiling. The high expression of aging- or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging, stem cells, and cancer. These mechanisms are involved in cell cycle regulation, metabolic process, DNA damage response, apoptosis, p53 signaling pathway, immune/inflammatory response, and other processes, suggesting that cancer is a developmental and evolutional disease that is strongly related to aging. Moreover, these mechanisms demonstrate that the initiation, proliferation, and metastasis of cancer are associated with the deregulation of stem cells. These findings provide insights into the biology of cancer. Certainly, the findings that are obtained by the informatics approach should be justified by experimental validation. This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  13. In-depth cDNA Library Sequencing Provides Quantitative Gene Expression Profiling in Cancer Biomarker Discovery

    Institute of Scientific and Technical Information of China (English)

    Wanling Yang; Dingge Ying; Yu-Lung Lau

    2009-01-01

    procedures may allow detection of many expres-sion features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to in-crease sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique ad-vantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  14. Targeting autophagic pathways for cancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Jin-Ku Bao; Jin-Ming Yang; Yan Cheng

    2013-01-01

    Autophagy,an evolutionarily conserved lysosomal degradation process,has drawn an increasing amount of attention in recent years for its role in a variety of human diseases,such as cancer.Notably,autophagy plays an important role in regulating several survival and death signaling pathways that determine cell fate in cancer.To date,substantial evidence has demonstrated that some key autophagic mediators,such as autophagy-related genes (ATGs),PI3K,mTOR,p53,and Beclin-1,may play crucial roles in modulating autophagic activity in cancer initiation and progression.Because autophagy-modulating agents such as rapamycin and chloroquine have already been used clinically to treat cancer,it is conceivable that targeting autophagic pathways may provide a new opportunity for discovery and development of more novel cancer therapeutics.With a deeper understanding of the regulatory mechanisms governing autophagy,we will have a better opportunity to facilitate the exploitation of autophagy as a target for therapeutic intervention in cancer.This review discusses the current status of targeting autophagic pathways as a potential cancer therapy.

  15. The National Cancer Program: Driving Discovery

    Science.gov (United States)

    An overview of NCI’s role in driving cancer research discoveries: conducting and funding research in challenging areas and providing resources and leadership to national infrastructures for cancer research.

  16. Anti-cancer Parasporin Toxins are Associated with Different Environments: Discovery of Two Novel Parasporin 5-like Genes.

    Science.gov (United States)

    Ammons, David R; Short, John D; Bailey, Jeffery; Hinojosa, Gabriela; Tavarez, Lourdes; Salazar, Martha; Rampersad, Joanne N

    2016-02-01

    Cry toxins are primarily a family of insecticidal toxins produced by the bacterium Bacillus thuringiensis (Bt). However, some Cry toxins, called parasporins (PSs), are non-insecticidal and have been shown to differentially kill human cancer cells. Based on amino acid homology, there are currently six different classes of parasporins (PS1-6). It is not known what role parasporins play in nature, nor if certain PSs are associated with Bt found in particular environments. Herein, we present ten parasporin-containing isolates of Bt from the Caribbean island of Trinidad. Genes coding for PS1 and PS6 were found in isolates associated mainly with artificial aquatic environments (e.g., barrels with rain water), while Bt possessing two novel PS5-like genes (ps5-1 and ps5-2), were isolated from manure collected directly from the rectum of cattle. The amino acid sequences inferred from the two PS5-like genes were 51 % homologous to each other, while being only 41 or 45 % similar to PS5Aa1/Cry64Aa, the only reported member of the parasporin five class. The low level of amino acid homology between the two PS5-like genes and PS5Aa1 indicate that the two PS5-like genes may represent a new class of parasporins, or greatly expand the level of diversity within the current parasporin 5 class. PMID:26563301

  17. Discovery – Methotrexate: Chemotherapy Treatment for Cancer

    Science.gov (United States)

    Prior to the 1950s, treatment for the majority of cancers was limited to either surgery or the use of radiation. The discovery of the use of methotrexate in curing a rare cancer marked the first time a cancer had been cured. This led to the development of many of today’s common cancer treatments.

  18. From amplification to gene in thyroid cancer: A high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.N.; Gonsky, R.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States). Cedars-Sinai Research Inst.; Knauf, J.A.; Fagin, J.A. [Univ. of Cincinnati, OH (United States). Div. of Endocrinology/Metabolism; Wang, M.; Lai, E.H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Pharmacology; Chissoe, S. [Washington Univ. School of Medicine, St. Louis, MO (United States). Genome Sequencing

    1998-08-01

    Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. The authors now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. They used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3--6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKC{epsilon}), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKC{epsilon} as a previously unmapped candidate gene involved in thyroid tumorigenesis.

  19. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    Directory of Open Access Journals (Sweden)

    Brandon T. Nokes, Heather E. Cunliffe, Bonnie LaFleur, David W. Mount, Robert B. Livingston, Bernard W. Futscher, Julie E. Lang

    2013-01-01

    Full Text Available Background: Inflammatory breast cancer (IBC is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection.Methods: We performed single nucleotide polymorphism (SNP genotyping for 2 variants of the ribonuclease (RNase L gene that have been correlated with the risk of prostate cancer due to a possible viral etiology. We evaluated dose-response to treatment with interferon-alpha (IFN-α; and assayed for evidence of the putative human mammary tumor virus (HMTV, which has been implicated in IBC in SUM149 cells. A bioinformatic analysis was performed to evaluate expression of RNase L in IBC and non-IBC.Results: 2 of 2 IBC cell lines were homozygous for RNase L common missense variants 462 and 541; whereas 2 of 10 non-IBC cell lines were homozygous positive for the 462 variant (p= 0.09 and 0 of 10 non-IBC cell lines were homozygous positive for the 541 variant (p = 0.015. Our real-time polymerase chain reaction (RT-PCR and Southern blot analysis for sequences of HMTV revealed no evidence of the putative viral genome.Conclusion: We discovered 2 SNPs in the RNase L gene that were homozygously present in IBC cell lines. The 462 variant was absent in non-IBC lines. Our discovery of these SNPs present in IBC cell lines suggests a possible biomarker for risk of IBC. We found no evidence of HMTV in SUM149 cells. A query of a panel of human IBC and non-IBC samples showed no difference in RNase L expression. Further studies of the RNase L 462 and 541 variants in IBC tissues are warranted to validate our in vitro findings.

  20. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis, probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan-Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11, and significantly associated with disease

  1. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer.

    Science.gov (United States)

    An, Ning; Shi, Xiaoyu; Zhang, Yueming; Lv, Ning; Feng, Lin; Di, Xuebing; Han, Naijun; Wang, Guiqi; Cheng, Shujun; Zhang, Kaitai

    2015-01-01

    Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan-Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four

  2. Discovery – Preventing Skin Cancer

    Science.gov (United States)

    Cancer research includes stopping cancer before it spreads. NCI funded the development of the Melanoma Risk Assessment Tool and the ABC method. Both help to diagnose high-risk patients and prevent melanoma earlier in the fight against skin cancer.

  3. Milestones in Cancer Research and Discovery

    Science.gov (United States)

    During the past 250 years, we have witnessed many landmark discoveries in our efforts to make progress against cancer, an affliction known to humanity for thousands of years. This timeline shows a few key milestones in the history of cancer research.

  4. Independent Gene Discovery and Testing

    Science.gov (United States)

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  5. Biological Networks for Cancer Candidate Biomarkers Discovery

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  6. Biological Networks for Cancer Candidate Biomarkers Discovery.

    Science.gov (United States)

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  7. Gene discovery in Triatoma infestans

    Directory of Open Access Journals (Sweden)

    de Burgos Nelia

    2011-03-01

    Full Text Available Abstract Background Triatoma infestans is the most relevant vector of Chagas disease in the southern cone of South America. Since its genome has not yet been studied, sequencing of Expressed Sequence Tags (ESTs is one of the most powerful tools for efficiently identifying large numbers of expressed genes in this insect vector. Results In this work, we generated 826 ESTs, resulting in an increase of 47% in the number of ESTs available for T. infestans. These ESTs were assembled in 471 unique sequences, 151 of which represent 136 new genes for the Reduviidae family. Conclusions Among the putative new genes for the Reduviidae family, we identified and described an interesting subset of genes involved in development and reproduction, which constitute potential targets for insecticide development.

  8. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    OpenAIRE

    Nokes, Brandon T.; Cunliffe, Heather E; LaFleur, Bonnie; Mount, David W.; Livingston, Robert B.; Bernard W Futscher; Lang, Julie E.

    2013-01-01

    Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection. Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a ...

  9. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene

    OpenAIRE

    Brandon T. Nokes, Heather E. Cunliffe, Bonnie LaFleur, David W. Mount, Robert B. Livingston, Bernard W. Futscher, Julie E. Lang

    2013-01-01

    Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection.Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a p...

  10. Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC.

    Directory of Open Access Journals (Sweden)

    Chad A Glazer

    Full Text Available BACKGROUND: Cancer/testis antigens (CTAs were first discovered as immunogenic targets normally expressed in germline cells, but differentially expressed in a variety of human cancers. In this study, we used an integrative epigenetic screening approach to identify coordinately expressed genes in human non-small cell lung cancer (NSCLC whose transcription is driven by promoter demethylation. METHODOLOGY/PRINCIPAL FINDINGS: Our screening approach found 290 significant genes from the over 47,000 transcripts incorporated in the Affymetrix Human Genome U133 Plus 2.0 expression array. Of the top 55 candidates, 10 showed both differential overexpression and promoter region hypomethylation in NSCLC. Surprisingly, 6 of the 10 genes discovered by this approach were CTAs. Using a separate cohort of primary tumor and normal tissue, we validated NSCLC promoter hypomethylation and increased expression by quantitative RT-PCR for all 10 genes. We noted significant, coordinated coexpression of multiple target genes, as well as coordinated promoter demethylation, in a large set of individual tumors that was associated with the SCC subtype of NSCLC. In addition, we identified 2 novel target genes that exhibited growth-promoting effects in multiple cell lines. CONCLUSIONS/SIGNIFICANCE: Coordinated promoter demethylation in NSCLC is associated with aberrant expression of CTAs and potential, novel candidate protooncogenes that can be identified using integrative discovery techniques. These findings have significant implications for discovery of novel CTAs and CT antigen directed immunotherapy.

  11. Antibody directed enzyme prodrug therapy: Discovery of novel genes, isolation of novel gene variants and production of long acting drugs for efficient cancer treatment

    NARCIS (Netherlands)

    Goda, S.K.; AlQahtani, A.; Rashidi, F.A.; Dömling, A.

    2015-01-01

    Background: Cancer accounts for 13% of the mortality rate worldwide. Antibody-Directed Enzyme Prodrug Therapy (ADEPT) is a novel strategy to improve the selectivity of cancer treatment. The ADEPT uses the bacterial enzyme, glucarpidase to produce the antibody-enzyme complex. Also the glucarpidase is

  12. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  13. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  14. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  15. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  16. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and mi

  17. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Science.gov (United States)

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  18. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  19. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  20. Researchers Find 8 Immune Genes in Aggressive Brain Cancer

    Science.gov (United States)

    ... 159031.html Researchers Find 8 Immune Genes in Aggressive Brain Cancer Discovery might eventually lead to better ... tissue samples from 170 people with a less aggressive type of brain tumor. This led to the ...

  1. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Science.gov (United States)

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  2. Systematic Discovery of Complex Indels in Human Cancers

    Science.gov (United States)

    Ye, Kai; Wang, Jiayin; Jayasinghe, Reyka; Lameijer, Eric-Wubbo; McMichael, Joshua F.; Ning, Jie; McLellan, Michael D.; Xie, Mingchao; Cao, Song; Yellapantula, Venkata; Huang, Kuan-lin; Scott, Adam; Foltz, Steven; Niu, Beifang; Johnson, Kimberly J.; Moed, Matthijs; Slagboom, P. Eline; Chen, Feng; Wendl, Michael C.; Ding, Li

    2016-01-01

    Complex indels are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here, we present a systematic analysis of somatic complex indels in the coding sequences of over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer genes (e.g., PIK3R1, TP53, ARID1A, GATA3, and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or mis-annotated (17.6%) in 2,199 samples previously reported. In-frame complex indels are enriched in PIK3R1 and EGFR while frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN, and ATRX. Further, complex indels display strong tissue specificity (e.g., VHL from kidney cancer and GATA3 from breast cancer). Finally, structural analyses support findings of previously missed, but potentially druggable mutations in EGFR, MET, and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research. PMID:26657142

  3. Discovery and validation of breast cancer subtypes

    Directory of Open Access Journals (Sweden)

    Bukholm Ida RK

    2006-09-01

    Full Text Available Abstract Background Previous studies demonstrated breast cancer tumor tissue samples could be classified into different subtypes based upon DNA microarray profiles. The most recent study presented evidence for the existence of five different subtypes: normal breast-like, basal, luminal A, luminal B, and ERBB2+. Results Based upon the analysis of 599 microarrays (five separate cDNA microarray datasets using a novel approach, we present evidence in support of the most consistently identifiable subtypes of breast cancer tumor tissue microarrays being: ESR1+/ERBB2-, ESR1-/ERBB2-, and ERBB2+ (collectively called the ESR1/ERBB2 subtypes. We validate all three subtypes statistically and show the subtype to which a sample belongs is a significant predictor of overall survival and distant-metastasis free probability. Conclusion As a consequence of the statistical validation procedure we have a set of centroids which can be applied to any microarray (indexed by UniGene Cluster ID to classify it to one of the ESR1/ERBB2 subtypes. Moreover, the method used to define the ESR1/ERBB2 subtypes is not specific to the disease. The method can be used to identify subtypes in any disease for which there are at least two independent microarray datasets of disease samples.

  4. Gene therapy of liver cancer

    OpenAIRE

    Hernandez-Alcoceba, R. (Rubén); B. Sangro; Prieto, J.

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reac...

  5. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical

    Institute of Scientific and Technical Information of China (English)

    Yuesheng ZHANG; Li TANG

    2007-01-01

    Sulforaphane (SF) is a phytochemical that displays both anticarcinogenic and anticancer activity. SF modulates many cancer-related events, including suscep-tibility to carcinogens, cell death, cell cycle, angiogenesis, invasion and metastasis.We review its discovery and development as a cancer chemopreventive agent with the intention of encouraging further research on this important compound and facilitating the identification and development of new phytochemicals for cancer prevention.

  6. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  7. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  8. Discovery and development of DNA methylation-based biomarkers for lung cancer.

    Science.gov (United States)

    Walter, Kimberly; Holcomb, Thomas; Januario, Tom; Yauch, Robert L; Du, Pan; Bourgon, Richard; Seshagiri, Somasekar; Amler, Lukas C; Hampton, Garret M; S Shames, David

    2014-02-01

    Lung cancer remains the primary cause of cancer-related deaths worldwide. Improved tools for early detection and therapeutic stratification would be expected to increase the survival rate for this disease. Alterations in the molecular pathways that drive lung cancer, which include epigenetic modifications, may provide biomarkers to help address this major unmet clinical need. Epigenetic changes, which are defined as heritable changes in gene expression that do not alter the primary DNA sequence, are one of the hallmarks of cancer, and prevalent in all types of cancer. These modifications represent a rich source of biomarkers that have the potential to be implemented in clinical practice. This perspective describes recent advances in the discovery of epigenetic biomarkers in lung cancer, specifically those that result in the methylation of DNA at CpG sites. We discuss one approach for methylation-based biomarker assay development that describes the discovery at a genome-scale level, which addresses some of the practical considerations for design of assays that can be implemented in the clinic. We emphasize that an integrated technological approach will enable the development of clinically useful DNA methylation-based biomarker assays. While this article focuses on current literature and primary research findings in lung cancer, the principles we describe here apply to the discovery and development of epigenetic biomarkers for other types of cancer.

  9. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    LI YanHui; GUO Zheng; PENG ChunFang; LIU Qing; MA WenCai; WANG Jing; YAO Chen; ZHANG Min; ZHU Jing

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  10. Scaffold Repurposing of Old Drugs Towards New Cancer Drug Discovery.

    Science.gov (United States)

    Chen, Haijun; Wu, Jianlei; Gao, Yu; Chen, Haiying; Zhou, Jia

    2016-01-01

    As commented by the Nobelist James Black that "The most fruitful basis of the discovery of a new drug is to start with an old drug", drug repurposing represents an attractive drug discovery strategy. Despite the success of several repurposed drugs on the market, the ultimate therapeutic potential of a large number of non-cancer drugs is hindered during their repositioning due to various issues including the limited efficacy and intellectual property. With the increasing knowledge about the pharmacological properties and newly identified targets, the scaffolds of the old drugs emerge as a great treasure-trove towards new cancer drug discovery. In this review, we summarize the recent advances in the development of novel small molecules for cancer therapy by scaffold repurposing with highlighted examples. The relevant strategies, advantages, challenges and future research directions associated with this approach are also discussed.

  11. Scaffold Repurposing of Old Drugs Towards New Cancer Drug Discovery.

    Science.gov (United States)

    Chen, Haijun; Wu, Jianlei; Gao, Yu; Chen, Haiying; Zhou, Jia

    2016-01-01

    As commented by the Nobelist James Black that "The most fruitful basis of the discovery of a new drug is to start with an old drug", drug repurposing represents an attractive drug discovery strategy. Despite the success of several repurposed drugs on the market, the ultimate therapeutic potential of a large number of non-cancer drugs is hindered during their repositioning due to various issues including the limited efficacy and intellectual property. With the increasing knowledge about the pharmacological properties and newly identified targets, the scaffolds of the old drugs emerge as a great treasure-trove towards new cancer drug discovery. In this review, we summarize the recent advances in the development of novel small molecules for cancer therapy by scaffold repurposing with highlighted examples. The relevant strategies, advantages, challenges and future research directions associated with this approach are also discussed. PMID:26881709

  12. Microscopy Opening Up New Cancer Discovery Avenues

    Science.gov (United States)

    Today’s high-powered microscopes are allowing researchers to study the fine details of individual cells and to peer into cells, opening up new avenues of discovery about the inner workings of cells, including the events that can cause healthy cells to tra

  13. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  14. GENE TECHNOLOGY: A NEW WAY TO TREAT CANCER

    Directory of Open Access Journals (Sweden)

    Prajapati P M.

    2012-06-01

    Full Text Available Gene therapy is the process of introducing genetic material RNA or DNA into a person's cells to fight disease. Gene therapy treats disease by either replacing damaged or missing genes with normal ones, or by providing new genes. The concept of gene therapy was born more than thirty years ago; however, new technology is opening the door to dramatically new possibilities in the treatment of cancers of all kinds. The long-term goal of cancer gene therapy is to develop treatments that attack only cancer cells, thereby eliminating adverse effects on the body and improving the possibility to cure disease. Gene therapy may someday soon make cancer a manageable disease with nominal side effects to the patients. Furthermore, since gene therapy has potential for other diseases such as cystic fibrosis, hemophilia, sickle-cell anemia, muscular dystrophy and Parkinson's, the value of research and discovery has broad applications.

  15. Towards discovery-driven translational research in breast cancer

    DEFF Research Database (Denmark)

    2005-01-01

    Discovery-driven translational research in breast cancer is moving steadily from the study of cell lines to the analysis of clinically relevant samples that, together with the ever increasing number of novel and powerful technologies available within genomics, proteomics and functional genomics......, promise to have a major impact on the way breast cancer will be diagnosed, treated and monitored in the future. Here we present a brief report on long-term ongoing strategies at the Danish Centre for Translational Breast Cancer Research to search for markers for early detection and targets for therapeutic...... biology approach to fight breast cancer....

  16. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  17. Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection

    CERN Document Server

    Chung, Audrey G; Kumar, Devinder; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2015-01-01

    Prostate cancer is the most diagnosed form of cancer in Canadian men, and is the third leading cause of cancer death. Despite these statistics, prognosis is relatively good with a sufficiently early diagnosis, making fast and reliable prostate cancer detection crucial. As imaging-based prostate cancer screening, such as magnetic resonance imaging (MRI), requires an experienced medical professional to extensively review the data and perform a diagnosis, radiomics-driven methods help streamline the process and has the potential to significantly improve diagnostic accuracy and efficiency, and thus improving patient survival rates. These radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which are selected manually and can limit their ability to fully characterize unique prostate cancer tumour phenotype. In this study, we propose a novel \\textit{discovery radiomics} framework for generating custom radiomic sequences tailored for prostate cancer detection. Discover...

  18. SNP marker discovery in koala TLR genes.

    Directory of Open Access Journals (Sweden)

    Jian Cui

    Full Text Available Toll-like receptors (TLRs play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases.

  19. SNP marker discovery in koala TLR genes.

    Science.gov (United States)

    Cui, Jian; Frankham, Greta J; Johnson, Rebecca N; Polkinghorne, Adam; Timms, Peter; O'Meally, Denis; Cheng, Yuanyuan; Belov, Katherine

    2015-01-01

    Toll-like receptors (TLRs) play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous) were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases.

  20. Rice mutant resources for gene discovery

    NARCIS (Netherlands)

    Hirochika, H.; Guiderdoni, E.; An, G.; Hsing, Y.I.; Eun, M.Y.; Han, C.D.; Upadhyaya, N.; Ramachandran, S.; Zhang, Q.F.; Pereira, A.B.; Sundaresan, V.; Leung, H.

    2004-01-01

    With the completion of genomic sequencing of rice, rice has been firmly established as a model organism for both basic and applied research. The next challenge is to uncover the functions of genes predicted by sequence analysis. Considering the amount of effort and the diversity of disciplines requi

  1. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein;

    2014-01-01

    cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline...

  2. Discovery and validation of breast cancer subtypes

    OpenAIRE

    Bukholm Ida RK; Noh Dong-Young; Han Wonshik; Børresen-Dale Anne-Lise; Langerød Anita; Jeffrey Stefanie S; Kapp Amy V; Nicolau Monica; Brown Patrick O; Tibshirani Robert

    2006-01-01

    Background Previous studies demonstrated breast cancer tumor tissue samples could be classified into different subtypes based upon DNA microarray profiles. The most recent study presented evidence for the existence of five different subtypes: normal breast-like, basal, luminal A, luminal B, and ERBB2+. Results Based upon the analysis of 599 microarrays (five separate cDNA microarray datasets) using a ...

  3. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer.

    Science.gov (United States)

    Mlacki, Michal; Kikulska, Agnieszka; Krzywinska, Ewa; Pawlak, Magdalena; Wilanowski, Tomasz

    2015-11-01

    The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment. PMID:26069269

  4. Prediction of breast cancer survival through knowledge discovery in databases.

    Science.gov (United States)

    Lotfnezhad Afshar, Hadi; Ahmadi, Maryam; Roudbari, Masoud; Sadoughi, Farahnaz

    2015-01-26

    The collection of large volumes of medical data has offered an opportunity to develop prediction models for survival by the medical research community. Medical researchers who seek to discover and extract hidden patterns and relationships among large number of variables use knowledge discovery in databases (KDD) to predict the outcome of a disease. The study was conducted to develop predictive models and discover relationships between certain predictor variables and survival in the context of breast cancer. This study is Cross sectional. After data preparation, data of 22,763 female patients, mean age 59.4 years, stored in the Surveillance Epidemiology and End Results (SEER) breast cancer dataset were analyzed anonymously. IBM SPSS Statistics 16, Access 2003 and Excel 2003 were used in the data preparation and IBM SPSS Modeler 14.2 was used in the model design. Support Vector Machine (SVM) model outperformed other models in the prediction of breast cancer survival. Analysis showed SVM model detected ten important predictor variables contributing mostly to prediction of breast cancer survival. Among important variables, behavior of tumor as the most important variable and stage of malignancy as the least important variable were identified. In current study, applying of the knowledge discovery method in the breast cancer dataset predicted the survival condition of breast cancer patients with high confidence and identified the most important variables participating in breast cancer survival.

  5. Gene therapy for thyroid cancer

    International Nuclear Information System (INIS)

    Gene therapy for thyroid cancer include immunotherapy, suicide gene therapy, tumor suppressor replacement, 131I therapy by sodium/iodide symporter and antisense therapy and so on. Gene therapy has wide perspectives, but there are many problems need to be solved for clinical application

  6. Discovery of pinoresinol reductase genes in sphingomonads.

    Science.gov (United States)

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E

    2013-01-10

    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  7. Beegle: from literature mining to disease-gene discovery.

    Science.gov (United States)

    ElShal, Sarah; Tranchevent, Léon-Charles; Sifrim, Alejandro; Ardeshirdavani, Amin; Davis, Jesse; Moreau, Yves

    2016-01-29

    Disease-gene identification is a challenging process that has multiple applications within functional genomics and personalized medicine. Typically, this process involves both finding genes known to be associated with the disease (through literature search) and carrying out preliminary experiments or screens (e.g. linkage or association studies, copy number analyses, expression profiling) to determine a set of promising candidates for experimental validation. This requires extensive time and monetary resources. We describe Beegle, an online search and discovery engine that attempts to simplify this process by automating the typical approaches. It starts by mining the literature to quickly extract a set of genes known to be linked with a given query, then it integrates the learning methodology of Endeavour (a gene prioritization tool) to train a genomic model and rank a set of candidate genes to generate novel hypotheses. In a realistic evaluation setup, Beegle has an average recall of 84% in the top 100 returned genes as a search engine, which improves the discovery engine by 12.6% in the top 5% prioritized genes. Beegle is publicly available at http://beegle.esat.kuleuven.be/.

  8. Knowledge based cluster ensemble for cancer discovery from biomolecular data.

    Science.gov (United States)

    Yu, Zhiwen; Wongb, Hau-San; You, Jane; Yang, Qinmin; Liao, Hongying

    2011-06-01

    The adoption of microarray techniques in biological and medical research provides a new way for cancer diagnosis and treatment. In order to perform successful diagnosis and treatment of cancer, discovering and classifying cancer types correctly is essential. Class discovery is one of the most important tasks in cancer classification using biomolecular data. Most of the existing works adopt single clustering algorithms to perform class discovery from biomolecular data. However, single clustering algorithms have limitations, which include a lack of robustness, stability, and accuracy. In this paper, we propose a new cluster ensemble approach called knowledge based cluster ensemble (KCE) which incorporates the prior knowledge of the data sets into the cluster ensemble framework. Specifically, KCE represents the prior knowledge of a data set in the form of pairwise constraints. Then, the spectral clustering algorithm (SC) is adopted to generate a set of clustering solutions. Next, KCE transforms pairwise constraints into confidence factors for these clustering solutions. After that, a consensus matrix is constructed by considering all the clustering solutions and their corresponding confidence factors. The final clustering result is obtained by partitioning the consensus matrix. Comparison with single clustering algorithms and conventional cluster ensemble approaches, knowledge based cluster ensemble approaches are more robust, stable and accurate. The experiments on cancer data sets show that: 1) KCE works well on these data sets; 2) KCE not only outperforms most of the state-of-the-art single clustering algorithms, but also outperforms most of the state-of-the-art cluster ensemble approaches.

  9. Progress in Gene Therapy for Prostate Cancer

    OpenAIRE

    KamranAliAhmed; BrianJamesDavis; TorrenceMWilson; GregoryAWiseman; MarkJFederspiel; JohnCMorris

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our...

  10. Gene Therapy in Human Breast Cancer

    OpenAIRE

    Abaan, Ogan D.

    2002-01-01

    Gene therapy, being a novel treatment for many diseases, is readily applicable for the treatment of cancer patients. Breast cancer is the most common cancer among women. There are many clinical protocols for the treatment of breast cancer, and gene therapy is now being considered within current protocols. This review will focus on the basic concepts of cancer gene therapy strategies (suicide gene, tumor suppressor gene, anti-angiogenesis, immunotherapy, oncolytic viruses and ribozyme/antisens...

  11. Discovery of the cancer stem cell related determinants of radioresistance

    International Nuclear Information System (INIS)

    Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies

  12. Gene therapy in pancreatic cancer

    OpenAIRE

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC...

  13. Telomere and Telomerase: From Discovery to Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Eskandari-Nasab

    2015-07-01

    Full Text Available Context Cancer is a major cause of death worldwide. It was estimated that 7.6 million people died during 2008 due to cancer and this figure is expected to double by 2030. To conquer this disease, discovery of validated targets and new drugs is a necessity. Evidence Acquisition Telomeres are terminal structures of linear chromosomes in eukaryotes and consist of multiple repetitive sequences. Their main function is to protect and confer stability to chromosome ends and prevent their breakage, end-to-end fusion, and degeneration. Polymerases responsible for replication of DNA in eukaryotes are not able to replicate chromosome ends and, during cell division, chromosomes continuously become shorter from the telomere ends. This shortening will eventually stop cell division. In cancer cells, there is a ribonucleoprotein enzyme called telomerase that allows compensation of telomere shortening and continuation of the cell multiplication process. Results About 90% of cancers need a high level of this enzyme to continue cell multiplication. Since this enzyme set is absent in normal cells, or present at a very low level, use of telomerase inhibitors cannot have significant effects on normal cells. Conclusions Since telomerase is expressed in 90% of cancer cells, its inhibition can be considered as a goal of cancer treatment.

  14. Gene discovery of modular diterpene metabolism in nonmodel systems.

    Science.gov (United States)

    Zerbe, Philipp; Hamberger, Björn; Yuen, Macaire M S; Chiang, Angela; Sandhu, Harpreet K; Madilao, Lina L; Nguyen, Anh; Hamberger, Britta; Bach, Søren Spanner; Bohlmann, Jörg

    2013-06-01

    Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.

  15. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  16. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  17. Androgen receptor: structure, role in prostate cancer and drug discovery.

    Science.gov (United States)

    Tan, M H Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2-3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  18. Genome-enabled Discovery of Carbon Sequestration Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Kalluri, Udaya C [ORNL; Yin, Tongming [ORNL; Yang, Xiaohan [ORNL; Zhang, Xinye [ORNL; Engle, Nancy L [ORNL; Ranjan, Priya [ORNL; Basu, Manojit M [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Martin, Madhavi Z [ORNL; Campbell, Alina S [ORNL; DiFazio, Stephen P [ORNL; Davis, John M [University of Florida; Hinchee, Maud [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University; Busov, V. [Michigan Technological University; Strauss, S [Oregon State University

    2009-01-01

    The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

  19. Gene Tied to Breast Cancer Raises Uterine Cancer Risk Too

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159652.html Gene Tied to Breast Cancer Raises Uterine Cancer Risk ... June 30, 2016 (HealthDay News) -- Women with a gene mutation known as BRCA1 have an increased risk ...

  20. Five New Genes Linked to Colon Cancer

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_159556.html Five New Genes Linked to Colon Cancer But researchers say it's ... 2016 (HealthDay News) -- Scientists have identified five new gene mutations that may be tied to colon cancer. ...

  1. 'Sunscreen' Gene May Guard Against Skin Cancer

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_158935.html 'Sunscreen' Gene May Guard Against Skin Cancer Researchers hope their ... say they've identified a so-called "sunscreen" gene that may help protect against skin cancer. They ...

  2. Inflammatory bowel disease gene discovery. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  3. Review: US Spelling Colorectal cancer models for novel drug discovery

    Science.gov (United States)

    Golovko, Daniel; Kedrin, Dmitriy; Yilmaz, Omer H.; Roper, Jatin

    2016-01-01

    Introduction Despite increased screening rates and advances in targeted therapy, colorectal cancer (CRC) remains the third leading cause of cancer-related mortality. CRC models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. Classic methods of modeling CRC such as human cell lines and xenograft mice, while useful for many applications, carry significant limitations. Recently developed in vitro and in vivo models overcome some of these deficiencies and thus can be utilized to better model CRC for mechanistic and translational research. Areas Covered The authors review established models of in vitro cell culture and describe advances in organoid culture for studying normal and malignant intestine. They also discuss key features of classic xenograft models and describe other approaches for in vivo CRC research, including patient-derived xenograft, carcinogen-induced, orthotopic transplantation, and transgenic mouse models. We also describe mouse models of metastatic CRC. Expert opinion No single model is optimal for drug discovery in CRC. Genetically engineered models overcome many limitations of xenograft models. Three-dimensional organoids can be efficiently derived from both normal and malignant tissue for large-scale in vitro and in vivo (transplantation) studies, and are thus a significant advance in CRC drug discovery. PMID:26295972

  4. Knowledge discovery for pancreatic cancer using inductive logic programming.

    Science.gov (United States)

    Qiu, Yushan; Shimada, Kazuaki; Hiraoka, Nobuyoshi; Maeshiro, Kensei; Ching, Wai-Ki; Aoki-Kinoshita, Kiyoko F; Furuta, Koh

    2014-08-01

    Pancreatic cancer is a devastating disease and predicting the status of the patients becomes an important and urgent issue. The authors explore the applicability of inductive logic programming (ILP) method in the disease and show that the accumulated clinical laboratory data can be used to predict disease characteristics, and this will contribute to the selection of therapeutic modalities of pancreatic cancer. The availability of a large amount of clinical laboratory data provides clues to aid in the knowledge discovery of diseases. In predicting the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer, using the ILP model, three rules are developed that are consistent with descriptions in the literature. The rules that are identified are useful to detect the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer and therefore contributed significantly to the decision of therapeutic strategies. In addition, the proposed method is compared with the other typical classification techniques and the results further confirm the superiority and merit of the proposed method.

  5. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  6. Gene Therapy Used in Cancer Treatment

    OpenAIRE

    Thomas Wirth; Seppo Ylä-Herttuala

    2014-01-01

    Cancer has been, from the beginning, a target of intense research for gene therapy approaches. Currently, more than 60% of all on-going clinical gene therapy trials worldwide are targeting cancer. Indeed, there is a clear unmet medical need for novel therapies. This is further urged by the fact that current conventional cancer therapies are frequently troubled by their toxicities. Different gene therapy strategies have been employed for cancer, such as pro-drug activating suicide gene therapy...

  7. Gensko zdravljenje raka: Cancer gene therapy:

    OpenAIRE

    Serša, Gregor; Čemažar, Maja; KOČEVAR, NINA

    2010-01-01

    Gene therapy uses genes to treat diseases. Large amount of research is based on cancer because current methods for cancer treatment have limited efficiencyand unwanted side effects. In the following article we first presentthe basic principles of gene therapy. Next, we describe the main delivery systems, which are viral and non-viral, and then the main therapeuticstrategies of cancer gene therapy. These can be divided into immunological, where we take advantage of the immune system for cancer...

  8. Identification of druggable cancer driver genes amplified across TCGA datasets.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available The Cancer Genome Atlas (TCGA projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications

  9. Discovery – Cisplatin and The Treatment of Testicular and Other Cancers

    Science.gov (United States)

    Prior to the discovery of cisplatin in 1965, men with testicular cancer had few medical options. Now, thanks to NCI research, cisplatin and similar chemotherapy drugs are known for curing testicular and other forms of cancer.

  10. Psychiatric gene discoveries shape evidence on ADHD's biology.

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-09-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10(-4)) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  11. Psychiatric gene discoveries shape evidence on ADHD's biology

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-01-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10−4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  12. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  13. Specific Targeting of Gene Therapy to Prostate Cancer Using a Two-step Transcriptional Amplification System

    OpenAIRE

    Figueiredo, Marxa L.; Sato, Makoto; Johnson, Mai; Wu, Lily

    2006-01-01

    Significant advances in gene therapy have been made as a result of the improvement of gene delivery systems, discovery of new therapeutic genes, better understanding of mechanisms of disease progression, exploration and improvement of tissue-specific gene regulatory sequences, and development of better prodrug/enzyme systems. We will discuss adenoviral-based and prostate-specific cancer gene therapy, emphasizing tissue-specific promoter choices to increase gene therapy safety and specificity,...

  14. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder;

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...... known genes and 157 ESTs were found to be highly relevant for CRC. The alteration of known genes was confirmed in >70% of the cases by array analysis of 25 single samples. Two-way hierarchical average linkage cluster analysis clustered normal tissue together with Dukes' A, clustered Dukes' B with Dukes...

  15. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  16. Recurrent gene fusions in prostate cancer: their clinical implications and uses

    NARCIS (Netherlands)

    Hessels, D.; Schalken, J.A.

    2013-01-01

    Gene fusions, resulting from chromosomal rearrangements, have been attributed to leukaemias and soft tissue sarcomas. The recent discovery of a recurrent gene fusion TMPRSS2-ERG in approximately half of the prostate cancers tested indicates that gene fusions also play a role in the onset of common e

  17. Approaches of targeting Rho GTPases in cancer drug discovery

    Science.gov (United States)

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  18. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2007-01-01

    Full Text Available Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.Abbreviations: 2DE: two-dimensional gel electrophoresis; ABPP: activity-based protein profiling; CEA: carcinoembryonic antigen; CI: confidence interval; ESI: electrospray ionization; FP: fluorophosphonate; HPLC: high performance liquid chromatography; ICAT: isotope coded affi nitytags; IEF: isoelectric focusing; iTRAQ: isobaric tags for relative and absolute quantification; LCMS: combined liquid chromatography-mass spectrometry; LCMSMS: liquid chromatography tandem mass spectrometry; LOD: limit of detection; m/z: mass to charge ratio; MALDI: matrix-assisted laser desorption ionization; MS: mass spectrometry; MUDPIT: multidimensional protein identification technology; NAF: nipple aspirate fluid; PMF: peptide mass fingerprinting; PSA: prostate specifi c antigen; PTMs: post-translational modifications; RPMA: reverse phase protein microarray; SELDI: surface enhanced laser desorption ionization; TOF: time-of-flight.

  19. Breast Cancer Susceptibility Gene1 (BRCA1

    Directory of Open Access Journals (Sweden)

    Wasiksiri, S.

    2002-07-01

    Full Text Available Breast Cancer Susceptibility Gene1 (BRCA1 is a tumor suppressor gene for breast and ovarian cancers. The gene locates at chromosome 17q21 and encodes for 1863 amino acids protein. It is believed that BRCA1 protein is involved in many functions such as DNA repair, centrosome replication, cell cycle checkpoint and replication of other genes. More than 800 mutations have been found in the population with an increased risk of cancer incidence in their families. Germ-line mutation of BRCA1 accounts for 5-10 percent of all breast cancer cases. Epigenetic modifications also reduce the function of normal BRCA1 gene. Several methods are used for laboratory diagnosis of cancer-related mutations. The development of breast cancer in carriers at risk with BRCA1 mutations may be prevented by suitable prevention plans such as breast cancer screening, ovarian cancer screening, surgery and cancer chemotherapy.

  20. The Matchmaker Exchange: a platform for rare disease gene discovery.

    Science.gov (United States)

    Philippakis, Anthony A; Azzariti, Danielle R; Beltran, Sergi; Brookes, Anthony J; Brownstein, Catherine A; Brudno, Michael; Brunner, Han G; Buske, Orion J; Carey, Knox; Doll, Cassie; Dumitriu, Sergiu; Dyke, Stephanie O M; den Dunnen, Johan T; Firth, Helen V; Gibbs, Richard A; Girdea, Marta; Gonzalez, Michael; Haendel, Melissa A; Hamosh, Ada; Holm, Ingrid A; Huang, Lijia; Hurles, Matthew E; Hutton, Ben; Krier, Joel B; Misyura, Andriy; Mungall, Christopher J; Paschall, Justin; Paten, Benedict; Robinson, Peter N; Schiettecatte, François; Sobreira, Nara L; Swaminathan, Ganesh J; Taschner, Peter E; Terry, Sharon F; Washington, Nicole L; Züchner, Stephan; Boycott, Kym M; Rehm, Heidi L

    2015-10-01

    There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.

  1. Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery

    Science.gov (United States)

    Gwinn, Katrina; Corriveau, Roderick A.; Mitsumoto, Hiroshi; Bednarz, Kate; Brown, Robert H.; Cudkowicz, Merit; Gordon, Paul H.; Hardy, John; Kasarskis, Edward J.; Kaufmann, Petra; Miller, Robert; Sorenson, Eric; Tandan, Rup; Traynor, Bryan J.; Nash, Josefina; Sherman, Alex; Mailman, Matthew D.; Ostell, James; Bruijn, Lucie; Cwik, Valerie; Rich, Stephen S.; Singleton, Andrew; Refolo, Larry; Andrews, Jaime; Zhang, Ran; Conwit, Robin; Keller, Margaret A.

    2007-01-01

    Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND). It is currently incurable and treatment is largely limited to supportive care. Family history is associated with an increased risk of ALS, and many Mendelian causes have been discovered. However, most forms of the disease are not obviously familial. Recent advances in human genetics have enabled genome-wide analyses of single nucleotide polymorphisms (SNPs) that make it possible to study complex genetic contributions to human disease. Genome-wide SNP analyses require a large sample size and thus depend upon collaborative efforts to collect and manage the biological samples and corresponding data. Public availability of biological samples (such as DNA), phenotypic and genotypic data further enhances research endeavors. Here we discuss a large collaboration among academic investigators, government, and non-government organizations which has created a public repository of human DNA, immortalized cell lines, and clinical data to further gene discovery in ALS. This resource currently maintains samples and associated phenotypic data from 2332 MND subjects and 4692 controls. This resource should facilitate genetic discoveries which we anticipate will ultimately provide a better understanding of the biological mechanisms of neurodegeneration in ALS. PMID:18060051

  2. The Matchmaker Exchange: a platform for rare disease gene discovery.

    Science.gov (United States)

    Philippakis, Anthony A; Azzariti, Danielle R; Beltran, Sergi; Brookes, Anthony J; Brownstein, Catherine A; Brudno, Michael; Brunner, Han G; Buske, Orion J; Carey, Knox; Doll, Cassie; Dumitriu, Sergiu; Dyke, Stephanie O M; den Dunnen, Johan T; Firth, Helen V; Gibbs, Richard A; Girdea, Marta; Gonzalez, Michael; Haendel, Melissa A; Hamosh, Ada; Holm, Ingrid A; Huang, Lijia; Hurles, Matthew E; Hutton, Ben; Krier, Joel B; Misyura, Andriy; Mungall, Christopher J; Paschall, Justin; Paten, Benedict; Robinson, Peter N; Schiettecatte, François; Sobreira, Nara L; Swaminathan, Ganesh J; Taschner, Peter E; Terry, Sharon F; Washington, Nicole L; Züchner, Stephan; Boycott, Kym M; Rehm, Heidi L

    2015-10-01

    There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow. PMID:26295439

  3. RCDB: Renal Cancer Gene Database

    Directory of Open Access Journals (Sweden)

    Ramana Jayashree

    2012-05-01

    Full Text Available Abstract Background Renal cell carcinoma or RCC is one of the common and most lethal urological cancers, with 40% of the patients succumbing to death because of metastatic progression of the disease. Treatment of metastatic RCC remains highly challenging because of its resistance to chemotherapy as well as radiotherapy, besides surgical resection. Whereas RCC comprises tumors with differing histological types, clear cell RCC remains the most common. A major problem in the clinical management of patients presenting with localized ccRCC is the inability to determine tumor aggressiveness and accurately predict the risk of metastasis following surgery. As a measure to improve the diagnosis and prognosis of RCC, researchers have identified several molecular markers through a number of techniques. However the wealth of information available is scattered in literature and not easily amenable to data-mining. To reduce this gap, this work describes a comprehensive repository called Renal Cancer Gene Database, as an integrated gateway to study renal cancer related data. Findings Renal Cancer Gene Database is a manually curated compendium of 240 protein-coding and 269 miRNA genes contributing to the etiology and pathogenesis of various forms of renal cell carcinomas. The protein coding genes have been classified according to the kind of gene alteration observed in RCC. RCDB also includes the miRNAsdysregulated in RCC, along with the corresponding information regarding the type of RCC and/or metastatic or prognostic significance. While some of the miRNA genes showed an association with other types of cancers few were unique to RCC. Users can query the database using keywords, category and chromosomal location of the genes. The knowledgebase can be freely accessed via a user-friendly web interface at http://www.juit.ac.in/attachments/jsr/rcdb/homenew.html. Conclusions It is hoped that this database would serve as a useful complement to the existing public

  4. Discovery and validation of methylation markers for endometrial cancer.

    Science.gov (United States)

    Wentzensen, Nicolas; Bakkum-Gamez, Jamie N; Killian, J Keith; Sampson, Joshua; Guido, Richard; Glass, Andrew; Adams, Lisa; Luhn, Patricia; Brinton, Louise A; Rush, Brenda; d'Ambrosio, Lori; Gunja, Munira; Yang, Hannah P; Garcia-Closas, Montserrat; Lacey, James V; Lissowska, Jolanta; Podratz, Karl; Meltzer, Paul; Shridhar, Viji; Sherman, Mark E

    2014-10-15

    The prognosis of endometrial cancer is strongly associated with stage at diagnosis, suggesting that early detection may reduce mortality. Women who are diagnosed with endometrial carcinoma often have a lengthy history of vaginal bleeding, which offers an opportunity for early diagnosis and curative treatment. We performed DNA methylation profiling on population-based endometrial cancers to identify early detection biomarkers and replicated top candidates in two independent studies. We compared DNA methylation values of 1,500 probes representing 807 genes in 148 population-based endometrial carcinoma samples and 23 benign endometrial tissues. Markers were replicated in another set of 69 carcinomas and 40 benign tissues profiled on the same platform. Further replication was conducted in The Cancer Genome Atlas and in prospectively collected endometrial brushings from women with and without endometrial carcinomas. We identified 114 CpG sites showing methylation differences with p values of ≤ 10(-7) between endometrial carcinoma and normal endometrium. Eight genes (ADCYAP1, ASCL2, HS3ST2, HTR1B, MME, NPY and SOX1) were selected for further replication. Age-adjusted odds ratios for endometrial cancer ranged from 3.44 (95%-CI: 1.33-8.91) for ASCL2 to 18.61 (95%-CI: 5.50-62.97) for HTR1B. An area under the curve (AUC) of 0.93 was achieved for discriminating carcinoma from benign endometrium. Replication in The Cancer Genome Atlas and in endometrial brushings from an independent study confirmed the candidate markers. This study demonstrates that methylation markers may be used to evaluate women with abnormal vaginal bleeding to distinguish women with endometrial carcinoma from the majority of women without malignancy. PMID:24623538

  5. New discoveries of old SON: a link between RNA splicing and cancer.

    Science.gov (United States)

    Hickey, Christopher J; Kim, Jung-Hyun; Ahn, Eun-Young Erin

    2014-02-01

    The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy.

  6. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    OpenAIRE

    Ian Collins; Jones, Alan M.

    2014-01-01

    How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS) and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from p...

  7. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    Science.gov (United States)

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  8. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    OpenAIRE

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of div...

  9. Fusion genes in solid tumors:an emerging target for cancer diagnosis and treatment

    Institute of Scientific and Technical Information of China (English)

    Brittany C. Parker; Wei Zhang

    2013-01-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  10. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  11. Risk genes for schizophrenia: translational opportunities for drug discovery.

    Science.gov (United States)

    Winchester, Catherine L; Pratt, Judith A; Morris, Brian J

    2014-07-01

    Despite intensive research over many years, the treatment of schizophrenia remains a major health issue. Current and emerging treatments for schizophrenia are based upon the classical dopamine and glutamate hypotheses of disease. Existing first and second generation antipsychotic drugs based upon the dopamine hypothesis are limited by their inability to treat all symptom domains and their undesirable side effect profiles. Third generation drugs based upon the glutamate hypothesis of disease are currently under evaluation but are more likely to be used as add on treatments. Hence there is a large unmet clinical need. A major challenge in neuropsychiatric disease research is the relatively limited knowledge of disease mechanisms. However, as our understanding of the genetic causes of the disease evolves, novel strategies for the development of improved therapeutic agents will become apparent. In this review we consider the current status of knowledge of the genetic basis of schizophrenia, including methods for identifying genetic variants associated with the disorder and how they impact on gene function. Although the genetic architecture of schizophrenia is complex, some targets amenable to pharmacological intervention can be discerned. We conclude that many challenges lie ahead but the stratification of patients according to biobehavioural constructs that cross existing disease classifications but with common genetic and neurobiological bases, offer opportunities for new approaches to effective drug discovery.

  12. The discovery of the microphthalmia locus and its gene, Mitf.

    Science.gov (United States)

    Arnheiter, Heinz

    2010-12-01

    The history of the discovery of the microphthalmia locus and its gene, now called Mitf, is a testament to the triumph of serendipity. Although the first microphthalmia mutation was discovered among the descendants of a mouse that was irradiated for the purpose of mutagenesis, the mutation most likely was not radiation induced but occurred spontaneously in one of the parents of a later breeding. Although Mitf might eventually have been identified by other molecular genetic techniques, it was first cloned from a chance transgene insertion at the microphthalmia locus. And although Mitf was found to encode a member of a well-known transcription factor family, its analysis might still be in its infancy had Mitf not turned out to be of crucial importance for the physiology and pathology of many distinct organs, including eye, ear, immune system, bone, and skin, and in particular for melanoma. In fact, near seven decades of Mitf research have led to many insights about development, function, degeneration, and malignancies of a number of specific cell types, and it is hoped that these insights will one day lead to therapies benefitting those afflicted with diseases originating in these cell types.

  13. Antiangiogenic cancer treatment: The great discovery and greater complexity (Review)

    Science.gov (United States)

    Maj, Ewa; Papiernik, Diana; Wietrzyk, Joanna

    2016-01-01

    The discovery of tumor angiogenesis opened a new path in fighting cancer. The approval of different antiangiogenic agents, most targeting vascular endothelial growth factor (VEGF) signaling, has either increased the effectiveness of standard chemotherapy or even replaced it by offering better patient outcomes. However, an increasing number of preclinical and clinical observations have shown that the process of angiogenesis is far from clearly understood. Apart from targeting the VEGF pathway, novel strategies aim to influence other molecular factors that are involved in tumor angiogenesis. In addition, naturally occurring compounds seem to offer additional agents for influencing angiogenesis. The first concept of antiangiogenic therapy aimed to destroy tumor vessels, while it turned out that, paradoxically, antiangiogenic drugs normalized vasculature and as a result offered an improvement in chemotherapeutic delivery. In order to design an effective treatment schedule, methods for detecting the time window of normalization and biomarkers predicting patient response are needed. The initial idea that antiangiogenic therapy would be resistance-free failed to materialize and currently we still face the obstacle of resistance to antiangiogenic therapy.

  14. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    Science.gov (United States)

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  15. A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery.

    Science.gov (United States)

    Sjöström, Martin; Ossola, Reto; Breslin, Thomas; Rinner, Oliver; Malmström, Lars; Schmidt, Alexander; Aebersold, Ruedi; Malmström, Johan; Niméus, Emma

    2015-07-01

    It is of highest importance to find proteins responsible for breast cancer dissemination, for use as biomarkers or treatment targets. We established and performed a combined nontargeted LC-MS/MS and a targeted LC-SRM workflow for discovery and validation of protein biomarkers. Eighty breast tumors, stratified for estrogen receptor status and development of distant recurrence (DR ± ), were collected. After enrichment of N-glycosylated peptides, label-free LC-MS/MS was performed on each individual tumor in triplicate. In total, 1515 glycopeptides from 778 proteins were identified and used to create a map of the breast cancer N-glycosylated proteome. Based on this specific proteome map, we constructed a 92-plex targeted label-free LC-SRM panel. These proteins were quantified across samples by LC-SRM, resulting in 10 proteins consistently differentially regulated between DR+/DR- tumors. Five proteins were further validated in a separate cohort as prognostic biomarkers at the gene expression level. We also compared the LC-SRM results to clinically reported HER2 status, demonstrating its clinical accuracy. In conclusion, we demonstrate a combined mass spectrometry strategy, at large scale on clinical samples, leading to the identification and validation of five proteins as potential biomarkers for breast cancer recurrence. All MS data are available via ProteomeXchange and PASSEL with identifiers PXD001685 and PASS00643. PMID:25944384

  16. Impact of homeobox genes in gastrointestinal cancer

    Science.gov (United States)

    Joo, Moon Kyung; Park, Jong-Jae; Chun, Hoon Jai

    2016-01-01

    Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett’s esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers. PMID:27729732

  17. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  18. Gene prioritization for imaging genetics studies using Gene Ontology and a stratified False Discovery Rate approach

    Directory of Open Access Journals (Sweden)

    Sejal ePatel

    2016-04-01

    Full Text Available Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS, and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA2 and the Alzheimer’s Disease Neuroimaging Initiative datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between 10 to 20%. Our approach demonstrates a potential method to prioritize genes based on biological systems impaired in a disease.

  19. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  20. Gene expression profiles on predicting protein interaction network and exploring of new treatments for lung cancer.

    Science.gov (United States)

    Yang, Zehui; Zheng, Rui; Gao, Yuan; Zhang, Qiang

    2014-12-01

    In the present study, we aimed to explore disease-associated genes and their functions in lung cancer. We downloaded the gene expression profile GSE4115 from Gene Expression Omnibus (GEO) database. Total 97 lung cancer and 90 adjacent non-tumor lung tissue (normal) samples were applied to identify the differentially expressed genes (DEGs) by paired t test and variance analysis in spectral angle mapper (SAM) package in R. Gene Ontology (GO) functional enrichment analysis of DEGs were performed with Database for Annotation Visualization and Integrated Discovery, followed by construction of protein-protein interaction (PPI) network from Human Protein Reference Database (HPRD). Finally, network modules were analyzed by the MCODE algorithm to detect protein complexes in the PPI network. Total 3,102 genes were identified as DEGs at FDR normal and cancer tissues, and exploring new treatments for lung cancer. PMID:25205123

  1. [Gene therapy with cytokines against cervical cancer].

    Science.gov (United States)

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  2. Cancer Research from Molecular Discovery to Global Health

    Science.gov (United States)

    A science writers' seminar to discuss the latest research in cancer genetics and global health efforts, including talks from leaders of NCI’s new centers of cancer genomics and global health will be held Dec. 13, 2011, at NCI.

  3. ETS fusion genes in prostate cancer.

    Science.gov (United States)

    Gasi Tandefelt, Delila; Boormans, Joost; Hermans, Karin; Trapman, Jan

    2014-06-01

    Prostate cancer is very common in elderly men in developed countries. Unravelling the molecular and biological processes that contribute to tumor development and progressive growth, including its heterogeneity, is a challenging task. The fusion of the genes ERG and TMPRSS2 is the most frequent genomic alteration in prostate cancer. ERG is an oncogene that encodes a member of the family of ETS transcription factors. At lower frequency, other members of this gene family are also rearranged and overexpressed in prostate cancer. TMPRSS2 is an androgen-regulated gene that is preferentially expressed in the prostate. Most of the less frequent ETS fusion partners are also androgen-regulated and prostate-specific. During the last few years, novel concepts of the process of gene fusion have emerged, and initial experimental results explaining the function of the ETS genes ERG and ETV1 in prostate cancer have been published. In this review, we focus on the most relevant ETS gene fusions and summarize the current knowledge of the role of ETS transcription factors in prostate cancer. Finally, we discuss the clinical relevance of TMRPSS2-ERG and other ETS gene fusions in prostate cancer.

  4. Bimodal gene expression patterns in breast cancer

    OpenAIRE

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  5. Topological Features In Cancer Gene Expression Data

    OpenAIRE

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  6. Discovery of mammalian genes that participate in virus infection

    Directory of Open Access Journals (Sweden)

    Sheng Jinsong

    2004-11-01

    Full Text Available Abstract Background Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. Results Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. Conclusions Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies.

  7. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Sharon J Pitteri

    Full Text Available The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery.We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease.Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers.

  8. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar;

    2004-01-01

    Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number of...... human genes are functionally well characterized. It is still unclear how many and which human genes respond to estrogen treatment. We propose a simple, economic, yet effective computational method to predict a subclass of estrogen responsive genes. Our method relies on the similarity of ERE frames...... across different promoters in the human genome. Matching ERE frames of a test set of 60 known estrogen responsive genes to the collection of over 18,000 human promoters, we obtained 604 candidate genes. Evaluating our result by comparison with the published microarray data and literature, we found that...

  9. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    Science.gov (United States)

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  10. Androgen receptor: structure, role in prostate cancer and drug discovery

    OpenAIRE

    Tan, MH Eileen; Li, Jun; Xu, H. Eric; Melcher, Karsten; Yong, Eu-Leong

    2014-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer ...

  11. Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems

    Directory of Open Access Journals (Sweden)

    Chung I-Fang

    2008-10-01

    Full Text Available Abstract Background The Signal-to-Noise-Ratio (SNR is often used for identification of biomarkers for two-class problems and no formal and useful generalization of SNR is available for multiclass problems. We propose innovative generalizations of SNR for multiclass cancer discrimination through introduction of two indices, Gene Dominant Index and Gene Dormant Index (GDIs. These two indices lead to the concepts of dominant and dormant genes with biological significance. We use these indices to develop methodologies for discovery of dominant and dormant biomarkers with interesting biological significance. The dominancy and dormancy of the identified biomarkers and their excellent discriminating power are also demonstrated pictorially using the scatterplot of individual gene and 2-D Sammon's projection of the selected set of genes. Using information from the literature we have shown that the GDI based method can identify dominant and dormant genes that play significant roles in cancer biology. These biomarkers are also used to design diagnostic prediction systems. Results and discussion To evaluate the effectiveness of the GDIs, we have used four multiclass cancer data sets (Small Round Blue Cell Tumors, Leukemia, Central Nervous System Tumors, and Lung Cancer. For each data set we demonstrate that the new indices can find biologically meaningful genes that can act as biomarkers. We then use six machine learning tools, Nearest Neighbor Classifier (NNC, Nearest Mean Classifier (NMC, Support Vector Machine (SVM classifier with linear kernel, and SVM classifier with Gaussian kernel, where both SVMs are used in conjunction with one-vs-all (OVA and one-vs-one (OVO strategies. We found GDIs to be very effective in identifying biomarkers with strong class specific signatures. With all six tools and for all data sets we could achieve better or comparable prediction accuracies usually with fewer marker genes than results reported in the literature using the

  12. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  13. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data.

    Science.gov (United States)

    Bourdakou, Marilena M; Athanasiadis, Emmanouil I; Spyrou, George M

    2016-01-01

    Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view. PMID:26892392

  14. An overview of gene therapy in head and neck cancer

    OpenAIRE

    Amit Bali; Deepika Bali; Ashutosh Sharma

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  15. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  16. Targeting Gene-Virotherapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Yuan LIU; Jing-Fa GU; Wen-Fang SHI

    2005-01-01

    Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called "targeting genevirotherapy", which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called "targeting dual gene-virotherapy" (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory.Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vectorand another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.

  17. Targeting Radiotherapy to Cancer by Gene Transfer

    OpenAIRE

    R. J. Mairs; Boyd, M.

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer ...

  18. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot"

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Chen, Xiaoqing;

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes...... involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n=675) and controls (n=1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three...... with ovarian cancer risk in the smaller, five-study replication study (Pper-allele=0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04-1.24) p=0.003]. Our study adds...

  19. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  20. Transforming Discovery into Health (Cancer Therapy and Obesity)

    Science.gov (United States)

    ... genetic profile of each patient's cancer." Taking on Obesity More than one-third of adults in the ... may face an even greater struggle. Since 1980, obesity has more than doubled among U.S. children ages ...

  1. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  2. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer

    Directory of Open Access Journals (Sweden)

    Stefan eMereiter

    2016-03-01

    Full Text Available Gastrointestinal (GI cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans and glycosphingolipids that are involved in cancer cell adhesion, signaling, invasion and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, as well as imaging mass spectrometry and provide an outlook to future perspectives and clinical applications.

  3. Gene discovery in the horned beetle Onthophagus taurus

    Directory of Open Access Journals (Sweden)

    Yang Youngik

    2010-12-01

    Full Text Available Abstract Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population

  4. Telling the story of childhood cancer: an evaluation of the Discovery Interview methodology conducted within the Queensland Children's Cancer Centre

    Directory of Open Access Journals (Sweden)

    Slater PJ

    2016-05-01

    Full Text Available Penelope J Slater,1 Shoni P Philpot2 1Queensland Children's Cancer Centre, Lady Cilento Children's Hospital, Children's Health Queensland, 2Queensland Cancer Control Analysis Team, Princess Alexandra Hospital, Brisbane, QLD, Australia Abstract: This paper evaluates the process and impact of the Discovery Interview methodology developed in the National Health Service and applied in the Queensland Children's Cancer Centre. It shows how this methodology supports the family-centered care philosophy of the organization and gives staff insight into the experience of the families they care for. In total, 17 Discovery Interviews recorded during 2012–2014 were transcribed, deidentified, condensed, and read back to 222 staff in 20 different meetings. Families and staff involved in the process provided positive feedback. Over 53% of staff found these sessions extremely valuable, and 46% rated them as valuable. Discovery Interviews were shown to be a powerful tool to engage with families and staff to improve the experience of families in the Queensland Children's Cancer Centre. The sessions where Discovery Interviews were read to clinical teams raised their awareness of the perspectives of families and impacted on the way they delivered care and interacted with families. Staff described the stories as insightful and valued hearing them and discussing ways to improve service, including individual clinical practice, service processes, and family supports. Keywords: family experience, family-centered care, consumer engagement, service improvement, narratives

  5. The Clinical Impact of Recent Advances in LC-MS for Cancer Biomarker Discovery and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Shi, Tujin; Qian, Weijun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D.; Rodland, Karin D.; Camp, David G.

    2016-01-01

    Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances in LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.

  6. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    CERN Document Server

    H, Swathi

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate ...

  7. Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization

    Science.gov (United States)

    Yang, Haixuan; Seoighe, Cathal

    2016-01-01

    Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decomposition is not unique. This allows different clustering results to be obtained, resulting in different interpretations of the decomposition. To alleviate this problem, some existing methods directly enforce uniqueness to some extent by adding regularization terms in the NMF objective function. Alternatively, various normalization methods have been applied to the factor matrices; however, the effects of the choice of normalization have not been carefully investigated. Here we investigate the performance of NMF for the task of cancer class discovery, under a wide range of normalization choices. After extensive evaluations, we observe that the maximum norm showed the best performance, although the maximum norm has not previously been used for NMF. Matlab codes are freely available from: http://maths.nuigalway.ie/~haixuanyang/pNMF/pNMF.htm. PMID:27741311

  8. Psychoneuroimmunology and cancer: a decade of discovery, paradigm shifts, and methodological innovations.

    Science.gov (United States)

    Green McDonald, Paige; O'Connell, Mary; Lutgendorf, Susan K

    2013-03-01

    This article introduces the supplement Advances in Cancer and Brain, Behavior, and Immunity and outlines important discoveries, paradigm shifts, and methodological innovations that have emerged in the past decade to advance mechanistic and translational understanding of biobehavioral influences on tumor biology, cancer treatment-related sequelae, and cancer outcomes. We offer a heuristic framework for research on biobehavioral pathways in cancer. The shifting survivorship landscape is highlighted, and we propose that the changing demographics suggest prudent adoption of a life course perspective of cancer and cancer survivorship. We note opportunities for psychoneuroimmunology (PNI) research to ameliorate the long-term, unintended consequences of aggressive curative intent and call attention to the critical role of reciprocal translational pathways between animal and human studies. Lastly, we briefly summarize the articles included in this compilation and offer our perspectives on future research directions.

  9. Transcriptionally targeted gene therapy to detect and treat cancer

    OpenAIRE

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2003-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle t...

  10. Literature mining for the discovery of hidden connections between drugs, genes and diseases.

    Science.gov (United States)

    Frijters, Raoul; van Vugt, Marianne; Smeets, Ruben; van Schaik, René; de Vlieg, Jacob; Alkema, Wynand

    2010-09-23

    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs.

  11. Gene Therapy in Oral Cancer: A Review

    OpenAIRE

    Kumar, M. Sathish; Masthan, K.M.K.; Babu, N. Aravindha; Dash, Kailash Chandra

    2013-01-01

    Gene therapy is the use of DNA as an agent to treat disease. Gene therapy aims at the insertion of a functional gene into the cells of a patient for the correction of an inborn error of metabolism, to alter or repair an acquired genetic abnormality, and to provide new function to the cell. Many experiments have been done with respect to its application in various diseases.Today, most of the gene therapy studies are aimed at cancer and hereditary diseases which are linked to genetic defects. C...

  12. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  13. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  14. Adenoviral gene therapy in gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  15. Transcriptional Targeting in Cancer Gene Therapy

    OpenAIRE

    Tracy Robson; David G. Hirst

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these stra...

  16. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene...... expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  17. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  18. Lung Cancer Gene Signatures and Clinical Perspectives

    Directory of Open Access Journals (Sweden)

    Ruprecht Kuner

    2013-12-01

    Full Text Available Microarrays have been used for more than two decades in preclinical research. The tumor transcriptional profiles were analyzed to select cancer-associated genes for in-deep functional characterization, to stratify tumor subgroups according to the histopathology or diverse clinical courses, and to assess biological and cellular functions behind these gene sets. In lung cancer—the main type of cancer causing mortality worldwide—biomarker research focuses on different objectives: the early diagnosis of curable tumor diseases, the stratification of patients with prognostic unfavorable operable tumors to assess the need for further therapy regimens, or the selection of patients for the most efficient therapies at early and late stages. In non-small cell lung cancer, gene and miRNA signatures are valuable to differentiate between the two main subtypes’ squamous and non-squamous tumors, a discrimination which has further implications for therapeutic schemes. Further subclassification within adenocarcinoma and squamous cell carcinoma has been done to correlate histopathological phenotype with disease outcome. Those tumor subgroups were assigned by diverse transcriptional patterns including potential biomarkers and therapy targets for future diagnostic and clinical applications. In lung cancer, none of these signatures have entered clinical routine for testing so far. In this review, the status quo of lung cancer gene signatures in preclinical and clinical research will be presented in the context of future clinical perspectives.

  19. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.;

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  20. Data mining as a discovery tool for imprinted genes.

    Science.gov (United States)

    Brideau, Chelsea; Soloway, Paul

    2012-01-01

    This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language. PMID:22907493

  1. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K;

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...

  2. Grouped graphical Granger modeling for gene expression regulatory networks discovery

    OpenAIRE

    Lozano, Aurélie C.; Abe, Naoki; Yan LIU; Rosset, Saharon

    2009-01-01

    We consider the problem of discovering gene regulatory networks from time-series microarray data. Recently, graphical Granger modeling has gained considerable attention as a promising direction for addressing this problem. These methods apply graphical modeling methods on time-series data and invoke the notion of ‘Granger causality’ to make assertions on causality through inference on time-lagged effects. Existing algorithms, however, have neglected an important aspect of the problem—the grou...

  3. TILLING in forage grasses for gene discovery and breeding improvement.

    Science.gov (United States)

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics. PMID:26924175

  4. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  5. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  6. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    OpenAIRE

    Yadollah Omidi; Jaleh Barar

    2012-01-01

    Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy o...

  7. A bi-ordering approach to linking gene expression with clinical annotations in gastric cancer

    Directory of Open Access Journals (Sweden)

    Leckie Christopher

    2010-09-01

    Full Text Available Abstract Background In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in a single assay, provide abundant information for the investigation of interesting genes or biological pathways. However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes. Moreover, systematic tests are needed to validate the statistical and biological significance of those discoveries. Results In this paper, we develop a robust and efficient method for exploratory analysis of microarray data, which produces a number of different orderings (rankings of both genes and samples (reflecting correlation among those genes and samples. The core algorithm is closely related to biclustering, and so we first compare its performance with several existing biclustering algorithms on two real datasets - gastric cancer and lymphoma datasets. We then show on the gastric cancer data that the sample orderings generated by our method are highly statistically significant with respect to the histological classification of samples by using the Jonckheere trend test, while the gene modules are biologically significant with respect to biological processes (from the Gene Ontology. In particular, some of the gene modules associated with biclusters are closely linked to gastric cancer tumorigenesis reported in previous literature, while others are potentially novel discoveries. Conclusion In conclusion, we have developed an effective and efficient method, Bi-Ordering Analysis, to detect informative patterns in gene expression microarrays by ranking genes and samples. In addition, a number of evaluation metrics were applied to assess both the statistical and biological significance of the resulting bi-orderings. The methodology was validated on gastric cancer and lymphoma datasets.

  8. Antiangiogenic gene therapy of cancer: recent developments

    OpenAIRE

    Libutti Steven K; Blazer Dan G; Tandle Anita

    2004-01-01

    Abstract With the role of angiogenesis in tumor growth and progression firmly established, considerable effort has been directed to antiangiogenic therapy as a new modality to treat human cancers. Antiangiogenic agents have recently received much widespread attention but strategies for their optimal use are still being developed. Gene therapy represents an attractive alternative to recombinant protein administration for several reasons. This review evaluates the potential advantages of gene t...

  9. Multifunctional Delivery Systems for Cancer Gene Therapy

    OpenAIRE

    McErlean, Emma M.; McCrudden, Cian M; McCarthy, Helen O.

    2015-01-01

    This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies hig...

  10. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  11. Comparison of gene regulatory networks of benign and malignant breast cancer samples with normal samples.

    Science.gov (United States)

    Chen, D B; Yang, H J

    2014-11-11

    The aim of this study was to explain the pathogenesis and deterioration process of breast cancer. Breast cancer expression profile data GSE27567 was downloaded from the Gene Expression Omnibus (GEO) database, and breast cancer-related genes were extracted from databases, including Cancer-Resource and Online Mendelian Inheritance In Man (OMIM). Next, h17 transcription factor data were obtained from the University of California, Santa Cruz. Database for Annotation, Visualization, and Integrated Discovery (DAVID)-enrichment analysis was applied and gene-regulatory networks were constructed by double-two-way t-tests in 3 states, including normal, benign, and malignant. Furthermore, network topological properties were compared between 2 states, and breast cancer-related bub genes were ranked according to their different degrees between each of the two states. A total of 2380 breast cancer-related genes and 215 transcription factors were screened by exploring databases; the genes were mainly enriched in their functions, such as cell apoptosis and proliferation, and pathways, such as p53 signaling and apoptosis, which were related with carcinogenesis. In addition, gene-regulatory networks in the 3 conditions were constructed. By comparing their network topological properties, we found that there is a larger transition of differences between malignant and benign breast cancer. Moreover, 8 hub genes (YBX1, ZFP36, YY1, XRCC5, XRCC4, ZFHX3, ZMAT3, and XPC) were identified in the top 10 genes ranked by different degrees. Through comparative analysis of gene-regulation networks, we identified the link between related genes and the pathogenesis of breast cancer. However, further experiments are needed to confirm our results.

  12. Computational and Experimental Approaches to Cancer Biomarker Discovery

    DEFF Research Database (Denmark)

    Krzystanek, Marcin

    Effective cancer treatment requires good biomarkers: measurable indicators of some biological state or condition that constitute the cornerstone of personalized medicine. Prognostic biomarkers provide information about the likely course of the disease, while predictive biomarkers enable prediction...... was sequenced, assembled and characterized, which is described in the thesis. We are currently using it as a model system in our framework for functional analysis study of DNA repair mechanisms and cytotoxic effects. We hope that the experimentally derived mutational signatures will be useful as a part...... are expected.This work, together with manifold of efforts being done all over the world, is hopefully a step towards implementation of personalized medicine and better treatments for cancer patients. ...

  13. Gene Tests May Improve Therapy for Endometrial Cancer

    Science.gov (United States)

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  14. Two Genes Might Help Predict Breast Cancer Survival

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160503.html Two Genes Might Help Predict Breast Cancer Survival Research suggests ... 18, 2016 (HealthDay News) -- The activity of two genes may help predict certain breast cancer patients' chances ...

  15. Emerging Glycolysis Targeting and Drug Discovery from Chinese Medicine in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang

    2012-01-01

    Full Text Available Molecular-targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells have different metabolic properties from normal cells. Normal cells mostly rely upon the process of mitochondrial oxidative phosphorylation to produce energy whereas cancer cells have developed an altered metabolism that allows them to sustain higher proliferation rates. Cancer cells could predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic characteristic is known as the “Warburg Effect.” Although the exact mechanisms underlying the Warburg effect are unclear, recent progress indicates that glycolytic pathway of cancer cells could be a critical target for drug discovery. With a long history in cancer treatment, traditional Chinese medicine (TCM is recognized as a valuable source for seeking bioactive anticancer compounds. A great progress has been made to identify active compounds from herbal medicine targeting on glycolysis for cancer treatment. Herein, we provide an overall picture of the current understanding of the molecular targets in the cancer glycolytic pathway and reviewed active compounds from Chinese herbal medicine with the potentials to inhibit the metabolic targets for cancer treatment. Combination of TCM with conventional therapies will provide an attractive strategy for improving clinical outcome in cancer treatment.

  16. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  17. Gene variant linked to lung cancer risk

    Science.gov (United States)

    A variation of the gene NFKB1, called rs4648127, is associated with an estimated 44 percent reduction in lung cancer risk. When this information, derived from samples obtained as part of a large NCI-sponsored prevention clinical trial, was compared with d

  18. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  19. Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: A GWAS data analysis

    Science.gov (United States)

    Tang, Hongwei; Wei, Peng; Duell, Eric J.; Risch, Harvey A.; Olson, Sara H.; Bueno-de-Mesquita, H. Bas; Gallinger, Steven; Holly, Elizabeth A.; Petersen, Gloria M.; Bracci, Paige M.; McWilliams, Robert R.; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolf; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H.M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui

    2013-01-01

    Background Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level. Methods Using GWAS genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by employing the likelihood ratio test (LRT) nested in logistic regression models and Ingenuity Pathway Analysis (IPA). Results After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10−6) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10−4) in modifying the risk of pancreatic cancer was observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1 and GNAS. None of the individual genes or SNPs except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10−7) at a false discovery rate of 6%. Conclusions Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets. Impact Gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer. PMID:24136929

  20. Metagenomics and novel gene discovery: promise and potential for novel therapeutics.

    Science.gov (United States)

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-04-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.

  1. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  2. Gene therapy in head and neck cancer: a review

    OpenAIRE

    Chisholm, E; Bapat, U.; Chisholm, C; Alusi, G.; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed.

  3. Proteomics in Cancer Biomarkers Discovery: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Reem M. Sallam

    2015-01-01

    Full Text Available With the introduction of recent high-throughput technologies to various fields of science and medicine, it is becoming clear that obtaining large amounts of data is no longer a problem in modern research laboratories. However, coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation, in accordance with the evidence-based systems biology, are critical factors in ensuring the emergence of good science out of these recent technologies. This review focuses on the proteomics field and its new perspectives on cancer research. Cornerstone publications that have tremendously helped scientists and clinicians to better understand cancer pathogenesis; to discover novel diagnostic and/or prognostic biomarkers; and to suggest novel therapeutic targets will be presented. The author of this review aims at presenting some of the relevant literature data that helped as a step forward in bridging the gap between bench work results and bedside potentials. Undeniably, this review cannot include all the work that is being produced by expert research groups all over the world.

  4. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001

    Energy Technology Data Exchange (ETDEWEB)

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-04-30

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.

  5. Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers

    Science.gov (United States)

    Sanchez-Garcia, Félix; Villagrasa, Patricia; Matsui, Junji; Kotliar, Dylan; Castro, Verónica; Akavia, Uri-David; Chen, Bo-Juen; Saucedo-Cuevas, Laura; Barrueco, Ruth Rodriguez; Llobet-Navas, David; Silva, Jose M.; Pe’er, Dana

    2014-01-01

    Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, a novel algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p-value < e−14). 9/10 top scoring Helios genes are known drivers of breast cancer and in vitro validation of 12 novel candidates predicted by Helios found 10 conferred enhanced anchorage independent growth, demonstrating Helios’s exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying novel driver genes and how it can yield important insights into cancer. PMID:25433701

  6. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery.

    Science.gov (United States)

    Verstraeten, Aline; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart

    2016-06-01

    Marfan syndrome (MFS) is a rare, autosomal-dominant, multisystem disorder, presenting with skeletal, ocular, skin, and cardiovascular symptoms. Significant clinical overlap with other systemic connective tissue diseases, including Loeys-Dietz syndrome (LDS), Shprintzen-Goldberg syndrome (SGS), and the MASS phenotype, has been documented. In MFS and LDS, the cardiovascular manifestations account for the major cause of patient morbidity and mortality, rendering them the main target for therapeutic intervention. Over the past decades, gene identification studies confidently linked the aforementioned syndromes, as well as nonsyndromic aneurysmal disease, to genetic defects in proteins related to the transforming growth factor (TGF)-β pathway, greatly expanding our knowledge on the disease mechanisms and providing us with novel therapeutic targets. As a result, the focus of the developing pharmacological treatment strategies is shifting from hemodynamic stress management to TGF-β antagonism. In this review, we discuss the insights that have been gained in the molecular biology of MFS and related disorders over the past 25 years. PMID:26919284

  7. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    Science.gov (United States)

    Riese, David J.

    2010-01-01

    Introduction Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. Areas covered Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. Expert opinion While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and –independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics. PMID:21532939

  8. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis.

    Directory of Open Access Journals (Sweden)

    Timothy A Chan

    2008-05-01

    -wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.

  9. Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers.

    Science.gov (United States)

    Bing, Tao; Shangguan, Dihua; Wang, Yinsheng

    2015-10-01

    Cancer biomarker discovery constitutes a frontier in cancer research. In recent years, cell-binding aptamers have become useful molecular probes for biomarker discovery. However, there are few successful examples, and the critical barrier resides in the identification of the cell-surface protein targets for the aptamers, where only a limited number of aptamer targets have been identified so far. Herein, we developed a universal SILAC-based quantitative proteomic method for target discovery of cell-binding aptamers. The method allowed for distinguishing specific aptamer-binding proteins from nonspecific proteins based on abundance ratios of proteins bound to aptamer-carrying bait and control bait. In addition, we employed fluorescently labeled aptamers for monitoring and optimizing the binding conditions. We were able to identify and validate selectin L and integrin α4 as the protein targets for two previously reported aptamers, Sgc-3b and Sgc-4e, respectively. This strategy should be generally applicable for the discovery of protein targets for other cell-binding aptamers, which will promote the applications of these aptamers.

  10. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling

    OpenAIRE

    Atrih, A; Mudaliar, M A V; Zakikhani, P; Lamont, D J; Huang, J T-J; Bray, S.E.; Barton, G.; Fleming, S; Nabi, G.

    2014-01-01

    Background: Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues. Methods: Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of...

  11. From mouse to humans: discovery of the CACNG2 pain susceptibility gene.

    Science.gov (United States)

    Nissenbaum, J

    2012-10-01

    Chronic pain is a major healthcare problem affecting the daily lives of millions with enormous financial costs. The notorious variability and lack of efficient pain relief pharmaceuticals provide both genetic and therapeutic challenge. There are several genetic approaches that aim to uncover the molecular nature of pain phenotypes into their genetic components. Gene mapping using model organisms for various pain phenotypes has led to the identification of novel genes affecting susceptibility and response to pain stimuli. Translational studies have succeeded to tie those genes to human pain syndromes, thus suggesting new targets for drug discovery. In this short review, a perspective on pain genetics and the trajectory from pain phenotype to pain gene involving fine-mapping strategies, bioinformatic analysis and microarray profiling alongside human association analysis will be introduced. This integrated approach has led to identification of CACNG2 as a novel neuropathic pain gene affecting pain susceptibility both in mice and humans. It also serves as a prototype for efficient and economic discovery of pain genes. Comparisons to other methods as well as future directions of pain genetics will be discussed as well.

  12. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  13. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  14. Tales of one gene discovery of a novel candidate receptor in mammalian taste

    OpenAIRE

    Huang, Angela Lilly

    2007-01-01

    There are five basic taste modalities in mammals: bitter, sweet, sour, salty, and Umami (taste of MSG and L-amino acids). Receptors for bitter, sweet, and Umami were previously discovered. Identities of receptors for salty and sour taste modalities remained elusive. In this dissertation, I will present: 1) development of a novel bioinformatics screen to discover candidate receptors; 2) discovery of a novel gene, PKD2L1, in taste receptor cells; 3) evidence demonstrating PKD2L1-expressing tast...

  15. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Science.gov (United States)

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  16. Nanoparticle-based targeted gene therapy for lung cancer

    OpenAIRE

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeuti...

  17. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  18. CGMD: An integrated database of cancer genes and markers

    OpenAIRE

    Jangampalli Adi Pradeepkiran; Sri Bhashyam Sainath; Konidala Kramthi Kumar; Lokanada Balasubramanyam; Kodali Vidya Prabhakar; Matcha Bhaskar

    2015-01-01

    Integrating cancer genes and markers with experimental evidence might provide valuable information for the further investigation of crosstalk between tumor genes and markers in cancer biology. To achieve this objective, we developed a database known as the Cancer Gene Marker Database (CGMD), which integrates data on tumor genes and markers based on experimental evidence. The major goal of CGMD is to provide the following: 1) current systematic treatment approaches and recent advances in diffe...

  19. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, M.; Vermeulen, R.; Rajaraman, P.; Menashe, I.; He, X.Z.; Chapman, R.S.; Yeager, M.; Thomas, G.; Burdett, L.; Hutchinson, A.; Yuenger, J.; Chanock, S.; Lan, Q. [NCI, Bethesda, MD (United States)

    2009-05-15

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% Cl: 0.16-0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P-interaction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P-interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy.

  20. New trends in molecular and cellular biomarker discovery for colorectal cancer.

    Science.gov (United States)

    Aghagolzadeh, Parisa; Radpour, Ramin

    2016-07-01

    Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, which is consequence of multistep tumorigenesis of several genetic and epigenetic events. Since CRC is mostly asymptomatic until it progresses to advanced stages, the early detection using effective screening approaches, selection of appropriate therapeutic strategies and efficient follow-up programs are essential to reduce CRC mortalities. Biomarker discovery for CRC based on the personalized genotype and clinical information could facilitate the classification of patients with certain types and stages of cancer to tailor preventive and therapeutic approaches. These cancer-related biomarkers should be highly sensitive and specific in a wide range of specimen(s) (including tumor tissues, patients' fluids or stool). Reliable biomarkers which enable the early detection of CRC, can improve early diagnosis, prognosis, treatment response prediction, and recurrence risk. Advances in our understanding of the natural history of CRC have led to the development of different CRC associated molecular and cellular biomarkers. This review highlights the new trends and approaches in CRC biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches and follow-up of patients. PMID:27433083

  1. New trends in molecular and cellular biomarker discovery for colorectal cancer

    Science.gov (United States)

    Aghagolzadeh, Parisa; Radpour, Ramin

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer death worldwide, which is consequence of multistep tumorigenesis of several genetic and epigenetic events. Since CRC is mostly asymptomatic until it progresses to advanced stages, the early detection using effective screening approaches, selection of appropriate therapeutic strategies and efficient follow-up programs are essential to reduce CRC mortalities. Biomarker discovery for CRC based on the personalized genotype and clinical information could facilitate the classification of patients with certain types and stages of cancer to tailor preventive and therapeutic approaches. These cancer-related biomarkers should be highly sensitive and specific in a wide range of specimen(s) (including tumor tissues, patients’ fluids or stool). Reliable biomarkers which enable the early detection of CRC, can improve early diagnosis, prognosis, treatment response prediction, and recurrence risk. Advances in our understanding of the natural history of CRC have led to the development of different CRC associated molecular and cellular biomarkers. This review highlights the new trends and approaches in CRC biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches and follow-up of patients. PMID:27433083

  2. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling.

    Science.gov (United States)

    Flobak, Åsmund; Baudot, Anaïs; Remy, Elisabeth; Thommesen, Liv; Thieffry, Denis; Kuiper, Martin; Lægreid, Astrid

    2015-08-01

    Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.

  3. Theme discovery from gene lists for identification and viewing of multiple functional groups

    Directory of Open Access Journals (Sweden)

    Wong Garry

    2005-06-01

    Full Text Available Abstract Background High throughput methods of the genome era produce vast amounts of data in the form of gene lists. These lists are large and difficult to interpret without advanced computational or bioinformatic tools. Most existing methods analyse a gene list as a single entity although it is comprised of multiple gene groups associated with separate biological functions. Therefore it is imperative to define and visualize gene groups with unique functionality within gene lists. Results In order to analyse the functional heterogeneity within a gene list, we have developed a method that clusters genes to groups with homogenous functionalities. The method uses Non-negative Matrix Factorization (NMF to create several clustering results with varying numbers of clusters. The obtained clustering results are combined into a simple graphical presentation showing the functional groups over-represented in the analyzed gene list. We demonstrate its performance on two data sets and show results that improve upon existing methods. The comparison also shows that our method creates a more simplified view that aids in discovery of biological themes within the list and discards less informative classes from the results. Conclusion The presented method and associated software are useful for the identification and interpretation of biological functions associated with gene lists and are especially useful for the analysis of large lists.

  4. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis

    NARCIS (Netherlands)

    Greshock, J; Naylor, TL; Margolin, A; Diskin, S; Cleaver, SH; Futreal, PA; deJong, PJ; Zhao, SY; Liebman, M; Weber, BL

    2004-01-01

    Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, w

  5. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  6. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  7. Discovery of the faithfulness gene: a model of transmission and transformation of scientific information.

    Science.gov (United States)

    Green, Eva G T; Clémence, Alain

    2008-09-01

    The purpose of this paper is to study the diffusion and transformation of scientific information in everyday discussions. Based on rumour models and social representations theory, the impact of interpersonal communication and pre-existing beliefs on transmission of the content of a scientific discovery was analysed. In three experiments, a communication chain was simulated to investigate how laypeople make sense of a genetic discovery first published in a scientific outlet, then reported in a mainstream newspaper and finally discussed in groups. Study 1 (N=40) demonstrated a transformation of information when the scientific discovery moved along the communication chain. During successive narratives, scientific expert terminology disappeared while scientific information associated with lay terminology persisted. Moreover, the idea of a discovery of a faithfulness gene emerged. Study 2 (N=70) revealed that transmission of the scientific message varied as a function of attitudes towards genetic explanations of behaviour (pro-genetics vs. anti-genetics). Pro-genetics employed more scientific terminology than anti-genetics. Study 3 (N=75) showed that endorsement of genetic explanations was related to descriptive accounts of the scientific information, whereas rejection of genetic explanations was related to evaluative accounts of the information.

  8. Adenoviral gene therapy in gastric cancer: A review

    OpenAIRE

    Khalighinejad, Nima; Hariri, Hesammodin; Behnamfar, Omid; Yousefi, Arash; Momeni, Amir

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promi...

  9. Discovery and validation of DNA hypomethylation biomarkers for liver cancer using HRM-specific probes.

    Directory of Open Access Journals (Sweden)

    Barbara Stefanska

    Full Text Available Poor prognosis of hepatocellular carcinoma (HCC associated with late diagnosis necessitates the development of early diagnostic biomarkers. We have previously delineated the landscape of DNA methylation in HCC patients unraveling the importance of promoter hypomethylation in activation of cancer- and metastasis-driving genes. The purpose of the present study was to test the feasibility that genes that are hypomethylated in HCC could serve as candidate diagnostic markers. We use high resolution melting analysis (HRM as a simple translatable PCR-based method to define methylation states in clinical samples. We tested seven regions selected from the shortlist of genes hypomethylated in HCC and showed that HRM analysis of several of them distinguishes methylation states in liver cancer specimens from normal adjacent liver and chronic hepatitis in the Shanghai area. Such regions were identified within promoters of neuronal membrane glycoprotein M6-B (GPM6B and melanoma antigen family A12 (MAGEA12 genes. Differences in HRM in the immunoglobulin superfamily Fc receptor (FCRL1 separated invasive tumors from less invasive HCC. The identified biomarkers differentiated HCC from chronic hepatitis in another set of samples from Dhaka. Although the main thrust in DNA methylation diagnostics in cancer is on hypermethylated genes, our study for the first time illustrates the potential use of hypomethylated genes as markers for solid tumors. After further validation in a larger cohort, the identified DNA hypomethylated regions can become important candidate biomarkers for liver cancer diagnosis and prognosis, especially in populations with high risk for HCC development.

  10. Weighted gene co-expression based biomarker discovery for psoriasis detection.

    Science.gov (United States)

    Sundarrajan, Sudharsana; Arumugam, Mohanapriya

    2016-11-15

    Psoriasis is a chronic inflammatory disease of the skin with an unknown aetiology. The disease manifests itself as red and silvery scaly plaques distributed over the scalp, lower back and extensor aspects of the limbs. After receiving scant consideration for quite a few years, psoriasis has now become a prominent focus for new drug development. A group of closely connected and differentially co-expressed genes may act in a network and may serve as molecular signatures for an underlying phenotype. A weighted gene coexpression network analysis (WGCNA), a system biology approach has been utilized for identification of new molecular targets for psoriasis. Gene coexpression relationships were investigated in 58 psoriatic lesional samples resulting in five gene modules, clustered based on the gene coexpression patterns. The coexpression pattern was validated using three psoriatic datasets. 10 highly connected and informative genes from each module was selected and termed as psoriasis specific hub signatures. A random forest based binary classifier built using the expression profiles of signature genes robustly distinguished psoriatic samples from the normal samples in the validation set with an accuracy of 0.95 to 1. These signature genes may serve as potential candidates for biomarker discovery leading to new therapeutic targets. WGCNA, the network based approach has provided an alternative path to mine out key controllers and drivers of psoriasis. The study principle from the current work can be extended to other pathological conditions.

  11. A Gene Selection Approach based on Clustering for Classification Tasks in Colon Cancer

    Directory of Open Access Journals (Sweden)

    José Antonio CASTELLANOS GARZÓN

    2016-06-01

    Full Text Available Gene selection (GS is an important research area in the analysis of DNA-microarray data, since it involves gene discovery meaningful for a particular target annotation or able to discriminate expression profiles of samples coming from different populations. In this context, a wide number of filter methods have been proposed in the literature to identify subsets of relevant genes in accordance with prefixed targets. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem (GS remains a challenge. Hence, this paper proposes a novel approach for gene selection by using cluster techniques and filter methods on the found groupings to achieve informative gene subsets. As a result of applying our methodology to Colon cancer data, we have identified the best informative gene subset between several one subsets. According to the above, the reached results have proven the reliability of the approach given in this paper.

  12. Cell Targeting in Anti-Cancer Gene Therapy

    OpenAIRE

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene th...

  13. Gene network-based cancer prognosis analysis with sparse boosting

    OpenAIRE

    Ma, Shuangge; Huang, Yuan; Huang, Jian; Fang, Kuangnan

    2012-01-01

    High-throughput gene profiling studies have been extensively conducted, searching for markers associated with cancer development and progression. In this study, we analyse cancer prognosis studies with right censored survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis (WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets of nodes, called modules, which are tightly connected to each othe...

  14. Sense-antisense gene-pairs in breast cancer and associated pathological pathways

    Science.gov (United States)

    Grinchuk, Oleg V.; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A.; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  15. Discovering cancer genes by integrating network and functional properties

    Directory of Open Access Journals (Sweden)

    Davis David P

    2009-09-01

    Full Text Available Abstract Background Identification of novel cancer-causing genes is one of the main goals in cancer research. The rapid accumulation of genome-wide protein-protein interaction (PPI data in humans has provided a new basis for studying the topological features of cancer genes in cellular networks. It is important to integrate multiple genomic data sources, including PPI networks, protein domains and Gene Ontology (GO annotations, to facilitate the identification of cancer genes. Methods Topological features of the PPI network, as well as protein domain compositions, enrichment of gene ontology categories, sequence and evolutionary conservation features were extracted and compared between cancer genes and other genes. The predictive power of various classifiers for identification of cancer genes was evaluated by cross validation. Experimental validation of a subset of the prediction results was conducted using siRNA knockdown and viability assays in human colon cancer cell line DLD-1. Results Cross validation demonstrated advantageous performance of classifiers based on support vector machines (SVMs with the inclusion of the topological features from the PPI network, protein domain compositions and GO annotations. We then applied the trained SVM classifier to human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1. Conclusion Topological features of PPI networks, protein domain compositions and GO annotations are good predictors of cancer genes. The SVM classifier integrates multiple features and as such is useful for prioritizing candidate cancer genes for experimental validations.

  16. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    Directory of Open Access Journals (Sweden)

    Nadine Norton

    Full Text Available Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988 between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads. Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol

  17. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  18. An overview of gene therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Amit Bali

    2013-01-01

    Full Text Available Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  19. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    OpenAIRE

    Erin M Siegel; Riggs, Bridget M; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and ...

  20. DETECTION OF GENE MUTATION IN SPUTUM OF LUNG CANCER PATIENT

    Institute of Scientific and Technical Information of China (English)

    ZHANG He-long; WANG Wen-liang; CUI Da-xiang

    1999-01-01

    @@ Lung cancer is a common malignant tumor, which has ahigh incidence and mortality rate. Therefore, it is necessary to seek a new method for the diagnosis, especially the early diagnosis of lung cancer. The development of molecular biology makes the gene diagnosis of lung cancer possible.PCR-SSCP was applied to detect p53 gene mutation of lung cancer patients' sputum cells and we have achieved good results.

  1. Gene Expression Profiling Predicts the Development of Oral Cancer

    OpenAIRE

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer develo...

  2. Gene Discovery of Modular Diterpene Metabolism in Nonmodel Systems1[W][OA

    Science.gov (United States)

    Zerbe, Philipp; Hamberger, Björn; Yuen, Macaire M.S.; Chiang, Angela; Sandhu, Harpreet K.; Madilao, Lina L.; Nguyen, Anh; Hamberger, Britta; Bach, Søren Spanner; Bohlmann, Jörg

    2013-01-01

    Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization. PMID:23613273

  3. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  4. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  5. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  6. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  7. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.

    Science.gov (United States)

    Beaulieu, Chandree L; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E; Fernandez, Bridget A; Bernier, Francois P; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E; Jones, Steve J M; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F; Shen, Yaoqing; Scherer, Stephen W; Friedman, Jan M; Michaud, Jacques L; Boycott, Kym M

    2014-06-01

    Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.

  8. MAGIC Database and Interfaces: An Integrated Package for Gene Discovery and Expression

    Directory of Open Access Journals (Sweden)

    Lee H. Pratt

    2006-03-01

    Full Text Available The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs, and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  9. Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement

    Institute of Scientific and Technical Information of China (English)

    Ray Bressan; Hans Bohnert; Jian-Kang Zhu

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles,transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.

  10. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map.

    Directory of Open Access Journals (Sweden)

    Zhining Wen

    Full Text Available To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM, we used microarrays, bioinformatics and the "Connectivity Map" (CMAP to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2 cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upregulated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms

  11. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  12. An improved procedure for gene selection from microarray experiments using false discovery rate criterion

    Directory of Open Access Journals (Sweden)

    Yang Mark CK

    2006-01-01

    Full Text Available Abstract Background A large number of genes usually show differential expressions in a microarray experiment with two types of tissues, and the p-values of a proper statistical test are often used to quantify the significance of these differences. The genes with small p-values are then picked as the genes responsible for the differences in the tissue RNA expressions. One key question is what should be the threshold to consider the p-values small. There is always a trade off between this threshold and the rate of false claims. Recent statistical literature shows that the false discovery rate (FDR criterion is a powerful and reasonable criterion to pick those genes with differential expression. Moreover, the power of detection can be increased by knowing the number of non-differential expression genes. While this number is unknown in practice, there are methods to estimate it from data. The purpose of this paper is to present a new method of estimating this number and use it for the FDR procedure construction. Results A combination of test functions is used to estimate the number of differentially expressed genes. Simulation study shows that the proposed method has a higher power to detect these genes than other existing methods, while still keeping the FDR under control. The improvement can be substantial if the proportion of true differentially expressed genes is large. This procedure has also been tested with good results using a real dataset. Conclusion For a given expected FDR, the method proposed in this paper has better power to pick genes that show differentiation in their expression than two other well known methods.

  13. Gene delivery for the treatment of prostate cancer

    OpenAIRE

    Fitzgerald, Kathleen A.

    2016-01-01

    Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA...

  14. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    Directory of Open Access Journals (Sweden)

    Julia D. Suerth

    2014-12-01

    Full Text Available Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.

  15. Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment

    Science.gov (United States)

    Patel, Hardik J; Modi, Shanu; Chiosis, Gabriela; Taldone, Tony

    2011-01-01

    Introduction Over the last 15 – 20 years, targeted anticancer strategies have focused on therapies aimed at abrogating a single malignant protein. Agents that are directed towards the inhibition of a single oncoprotein have resulted in a number of useful drugs in the treatment of cancers (i.e., Gleevec, BCR-ABL; Tarceva and Iressa, EGFR). However, such a strategy relies on the notion that a cancer cell is dependent on a single signaling pathway for its survival. The possibility that a cancer cell may mutate or switch its dependence to another signaling pathway can result in the ineffectiveness of such agents. Recent advances in the biology of heat-shock protein 90 (Hsp90) have revealed intimate details into the complexity of the chaperoning process that Hsp90 is engaged in and, at the same time, have offered those involved in drug discovery several unique ways to interfere in this process. Areas covered This review provides the current understanding of the chaperone cycle of Hsp90 and presents the multifaceted approaches used by researchers in the discovery of potential Hsp90 drugs. It discusses the phenotypic outcomes in cancer cells on Hsp90 inhibition by these several approaches and also addresses several distinctions observed among direct Hsp90 ATP-pocket competitors providing commentary on the potential biological outcomes as well as the clinical relevance of such features. Expert opinion The significantly different phenotypic outcomes observed from Hsp90 inhibition by the many inhibitors developed suggest that the clinical development of Hsp90 inhibitors would be better served by careful consideration of the pharmacokinetic/pharmacodynamic properties of individual candidates rather than a generic approach directed towards the target. PMID:22400044

  16. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  17. Gene therapy for gastric cancer: Is it promising?

    OpenAIRE

    Sutter, Andreas P; Fechner, Henry

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer, including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological t...

  18. Association between Variants in Atopy-Related Immunologic Candidate Genes and Pancreatic Cancer Risk.

    Directory of Open Access Journals (Sweden)

    Michelle Cotterchio

    Full Text Available Many epidemiology studies report that atopic conditions such as allergies are associated with reduced pancreas cancer risk. The reason for this relationship is not yet understood. This is the first study to comprehensively evaluate the association between variants in atopy-related candidate genes and pancreatic cancer risk.A population-based case-control study of pancreas cancer cases diagnosed during 2011-2012 (via Ontario Cancer Registry, and controls recruited using random digit dialing utilized DNA from 179 cases and 566 controls. Following an exhaustive literature review, SNPs in 180 candidate genes were pre-screened using dbGaP pancreas cancer GWAS data; 147 SNPs in 56 allergy-related immunologic genes were retained and genotyped. Logistic regression was used to estimate age-adjusted odd ratio (AOR for each variant and false discovery rate was used to adjust Wald p-values for multiple testing. Subsequently, a risk allele score was derived based on statistically significant variants.18 SNPs in 14 candidate genes (CSF2, DENND1B, DPP10, FLG, IL13, IL13RA2, LRP1B, NOD1, NPSR1, ORMDL3, RORA, STAT4, TLR6, TRA were significantly associated with pancreas cancer risk. After adjustment for multiple comparisons, two LRP1B SNPs remained statistically significant; for example, LRP1B rs1449477 (AA vs. CC: AOR=0.37, 95% CI: 0.22-0.62; p (adjusted=0.04. Furthermore, the risk allele score was associated with a significant reduction in pancreas cancer risk (p=0.0007.Preliminary findings suggest certain atopy-related variants may be associated with pancreas cancer risk. Further studies are needed to replicate this, and to elucidate the biology behind the growing body of epidemiologic evidence suggesting allergies may reduce pancreatic cancer risk.

  19. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy.

    LENUS (Irish Health Repository)

    Martin, Cara M

    2012-02-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus is the single most important etiological agent in cervical cancer. HPV contributes to neoplastic progression through the action of two viral oncoproteins E6 and E7, which interfere with critical cell cycle pathways, p53, and retinoblastoma. However, evidence suggests that HPV infection alone is insufficient to induce malignant changes and other host genetic variations are important in the development of cervical cancer. Advances in molecular biology and high throughput gene expression profiling technologies have heralded a new era in biomarker discovery and identification of molecular targets related to carcinogenesis. These advancements have improved our understanding of carcinogenesis and will facilitate screening, early detection, management, and personalised targeted therapy. In this chapter, we have described the use of high density microarrays to assess gene expression profiles in cervical cancer. Using this approach we have identified a number of novel genes which are differentially expressed in cervical cancer, including several genes involved in cell cycle regulation. These include p16ink4a, MCM 3 and 5, CDC6, Geminin, Cyclins A-D, TOPO2A, CDCA1, and BIRC5. We have validated expression of mRNA using real-time PCR and protein by immunohistochemistry.

  20. Gene Expression Correlation for Cancer Diagnosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Binbing Ling

    2014-01-01

    Full Text Available Poor prognosis for late-stage, high-grade, and recurrent cancers has been motivating cancer researchers to search for more efficient biomarkers to identify the onset of cancer. Recent advances in constructing and dynamically analyzing biomolecular networks for different types of cancer have provided a promising novel strategy to detect tumorigenesis and metastasis. The observation of different biomolecular networks associated with normal and cancerous states led us to hypothesize that correlations for gene expressions could serve as valid indicators of early cancer development. In this pilot study, we tested our hypothesis by examining whether the mRNA expressions of three randomly selected cancer-related genes PIK3C3, PIM3, and PTEN were correlated during cancer progression and the correlation coefficients could be used for cancer diagnosis. Strong correlations (0.68≤r≤1.0 were observed between PIK3C3 and PIM3 in breast cancer, between PIK3C3 and PTEN in breast and ovary cancers, and between PIM3 and PTEN in breast, kidney, liver, and thyroid cancers during disease progression, implicating that the correlations for cancer network gene expressions could serve as a supplement to current clinical biomarkers, such as cancer antigens, for early cancer diagnosis.

  1. Non-invasive, serum DNA pregnancy testing leading to incidental discovery of cancer: a good thing?

    Science.gov (United States)

    Prasad, Vinay

    2015-11-01

    Cell-free DNA for perinatal screening is a growing industry. Non-invasive prenatal testing (NIPT) is based on the premise that foetal DNA is able to cross the placental barrier and enter the mother's circulation, where it can be examined for chromosomal abnormalities, such as trisomy 13, 18 or 21. Such tests are expected to be widely used by pregnant women, with the annual market expected to surpass $1 billion. Recently, a number of case reports have emerged in the haematology-oncology literature. The routine use of NIPT has led to the discovery of maternal neoplasms. Most writers have concluded that this is yet another benefit of the test; however, a closer examination of the cases reveals that this incidental detection may not improve patient outcomes. In some cases, early detection provides lead time bias, but does not change the ultimate clinical outcome, and in other cases, detection constitutes earlier knowledge of a cancer whose natural history cannot be altered. Here, we explore in detail cases where cancer was incidentally discovered among women undergoing routine non-invasive pregnancy testing, and investigate whether or not these women were benefitted by the discovery.

  2. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  3. The AIDS and Cancer Specimen Resource: Role in HIV/AIDS scientific discovery

    Directory of Open Access Journals (Sweden)

    McGrath Michael S

    2007-03-01

    Full Text Available Abstract The AIDS Cancer and Specimen Resource (ACSR supports scientific discovery in the area of HIV/AIDS-associated malignancies. The ACSR was established as a cooperative agreement between the NCI (Office of the Director, Division of Cancer Treatment and Diagnosis and regional consortia, University of California, San Francisco (West Coast, George Washington University (East Coast and Ohio State University (Mid-Region to collect, preserve and disperse HIV-related tissues and biologic fluids and controls along with clinical data to qualified investigators. The available biological samples with clinical data and the application process are described on the ACSR web site. The ACSR tissue bank has more than 100,000 human HIV positive specimens that represent different processing (43, specimen (15, and anatomical site (50 types. The ACSR provides special biospecimen collections and prepares speciality items, e.g., tissue microarrays (TMA, DNA libraries. Requests have been greatest for Kaposi's sarcoma (32% and non-Hodgkin's lymphoma (26%. Dispersed requests include 83% tissue (frozen and paraffin embedded, 18% plasma/serum and 9% other. ACSR also provides tissue microarrays of, e.g., Kaposi's sarcoma and non-Hodgkin's lymphoma, for biomarker assays and has developed collaborations with other groups that provide access to additional AIDS-related malignancy specimens. ACSR members and associates have completed 63 podium and poster presentations. Investigators have submitted 125 letters of intent requests. Discoveries using ACSR have been reported in 61 scientific publications in notable journals with an average impact factor of 7. The ACSR promotes the scientific exploration of the relationship between HIV/AIDS and malignancy by participation at national and international scientific meetings, contact with investigators who have productive research in this area and identifying, collecting, preserving, enhancing, and dispersing HIV

  4. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids

    Directory of Open Access Journals (Sweden)

    Fu Chih-Hsiung

    2011-07-01

    Full Text Available Abstract Background Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. Results To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7. Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. Conclusion Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies.

  5. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  6. Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery.

    Science.gov (United States)

    Bellinger, Andrew M; Arteaga, Carlos L; Force, Thomas; Humphreys, Benjamin D; Demetri, George D; Druker, Brian J; Moslehi, Javid J

    2015-12-01

    Cardio-oncology (the cardiovascular care of cancer patients) has developed as a new translational and clinical field based on the expanding repertoire of mechanism-based cancer therapies. Although these therapies have changed the natural course of many cancers, several may also lead to cardiovascular complications. Many new anticancer drugs approved over the past decade are "targeted" kinase inhibitors that interfere with intracellular signaling contributing to tumor progression. Unexpected cardiovascular and cardiometabolic effects of patient treatment with these inhibitors have provided unique insights into the role of kinases in human cardiovascular biology. Today, an ever-expanding number of cancer therapies targeting novel kinases and other specific cellular and metabolic pathways are being developed and tested in oncology clinical trials. Some of these drugs may affect the cardiovascular system in detrimental ways and others perhaps in beneficial ways. We propose that the numerous ongoing oncology clinical trials are an opportunity for closer collaboration between cardiologists and oncologists to study the cardiovascular and cardiometabolic changes caused by the modulation of these pathways in patients. In this regard, cardio-oncology represents an opportunity and a novel platform for basic and translational investigation and can serve as a potential avenue for optimization of anticancer therapies and for cardiovascular research and drug discovery.

  7. Next-generation diagnostics and disease-gene discovery with the Exomiser.

    Science.gov (United States)

    Smedley, Damian; Jacobsen, Julius O B; Jäger, Marten; Köhler, Sebastian; Holtgrewe, Manuel; Schubach, Max; Siragusa, Enrico; Zemojtel, Tomasz; Buske, Orion J; Washington, Nicole L; Bone, William P; Haendel, Melissa A; Robinson, Peter N

    2015-12-01

    Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15-90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.

  8. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  9. Identification of genes involved in breast cancer and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Apostolou P

    2015-07-01

    Full Text Available Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs, which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarray

  10. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  11. Immuno-isolation in cancer gene therapy.

    Science.gov (United States)

    Cirone, Pasquale; Potter, Murray; Hirte, Hal; Chang, Patricia

    2006-04-01

    The implantation of genetically-modified non-autologous cells in immuno-protected microcapsules is an alternative to ex vivo gene therapy. Such cells delivering a recombinant therapeutic product are isolated from the host's immune system by being encapsulated within permselective microcapsules. This approach has been successful in pre-clinical animal studies involving delivery of hormone or enzymes to treat dwarfism, lysosomal storage disease, or hemophilia B. Recently, this platform technology has shown promise in the treatment for more complex diseases such as cancer. One of the earliest strategy was to augment the chemotherapeutic effect of a prodrug by implanting encapsulated cells that can metabolise prodrugs into cytotoxic products in close proximity to the cancer cells. More recent approaches include enhancing tumor cell death through immunotherapy, or suppressing tumor cell proliferation through anti-angiogenesis. These can be achieved by delivering single molecules of cytokines or angiostatin, respectively, by implanting microencapsulated cells engineered to secrete these recombinant products. Recent refinements of these approaches include genetic fusion of cytokines or angiostatin to additional functional groups with tumor targeting or tumor cell killing properties, thus enhancing the potency of the recombinant products. Furthermore, a COMBO strategy of implanting microencapsulated cells to deliver multiple products targeted to diverse pathways in tumor suppression also showed much promise. This review will summarise the application of microencapsulation of genetically-modified cells to cancer treatment in animal models, the efficacy of such approaches, and how these studies have led to better understanding of the biology of cancer treatment. The flexibility of this modular system involving molecular engineering, cellular genetic modification, and polymer chemistry provides potentially a huge range of application modalities, and a tremendous multi

  12. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  13. Gene therapy for gastric cancer: Is it promising?

    Institute of Scientific and Technical Information of China (English)

    Andreas P Sutter; Henry Fechner

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer,including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy.This review provides an update of the new developments in cancer gene therapy, new principles, techniques,strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.

  14. MicroRNA Machinery Genes as Novel Biomarkers for Cancer.

    Science.gov (United States)

    Huang, Jing-Tao; Wang, Jin; Srivastava, Vibhuti; Sen, Subrata; Liu, Song-Mei

    2014-01-01

    MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.

  15. Men with Advanced Prostate Cancer Might Consider Gene Test

    Science.gov (United States)

    ... whether abnormal DNA repair genes could help predict disease outcomes, the scientists said. The study team consisted of researchers from Memorial Sloan Kettering Cancer Center, Fred Hutchinson Cancer Research Center in Seattle, Dana-Farber Cancer Institute in Boston, the University of Washington ...

  16. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot".

    Directory of Open Access Journals (Sweden)

    Sharon E Johnatty

    2010-07-01

    Full Text Available We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC. In the discovery stage, cases with epithelial ovarian cancer (n=675 and controls (n=1,162 were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs-PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616-were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-alleleor=0.5. However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele=0.03. Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04-1.24 p=0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus.

  17. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  18. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  19. Targeting p53 and its domains for cancer gene therapy

    OpenAIRE

    Karina Julia Matissek

    2014-01-01

    The tumor suppressor p53 is one of the most frequently mutated proteins in human cancer and has been extensively targeted for cancer therapy. This resulted in wild type p53 gene therapeutic approval for the treatment of head and neck cancer in China. p53 mainly functions as a transcription factor and stimulates a variety of genes involved in the intrinsic and extrinsic apoptotic pathway by binding to p53 responsive elements as a t...

  20. Stem Cell Based Gene Therapy in Prostate Cancer

    OpenAIRE

    Jae Heon Kim; Hong Jun Lee; Yun Seob Song

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new ...

  1. Discovery of potential prognostic long non-coding RNA biomarkers for predicting the risk of tumor recurrence of breast cancer patients.

    Science.gov (United States)

    Zhou, Meng; Zhong, Lei; Xu, Wanying; Sun, Yifan; Zhang, Zhaoyue; Zhao, Hengqiang; Yang, Lei; Sun, Jie

    2016-01-01

    Deregulation of long non-coding RNAs (lncRNAs) expression has been proven to be involved in the development and progression of cancer. However, expression pattern and prognostic value of lncRNAs in breast cancer recurrence remain unclear. Here, we analyzed lncRNA expression profiles of breast cancer patients who did or did not develop recurrence by repurposing existing microarray datasets from the Gene Expression Omnibus database, and identified 12 differentially expressed lncRNAs that were closely associated with tumor recurrence of breast cancer patients. We constructed a lncRNA-focus molecular signature by the risk scoring method based on the expression levels of 12 relapse-related lncRNAs from the discovery cohort, which classified patients into high-risk and low-risk groups with significantly different recurrence-free survival (HR = 2.72, 95% confidence interval 2.07-3.57; p = 4.8e-13). The 12-lncRNA signature also represented similar prognostic value in two out of three independent validation cohorts. Furthermore, the prognostic power of the 12-lncRNA signature was independent of known clinical prognostic factors in at least two cohorts. Functional analysis suggested that the predicted relapse-related lncRNAs may be involved in known breast cancer-related biological processes and pathways. Our results highlighted the potential of lncRNAs as novel candidate biomarkers to identify breast cancer patients at high risk of tumor recurrence. PMID:27503456

  2. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  3. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    OpenAIRE

    Hu, Chunling; Steven N Hart; William R Bamlet; Moore, Raymond M.; Nandakumar, Kannabiran; Bruce W Eckloff; Lee, Yean K.; Petersen, Gloria M.; Robert R McWilliams; Couch, Fergus J.

    2015-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 1...

  4. Gene expression profiles in liver cancer and normal liver tissues

    Institute of Scientific and Technical Information of China (English)

    Lian Xin Liu; Hong Chi Jiang; An Long Zhu; Jin Zhou; Xiu Qin Wang; Min Wu

    2000-01-01

    AIM To describe a liver cancer = specific gene expression profile and to identify genes that showed alteredexpression between liver cancer tissues and their adjacent nearly normal tissues.METHODS The cDNA probes which were labeled with a-32P dATP were synthesized from total RNA ofliver cancer and adjacent normal tissues and hybridized separately to two identical Atlas human cancer eDNAexpression array membranes containing 588 known genes.RESULTS Autoradiographic results were analyzed by specific Atlas ImageTM (version 1. 0) software.Among the 588 genes analyzed, 18 genes were found up-regulated in cancer, including TFDP2, Aktl, E2F-3etc, and 25 genes were down-regulated in cancer, including TDGF1, BAK, LAR, etc. Expression levels ofgenes that associated with the regulation of cell proliferation, apoptosis, differentiation, cell-cellinteraction, invasion regulators and eytokines altered mostly.CONCLUSION The result obtained from Atlas microarray provides a comprehensive liver cancer-specificexpression profile. The results can lead to the identification of liver cancer-specific biomarkers and may behelpful in early diagnosis and dentifiction of target genes for designing rational therapeutic strategies.

  5. Leveraging gene-environment interactions and endotypes for asthma gene discovery.

    Science.gov (United States)

    Bønnelykke, Klaus; Ober, Carole

    2016-03-01

    Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease.

  6. Leveraging gene-environment interactions and endotypes for asthma gene discovery.

    Science.gov (United States)

    Bønnelykke, Klaus; Ober, Carole

    2016-03-01

    Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease. PMID:26947980

  7. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  8. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  9. Gene Therapy: A Potential Approach for Cancer Pain

    OpenAIRE

    Nicholas Boulis; Christina Krudy; Handy, Chalonda R.

    2011-01-01

    Chronic pain is experienced by as many as 9 0 % of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discus...

  10. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    OpenAIRE

    Md Zahidul Islam Pranjol; Amin Hajitou

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent dev...

  11. Gene Therapy for Cancer Treatment: Past, Present and Future

    OpenAIRE

    Cross, Deanna; Burmester, James K.

    2006-01-01

    The broad field of gene therapy promises a number of innovative treatments that are likely to become important in preventing deaths from cancer. In this review, we discuss the history, highlights and future of three different gene therapy treatment approaches: immunotherapy, oncolytic virotherapy and gene transfer. Immunotherapy uses genetically modified cells and viral particles to stimulate the immune system to destroy cancer cells. Recent clinical trials of second and third generation vacc...

  12. Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    Directory of Open Access Journals (Sweden)

    Varon-Mateeva Raymonda

    2009-12-01

    Full Text Available Abstract Background Coregulator proteins are "master regulators", directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs within SRC-1 (NCoA1, SRC-3 (NCoA3, AIB1, NCoR (NCoR1, and SMRT (NCoR2, and test the most promising SNPs for associations with breast cancer risk. Methods The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans. To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840. Results Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1. Of these, 8 were found with minor allele frequency (MAF >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04. No significant associations were found with the other SNPs genotyped. Conclusions This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted.

  13. Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    International Nuclear Information System (INIS)

    Coregulator proteins are 'master regulators', directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3, AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations with breast cancer risk. The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans). To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840). Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No significant associations were found with the other SNPs genotyped. This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted

  14. Text Mining in Cancer Gene and Pathway Prioritization

    OpenAIRE

    Yuan Luo; Gregory Riedlinger; Peter Szolovits

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This rev...

  15. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. PMID:27480682

  16. A comparative review of estimates of the proportion unchanged genes and the false discovery rate

    Directory of Open Access Journals (Sweden)

    Broberg Per

    2005-08-01

    Full Text Available Abstract Background In the analysis of microarray data one generally produces a vector of p-values that for each gene give the likelihood of obtaining equally strong evidence of change by pure chance. The distribution of these p-values is a mixture of two components corresponding to the changed genes and the unchanged ones. The focus of this article is how to estimate the proportion unchanged and the false discovery rate (FDR and how to make inferences based on these concepts. Six published methods for estimating the proportion unchanged genes are reviewed, two alternatives are presented, and all are tested on both simulated and real data. All estimates but one make do without any parametric assumptions concerning the distributions of the p-values. Furthermore, the estimation and use of the FDR and the closely related q-value is illustrated with examples. Five published estimates of the FDR and one new are presented and tested. Implementations in R code are available. Results A simulation model based on the distribution of real microarray data plus two real data sets were used to assess the methods. The proposed alternative methods for estimating the proportion unchanged fared very well, and gave evidence of low bias and very low variance. Different methods perform well depending upon whether there are few or many regulated genes. Furthermore, the methods for estimating FDR showed a varying performance, and were sometimes misleading. The new method had a very low error. Conclusion The concept of the q-value or false discovery rate is useful in practical research, despite some theoretical and practical shortcomings. However, it seems possible to challenge the performance of the published methods, and there is likely scope for further developing the estimates of the FDR. The new methods provide the scientist with more options to choose a suitable method for any particular experiment. The article advocates the use of the conjoint information

  17. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    Science.gov (United States)

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation. PMID:26739486

  18. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Choolani Mahesh

    2011-09-01

    Full Text Available Abstract Background Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC through the study of transcription regulation of genes affected by estrogen hormone. Results The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers. Conclusions We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors.

  19. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  20. Gene Expression Profiling to Predict Outcome After Chemoradiation in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Purpose: The goal of the present study was to improve prediction of outcome after chemoradiation in advanced head and neck cancer using gene expression analysis. Materials and Methods: We collected 92 biopsies from untreated head and neck cancer patients subsequently given cisplatin-based chemoradiation (RADPLAT) for advanced squamous cell carcinomas (HNSCC). After RNA extraction and labeling, we performed dye swap experiments using 35k oligo-microarrays. Supervised analyses were performed to create classifiers to predict locoregional control and disease recurrence. Published gene sets with prognostic value in other studies were also tested. Results: Using supervised classification on the whole series, gene sets separating good and poor outcome could be found for all end points. However, when splitting tumors into training and validation groups, no robust classifiers could be found. Using Gene Set Enrichment analysis, several gene sets were found to be enriched in locoregional recurrences, although with high false-discovery rates. Previously published signatures for radiosensitivity, hypoxia, proliferation, 'wound,' stem cells, and chromosomal instability were not significantly correlated with outcome. However, a recently published signature for HNSCC defining a 'high-risk' group was shown to be predictive for locoregional control in our dataset. Conclusion: Gene sets can be found with predictive potential for locoregional control after combined radiation and chemotherapy in HNSCC. How treatment-specific these gene sets are needs further study

  1. Gene-environment interaction and risk of breast cancer.

    Science.gov (United States)

    Rudolph, Anja; Chang-Claude, Jenny; Schmidt, Marjanka K

    2016-01-19

    Hereditary, genetic factors as well as lifestyle and environmental factors, for example, parity and body mass index, predict breast cancer development. Gene-environment interaction studies may help to identify subgroups of women at high-risk of breast cancer and can be leveraged to discover new genetic risk factors. A few interesting results in studies including over 30,000 breast cancer cases and healthy controls indicate that such interactions exist. Explorative gene-environment interaction studies aiming to identify new genetic or environmental factors are scarce and still underpowered. Gene-environment interactions might be stronger for rare genetic variants, but data are lacking. Ongoing initiatives to genotype larger sample sets in combination with comprehensive epidemiologic databases will provide further opportunities to study gene-environment interactions in breast cancer. However, based on the available evidence, we conclude that associations between the common genetic variants known today and breast cancer risk are only weakly modified by environmental factors, if at all.

  2. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  3. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino;

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material ...

  4. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  5. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  6. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression.

    Science.gov (United States)

    Smith, Ashley A; Huang, Yen-Tsung; Eliot, Melissa; Houseman, E Andres; Marsit, Carmen J; Wiencke, John K; Kelsey, Karl T

    2014-06-01

    Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.

  7. Establishment and gene expression profiling of LKB1 stable knockdown lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    SUN Lin-lin; ZHONG Dian-sheng; WU Song; BAI Hua; CHEN Zhe

    2011-01-01

    Background Lung cancer is the leading cause of cancer-related death in China. Mutation analysis reveals that LKB1 inactivation is present in 30% of non-small-cell lung cancer (NSCLC), indicating its role as a tumor suppressor. However, the molecular mechanism is still not clear. Our study attempted to establish LKB1 stable knockdown NSCLC cell line, detect alterations in gene expression and identify the genes regulated by LKB1.Methods LKB1 stable knockdown H1299 cell line was established using a lentiviral short hairpin RNA. To identify the knockdown effect, LKB1 mRNA and protein expression level were evaluated with quantitative real-time PCR and Western blotting. We treated the cell lines with 2-deoxyglucose to determine if LKB1 protein function was impacted. Gene microarray analysis was performed to detect the gene expression alterations in LKB1 stable knockdown H1299 cells.Results LKB1 mRNA and protein expression were significantly suppressed in LKB1 stable knockdown H1299 cell line. 2-DG treatment had little impact on the phosphorylation of AMPK, which is the downstream target of LKB1, indicating the loss of function of LKB1. The microarray data showed that LKB1 knockdown resulted in expression alterations of 1243 kinds of genes, including those involved in cell migration, cell proliferation and cell apoptosis.Conclusions The establishment of LKB1 stable knockdown H1299 cell line provides us with a great tool to investigate various genes regulated by LKB1 through microarray. The discovery of cell proliferation and migration-related genes regulated by LKB1 is critical for unraveling molecular mechanisms of LKB1 's role in the development and metastasis of lung cancer.

  8. [Driver gene mutation and targeted therapy of lung cancer].

    Science.gov (United States)

    Mitsudomi, Tetsuya

    2013-03-01

    Although cancers may have many genetic alterations, there are only a few mutations actually associated with essential traits of cancer cells such as cell proliferation or evasion from apoptosis. Because cancer cells are "addicted" to these "drive genes" , pharmacologic inhibition of these gene function is highly effective. Epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI)(such as gefitinib or erlotinib)treatment of lung cancer harboring EGFR gene mutation is one of the prototypes of such therapies. Several clinical trials clearly demonstrated that progression-free survival of patients treated with EGFR-TKI is significantly longer than that of those treated by conventional platinum doublet chemotherapy. EGFR-TKI therapy dramatically changed the paradigm of lung cancer treatment. Furthermore, in 2012, crizotinib was approved for lung cancer treatment with anaplastic lymphoma kinase(ALK)gene translocation. Targeted therapies for lung cancers "addicted" to other driver gene mutations including ROS1, RET or HER2 are also under development. Through these personalized approaches, lung cancer is changing from an acute fatal disease to a more chronic disease, and eventually we might be able to cure it. PMID:23507588

  9. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  10. Nanoparticle-based targeted gene therapy for lung cancer

    Science.gov (United States)

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  11. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening

    Directory of Open Access Journals (Sweden)

    Tokudome S

    2016-05-01

    Full Text Available Shinkan Tokudome,1 Ryosuke Ando,2 Yoshiro Koda,3 1Department of Nutritional Epidemiology, National Institute of Health and Nutrition, Shinjuku-ku, Tokyo, 2Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 3Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Japan Abstract: The discoveries and application of prostate-specific antigen (PSA have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (~30%. There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC and the US Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1 adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2 improving test performance using doubling time, density, and ratio of free: total PSA; and 3 fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1 examinations of cell proliferation and cell cycle markers

  12. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  13. Glycoproteomics using so-called ‘fluid-biopsy’ specimens in the discovery of lung cancer biomarkers. Promise and challenge

    Science.gov (United States)

    Li, Qing Kay; Gabrielson, Ed; Askin, Frederic; Chan, Daniel W; Zhang, Hui

    2016-01-01

    Lung cancer is the number one cancer in the US and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called “fluid-biopsy” specimen have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential protein biomarkers using so-called fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications. PMID:23112109

  14. Topoisomerase-1 gene copy aberrations are frequent in patients with breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Balslev, Eva; Poulsen, Tim S.;

    2015-01-01

    Topoisomerase-1 (Top1) targeting drugs have shown promising efficacy in patients with metastatic breast cancer (BC). However, these drugs are rather toxic calling for development and validation of predictive biomarkers to increase the therapeutic index. As these drugs are targeting the Top1 protein......, and since no validated anti-Top1 antibodies for immunohistochemistry have been reported, we raised the hypothesis that TOP1 gene amplifications may serve as a proxy for the Top1 protein and thereby a biomarker of response to treatment with Top1 inhibitors in BC. The aim was to determine the prevalence...... of TOP1 gene copy gain in BC. The prevalence of TOP1 gene copy gain was investigated by fluorescence in situ hybridization with a TOP1/CEN-20 probemix in normal breast tissue (N=100) and in tissue from patients with metastatic BC in a discovery (N=100) and a validation cohort (N=205). As amplification...

  15. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  16. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  17. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  18. Mutator gene and hereditary non-polyposis colorectal cancer

    Science.gov (United States)

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  19. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  20. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  1. Gene-Environment Research and Cancer Epidemiology

    Science.gov (United States)

    The Epidemiology and Genomics Research Program supports extramural research that investigates both genetic and environmental factors that may contribute to the etiology of cancer and/or impact cancer outcomes.

  2. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer

    Science.gov (United States)

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-01-01

    Background Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. Objective To identify recurrent somatic mutations with prognostic significance in patients with CRC. Method Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Results Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6–14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. Conclusions The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. PMID:24951259

  3. Breast Cancer Risk – Genes, Environment and Clinics

    OpenAIRE

    Fasching, P. A.; Ekici, A B; Adamietz, B. R.; Wachter, D. L.; Hein, A; Bayer, C. M.; Häberle, L.; Loehberg, C. R.; Jud, S.M.; Heusinger, K.; Rübner, M.; Rauh, C.; Bani, M. R.; Lux, M. P.; Schulz-Wendtland, R.

    2011-01-01

    The information available about breast cancer risk factors has increased dramatically during the last 10 years. In particular, studies of low-penetrance genes and mammographic density have improved our understanding of breast cancer risk. In addition, initial steps have been taken in investigating interactions between genes and environmental factors. This review concerns with actual data on this topic. Several genome-wide association studies (GWASs) with a case–control design, as well as larg...

  4. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  5. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients

    Science.gov (United States)

    Hu, Chunling; Hart, Steven N.; Bamlet, William R.; Moore, Raymond M.; Nandakumar, Kannabiran; Eckloff, Bruce W.; Lee, Yean K.; Petersen, Gloria M.; McWilliams, Robert R.; Couch, Fergus J.

    2016-01-01

    The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12 month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first degree relative with PDAC, and 10 mutations were found in patients with first or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancer. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers, and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of pancreatic cancer patients. PMID:26483394

  6. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik;

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG mutati...

  7. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  8. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  9. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  10. Polymorphic variants in hereditary pancreatic cancer genes are not associated with pancreatic cancer risk

    Science.gov (United States)

    McWilliams, Robert R.; Bamlet, William R.; de Andrade, Mariza; Rider, David N.; Couch, Fergus J.; Cunningham, Julie M.; Matsumoto, Martha E.; Rabé, Kari G.; Hammer, Traci J.; Petersen, Gloria M.

    2009-01-01

    Background Inherited risk of pancreatic cancer has been associated with mutations in several genes, including BRCA2, CDKN2A (p16), PRSS1, and PALB2. We hypothesized that common variants in these genes, single nucleotide polymorphisms (SNPs), may also influence risk for pancreatic cancer development. Methods A clinic based case-control study in non-Hispanic white persons compared 1,143 patients with pancreatic adenocarcinoma with 1,097 healthy controls. Twenty-eight genes directly and indirectly involved in the Fanconi/BRCA pathway (includes BRCA1, BRCA2, and PALB2) were identified and 248 tag-SNPs were selected. In addition, 11 SNPs in CDKN2A, PRSS1, and PRSS2 were selected. Association studies were performed at the gene level by principal components analysis, while recursive partitioning analysis was utilized to investigate pathway effects. At the individual SNP level, adjusted additive, dominant, and recessive models were investigated, and gene-environment interactions were also assessed. Results Gene level analyses showed no significant association of any genes with altered pancreatic cancer risk. Multiple single SNP analyses demonstrated associations, which will require replication. Exploratory pathway analyses by recursive partitioning demonstrated no association between SNPs and risk for pancreatic cancer. Conclusion In a candidate gene and pathway SNP association study analysis, common variations in the Fanconi/BRCA pathway and other candidate familial pancreatic cancer genes are not associated with risk for pancreatic cancer. PMID:19690177

  11. DDEC: Dragon database of genes implicated in esophageal cancer

    International Nuclear Information System (INIS)

    Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new 'association hypotheses' generated based on the precompiled reports. We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is freely accessible to academic

  12. DDEC: Dragon database of genes implicated in esophageal cancer

    KAUST Repository

    Essack, Magbubah

    2009-07-06

    Background: Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Description: Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new \\'association hypotheses\\' generated based on the precompiled reports. Conclusion: We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is

  13. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  14. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rachel M Ostroff

    Full Text Available BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery. Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a new aptamer-based proteomic technology to discover blood protein biomarkers in disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a multi-center case-control study in archived serum samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC in long-term tobacco-exposed populations. Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035 asymptomatic study participants with ≥ 10 pack-years of cigarette smoking. We measured 813 proteins in each sample with a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel (cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES that discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC. CONCLUSIONS/SIGNIFICANCE: This study is a significant advance in clinical proteomics in an area of high unmet clinical need. Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels

  15. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  16. Tumour suppressor genes in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Ganesan, Trivadi S

    2002-01-01

    of the evolution of tumour progression. A major focus of research has been to identify tumour suppressor genes implicated in sporadic ovarian cancer over the past decade. Several tumour suppressor genes have been identified by strategies such as positional cloning and differential expression display. Further...

  17. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  18. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-09-01

    Full Text Available Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results: Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion: Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno­medicines into clinical applications, it is essential 1 to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s; 2 to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3 to perform an initial clinical investigation; and 4 to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno­medicine development and clinical applications.

  19. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Lindsay J. Stanbridge

    2003-01-01

    Full Text Available Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.

  20. Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity.

    Science.gov (United States)

    Monier, Adam; Sudek, Sebastian; Fast, Naomi M; Worden, Alexandra Z

    2013-09-01

    Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes. PMID:23635865

  1. Differential expression of ZFX gene in gastric cancer

    Indian Academy of Sciences (India)

    Parvaneh Nikpour; Modjtaba Emadi-Baygi; Faezeh Mohammad-Hashem; Mohamad Reza Maracy; Shaghayegh Haghjooy-Javanmard

    2012-03-01

    Gastric cancer accounts for 8% of the total cancer cases and 10% of total cancer deaths worldwide. In Iran, gastric cancer is the leading cause of national cancer-related mortality. Most human cancers show substantial heterogeneity. The cancer stem cell (CSC) hypothesis has been proposed to reconcile this heterogeneity. ZFX encodes a member of the krueppel C2H2-type zinc-finger protein family that is required as a transcriptional regulator for self-renewal of stem cells. A total of 30 paired tissue gastric samples were examined for ZFX gene expression by quantitative real-time RT-PCR. Although the relative expression of the gene was significantly high in 47% of the examined tumour tissues, its expression was low in the others (53%). There was a statistically significant association between the ZFX gene expression and different tumour types and grades. This is the first report that shows ZFX was differentially expressed in gastric cancer. Of note, it was overexpressed in diffused-type and grade III gastric tumoural tissues. Due to this, ZFX may have the potential to be used as a target for therapeutic interventions.

  2. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  3. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  4. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM for gene discovery.

    Directory of Open Access Journals (Sweden)

    Basel Abu-Jamous

    Full Text Available Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM, which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM. The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.

  5. Text mining for literature review and knowledge discovery in cancer risk assessment and research.

    Directory of Open Access Journals (Sweden)

    Anna Korhonen

    Full Text Available Research in biomedical text mining is starting to produce technology which can make information in biomedical literature more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB - a fully integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming, requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research. Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We discuss further development and application of our technology to other types of chemical risk assessment in the future.

  6. The discovery and development of sorafenib for the treatment of thyroid cancer

    Science.gov (United States)

    White, Peter T; Cohen, Mark S

    2015-01-01

    Introduction While the prognosis for most differentiated thyroid cancers (DTC) remains excellent, recurrence and in-sensitivity to radioactive iodine (RAI) lead to therapeutic challenges and poorer outcomes. In defining the pathogenesis of DTC, multiple genetic alterations have been identified in key pathways focused around receptor tyrosine kinases (RTKs) and the MAP kinase (MAPK) cascade. Sorafenib was specifically developed to target RAF kinase in the MAPK pathway. It has been shown however to have potent inhibition of several key RTKs, RAF kinase, and the V600E BRAF mutation, gaining FDA approval in November 2013 for advanced RAI-refractory DTC. Areas covered The authors provide a review of the targeted RAF kinase discovery strategy as well as the preclinical and clinical development of sorafenib, leading to FDA approval for DTC. The authors also provide some insight into the clinical use of sorafenib and look at important considerations for treatment. Expert opinion Sorafenib significantly improves progression free survival in metastatic DTC patients who are RAI-refractory. However, the overall survival benefit is still unproven and requires additional follow-up. Despite its cost and significant side effect profile, which results in dose reductions in the majority of DTC patients, sorafenib should be considered for the treatment of RAI-refractory advanced DTC patients following evaluation of their individual risk/benefit stratification. PMID:25662396

  7. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  8. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.

    Science.gov (United States)

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  9. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    Science.gov (United States)

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-01-01

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. PMID:27142790

  10. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    Science.gov (United States)

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-05-04

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery.

  11. Combining gene signatures improves prediction of breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Xi Zhao

    Full Text Available BACKGROUND: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123 and test set (n = 81, respectively. Gene sets from eleven previously published gene signatures are included in the study. PRINCIPAL FINDINGS: To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014. Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001. The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. CONCLUSION: Combining the predictive strength of multiple gene signatures improves

  12. Major cancer protein amplifies global gene expression

    Science.gov (United States)

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  13. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening

    Science.gov (United States)

    Tokudome, Shinkan; Ando, Ryosuke; Koda, Yoshiro

    2016-01-01

    The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally

  14. Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening.

    Science.gov (United States)

    Tokudome, Shinkan; Ando, Ryosuke; Koda, Yoshiro

    2016-01-01

    The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally

  15. Gene-gene and gene-environment interactions in prostate, breast and colorectal cancer

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov

    single-gene mutations due to their low frequency in the general population. Overall, the contribution from hereditary factors to the causation of BC is only 27%, whereas genetics contributes to 35% and 42% for CRC and PC, respectively. Additionally, immigrations studies point to environmental factors...... as having strong influence on carcinogenesis. Therefore, very frequent, low effect polymorphisms may have a greater contribution on a population level in combination with environmental factors. Indeed, several dietary and life style factors are now well-established risk factors for different cancer types......, such as alcohol consumption, smoking, obesity, inflammation and high meat intake; whereas other factors protect against cancer, such as high intake of dietary fibre, fruits and vegetables, and physical activity. Investigating the interactions between genetic variations and environmental factors, such as dietary...

  16. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation.

    Science.gov (United States)

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods' performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost.

  17. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Directory of Open Access Journals (Sweden)

    Shikha Vashisht

    Full Text Available Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  18. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Yun-Xia Zhang

    2016-01-01

    Full Text Available Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes and differentially expressed genes (DEGs between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application.

  19. Survivin, a Promising Gene for Targeted Cancer Treatment.

    Science.gov (United States)

    Shamsabadi, Fatemeh T; Eidgahi, Mohammad Reza Akbari; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Allaudin, Zeenathul Nazariah; Yamchi, Ahad; Shahbazi, Majid

    2016-01-01

    Drawbacks of conventional cancer treatments, with lack of specificity and cytotoxicity using current approaches, underlies the necessity for development of a novel approach, gene-directed cancer therapy. This has provided novel technological opportunities in vitro and in vivo. This review focuses on a member of an apoptosis inhibitor family, survivin, as a valuable target. Not only the gene but also its promoter are applicable in this context. This article is based on a literature survey, with especial attention to RNA interference as well as tumor- specific promoter action. The search engine and databases utilized were Science direct, PubMed, MEDLINE and Google. In addition to cell-cycle modulation, apoptosis inhibition, interaction in cell-signaling pathways, cancer-selective expression, survivin also may be considered as specific target through its promoter as a novel treatment for cancer. Our purpose in writing this article was to create awareness in researchers, emphasizing relation of survivin gene expression to potential cancer treatment. The principal result and major conclusion of this manuscript are that survivin structure, biological functions and applications of RNA interference systems as well as tumor-specific promoter activity are of major interest for cancer gene therapy. PMID:27644605

  20. Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information.

    Science.gov (United States)

    Kurian, Allison W; Antoniou, Antonis C; Domchek, Susan M

    2016-01-01

    Recent advances in genomic technology have enabled far more rapid, less expensive sequencing of multiple genes than was possible only a few years ago. Advances in bioinformatics also facilitate the interpretation of large amounts of genomic data. New strategies for cancer genetic risk assessment include multiplex sequencing panels of 5 to more than 100 genes (in which rare mutations are often associated with at least two times the average risk of developing breast cancer) and panels of common single-nucleotide polymorphisms (SNPs), combinations of which are generally associated with more modest cancer risks (more than twofold). Although these new multiple-gene panel tests are used in oncology practice, questions remain about the clinical validity and the clinical utility of their results. To translate this increasingly complex genetic information for clinical use, cancer risk prediction tools are under development that consider the joint effects of all susceptibility genes, together with other established breast cancer risk factors. Risk-adapted screening and prevention protocols are underway, with ongoing refinement as genetic knowledge grows. Priority areas for future research include the clinical validity and clinical utility of emerging genetic tests; the accuracy of developing cancer risk prediction models; and the long-term outcomes of risk-adapted screening and prevention protocols, in terms of patients' experiences and survival. PMID:27249685

  1. Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    REG (Regenerating gene) Iα protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPARγ-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG Iα protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG Iα gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPARγ, in PPARγ-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPARγ-antagonist GW9662. Although TZDs did not inhibit the REG Iα gene promoter activity in PPARγ-non-expressing cells, PPARγ overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG Iα gene transcription through a PPARγ-dependent pathway. The TZD-induced REG Iα mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG Iα and PPARγ.

  2. The landscape of antisense gene expression in human cancers.

    Science.gov (United States)

    Balbin, O Alejandro; Malik, Rohit; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G; Nesvizhskii, Alexey I; Chinnaiyan, Arul M

    2015-07-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology. PMID:26063736

  3. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  4. Molecular pathways: targeting ETS gene fusions in cancer.

    Science.gov (United States)

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions.

  5. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    Science.gov (United States)

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  6. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  7. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

  8. De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development.

    Science.gov (United States)

    Yue, Hong; Wang, Le; Liu, Hui; Yue, Wenjie; Du, Xianghong; Song, Weining; Nie, Xiaojun

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which is well-adapted to extreme environments such as drought, heat, and salinity with an efficient C4 carbon fixation. Discovery and identification of genes involved in these processes will provide valuable information to improve the crop for meeting the challenge of global climate change. However, the lack of genetic resources and genomic information make gene discovery and molecular mechanism studies very difficult. Here, we sequenced and assembled the transcriptome of broomcorn millet using Illumina sequencing technology. After sequencing, a total of 45,406,730 and 51,160,820 clean paired-end reads were obtained for two genotypes Yumi No. 2 and Yumi No. 3. These reads were mixed and then assembled into 113,643 unigenes, with the length ranging from 351 to 15,691 bp, of which 62,543 contings could be assigned to 315 gene ontology (GO) categories. Cluster of orthologous groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned could map 15,514 unigenes into 202 KEGG pathways and 51,020 unigenes to 25 COG categories, respectively. Furthermore, 35,216 simple sequence repeats (SSRs) were identified in 27,055 unigene sequences, of which trinucleotides were the most abundant repeat unit, accounting for 66.72% of SSRs. In addition, 292 differentially expressed genes were identified between the two genotypes, which were significantly enriched in 88 GO terms and 12 KEGG pathways. Finally, the expression patterns of four selected transcripts were validated through quantitative reverse transcription polymerase chain reaction analysis. Our study for the first time sequenced and assembled the transcriptome of broomcorn millet, which not only provided a rich sequence resource for gene discovery and marker development in this important crop, but will also facilitate the further investigation of the molecular mechanism of its favored agronomic traits and beyond. PMID

  9. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  10. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description.

    Directory of Open Access Journals (Sweden)

    Mansoor Tariq

    Full Text Available The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes.De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs categories. Kyoto Encyclopedia of Genes and Genomes (KEGG database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose.This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful

  11. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  12. Defining Aggressive Prostate Cancer Using a 12-Gene Model

    Directory of Open Access Journals (Sweden)

    Tarek A. Bismar

    2006-01-01

    Full Text Available The critical clinical question in prostate cancer research is: How do we develop means of distinguishing aggressive disease from indolent disease? Using a combination of proteomic and expression array data, we identified a set of 36 genes with concordant dysregulation of protein products that could be evaluated in situ by quantitative immunohistochemistry. Another five prostate cancer biomarkers were included using linear discriminant analysis, we determined that the optimal model used to predict prostate cancer progression consisted of 12 proteins. Using a separate patient population, transcriptional levels of the 12 genes encoding for these proteins predicted prostate-specific antigen failure in 79 men following surgery for clinically localized prostate cancer (P = .0015. This study demonstrates that cross-platform models can lead to predictive models with the possible advantage of being more robust through this selection process.

  13. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  14. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  15. Reproducible cancer biomarker discovery in SELDI-TOF MS using different pre-processing algorithms.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    Full Text Available BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.

  16. Defining Aggressive Prostate Cancer Using a 12-Gene Model1

    OpenAIRE

    Tarek A Bismar; Demichelis, Francesca; Riva, Alberto; Kim, Robert; Varambally, Sooryanarayana; He, Le; Kutok, Jeff; Aster, Jonathan C; Tang, Jeffery; Kuefer, Rainer; Hofer, Matthias D.; Febbo, Phillip G; Arul M Chinnaiyan; Mark A. Rubin

    2006-01-01

    The critical clinical question in prostate cancer research is: How do we develop means of distinguishing aggressive disease from indolent disease? Using a combination of proteomic and expression array data, we identified a set of 36 genes with concordant dysregulation of protein products that could be evaluated in situ by quantitative immunohistochemistry. Another five prostate cancer biomarkers were included using linear discriminant analysis, we determined that the optimal model used to pre...

  17. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    OpenAIRE

    Stanbridge Lindsay J.; Dussupt Vincent; Maitland Norman J.

    2003-01-01

    Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the co...

  18. The landscape of antisense gene expression in human cancers

    OpenAIRE

    Balbin, O. Alejandro; Malik, Rohit; Dhanasekaran, Saravana M.; Prensner, John R.; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G.; NesvizhskiI, Alexey I.; Arul M Chinnaiyan

    2015-01-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts’ (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found c...

  19. Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation

    Science.gov (United States)

    Coppe, Alessandro; Ferrari, Francesco; Bisognin, Andrea; Danieli, Gian Antonio; Ferrari, Sergio; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Genes co-expressed may be under similar promoter-based and/or position-based regulation. Although data on expression, position and function of human genes are available, their true integration still represents a challenge for computational biology, hampering the identification of regulatory mechanisms. We carried out an integrative analysis of genomic position, functional annotation and promoters of genes expressed in myeloid cells. Promoter analysis was conducted by a novel multi-step method for discovering putative regulatory elements, i.e. over-represented motifs, in a selected set of promoters, as compared with a background model. The combination of transcriptional, structural and functional data allowed the identification of sets of promoters pertaining to groups of genes co-expressed and co-localized in regions of the human genome. The application of motif discovery to 26 groups of genes co-expressed in myeloid cells differentiation and co-localized in the genome showed that there are more over-represented motifs in promoters of co-expressed and co-localized genes than in promoters of simply co-expressed genes (CEG). Motifs, which are similar to the binding sequences of known transcription factors, non-uniformly distributed along promoter sequences and/or occurring in highly co-expressed subset of genes were identified. Co-expressed and co-localized gene sets were grouped in two co-expressed genomic meta-regions, putatively representing functional domains of a high-level expression regulation. PMID:19059999

  20. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer

    OpenAIRE

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y.; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y.; Javed, Awais; Mahmoud, Fade A.; Osarogiagbon, Raymond U.; Manne, Upender

    2016-01-01

    Background African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. ...

  1. Approaches to diagnose DNA mismatch repair gene defects in cancer.

    Science.gov (United States)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-02-01

    The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance

  2. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    Science.gov (United States)

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  3. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    Science.gov (United States)

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology. PMID:25012686

  4. Patterns and functional implications of rare germline variants across 12 cancer types

    OpenAIRE

    Lu, Charles; Xie, Mingchao; Wendl, Michael C; Wang, Jiayin; McLellan, Michael D; Mark D M Leiserson; Huang, Kuan-lin; Wyczalkowski, Matthew A.; Jayasinghe, Reyka; Banerjee, Tapahsama; Ning, Jie; Tripathi, Piyush; Zhang, Qunyuan; Niu, Beifang; Ye, Kai

    2015-01-01

    Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes w...

  5. Gene expression analysis of FABP4 in gastric cancer

    OpenAIRE

    Abdulkarim Yasin Karim

    2016-01-01

    Purpose: Gastric cancer has high incidence and mortality rate in several countries and is still one of the most frequent and lethal disease. In this study, we aimed to determine diagnostic markers in gastric cancer by molecular techniques; include mRNA expression analysis of FABP4 gene. Fatty acid binding protein 4 (FABP4) gene encodes the fatty acid binding protein found in adipocytes. The protein encoded by FABP4 are a family of small, highly conserved, cytoplasmic proteins that bind long-c...

  6. Genomic landscape of DNA repair genes in cancer

    Science.gov (United States)

    Carneiro, Benedito A.; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A.; Platanias, Leonidas C.; Giles, Francis J.

    2016-01-01

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety.  We created comprehensive lists of DNA repair genes and indirect caretakers.  Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998).  Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively.  Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy. PMID:27004405

  7. Expression of a novel immunoglobulin gene SNC73 in humar cancer and non-cancerous tissues

    Institute of Scientific and Technical Information of China (English)

    Jian-Bin Hu; Shu Zheng; Yong-Chuan Deng

    2003-01-01

    AIM: To investigate the expression of immunoglobulin gene SNC73 in malignant tumors and non-cancerous normal tissues.METHODS: Expression level of SNC73 in tumors and noncancerous tissues from the same patient was determined by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay (RT-PCR-ELISA) in 90cases of malignant tumors, including colorectal cancer, gastric cancer, breast cancer, lung cancer and liver cancer. Analysis on the correlation of SNC73 expression with sex, age, site,grade of differentiation, depth of invasion, and metastases in colorectal cancer patients was made.RESULTS: Expression level of SNC73 in non-cancerous colorectal mucosa and colorectal cancerous tissues was 1.234±0.842 and 0.737±0.731, respectively (P<0.01), with the mean ratio of 7.134±14.092 (range, 0.36-59.54).Expression of SNC73 showed no significant difference among gastric cancer, breast cancer, lung cancer and liver cancer when compared with non-cancerous tissues (P>0.05). No correlation was found between SNC73 expression level and various clinicopathological factors, including sex, age, site,grade of differentiation, depth of invasion and metastases of CRC patients.CONCLUSION: Down-regulation of SNC73 expression may be a relatively specific phenomenon in colorectal cancer.SNC73 is a potential genetic marker for the carcinongenesis of colorectal cancer. The relationship of SNC73 expression and carcinogenesis of colorectal cancer merits further study.

  8. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  9. RET fusion gene: translation to personalized lung cancer therapy.

    Science.gov (United States)

    Kohno, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Nakaoku, Takashi; Yoh, Kiyotaka; Goto, Koichi

    2013-11-01

    Development of lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, depends in many cases on the activation of "driver" oncogenes such as KRAS, epidermal growth factor receptor (EGFR), and anaplastic lymphoma kinase (ALK). Inhibitors that target the EGFR and ALK tyrosine kinases show therapeutic effects against LADCs containing EGFR gene mutations and ALK gene fusions, respectively. Recently, we and others identified the RET fusion gene as a new targetable driver gene in LADC. The RET fusions occur in 1-2% of LADCs. Existing US Food and Drug Administration-approved inhibitors of RET tyrosine kinase show promising therapeutic effects both in vitro and in vivo, as well as in a few patients. Clinical trials are underway to investigate the therapeutic effects of RET tyrosine kinase inhibitors, such as vandetanib (ZD6474) and cabozantinib (XL184), in patients with RET fusion-positive non-small-cell lung cancer. PMID:23991695

  10. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    International Nuclear Information System (INIS)

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed

  11. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  12. Helping Students Understand Gene Regulation with Online Tools: A Review of MEME and Melina II, Motif Discovery Tools for Active Learning in Biology

    Directory of Open Access Journals (Sweden)

    David Treves

    2012-08-01

    Full Text Available Review of: MEME and Melina II, which are two free and easy-to-use online motif discovery tools that can be employed to actively engage students in learning about gene regulatory elements.

  13. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  14. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  15. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    OpenAIRE

    Victoria Gonzalo; Juan José Lozano; Jenifer Muñoz; Francesc Balaguer; Maria Pellisé; Cristina Rodríguez de Miguel; Montserrat Andreu; Rodrigo Jover; Xavier Llor; M Dolores Giráldez; Teresa Ocaña; Anna Serradesanferm; Virginia Alonso-Espinaco; Mireya Jimeno; Miriam Cuatrecasas

    2010-01-01

    BACKGROUND: Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-...

  16. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics.

    Directory of Open Access Journals (Sweden)

    Xingwang Zhang

    Full Text Available Generally, most of ovarian cancer cannot be detected until large scale and remote metastasis occurs, which is the major cause of high mortality in ovarian cancer. Therefore, it is urgent to discover metastasis-related biomarkers for the detection of ovarian cancer in its occult metastasis stage. Altered glycosylation is a universal feature of malignancy and certain types of glycan structures are well-known markers for tumor progressions. Thus, this study aimed to reveal specific changes of N-glycans in the secretome of the metastatic ovarian cancer. We employed a quantitative glycomics approach based on metabolic stable isotope labeling to compare the differential N-glycosylation of secretome between an ovarian cancer cell line SKOV3 and its high metastatic derivative SKOV3-ip. Intriguingly, among total 17 N-glycans identified, the N-glycans with bisecting GlcNAc were all significantly decreased in SKOV3-ip in comparison to SKOV3. This alteration in bisecting GlcNAc glycoforms as well as its corresponding association with ovarian cancer metastatic behavior was further validated at the glycotransferase level with multiple techniques including real-time PCR, western blotting, transwell assay, lectin blotting and immunohistochemistry analysis. This study illustrated metastasis-related N-glycan alterations in ovarian cancer secretome in vitro for the first time, which is a valuable source for biomarker discovery as well. Moreover, N-glycans with bisecting GlcNAc shed light on the detection of ovarian cancer in early peritoneal metastasis stage which may accordingly improve the prognosis of ovarian cancer patients.

  17. RUNX: a trilogy of cancer genes

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2002-01-01

    The RUNX family of transcription factors plays pivotal roles during normal development and in neoplasias. Recent data involve RUNX3 as an important tumor suppressor in gastric cancers and pose interesting questions about how perturbed levels and interspecific competition among RUNX family members...

  18. Characterization of genes involved in cancer differentiation

    OpenAIRE

    Ye, Fei

    2010-01-01

    Krebs und Differenzierung sind eng verwandte biologische Phänomene. Um molekulare Abläufe zu erforschen und an Krebsdifferenzierung beteiligte Gene zu entdecken, haben wir ein in vitro Modell entwickelt, dass die Induktion der Differenzierung in Lungenkrebszelllinien ermöglicht. Mit diesem Modell konnten wir Gene charakterisieren, die nach Induktion der Differenzierung hochreguliert werden. Die kleinzellige Lungenkarzinomzelllinie (SCLC) H526 und die nicht-kleinzellige Lungenkarzinomzelllinie...

  19. Gene gun delivery systems for cancer vaccine approaches.

    Science.gov (United States)

    Aravindaram, Kandan; Yang, Ning Sun

    2009-01-01

    Gene-based immunization with transgenic DNA vectors expressing tumor-associated antigens (TAA), cytokines, or chemokines, alone or in combination, provides an attractive approach to increase the cytotoxic T cell immunity against various cancer diseases. With this consideration, particle-mediated or gene gun technology has been developed as a nonviral method for gene transfer into various mammalian tissues. It has been shown to induce both humoral and cell-mediated immune responses in both small and large experimental animals. A broad range of somatic cell types, including primary cultures and established cell lines, has been successfully transfected ex vivo or in vitro by gene gun technology, either as suspension or adherent cultures. Here, we show that protocols and techniques for use in gene gun-mediated transgene delivery system for skin vaccination against melanoma using tumor-associated antigen (TAA) human gpl00 and reporter gene assays as experimental systems.

  20. Gene therapy for cancer: regulatory considerations for approval.

    Science.gov (United States)

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.

  1. DDPC: Dragon database of genes associated with prostate cancer

    KAUST Repository

    Maqungo, Monique

    2010-09-29

    Prostate cancer (PC) is one of the most commonly diagnosed cancers in men. PC is relatively difficult to diagnose due to a lack of clear early symptoms. Extensive research of PC has led to the availability of a large amount of data on PC. Several hundred genes are implicated in different stages of PC, which may help in developing diagnostic methods or even cures. In spite of this accumulated information, effective diagnostics and treatments remain evasive. We have developed Dragon Database of Genes associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise require tedious computational analyses, (ii) it integrates data on molecular interactions, pathways, gene ontologies, gene regulation at molecular level, predicted transcription factor binding sites on promoters of PC implicated genes and transcription factors that correspond to these binding sites and (iii) it contains DrugBank data on drugs associated with PC. We believe this resource will serve as a source of useful information for research on PC. DDPC is freely accessible for academic and non-profit users via http://apps.sanbi.ac.za/ddpc/ and http://cbrc .kaust.edu.sa/ddpc/. The Author(s) 2010.

  2. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Dong

    Full Text Available We conducted a case-control study of renal cancer (987 cases and 1298 controls in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA. A haplotype-based method (sliding window analysis of consecutive SNPs was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12, epidermal growth factor receptor (EGFR, and insulin-like growth factor binding protein-3 (IGFBP3. We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5 GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10-1.78, p-value = 0.007. Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04-1.53 and ATG: OR:1.55, 95% CI:1.14-2.11. A region in IGFBP3 was also associated with increased risk (global p = 0.04. In addition, the number of statistically significant (p-value<0.05 SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be

  3. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  4. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  5. Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes

    Directory of Open Access Journals (Sweden)

    Dresang Lindsay R

    2011-12-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV and Epstein-Barr virus (EBV are related human tumor viruses that cause primary effusion lymphomas (PEL and Burkitt's lymphomas (BL, respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  6. Discovery of EST-SSRs in lung cancer: tagged ESTs with SSRs lead to differential amino acid and protein expression patterns in cancerous tissues.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Bakhtiarizadeh

    Full Text Available Tandem repeats are found in both coding and non-coding sequences of higher organisms. These sequences can be used in cancer genetics and diagnosis to unravel the genetic basis of tumor formation and progression. In this study, a possible relationship between SSR distributions and lung cancer was studied by comparative analysis of EST-SSRs in normal and lung cancerous tissues. While the EST-SSR distribution was similar between tumorous tissues, this distribution was different between normal and tumorous tissues. Trinucleotides tandem repeats were highly different; the number of trinucleotides in ESTs of lung cancer was 3 times higher than normal tissue. Significant negative correlation between normal and cancerous tissue showed that cancerous tissue generates different types of trinucleotides. GGC and CGC were the more frequent expressed trinucleotides in cancerous tissue, but these SSRs were not expressed in normal tissue. Similar to the EST level, the expression pattern of EST-SSRs-derived amino acids was significantly different between normal and cancerous tissues. Arg, Pro, Ser, Gly, and Lys were the most abundant amino acids in cancerous tissues, and Leu, Cys, Phe, and His were significantly more abundant in normal tissues than in cancerous tissues. Next, the putative functions of triplet SSR-containing genes were analyzed. In cancerous tissue, EST-SSRs produce different types of proteins. Chromodomain helicase DNA binding proteins were one of the major protein products of EST-SSRs in the cancerous library, while these proteins were not produced from EST-SSRs in normal tissue. For the first time, the findings of this study confirmed that EST-SSRs in normal lung tissues are different than in unhealthy tissues, and tagged ESTs with SSRs cause remarkable differences in amino acid and protein expression patterns in cancerous tissue. We suggest that EST-SSRs and EST-SSRs differentially expressed in cancerous tissue may be suitable candidate

  7. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  8. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.;

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  9. Expression and Function of ETS Genes in Prostate Cancer

    NARCIS (Netherlands)

    D. Gasi (Delila)

    2013-01-01

    markdownabstract__Abstract__ Prostate cancer is a heterogeneous disease that is very common in elderly men in developed countries. Understanding the molecular and biological processes that contribute to tumor development and progressive growth is a challenging task. The fusion of the genes ERG and

  10. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species.

  11. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas.

    Science.gov (United States)

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A; Copeland, Neal G; Lenz, Jack

    2003-02-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.

  12. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling;

    2011-01-01

    and lymphnode metastases were analyzed with immunohistochemistry, methylation and MSI analyses, and quantitative polymerase chain reaction (PCR). The median gene expression of MSH2 was 1.00 (range 0.16-11.2, quartiles 0.70-1.51) and there was good agreement between the gene expression in primary tumor and lymph......Microsatellite instability (MSI) is caused by defective mismatch repair (MMR) and is one of the very few molecular markers with proven clinical importance in colorectal cancer with respect to heredity, prognosis, and treatment effect. The gene expression of the MMR gene MSH2 may be a quantitative...... marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor...

  13. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    Science.gov (United States)

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  14. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P;

    2005-01-01

    is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression......-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures....

  15. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  16. Metastatic suppressor genes inactivated by aberrant methylation in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To screen out the differentially methylated DNA sequences between gastric primary tumor and metastatic lymph nodes, test the methylation difference of gene PTPRG between primary gastric tumor and metastatic lymph nodes, and test the regulatory function of 5-aza-2-deoxycytidine which is an agent with suppression on methylation and the level of methylation in gastric cancer cell line.METHODS: Methylated DNA sequences in genome were enriched with methylated CpG islands amplification (MCA)to undergo representational difference analysis (RDA),with MCA production of metastatic lymph nodes as tester and that of primary tumor as driver. The obtained differentially methylated fragments were cloned and sequenced to acquire the base sequence, which was analyzed with bioinformatics. With methylation-specific PCR (MSP) and RT-PCR, methylation difference of gene PTPRG was detected between primary tumor and metastatic lymph nodes in 36 cases of gastric cancer.Methylation of gene PTPRG and its regulated expression were observed in gastric cancer cell line before and after being treated with methylation-suppressive agent.RESULTS: Nineteen differentially methylated sequences were obtained and located at 5' end, exons, introns and 3' end, in which KL59 was observed to be located at 9p21 as the first exon of gene p16 and KL22 to be located at promoter region of PRPRG. KL22, aS the probes, was hybridized with driver, tester and 3-round RDA products respectively with all positive signals except with the driver. Significant difference was observed in both methylation rate of gene PTPRG and PTPRG mRNA expression rate between primary tumor and metastatic lymph nodes. Demethylation of gene PTPRG, with recovered expression of PTPRG mRNA, was observed after gastric cancer cell line being treated with methylation-suppressive agent.CONCLUSION: Difference exists in DNA methylation between primary tumor and metastatic lymph nodes of gastric cancer, with MCA-RDA as one of the good analytical

  17. Molecular genetic, diagnosis, prevention and gene therapy in prostatic cancer: review article

    OpenAIRE

    Noori Daloii MR; Ebrahimzadeh Vesal E

    2009-01-01

    "nThe prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer), and also the second leading cause of cancer death (after lung cancer) among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes. The family history is an important risk factor for developing the disease. The genes AR, CYP...

  18. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  19. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  20. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  1. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  2. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Directory of Open Access Journals (Sweden)

    May Gregory D

    2010-12-01

    Full Text Available Abstract Background Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster, the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. Results A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE genes (1,036 were also found to have up-regulated expression levels in meiocytes. Conclusion These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.

  3. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. PMID:27436147

  4. Expression of liver cancer associated gene HCCA3

    Institute of Scientific and Technical Information of China (English)

    Zheng-Xu Wang; Gui-Fang Hu; Hong-Yang Wang; Meng-Chao Wu

    2001-01-01

    AIM: To study and clone a novel liver cancer reisted gene,and to explore the molecular basis of liver cancer genesis. METHODS: Using mRNA differential display polymerasechain reaction (DDPCR), we investigated the difference of mRNA in human hepatocellular carcinoma (HCC) and paired surrounding liver tissues, and got a gene probe. By screening a human placenta cDNA library and genomic homologous extend, we obtained a full-length cDNA named HCCA3. We analyzed the expression of this novel gene in 42pairs of HCC and the surrounding liver tissues, and distribution in human normal tissues by means of Northern blot assay. RESULTS: A full-length cDNA of liver cancer associated gene HCCA3 has been submitted to the GeneBank nucleotide sequence databases ( Accession No. AF276707 ). The positive expression rate of this gene was 78.6% (33/42) in HCC tissues, and the clinical pathological data showed that the HCCA3 was closely associated with the invasion of tumor capsule ( P = 0.023) and adjacant small metastasis satellite nodules lesions ( P= 0.041). The HCCA3 was widely distributed in the human normal tissues, which was intensively expressed in lungs, brain and colon tissues,while lowly expressed in the liver tissues. CONCLUSION: A novel full-length cDNA was cloned and differentiated, which was highly expressed in liver cancer tissues. The high expression was closely related to the tumor invasiveness and metastasis, that may be the late heredited change in HCC genesis.

  5. Ataxin1L is a regulator of HSC function highlighting the utility of cross-tissue comparisons for gene discovery.

    Directory of Open Access Journals (Sweden)

    Juliette J Kahle

    2013-03-01

    Full Text Available Hematopoietic stem cells (HSCs are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein-protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.

  6. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression

    Science.gov (United States)

    Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain. PMID:27322383

  7. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Directory of Open Access Journals (Sweden)

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  8. Association between CLN3 (Neuronal Ceroid Lipofuscinosis, CLN3 type gene expression and clinical characteristics of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Rose-Mary eBoustany

    2015-10-01

    Full Text Available Breast cancer is the most common cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. CLN3 protein (CLN3p, deficient in neurodegenerative CLN3 disease is anti-apoptotic, and defects in the CLN3 gene cause accelerated apoptosis of neurons in CLN3 disease and upregulation of ceramide. Dysregulated apoptotic pathways are often implicated in the development of the oncogenic phenotype. Predictably, CLN3 mRNA expression and CLN3 protein were upregulated in a number of human and murine breast cancer cell lines. Here, we determine CLN3 expression in non-tumor vs. tumor samples from fresh and formalin-fixed/paraffin-embedded (FFPE breast tissue and analyze the association between CLN3 overexpression and different clinicopathological characteristics of breast cancer patients. Additionally, gene expression of 28 enzymes involved in sphingolipid metabolism was determined. CLN3 mRNA is overexpressed in tumor vs. non-tumor breast tissue from FFPE and fresh samples, as well as in mouse MCF7 breast cancer compared to MCF10A normal cells. Of the clinicopathological characteristics of tumor grade, age, menopause status, estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor receptor 2 (HER2, only absence of HER2 expression correlated with CLN3 overexpression. Sphingolipid genes for ceramide synthases 2 and 6 (CerS2; CerS6, delta(4-desaturase sphingolipid 2 (DEGS2 and acidic sphingomyelinase (SMPD1 displayed higher expression levels in breast cancer vs. control tissue, whereas, ceramide galactosyltransferase (UGT8 was underexpressed in breast cancer samples. CLN3 may be a novel molecular target for cancer drug discovery with the goal of modulation of ceramide pathways.

  9. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study

    Directory of Open Access Journals (Sweden)

    H. Ross-Adams

    2015-09-01

    Interpretation: For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.

  10. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

    Directory of Open Access Journals (Sweden)

    Rocio Chavez-Alvarez

    Full Text Available DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

  11. Identification of novel hereditary cancer genes by whole exome sequencing.

    Science.gov (United States)

    Sokolenko, Anna P; Suspitsin, Evgeny N; Kuligina, Ekatherina Sh; Bizin, Ilya V; Frishman, Dmitrij; Imyanitov, Evgeny N

    2015-12-28

    Whole exome sequencing (WES) provides a powerful tool for medical genetic research. Several dozens of WES studies involving patients with hereditary cancer syndromes have already been reported. WES led to breakthrough in understanding of the genetic basis of some exceptionally rare syndromes; for example, identification of germ-line SMARCA4 mutations in patients with ovarian hypercalcemic small cell carcinomas indeed explains a noticeable share of familial aggregation of this disease. However, studies on common cancer types turned out to be more difficult. In particular, there is almost a dozen of reports describing WES analysis of breast cancer patients, but none of them yet succeeded to reveal a gene responsible for the significant share of missing heritability. Virtually all components of WES studies require substantial improvement, e.g. technical performance of WES, interpretation of WES results, mode of patient selection, etc. Most of contemporary investigations focus on genes with autosomal dominant mechanism of inheritance; however, recessive and oligogenic models of transmission of cancer susceptibility also need to be considered. It is expected that the list of medically relevant tumor-predisposing genes will be rapidly expanding in the next few years. PMID:26427841

  12. Reevaluation of RINT1 as a breast cancer predisposition gene.

    Science.gov (United States)

    Li, Na; Thompson, Ella R; Rowley, Simone M; McInerny, Simone; Devereux, Lisa; Goode, David; Investigators, LifePool; Wong-Brown, Michelle W; Scott, Rodney J; Trainer, Alison H; Gorringe, Kylie L; James, Paul A; Campbell, Ian G

    2016-09-01

    Rad50 interactor 1 (RINT1) has recently been reported as an intermediate-penetrance (odds ratio 3.24) breast cancer susceptibility gene, as well as a risk factor for Lynch syndrome. The coding regions and exon-intron boundaries of RINT1 were sequenced in 2024 familial breast cancer cases previously tested negative for BRCA1, BRCA2, and PALB2 mutations and 1886 population-matched cancer-free controls using HaloPlex Targeted Enrichment Assays. Only one RINT1 protein-truncating variant was detected in a control. No excess was observed in the total number of rare variants (truncating and missense) (28, 1.38 %, vs. 27, 1.43 %. P > 0.999) or in the number of variants predicted to be pathogenic by various in silico tools (Condel, Polyphen2, SIFT, and CADD) in the cases compared to the controls. In addition, there was no difference in the incidence of classic Lynch syndrome cancers in RINT1 rare variant-carrying families compared to RINT1 wild-type families. This study had 90 % power to detect an odds ratio of at least 2.06, and the results do not provide any support for RINT1 being a moderate-penetrance breast cancer susceptibility gene, although larger studies will be required to exclude more modest effects. This study emphasizes the need for caution before designating a cancer predisposition role for any gene based on very rare truncating variants and in silico-predicted missense variants. PMID:27544226

  13. Spotlight on differentially expressed genes in urinary bladder cancer.

    Directory of Open Access Journals (Sweden)

    Apostolos Zaravinos

    Full Text Available INTRODUCTION: We previously identified common differentially expressed (DE genes in bladder cancer (BC. In the present study we analyzed in depth, the expression of several groups of these DE genes. MATERIALS AND METHODS: Samples from 30 human BCs and their adjacent normal tissues were analyzed by whole genome cDNA microarrays, qRT-PCR and Western blotting. Our attention was focused on cell-cycle control and DNA damage repair genes, genes related to apoptosis, signal transduction, angiogenesis, as well as cellular proliferation, invasion and metastasis. Four publicly available GEO Datasets were further analyzed, and the expression data of the genes of interest (GOIs were compared to those of the present study. The relationship among the GOI was also investigated. GO and KEGG molecular pathway analysis was performed to identify possible enrichment of genes with specific biological themes. RESULTS: Unsupervised cluster analysis of DNA microarray data revealed a clear distinction in BC vs. control samples and low vs. high grade tumors. Genes with at least 2-fold differential expression in BC vs. controls, as well as in non-muscle invasive vs. muscle invasive tumors and in low vs. high grade tumors, were identified and ranked. Specific attention was paid to the changes in osteopontin (OPN, SPP1 expression, due to its multiple biological functions. Similarly, genes exhibiting equal or low expression in BC vs. the controls were scored. Significant pair-wise correlations in gene expression were scored. GO analysis revealed the multi-facet character of the GOIs, since they participate in a variety of mechanisms, including cell proliferation, cell death, metabolism, cell shape, and cytoskeletal re-organization. KEGG analysis revealed that the most significant pathway was that of Bladder Cancer (p = 1.5×10(-31. CONCLUSIONS: The present work adds to the current knowledge on molecular signature identification of BC. Such works should progress in order

  14. Discovery of sequence motifs related to coexpression of genes using evolutionary computation

    OpenAIRE

    Fogel, Gary B.; Weekes, Dana G.; Varga, Gabor; Dow, Ernst R.; Harlow, Harry B.; Onyia, Jude E.; Su, Chen

    2004-01-01

    Transcription factors are key regulatory elements that control gene expression. Recognition of transcription factor binding site (TFBS) motifs in the upstream region of coexpressed genes is therefore critical towards a true understanding of the regulations of gene expression. The task of discovering eukaryotic TFBSs remains a challenging problem. Here, we demonstrate that evolutionary computation can be used to search for TFBSs in upstream regions of genes known to be coexpressed. Evolutionar...

  15. A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-Gang Ruan; Jin-Lian Wang; Jian-Geng Li

    2006-01-01

    Computational analysis is essential for transforming the masses of microarray data into a mechanistic understanding of cancer. Here we present a method for finding gene functional modules of cancer from microarray data and have applied it to colon cancer. First, a colon cancer gene network and a normal colon tissue gene network were constructed using correlations between the genes. Then the modules that tended to have a homogeneous functional composition were identified by splitting up the network. Analysis of both networks revealed that they are scale-free.Comparison of the gene functional modules for colon cancer and normal tissues showed that the modules' functions changed with their structures.

  16. PROMISES FOR TREATING COLON CANCER PATIENTS WITH BRAF GENE MUTATION

    Directory of Open Access Journals (Sweden)

    M. Yu. Fedyanin

    2014-01-01

    Full Text Available Colon cancer represents a heterogenous disease group, which differ by cancerogenesis mechanisms, molecular alterations, prognosis and treatment possibilities. In modern clinical practice assessment of KRAS and NRAS genes status is already necessary in order to prescribe anti-EGFR treatment for metastatic disease. A separate poor prognosis group are patients with BRAF mutation. In this review we will focus on biological features of BRAF-mutant colorectal cancer, its epidemiology, clinical features on different stages, treatment choice and promising new treatment possibilities.

  17. Postoperative Prognosis of Breast Cancer Patients Predicted by p53 Gene Mutation in Cancer Cells Obtained by Aspiration Biopsy

    OpenAIRE

    Takashi, SATO; Hideji, Masuoka; Kazunori, Toda; Kosho, Watabe; Yukio, Nakamura; Tatsuya, Ito; Makoto, Meguro; Masaaki, Yamamoto; Tousei, Ohmura

    2007-01-01

    The method of cytological examination by fine needle aspiration biopsy (FNAB) was developed clinically in breast cancer and enabled us to prepare cancer cell nuclei for the detection of p53 gene mutation. In the expectation that this method would improve the prediction of postoperative prognosis, the observation of 10 year survival for breast cancer patients with p53 gene mutations was done. The DNA of the aspirated cells was examined preoperatively for gene alterations in 53 patients with br...

  18. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.

    Science.gov (United States)

    Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin

    2016-05-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC. PMID:27035224

  19. Profiling critical cancer gene mutations in clinical tumor samples.

    Directory of Open Access Journals (Sweden)

    Laura E MacConaill

    Full Text Available BACKGROUND: Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. METHODOLOGY: We developed and implemented an optimized mutation profiling platform ("OncoMap" to interrogate approximately 400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. CONCLUSIONS: Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of "actionable" cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.

  20. Quinoxaline Nucleus: A Promising Scaffold in Anti-cancer Drug Discovery.

    Science.gov (United States)

    Pinheiro, Alessandra C; Mendonça Nogueira, Thais C; de Souza, Marcus V N

    2016-01-01

    Heterocyclic compounds are a class of substances, which play a critical role in modern drug discovery being incorporated in the structure of a large variety of drugs used in many different types of diseases. Quinoxaline is an important heterocyclic nucleus with a wide spectrum of biological activities, and recently much attention has been found on anticancer drug discovery based on this class. Owing to the importance of this system, the aim of this review is to provide an update on the synthesis and anticancer activity of quinoxaline derivatives covering articles published between 2010 and 2015.

  1. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  2. Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer's disease

    NARCIS (Netherlands)

    J.M. Bullock (James); C. Medway (Christopher); M. Cortina-Borja (Mario); J.C. Turton (James); J.A. Prince (Jonathan); C.A. Ibrahim-Verbaas (Carla); M. Schuur (Maaike); M.M.B. Breteler (Monique); C.M. van Duijn (Cock); P.G. Kehoe (Patrick); R. Barber (Rachel); E. Coto (Eliecer); V. Alvarez (Victoria); P. Deloukas (Panagiotis); N. Hammond (Naomi); O. Combarros (Onofre); I. Mateo (Ignacio); D.R. Warden (Donald); M.G. Lehmann (Michael); O. Belbin (Olivia); K. Brown (Kristelle); G.K. Wilcock (Gordon); R. Heun (Reinhard); H. Kölsch (Heike); A.D. Smith; D.J. Lehmann (Donald); K. Morgan (Kevin)

    2013-01-01

    textabstractDespite recent discoveries in the genetics of sporadic Alzheimer's disease, there remains substantial " hidden heritability." It is thought that some of this missing heritability may be because of gene-gene, i.e., epistatic, interactions. We examined potential epistasis between 110 candi

  3. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  4. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress.

    Science.gov (United States)

    Rostoks, Nils; Mudie, Sharon; Cardle, Linda; Russell, Joanne; Ramsay, Luke; Booth, Allan; Svensson, Jan T; Wanamaker, Steve I; Walia, Harkamal; Rodriguez, Edmundo M; Hedley, Peter E; Liu, Hui; Morris, Jenny; Close, Timothy J; Marshall, David F; Waugh, Robbie

    2005-12-01

    More than 2,000 genome-wide barley single nucleotide polymorphisms (SNPs) were developed by resequencing unigene fragments from eight diverse accessions. The average genome-wide SNP frequency observed in 877 unigenes was 1 SNP per 200 bp. However, SNP frequency was highly variable with the least number of SNP and SNP haplotypes observed within European cultivated germplasm reflecting effects of breeding history on genetic diversity. More than 300 SNP loci were mapped genetically in three experimental mapping populations which allowed the construction of an integrated SNP map incorporating a large number of RFLP, AFLP and SSR markers (1,237 loci in total). The genes used for SNP discovery were selected based on their transcriptional response to a variety of abiotic stresses. A set of known barley abiotic stress QTL was positioned on the linkage map, while the available sequence and gene expression information facilitated the identification of genes potentially associated with these traits. Comparison of the sequenced SNP loci to the rice genome sequence identified several regions of highly conserved gene order providing a framework for marker saturation in barley genomic regions of interest. The integration of genome-wide SNP and expression data with available genetic and phenotypic information will facilitate the identification of gene function in barley and other non-model organisms. PMID:16244872

  5. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies and challenges

    OpenAIRE

    Pan, Sheng; Brentnall, Teresa A.; Kelly, Kimberly; Chen, Ru

    2013-01-01

    Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances of proteomics technology, especially quantitative proteomics, have stimulated a great interest to apply this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic t...

  6. A Gene Regulatory Program in Human Breast Cancer.

    Science.gov (United States)

    Li, Renhua; Campos, John; Iida, Joji

    2015-12-01

    Molecular heterogeneity in human breast cancer has challenged diagnosis, prognosis, and clinical treatment. It is well known that molecular subtypes of breast tumors are associated with significant differences in prognosis and survival. Assuming that the differences are attributed to subtype-specific pathways, we then suspect that there might be gene regulatory mechanisms that modulate the behavior of the pathways and their interactions. In this study, we proposed an integrated methodology, including machine learning and information theory, to explore the mechanisms. Using existing data from three large cohorts of human breast cancer populations, we have identified an ensemble of 16 master regulator genes (or MR16) that can discriminate breast tumor samples into four major subtypes. Evidence from gene expression across the three cohorts has consistently indicated that the MR16 can be divided into two groups that demonstrate subtype-specific gene expression patterns. For example, group 1 MRs, including ESR1, FOXA1, and GATA3, are overexpressed in luminal A and luminal B subtypes, but lowly expressed in HER2-enriched and basal-like subtypes. In contrast, group 2 MRs, including FOXM1, EZH2, MYBL2, and ZNF695, display an opposite pattern. Furthermore, evidence from mutual information modeling has congruently indicated that the two groups of MRs either up- or down-regulate cancer driver-related genes in opposite directions. Furthermore, integration of somatic mutations with pathway changes leads to identification of canonical genomic alternations in a subtype-specific fashion. Taken together, these studies have implicated a gene regulatory program for breast tumor progression.

  7. Mutations in the AXIN1 gene in advanced prostate cancer

    DEFF Research Database (Denmark)

    Yardy, George W; Bicknell, David C; Wilding, Jennifer L;

    2009-01-01

    The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes...... encoding Wnt pathway components APC or beta-catenin. Such mutations are rare in hepatocellular carcinomas and medulloblastomas with Wnt pathway dysfunction, and there, mutation in genes for other Wnt molecules, such as Axin, is more frequently found....

  8. Rare and unusual endocrine cancer syndromes with mutated genes.

    Science.gov (United States)

    Lodish, Maya B; Stratakis, Constantine A

    2010-12-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have expanded our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient's endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions.

  9. Epigenetic changes of DNA repair genes in cancer

    Institute of Scientific and Technical Information of China (English)

    Christoph Lahtz; Gerd P. Pfeifer

    2011-01-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  10. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  11. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Directory of Open Access Journals (Sweden)

    Katherine C H Amrine

    Full Text Available Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups

  12. Discovery of sequence motifs related to coexpression of genes using evolutionary computation

    Science.gov (United States)

    Fogel, Gary B.; Weekes, Dana G.; Varga, Gabor; Dow, Ernst R.; Harlow, Harry B.; Onyia, Jude E.; Su, Chen

    2004-01-01

    Transcription factors are key regulatory elements that control gene expression. Recognition of transcription factor binding site (TFBS) motifs in the upstream region of coexpressed genes is therefore critical towards a true understanding of the regulations of gene expression. The task of discovering eukaryotic TFBSs remains a challenging problem. Here, we demonstrate that evolutionary computation can be used to search for TFBSs in upstream regions of genes known to be coexpressed. Evolutionary computation was used to search for TFBSs of genes regulated by octamer-binding factor and nuclear factor kappa B. The discovered binding sites included experimentally determined known binding motifs as well as lists of putative, previously unknown TFBSs. We believe that this method to search nucleotide sequence information efficiently for similar motifs will be useful for discovering TFBSs that affect gene regulation. PMID:15266008

  13. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  14. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    OpenAIRE

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-01-01

    Background Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. Results In this study, we proposed a new method, viz., CGC-2SPR (CGC ...

  15. Discovery of error-tolerant biclusters from noisy gene expression data

    OpenAIRE

    Gupta Rohit; Rao Navneet; Kumar Vipin

    2011-01-01

    Abstract Background An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bi...

  16. Identification of methylated genes associated with aggressive bladder cancer.

    Directory of Open Access Journals (Sweden)

    Carmen J Marsit

    Full Text Available Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively. We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245 through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  17. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    Science.gov (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  18. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    OpenAIRE

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.; Shih, Shou-Ching

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed ...

  19. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue.

    Directory of Open Access Journals (Sweden)

    Lorenza Mittempergher

    Full Text Available BACKGROUND AND METHODS: Formalin Fixed Paraffin Embedded (FFPE samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF samples. Recently, the Whole Genome (WG DASL (cDNA-mediated Annealing, Selection, extension and Ligation assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material. METHODOLOGY AND PRINCIPAL FINDINGS: We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7, significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature showed very high concordance with the MammaPrint® results. CONCLUSIONS AND SIGNIFICANCE: We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research.

  20. Exome sequencing reveals AMER1 as a frequently mutated gene in colorectal cancer

    Science.gov (United States)

    Sanz-Pamplona, Rebeca; Lopez-Doriga, Adriana; Paré-Brunet, Laia; Lázaro, Kira; Bellido, Fernando; Alonso, M. Henar; Aussó, Susanna; Guinó, Elisabet; Beltrán, Sergi; Castro-Giner, Francesc; Gut, Marta; Sanjuan, Xavier; Closa, Adria; Cordero, David; Morón-Duran, Francisco D.; Soriano, Antonio; Salazar, Ramón; Valle, Laura; Moreno, Victor

    2015-01-01

    PURPOSE Somatic mutations occur at early stages of adenoma and accumulate throughout colorectal cancer (CRC) progression. The aim of this study was to characterize the mutational landscape of stage II tumors and to search for novel recurrent mutations likely implicated in CRC tumorigenesis. DESIGN The exomic DNA of 42 stage II, microsatellite stable, colon tumors and their paired mucosae were sequenced. Other molecular data available in the discovery dataset (gene expression, methylation, and CNV) was used to further characterize these tumors. Additional datasets comprising 553 CRC samples were used to validate the discovered mutations. RESULTS As a result, 4,886 somatic single nucleotide variants (SNVs) were found. Almost all SNVs were private changes, with few mutations shared by more than one tumor, thus revealing tumor-specific mutational landscapes. Nevertheless, these diverse mutations converged into common cellular pathways such as cell cycle or apoptosis. Among this mutational heterogeneity, variants resulting in early stop-codons in the AMER1 (also known as FAM123B or WTX) gene emerged as recurrent mutations in CRC. Loses of AMER1 by other mechanisms apart from mutations such as methylation and copy number aberrations were also found. Tumors lacking this tumor suppressor gene exhibited a mesenchymal phenotype characterized by inhibition of the canonical Wnt pathway. CONCLUSION In silico and experimental validation in independent datasets confirmed the existence of functional mutations in AMER1 in approximately 10% of analyzed CRC tumors. Moreover, these tumors exhibited a characteristic phenotype. PMID:26071483

  1. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery

    Institute of Scientific and Technical Information of China (English)

    Nadia Nicole Ono; Monica Therese Britton; Joseph Nathaniel Fass; Charles Meyer Nicolet; Dawei Lin; Li Tian

    2011-01-01

    Pomegranate fruit peel is rich in bioactive plant natural products,such as hydrolyzable tannins and anthocyanins.Despite their documented roles in human nutrition and fruit quality,genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain.Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform.Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp).Candidate genes for hydrolyzable tannin,anthocyanin,flavonoid,terpenoid and fatty acid biosynthesis and/or regulation were identified.Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts.In addition,115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers.The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate.This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis,identifying genes controlling important agronomic traits,and discovering molecular markers in non-model specialty crop species.

  2. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  3. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper

    Science.gov (United States)

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-01-01

    The Indian pepper ‘Guijiangwang’ (Capsicum frutescens L.), one of the world’s hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper’s expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes. PMID:27756914

  4. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  5. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mitochondrial genome libraries of HL-type sterile line(A) and maintainer line(B) have been constructed.Mitochondrial gene, atp6, was used to screen libraries, due to the different Southern and Northern blot results between sterile and maintainer line. Sequencing analysis of positive clones proved that there were two copies of atp6 gene in sterile line and only one in maintainer line. One copy of atpt6 in sterile line was same to that in maintainer line; the other showed different flanking sequence from the 49th nucleotide downstream of the termination codon of atp6 gene. A new chimeric gene, orfH79, was found in the region. OrfH79 had homology to mitochondrial gene coxⅡ and orfl07, and was special to HL-sterile cytoplasm.``

  6. Correlating overrepresented upstream motifs to gene expression a computational approach to regulatory element discovery in eukaryotes

    CERN Document Server

    Caselle, M; Provero, P

    2002-01-01

    Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulat...

  7. EFFECTIVE NEW CANCER THERAPIES WHICH ARE INDEPENDENT OF P53 GENE STATUS

    OpenAIRE

    Takahashi, Akihisa; Ohnishi, Ken; Kondo, Natsuko; Mori, Eiichiro; Noda, Taichi; Ohnishi, Takeo

    2010-01-01

    The gene product of the tumor suppressor gene p53 is known to play an important role in cancer therapy. The p53 molecule induces cell-cycle arrest, apoptosis and DNA repair after cells are subjected to cancer therapies involving ionizing radiation, hyperthermia and anti-cancer drugs. Patients with cancers bearing mutated (m) p53 or deleted p53 gene often have a poorer prognosis than those with cancers bearing wild-type (wt) p53 gene. We reported that efficient cell lethality by ionizing radia...

  8. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  9. Natural Genetic Variation in Cassava (Manihot esculenta Crantz) Landraces: A Tool for Gene Discovery

    International Nuclear Information System (INIS)

    Cassava landraces are the earliest form of the modern cultivars and represent the first step in cassava domestication. Our forward genetic analysis uses this resource to discover spontaneous mutations in the sucrose/ starch and carotenoid synthesis/accumulation and to develop both an evolutionary and breeding perspective of gene function related to those traits. Biochemical phenotype variants for the synthesis and accumulation of carotenoid, free sugar and starch were identified. Six subtractive cDNA libraries were prepared to construct a high quality (phred > 20) EST database with 1,645 entries. Macroarray and micro-array analysis was performed to identify differentially expressed genes aiming to identify candidate genes related to sugary phenotype and carotenoid diversity. cDNA sequence for gene coding for specific enzymes in the two pathways was obtained. Gene expression analysis for coding specific enzymes was performed by RNA blot and Real Time PCR analysis. Chromoplast-associated proteins of yellow storage root were fractionated and a peptide sequence database with 906 entries sequences (MASCOT validated) was constructed. For the sucrose/starch, metabolism a sugary class of cassava was identified, carrying a mutation in the BEI and GBSS genes. For the pigmented cassava, a pink color phenotype showed absence of expression of the gene CasLYB, while an intense yellow phenotype showed a down regulation of the gene CasHYb. Heat shock proteins were identified as the major proteins associated with carotenoid. Genetic diversity for the GBSS gene in the natural population identified 22 haplotypes and a large nucleotide diversity in four subsets of population. Single segregating population derived from F2, half-sibling and S1 population showed segregation for sugary phenotype (93% of individuals), waxy phenotype (38% of individuals) and glycogen like starch (2% of individuals). Here we summarize our current results for the genetic analysis of these variants and recent

  10. A computational approach to identifying gene-microRNA modules in cancer.

    Science.gov (United States)

    Jin, Daeyong; Lee, Hyunju

    2015-01-01

    MicroRNAs (miRNAs) play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM) data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM. PMID:25611546

  11. A computational approach to identifying gene-microRNA modules in cancer.

    Directory of Open Access Journals (Sweden)

    Daeyong Jin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs play key roles in the initiation and progression of various cancers by regulating genes. Regulatory interactions between genes and miRNAs are complex, as multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from patient to patient and even among patients with the same cancer type, as cancer development is a heterogeneous process. These relationships are more complicated because transcription factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it is important to identify the complex relationships between genes and miRNAs in cancer. In this study, we propose a computational approach to constructing modules that represent these relationships by integrating the expression data of genes and miRNAs with gene-gene interaction data. First, we used a biclustering algorithm to construct modules consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of cancer cells. Second, we combined gene-gene interactions to include genes that play important roles in cancer-related pathways. Then, we selected miRNAs that are closely associated with genes in the modules based on a Gaussian Bayesian network and Bayesian Information Criteria. When we applied our approach to ovarian cancer and glioblastoma (GBM data sets, 33 and 54 modules were constructed, respectively. In these modules, 91% and 94% of ovarian cancer and GBM modules, respectively, were explained either by direct regulation between genes and miRNAs or by indirect relationships via transcription factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respectively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Finally, we extensively analyzed significant modules and showed that most genes in these modules were related to ovarian cancer and GBM.

  12. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    OpenAIRE

    Chou, Wei-Chun; Cheng, An-Lin; Brotto, Marco; Chuang, Chun-Yu

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy,...

  13. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  14. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    Science.gov (United States)

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  15. Cytochrome P450-based cancer gene therapy: current status.

    Science.gov (United States)

    Kan, On; Kingsman, Susan; Naylor, Stuart

    2002-12-01

    Results from a number of preclinical studies have demonstrated that a P450-based gene-directed enzyme prodrug therapy (GDEPT) strategy for the treatment of cancer is both safe and efficacious. This strategy has now moved forward into the clinic. At least two different approaches using different delivery methods (retroviral vector MetXia [Oxford BioMedica] and encapsulated P450 expressing cells), different cytochrome P450 isoforms (human CYP2B6 versus rat CYP2B1) and different prodrugs (cyclophosphamide [CPA] versus ifosfamide [IFA]) have concluded Phase I/II clinical trial with encouraging results. In the future, P450-based GDEPT can potentially be further enhanced by improved vectors for P450 gene delivery and disease-targeted promoters for focused gene expression at the target site. In addition, there is scope for developing synthetic P450s and their respective prodrugs to improve both enzyme kinetics and the profile of the active moiety. PMID:12517265

  16. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence. PMID:27525940

  17. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera

    Directory of Open Access Journals (Sweden)

    Robertson Gordon

    2010-10-01

    Full Text Available Abstract Background Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics. Results We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture conditions, and Sanger sequenced the 5' and 3' ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs. The assembled dataset of unique transcripts (unigenes consists of 6,265 contigs and 2,459 singletons that mapped to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes. Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination, and genes involved in response to treatment with lodgepole pine phloem extract (LPPE. Conclusions We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies in de novo assembled EST collections caused by gene overlap on the genome.

  18. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence.

  19. Seed-based systematic discovery of specific transcription factor target genes.

    Science.gov (United States)

    Mrowka, Ralf; Blüthgen, Nils; Fähling, Michael

    2008-06-01

    Reliable prediction of specific transcription factor target genes is a major challenge in systems biology and functional genomics. Current sequence-based methods yield many false predictions, due to the short and degenerated DNA-binding motifs. Here, we describe a new systematic genome-wide approach, the seed-distribution-distance method, that searches large-scale genome-wide expression data for genes that are similarly expressed as known targets. This method is used to identify genes that are likely targets, allowing sequence-based methods to focus on a subset of genes, giving rise to fewer false-positive predictions. We show by cross-validation that this method is robust in recovering specific target genes. Furthermore, this method identifies genes with typical functions and binding motifs of the seed. The method is illustrated by predicting novel targets of the transcription factor nuclear factor kappaB (NF-kappaB). Among the new targets is optineurin, which plays a key role in the pathogenesis of acquired blindness caused by adult-onset primary open-angle glaucoma. We show experimentally that the optineurin gene and other predicted genes are targets of NF-kappaB. Thus, our data provide a missing link in the signalling of NF-kappaB and the damping function of optineurin in signalling feedback of NF-kappaB. We present a robust and reliable method to enhance the genome-wide prediction of specific transcription factor target genes that exploits the vast amount of expression information available in public databases today. PMID:18485006

  20. Natural genetic variation in cassava (Manihot esculenta Crantz) landraces as a tool for gene discovery

    International Nuclear Information System (INIS)

    Cassava landraces are the earliest form of the modern cultivars and represents the first step in cassava domestication. Our forward genetic analysis uses this resource to discover spontaneous mutations in the sucrose/starch and carotenoid synthesis/accumulation and to develop both evolutionary and breeding perspective of gene function related to those traits. Biochemical phenotype variants for the synthesis and accumulation of carotenoid, free sugar and starch were identified. Six subtractive cDNA libraries were prepared to construct a high quality (phred > 20) EST database with 1645 entries. Macroarray analysis was performed to identify differentially expressed gene aiming to identify candidate gene related to sugary phenotype. cDNA sequence for gene coding for specific enzymes in the two pathways were obtained. Gene expression analysis for coding specific enzymes was performed by RNA blot and Real Time PCR analysis. Chromoplastassociated proteins of yellow storage root were fractionated and a peptide sequence data base with 906 entries sequences (MASCOT validated) was constructed. For the sucrose/starch metabolism a sugary class of cassava was identified carrying mutation in the BEI and GBSS mutation. For the pigmented cassava a pink color phenotype showed absence of expression of the gene CasLYB while an intense yellow phenotype showed a down regulation of the gene CasHYb. Heat shock proteins were identified as the major proteins associated with chromoplast. Genetic diversity for the GBSS gene in the natural population identified 22 haplotype and a large nucleotide diversity in four subset of population. Single segregating population derived from F2, half sib and S1 population showed segregation for sugary phenotype (93% of the individuals), waxy phenotype (38% of the individuals) and glycogen like starch (2% of the individuals). Here we summarize our current results for the genetic analysis of this variants and recent progress in the direction of mapping of

  1. Blood-based lung cancer biomarkers identified through proteomic discovery in cancer tissues, cell lines and conditioned medium

    OpenAIRE

    Birse, Charles E; Lagier, Robert J.; Fitzhugh, William; Harvey I Pass; Rom, William N.; Eric S. Edell; Aaron O. Bungum; Maldonado, Fabien; Jett, James R.; Mesri, Mehdi; Sult, Erin; Joseloff, Elizabeth; Li, Aiqun; Heidbrink, Jenny; Dhariwal, Gulshan

    2015-01-01

    Background Support for early detection of lung cancer has emerged from the National Lung Screening Trial (NLST), in which low-dose computed tomography (LDCT) screening reduced lung cancer mortality by 20 % relative to chest x-ray. The US Preventive Services Task Force (USPSTF) recently recommended annual screening for the high-risk population, concluding that the benefits (life years gained) outweighed harms (false positive findings, abortive biopsy/surgery, radiation exposure). In making the...

  2. Integrating proteomic and functional genomic technologies in discovery-driven translational breast cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Gromova, Irina;

    2003-01-01

    in various areas of basic cancer research such as cell cycle control, invasion and micro-environmental alterations, apoptosis, cell signaling, and immunology, with clinicians (oncologists, surgeons), pathologists, and epidemiologists, with the aim of understanding the molecular mechanisms underlying breast...

  3. Fusion transcript discovery in formalin-fixed paraffin-embedded human breast cancer tissues reveals a link to tumor progression.

    Science.gov (United States)

    Ma, Yan; Ambannavar, Ranjana; Stephans, James; Jeong, Jennie; Dei Rossi, Andrew; Liu, Mei-Lan; Friedman, Adam J; Londry, Jason J; Abramson, Richard; Beasley, Ellen M; Baker, Joffre; Levy, Samuel; Qu, Kunbin

    2014-01-01

    The identification of gene fusions promises to play an important role in personalized cancer treatment decisions. Many rare gene fusion events have been identified in fresh frozen solid tumors from common cancers employing next-generation sequencing technology. However the ability to detect transcripts from gene fusions in RNA isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissues, which exist in very large sample repositories for which disease outcome is known, is still limited due to the low complexity of FFPE libraries and the lack of appropriate bioinformatics methods. We sought to develop a bioinformatics method, named gFuse, to detect fusion transcripts in FFPE tumor tissues. An integrated, cohort based strategy has been used in gFuse to examine single-end 50 base pair (bp) reads generated from FFPE RNA-Sequencing (RNA-Seq) datasets employing two breast cancer cohorts of 136 and 76 patients. In total, 118 fusion events were detected transcriptome-wide at base-pair resolution across the 212 samples. We selected 77 candidate fusions based on their biological relevance to cancer and supported 61% of these using TaqMan assays. Direct sequencing of 19 of the fusion sequences identified by TaqMan confirmed them. Three unique fused gene pairs were recurrent across the 212 patients with 6, 3, 2 individuals harboring these fusions respectively. We show here that a high frequency of fusion transcripts detected at the whole transcriptome level correlates with poor outcome (Parchival FFPE tissues, and the potential prognostic value of the fusion transcripts detected.

  4. Identification of the NAC1-regulated genes in ovarian cancer.

    Science.gov (United States)

    Gao, Min; Wu, Ren-Chin; Herlinger, Alice L; Yap, Kailee; Kim, Jung-Won; Wang, Tian-Li; Shih, Ie-Ming

    2014-01-01

    Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.

  5. Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer.

    NARCIS (Netherlands)

    Mischo, A.; Kubuschok, B.; Ertan, K.; Preuss, K.D.; Romeike, B.; Regitz, E.; Schormann, C.; Bruijn, D.R.H. de; Wadle, A.; Neumann, F.; Schmidt, W.; Renner, C.; Pfreundschuh, M.

    2006-01-01

    To determine the expression of cancer testis (CT) genes and antibody responses in a nonselected population of patients with primary breast cancer, we investigated the composite expression of 11 CT genes by RT-PCR in fresh biopsies of 100 consecutive cases of primary breast carcinoma and by immunohis

  6. Regulation of Metformin Response by Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Daniela Buac

    2013-12-01

    Full Text Available Adenosine monophosphate-activated protein kinase (AMPK, a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115, a novel Really Interesting New Gene (RING finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA enhanced phosphorylated AMPKα1 (pAMPKα1. The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (dephosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone.

  7. Discovery and identification of Serum Amyloid A protein elevated in lung cancer serum

    Institute of Scientific and Technical Information of China (English)

    DAI SongWei; WANG XiaoMin; LIU LiYun; LIU JiFu; WU ShanShan; HUANG LingYun; XIAO XueYuan; HE DaCheng

    2007-01-01

    Two hundred and eighteen serum samples from 175 lung cancer patients and 43 healthy individuals were analyzed by using Surface Enhaced Laser Desorption/lonization Time of Flight Mass Spectrometry (SELDI-TOF-MS). The data analyzed by both Biomarker WizardTM and Biomarker PatternsTM software showed that a protein peak with the molecular weight of 11.6 kDa significantly increased in lung cancer.Meanwhile, the level of this biomarker was progressively increased with the clinical stages of lung cancer. The candidate biomarker was then obtained from tricine one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis by matching the molecular weight with peaks on WCX2 chips and was identified as Serum Amyloid A protein (SAA) by MALDI/MS-MS and database searching. It was further validated in the same serum samples by immunoprecipitation with commercial SAA antibody.To confirm the SAA differential expression in lung cancer patients, the same set of serum samples was measured by ELISA assay. The result showed that at the cutoff point 0.446 (OD value) on the Receiver Operating Characteristic (ROC) curve, SAA could better discriminate lung cancer from healthy individuals with sensitivity of 84.1% and specificity of 80%. These findings demonstrated that SAA could be characterized as a biomarker related to pathological stages of lung cancer.

  8. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging.

    Directory of Open Access Journals (Sweden)

    Fang Yao

    Full Text Available The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV from early stage (stages I-II cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests.

  9. Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related species.

    Science.gov (United States)

    Dang, Thu Thuy T; Onoyovwi, Akpevwe; Farrow, Scott C; Facchini, Peter J

    2012-01-01

    Benzylisoquinoline alkaloids (BIAs) are a large, diverse group of ∼2500 specialized plant metabolites. Many BIAs display potent pharmacological activities, including the narcotic analgesics codeine and morphine, the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine, the antimicrobial agents sanguinarine and berberine, and the muscle relaxant (+)-tubocurarine. Opium poppy remains the sole commercial source for codeine, morphine, and a variety of semisynthetic drugs, including oxycodone and buprenorphine, derived primarily from the biosynthetic pathway intermediate thebaine. Recent advances in transcriptomics, proteomics, and metabolomics have created unprecedented opportunities for isolating and characterizing novel BIA biosynthetic genes. Here, we describe the application of next-generation sequencing and cDNA microarrays for selecting gene candidates based on comparative transcriptome analysis. We outline the basic mass spectrometric techniques to perform deep proteome and targeted metabolite analyses on BIA-producing plant tissues and provide methodologies for functionally characterizing biosynthetic gene candidates through in vitro enzyme assays and transient gene silencing in planta. PMID:22999177

  10. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue

    Directory of Open Access Journals (Sweden)

    Jacob Kruger Jensen

    2013-06-01

    Full Text Available The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk. This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180, and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.

  11. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  12. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-03-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  13. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia.

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-01-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  14. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  15. Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

    Directory of Open Access Journals (Sweden)

    Gustavo A Gomez

    Full Text Available The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

  16. Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing's sarcoma: tumor models for cancer drug discovery

    Science.gov (United States)

    Sampson, Valerie B; Kamara, Davida F; Kolb, E Anders

    2014-01-01

    Introduction There are > 75 histological types of solid tumors that are classified into two major groups: bone and soft-tissue sarcomas. These diseases are more prevalent in children, and pediatric sarcomas tend to be highly aggressive and rapidly progressive. Sarcomas in adults may follow a more indolent course, but aggressive tumors are also common. Sarcomas that are metastatic at diagnosis, or recurrent following therapy, remain refractory to current treatment options with dismal overall survival rates. A major focus of clinical trials, for patients with sarcoma, is to identify novel and more effective therapeutic strategies targeted to genomic or proteomic aberrations specific to the malignant cells. Critical to the understanding of the potential for targeted therapies are models of disease that are representative of clinical disease and predictive of relevant clinical responses. Areas covered In this article, the authors discuss the use of mouse xenograft models and genetically engineered mice in cancer drug discovery. The authors provide a special focus on models for the two most common bone sarcomas: osteosarcoma (OS) and Ewing's sarcoma (ES). Expert opinion Predicting whether a new anticancer agent will have a positive therapeutic index in patients with OS and ES remains a challenge. The use of mouse sarcoma models for understanding the mechanisms involved in the response of tumors to new treatments is an important step in the process of drug discovery and the development of clinically relevant therapeutic strategies for these diseases. PMID:23844615

  17. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  18. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells

    OpenAIRE

    Chang, Shufang; Guo, Juan; Sun, Jiangchuan; Zhu, Shenyin; Yan, Yu; Zhu, Yi; Li, Min; Wang, Zhigang; Xu, Ronald X

    2012-01-01

    Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid micr...

  19. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gene expression profiling test system for breast... Associated Antigen immunological Test Systems § 866.6040 Gene expression profiling test system for breast cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer...

  20. Combination therapy of murine liver cancer with IL-12 gene and HSV-TK gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the synergistic anti-tumor effects of murine IL-12 gene and HSV-TK gene therapy in mice bearing liver cancer. Methods: Mouse liver cancer MM45T. Li (H-2d) cells were transfected with retroviral vector containing IL-12 gene or HSV-TK gene insert. Gene-modified liver cancer cells, MM45T. Li/IL-12 and MM45T. Li/TK, with stable expression of IL-12 and TK were obtained. Balb/c mice were inoculated subcutaneously with 2′ 105 MM45T. Li cells. When the tumor reached a size of 0.5-1.0 cm, a mixture of MM45T.Li/TK cells and 60Co-irradiated MM45T. Li/IL-12 cell were injected intratumoraly. Ganciclovir (GCV) was injected ip (40 mg.kg-1.d-1) for 10 days. Intratumoral injection of 60Co-irradiated MM45T. Li/IL-12 cells was repeated twice in one week apart. Mice with distant tumors were treated according to the same protocol. CTL activity of spleen cells was measured by 51Cr-release assay and phenotype of tumor infiltrating lymphocytes by immunohistochemical staining. Results: In mice treated with MM45T. Li/IL-12 or MM45T. Li/TK+GCV individually led to moderate reduction in tumor growth, but neither could eradicate the tumor completely, while in 60% of mice treated with a mixture of MM45T. Li/IL-12 and MM45T. Li/TK cells plus GCV, complete tumor regression was observed, with no tumor recurrence for two months. The growth of distant tumor was also inhibited significantly in mice similarly treated. Most of the mice received combined gene therapy plus GCV had abundant CD4+, CD8+T lymphocyte infiltration. Their CTL activity was significantly higher than in mice received single gene therapy. Conclusion Combination therapy with IL-12 gene and HSV-TK gene plus GCV is effective for mouse liver cancer.

  1. Use of model organism and disease databases to support matchmaking for human disease gene discovery.

    Science.gov (United States)

    Mungall, Christopher J; Washington, Nicole L; Nguyen-Xuan, Jeremy; Condit, Christopher; Smedley, Damian; Köhler, Sebastian; Groza, Tudor; Shefchek, Kent; Hochheiser, Harry; Robinson, Peter N; Lewis, Suzanna E; Haendel, Melissa A

    2015-10-01

    The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases. PMID:26269093

  2. Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Xihong Li

    Full Text Available BACKGROUND: The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq technology provides a powerful and efficient method for transcript analysis and immune gene discovery. METHODS/PRINCIPAL FINDINGS: A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 10(8 cfu·mL(-1 was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr database. For function classification and pathway assignment, 18,734 (36.00% unigenes were categorized to three Gene Ontology (GO categories, 12,243 (23.51% were classified to 25 Clusters of Orthologous Groups (COG, and 8,983 (17.25% were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. CONCLUSIONS/SIGNIFICANCE: This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab.

  3. Cancer immunotherapy targeting neoantigens.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-02-01

    Neoantigens are antigens encoded by tumor-specific mutated genes. Studies in the past few years have suggested a key role for neoantigens in cancer immunotherapy. Here we review the discoveries of neoantigens in the past two decades and the current advances in neoantigen identification. We also discuss the potential benefits and obstacles to the development of effective cancer immunotherapies targeting neoantigens.

  4. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.

    Science.gov (United States)

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Marrocco, Biagina; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-11-20

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.

  5. Discovery and identification of anti-U1-A snRNP antibody in lung cancer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lijuan; LIU Jifu; ZHANG Hao; WU Shanshan; HUANG Lingyun; HE Dacheng; XIAO Xueyuan

    2005-01-01

    There are multiple reports of autoimmune response in patients with lung cancer. To investigate whether a novel autoantibody is present in patients with lung cancer and evaluate its clinical diagnostic and prognostic value, sera from 10 patients with lung cancer and 10 normal individuals were analyzed using immunofluorescence and Western blotting. It was found that one serum sample from the patients with squamous carcinoma gave a fine speckled pattern staining in nucleus and had a high titer antinuclear autoantibody which could recognize 31 kD of nuclear protein isolated from both cancer cells and normal cells. The same patient's serum was further used to immunoprecipitate the target antigen. The protein bands were excised from the SDS-PAGE gels and were analyzed with a Qstar Pulser I Quadrupole time-flight mass spectrometer, and the 31 kD target antigen was identified as U1-A snRNP. To test the prevalence of anti-U1-A snRNP antibody, sera from 93 patients including 36 squmaous carcinomas (SCC), 26 adenocarcinomas (Ad), and 31 small cell carcinomas (SCLC) were screened by Western blotting. The results demonstrated that anti-U1-A snRNP antibody was present in 50% of SCC sera, 26.9% of Ad sera and 54.8% of SCLC sera. In this paper, we report for the first time that anti-U1-A snRNP antibody could be detected in the patients with lung cancer.

  6. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    Science.gov (United States)

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  7. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2005-06-01

    Full Text Available Abstract Background Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A, could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets. Results We have shown that stable expression of U94 gene in PC3 cell line inhibited its focus formation in culture, and tumorigenesis in nude mice. Moreover gene expression profiling revealed dramatic upregulation of FN 1 (fibronectin, 91 ± 16-fold, and profound downregulation of ANGPTL 4 (angiopoietin-like-4, 20 ± 4-fold in U94 recombinant PC3 cell line. Quantitative real-time polymerase chain reaction (QRT-PCR analysis showed that the pattern of expression of FN 1 and ANGPTL 4 mRNA were consistent with the microarray data. Based on previous reports, the findings in this study implicate upregulation of FN 1 and downregulation of ANGPTL 4 in the anti tumor activity of U94. Genes with cancer inhibitory activities that were also upregulated include SERPINE 2 (serine/cysteine protease inhibitor 2, 7 ± 1-fold increase and ADAMTS 1 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7 ± 2-fold increase. Additionally, SPUVE 23 (serine protease 23 that is pro-tumorigenic was significantly downregulated (10 ± 1-fold. Conclusion The dramatic upregulation of FN 1 and downregulation of ANGPTL 4 genes in PC3 cell line

  8. Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries.

    Directory of Open Access Journals (Sweden)

    Roberto Sierra

    Full Text Available BACKGROUND: Phytophthora infestans (Mont. de Bary causes late blight of potato and tomato, and has a broad host range within the Solanaceae family. Most studies of the Phytophthora--Solanum pathosystem have focused on gene expression in the host and have not analyzed pathogen gene expression in planta. METHODOLOGY/PRINCIPAL FINDINGS: We describe in detail an in silico approach to mine ESTs from inoculated host plants deposited in a database in order to identify particular pathogen sequences associated with disease. We identified candidate effector genes through mining of 22,795 ESTs corresponding to P. infestans cDNA libraries in compatible and incompatible interactions with hosts from the Solanaceae family. CONCLUSIONS/SIGNIFICANCE: We annotated genes of P. infestans expressed in planta associated with late blight using different approaches and assigned putative functions to 373 out of the 501 sequences found in the P. infestans genome draft, including putative secreted proteins, domains associated with pathogenicity and poorly characterized proteins ideal for further experimental studies. Our study provides a methodology for analyzing cDNA libraries and provides an understanding of the plant--oomycete pathosystems that is independent of the host, condition, or type of sample by identifying genes of the pathogen expressed in planta.

  9. An ensemble method for gene discovery based on DNA microarray data

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The advent of DNA microarray technology has offered the promise of casting new insights onto deciphering secrets of life by monitoring activities of thousands of genes simultaneously.Current analyses of microarray data focus on precise classification of biological types,for example,tumor versus normal tissues.A further scientific challenging task is to extract disease-relevant genes from the bewildering amounts of raw data,which is one of the most critical themes in the post-genomic era,but it is generally ignored due to lack of an efficient approach.In this paper,we present a novel ensemble method for gene extraction that can be tailored to fulfill multiple biological tasks including(i)precise classification of biological types;(ii)disease gene mining; and(iii)target-driven gene networking.We also give a numerical application for(i)and(ii)using a public microarrary data set and set aside a separate paper to address(iii).

  10. [The progress of TMPRSS2-ETS gene fusions and their mechanism in prostate cancer].

    Science.gov (United States)

    Guo, Xiao-Qiang; Gui, Yao-Ting; Cai, Zhi-Ming

    2011-02-01

    The gene fusions between transmembrane protease serine 2 (TMPRSS2) and E26 (ETS) transcription factors are present in over 50% of patients with prostate cancer. TMPRSS2-ERG is the most common gene fusion type. The ERG overexpression induced by TMPRSS2-ERG gene fusion contributes to the development of prostate cancer. Both androgen receptor binding and genotoxic stress induce chromosomal proximity and TMPRSS2-ETS gene fusions. TMPRSS2-ERG gene fusion functions as a biomarker for prostate cancer, which can be easily detected in urine. This review focuses on the characteristics, oncogenic and rearranged mechanism, and clinical application of TMPRSS2-ETS gene fusions.

  11. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled. PMID:27289100

  12. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100