WorldWideScience

Sample records for cancer dynamic interface

  1. Interface dynamics of competing tissues

    Science.gov (United States)

    Podewitz, Nils; Jülicher, Frank; Gompper, Gerhard; Elgeti, Jens

    2016-08-01

    Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division and cell death balance. When two different tissues grow in competition, a difference of their homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the propagation of the interface separating the tissues. Here, we study structural and dynamical properties of this interface by combining continuum theory with mesoscopic simulations of a cell-based model. Using a simulation box that moves with the interface, we find that a stationary state exists in which the interface has a finite width and propagates with a constant velocity. The propagation velocity in the simulations depends linearly on the homeostatic stress difference, in excellent agreement with the analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we analyzed the interface growth and roughness as a function of time and system size. We estimated growth and roughness exponents, which differ from those previously obtained for simple tissue growth.

  2. Fligt Dynamics Facility - External Interfaces

    OpenAIRE

    Gonçalves, João Manuel Ribeiro

    2007-01-01

    Trabalho de projecto de mestrado , Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2007 O sistema Galileo consiste numa constelação de 30 satélites que disponibilizará diversos serviços, entre os quais, serviços de posicionamento e navegação alternativos aos actualmente disponibilizados pelo GPS. Neste projecto será concebido o componente External Interfaces que é parte integrante do elemento Flight Dynamics Facility (FDF), responsável pelo cálculo das órbitas e comp...

  3. User Interface Design For Dynamic Geometry Software

    Directory of Open Access Journals (Sweden)

    Ulrich Kortenkamp

    2010-06-01

    Full Text Available In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.

  4. Dynamic tabletop interfaces for increasing creativity

    OpenAIRE

    SCHMITT, Lara; Buisine, Stéphanie; Chaboissier, Jonathan; AOUSSAT, Améziane; Vernier, Frédéric

    2012-01-01

    International audience We designed a tabletop brainwriting interface to examine the effects of time pressure and social pressure on the creative performance. After positioning this study with regard to creativity research and human activity in dynamic environments, we present our interface and experiment. Thirty-two participants collaborated (by groups of four) on the tabletop brainwriting task under four conditions of time pressure and two conditions of social pressure. The results show t...

  5. Dynamically Generated Interfaces in XML Based Architecture

    CERN Document Server

    Gupta, Minit

    2009-01-01

    Providing on-line services on the Internet will require the definition of flexible interfaces that are capable of adapting to the user's characteristics. This is all the more important in the context of medical applications like home monitoring, where no two patients have the same medical profile. Still, the problem is not limited to the capacity of defining generic interfaces, as has been made possible by UIML, but also to define the underlying information structures from which these may be generated. The DIATELIC project deals with the tele-monitoring of patients under peritoneal dialysis. By means of XML abstractions, termed as "medical components", to represent the patient's profile, the application configures the customizable properties of the patient's interface and generates a UIML document dynamically. The interface allows the patient to feed the data manually or use a device which allows "automatic data acquisition". The acquired medical data is transferred to an expert system, which analyses the dat...

  6. Dynamics of swimming bacteria at complex interfaces

    CERN Document Server

    Lopez, Diego

    2014-01-01

    Flagellated bacteria exploiting helical propulsion are known to swim along circular trajectories near surfaces. Fluid dynamics predicts this circular motion to be clockwise (CW) above a rigid surface (when viewed from inside the fluid) and counter-clockwise (CCW) below a free surface. Recent experimental investigations showed that complex physicochemical processes at the nearby surface could lead to a change in the direction of rotation, both at solid surfaces absorbing slip-inducing polymers and interfaces covered with surfactants. Motivated by these results, we use a far-field hydrodynamic model to predict the kinematics of swimming near three types of interfaces: clean fluid-fluid interface, slipping rigid wall, and a fluid interface covered by incompressible surfactants. Representing the helical swimmer by a superposition of hydrodynamic singularities, we first show that in all cases the surfaces reorient the swimmer parallel to the surface and attract it, both of which are a consequence of the Stokes dip...

  7. The crustal dynamics intelligent user interface anthology

    Science.gov (United States)

    Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.

  8. Coupling Analysis of Tribology and Dynamics in Rolling Interface

    Institute of Scientific and Technical Information of China (English)

    DUANJi-an; ZHANGJue

    2004-01-01

    The metal plastic flow,tribology performance and work roll vibration on the rolling interface were analyzed.Considering the effect of work roll vibration on the tribolgy behavior of rolling interface,the damping of rolling inteface was researched.It is found that the rolling interface,where the partial hydraulic lubricating film and dry friction area coexist,is of negative damping coefficitnt,the negative damping results from the dynamic variation of the thickeess of lubricating film in the rolling interface,and is caused by the special coupling between dynamics and tribology of the rolling interface.

  9. A Natural-Product Switch for a Dynamic Protein Interface

    NARCIS (Netherlands)

    Scheepstra, Marcel; Nieto, Lidia; Hirsch, Anna K. H.; Fuchs, Sascha; Leysen, Seppe; Vinh Lam, Chan; Panhuis, Leslie In Het; van Boeckel, Constant A. A.; Wienk, Hans; Boelens, Rolf; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2014-01-01

    Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Curren

  10. Colloids at liquid interfaces: dynamics and organization

    NARCIS (Netherlands)

    Ershov, D.S.

    2014-01-01

      This thesis deals with spherical microparticles trapped at liquid interfaces. It focuses on two aspects of their behavior: firstly, the effect of the curvature of a liquid interface on interparticle interactions and their organization; secondly, the mobility of particles at visco-elastic int

  11. Building a dynamic Web/database interface

    OpenAIRE

    Cornell, Julie.

    1996-01-01

    Computer Science This thesis examines methods for accessing information stored in a relational database from a Web Page. The stateless and connectionless nature of the Web's Hypertext Transport Protocol as well as the open nature of the Internet Protocol pose problems in the areas of database concurrency, security, speed, and performance. We examined the Common Gateway Interface, Server API, Oracle's Web/database architecture, and the Java Database Connectivity interface in terms of p...

  12. Flexible dynamic models for user interfaces

    Science.gov (United States)

    Vogelsang, Holger; Brinkschulte, Uwe; Siormanolakis, Marios

    1997-04-01

    This paper describes an approach for a platform- and implementation-independent design of user interfaces using the UIMS idea. It is a result of a detailed examination of object-oriented techniques for program specification and implementation. This analysis leads to a description of the requirements for man-machine interaction from the software- developers point of view. On the other hand, the final user of the whole system has a different view of this system. He needs metaphors of his own world to fulfill his tasks. It's the job of the user interface designer to bring these views together. The approach, described in this paper, helps bringing both kinds of developers together, using a well defined interface with minimal communication overhead.

  13. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...... between Pt and YSZ induced by the current passage. These changes involve transport of solid and are slow enough to explain the large time constants. The low frequency capacitance and inductive loop forming an entire circle indicate the presence of gas reservoirs at the YSZ-Pt interface....

  14. Polymer dynamics in nanoconfinement: Interfaces and interphases

    Directory of Open Access Journals (Sweden)

    Krutyeva Margarita

    2015-01-01

    Full Text Available The dynamics of polymers in nanoconfinement was studied by using neutron spectroscopy. A number of pronounced effects on different time and length scales for the polymers confined in nanopores of anodic aluminium oxide were observed. Local segmental dynamics was found to be dependent on the type of the interaction between the solid pore wall and polymer: attractive interactions lead to the formation of a surface layer with the dynamics slowed down as compared to the dynamics of pure polymer; neutral/repulsive interaction do not change the local dynamics. Attractive interactions cause anchoring of polymer segments on the surface creating an interphase between the polymer in close vicinity to the solid surface and pure polymer. In addition, at strong confinement conditions the dilution of the entanglement network is observed.

  15. Oxide Interfaces: emergent structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Roy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-16

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.

  16. Dynamic interface pressure distributions of two transtibial prosthetic socket concepts.

    Science.gov (United States)

    Dumbleton, Tim; Buis, Arjan W P; McFadyen, Angus; McHugh, Brendan F; McKay, Geoff; Murray, Kevin D; Sexton, Sandra

    2009-01-01

    In this study, we investigated and compared the dynamic interface pressure distribution of hands-off and hands-on transtibial prosthetic systems by means of pressure mapping. Of the 48 established unilateral amputees recruited, half (n = 24) had been wearing pressure-cast prostheses (IceCast Compact) and the other half (n = 24) had been wearing hand-cast sockets of the patellar tendon bearing design. We measured the dynamic pressure profile of more than 90% of the area within each prosthetic socket by means of four Tekscan F-Scan socket transducer arrays. We compared the interface pressure between socket concepts. We found that the distribution of dynamic pressure at the limb-socket interface was similar for the two intervention (socket prescription) groups. However, a significant difference was found in the magnitude of the interface pressure between the two socket concepts; the interface pressures recorded in the hands-off sockets were higher than those seen in the hands-on concept. Despite the differences in interface pressure, the level of satisfaction with the sockets was similar between subject groups. The sockets instrumented for this study had been in daily use for at least 6 months, with no residual-limb health problems.

  17. Self-organization in interface dynamics and urban development

    Directory of Open Access Journals (Sweden)

    Ehud Meron

    1999-01-01

    Full Text Available The view of the urban environment as an extended nonlinear system introduces new concepts, motivates new questions, and suggests new methodologies in the study of urban dynamics. A review of recent results on interface dynamics in nonequilibrium physical systems is presented, and possible implications on the urban environment are discussed. It is suggested that the growth modes of specific urban zones (e.g. residential, commercial, or industrial and the factors affecting them can be studied using mathematical models that capture two generic interface instabilities.

  18. New and general framework for adsorption processes on dynamic interfaces

    CERN Document Server

    Schmuck, Markus

    2013-01-01

    We introduce a new and general continuum thermodynamic framework for the mathematical analysis and computation of adsorption on dynamic interfaces. To the best of our knowledge, there is no formulation available that accounts for the coupled dynamics of interfaces and densities of adsorbants. Our framework leads to analytic adsorption isotherms which also take the interfacial geometry fully into account. We demonstrate the utility and physical consistency of our framework with a new computational multi-level discretization strategy. In the computations, we recover the experimentally observed feature that the adsorption of particles minimizes the interfacial tension.

  19. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    Science.gov (United States)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    . Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.

  20. Dynamics of a bubble bouncing at a compound interface

    Science.gov (United States)

    Feng, Jie; Muradoglu, Metin; Stone, Howard A.

    2014-11-01

    Bubbly flow is extensively involved in a wide range of technological applications, which generate a great demand for understanding of bubble physics. The collision, bouncing and coalescence of moving bubbles with liquid/gas and liquid/solid interfaces, as the first stage for the formation of foams and flotation aggregates, have been the subject of many studies, but there are still unanswered questions related to how the properties of the interface influence the dynamics. For example, Zawala et al. 2013 have tried to investigate how the kinetic energy of the bubble affects the liquid film drainage during the collision with an air-water interface. Inspired by Feng et al. 2014, we study the dynamics of an air bubble bouncing at a liquid/liquid/gas interface, in which a thin layer of oil is put on top of the water. The presence of the oil layer changes the interfacial properties and thus the entire process. Combined with direct numerical simulations, extensive experiments were carried out to investigate the effects of the oil layer thickness, oil viscosity, bubble size and initial impact velocity on the bouncing of the bubble at the compound interface. In addition, a mass-spring model is proposed to describe the bubble dynamics and interactions with the oil layer.

  1. Dynamics of charged microparticles at oil-water interfaces.

    Science.gov (United States)

    Wu, Chih-Yuan; Tarimala, Sowmitri; Dai, Lenore L

    2006-02-28

    Solid-stabilized emulsions have been used as a model system to investigate the dynamics of charged microparticles with diameters of 1.1 microm at oil-water interfaces. Using confocal microscopy, we investigated the influences of interfacial curvature, cluster size, and temperature on the diffusion of solid particles. Our work suggests that a highly curved emulsion interface slows the motion of solid particles. This qualitatively supports the theoretical work by Danov et al. (Danov, K. D.; Dimova, R.; Pouligny, B. Phys. Fluids 2000, 12, 2711); however, the interfacial curvature effect decreases with increasing oil-phase viscosity. The diffusion of multiparticle clusters at oil-water interfaces is a strong function of cluster size and oil-phase viscosity and can be quantitatively related to fractal dimension. Finally, we report the influence of temperature and quantify the diffusion activation energy and friction factor of the particles at the investigated oil-water interfaces.

  2. Nanoparticles at liquid interfaces: Rotational dynamics and angular locking

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Sepideh; Kretzschmar, Ilona [Department of Chemical Engineering, City College of City University of New York, New York, New York 10031 (United States); Koplik, Joel [Department of Physics and The Benjamin Levich Institute for Physico-chemical Hydrodynamics, City College of City University of New York, New York, New York 10031 (United States); Colosqui, Carlos E., E-mail: carlos.colosqui@stonybrook.edu [Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)

    2014-01-07

    Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively “lock” the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

  3. Microrheology and Particle Dynamics at Liquid-Liquid Interfaces

    Science.gov (United States)

    Song, Yanmei

    The rheological properties at liquid-liquid interfaces are important in many industrial processes such as manufacturing foods, pharmaceuticals, cosmetics, and petroleum products. This dissertation focuses on the study of linear viscoelastic properties at liquid-liquid interfaces by tracking the thermal motion of particles confined at the interfaces. The technique of interfacial microrheology is first developed using one- and two-particle tracking, respectively. In one-particle interfacial microrheology, the rheological response at the interface is measured from the motion of individual particles. One-particle interfacial microrheology at polydimethylsiloxane (PDMS) oil-water interfaces depends strongly on the surface chemistry of different tracer particles. In contrast, by tracking the correlated motion of particle pairs, two-particle interfacial microrheology significantly minimizes the effects from tracer particle surface chemistry and particle size. Two-particle interfacial microrheology is further applied to study the linear viscoelastic properties of immiscible polymer-polymer interfaces. The interfacial loss and storage moduli at PDMS-polyethylene glycol (PEG) interfaces are measured over a wide frequency range. The zero-shear interfacial viscosity, estimated from the Cross model, falls between the bulk viscosities of two individual polymers. Surprisingly, the interfacial relaxation time is observed to be an order of magnitude larger than that of the PDMS bulk polymers. To explore the fundamental basis of interfacial nanorheology, molecular dynamics (MD) simulations are employed to investigate the nanoparticle dynamics. The diffusion of single nanoparticles in pure water and low-viscosity PDMS oils is reasonably consistent with the prediction by the Stokes-Einstein equation. To demonstrate the potential of nanorheology based on the motion of nanoparticles, the shear moduli and viscosities of the bulk phases and interfaces are calculated from single

  4. Ultrafast dynamics of electrons at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, Jason D.

    1999-05-03

    Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure

  5. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    Science.gov (United States)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  6. Molecular dynamics study of the water/n-alkane interface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Molecular dynamics simulations on the interface between liquid water and liquid n-alkane (including octane, nonane, decane, undecane and dodecane) have been performed with the purpose to study the interfacial properties: (Ⅰ) density profile; (Ⅱ) molecular orientation; (Ⅲ) interfacial tension and the temperature effect on the interfacial tension. Simulation results show that at the interface the structures of both water and n-alkane are different from those in the bulk. Water has an orientational preference due to the number of hydrogen bonds per molecule maximized. N-alkane has a more lateral orientation with respect to the interface in order to be in close contact with water. The calculated individual phase bulk density and interfacial tension of water/n-alkane systems are in good agreement with the corresponding experimental ones.

  7. Dynamics of Polaron at Polymer/Polymer Interface

    Institute of Scientific and Technical Information of China (English)

    DI Bing; MENG Yan; AN Zhong; LI You-Cheng

    2008-01-01

    The migration of a polaron at polymer/polymer interface is believed to be of fundamental importance for the transport and light-emitting properties of conjugated polymer-based light emitting diodes.Based on the onedimensional tight-binding Su-Schrieffer-Heeger(SSH)model,we have investigated polaron dynamics in a onedimensional polymer/polymer system by using a nonadiabatic evolution method.In particular,we focus on how a polaron migrates through the conjugated polymer/polymer interface in the presence of external electric field.The results show that the migration of polaron at the interface depends sensitively on the hopping integrals,the potential barrier induced by the energy mismatch,and the strength of applied electric field which increases the polaron kinetic energy.

  8. On the Interface Formation Model for Dynamic Triple Lines

    CERN Document Server

    Bothe, Dieter

    2015-01-01

    This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system.

  9. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength.

    Science.gov (United States)

    Ge, Ting; Robbins, Mark O; Perahia, Dvora; Grest, Gary S

    2014-07-01

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  10. Molecular dynamics simulations of liquid crystals at interfaces

    CERN Document Server

    Shield, M

    2002-01-01

    Molecular dynamics simulations of an atomistic model of 4-n-octyl-4'-cyanobiphenyl (8CB) were performed for thin films of 8CB on solid substrates (a pseudopotential representation of the molecular topography of the (100) crystal surface of polyethylene (PE), a highly ordered atomistic model of a pseudo-crystalline PE surface and an atomistic model of a partially orientated film of PE), free standing thin films of 8CB and 8CB droplets in a hexagonal pit. The systems showed strong homeotropic anchoring at the free volume interface and planar anchoring at the solid interface whose strength was dependent upon the surface present. The free volume interface also demonstrated weak signs of smectic wetting of the bulk. Simulations of thin free standing films of liquid crystals showed the ordered nature of the liquid crystals at the two free volume interfaces can be adopted by the region of liquid crystal molecules between the homeotropic layer at each interface only if there is a certain number of liquid crystal mole...

  11. An approach to virtual research environment user interfaces dynamic construction

    OpenAIRE

    Assante, Massimiliano; Pagano, Pasquale (ISTI-CNR); Candela, Leonardo; De Faveri, Federico; Lelii, Lucio

    2011-01-01

    Virtual Research Environments are internet-based working environments tailored to serve needs of diverse and evolving user communities. These environments are oriented to promote new ways of dealing with modern research tasks. Their realization requires user interfaces that are dynamically built to provide their clients with organised views on the data and services aggregated to meet specific community needs. This paper presents an approach to the problem of Virtual Research Environment user ...

  12. Molecular dynamics simulations of liquid crystals at interfaces

    International Nuclear Information System (INIS)

    Molecular dynamics simulations of an atomistic model of 4-n-octyl-4'-cyanobiphenyl (8CB) were performed for thin films of 8CB on solid substrates (a pseudopotential representation of the molecular topography of the (100) crystal surface of polyethylene (PE), a highly ordered atomistic model of a pseudo-crystalline PE surface and an atomistic model of a partially orientated film of PE), free standing thin films of 8CB and 8CB droplets in a hexagonal pit. The systems showed strong homeotropic anchoring at the free volume interface and planar anchoring at the solid interface whose strength was dependent upon the surface present. The free volume interface also demonstrated weak signs of smectic wetting of the bulk. Simulations of thin free standing films of liquid crystals showed the ordered nature of the liquid crystals at the two free volume interfaces can be adopted by the region of liquid crystal molecules between the homeotropic layer at each interface only if there is a certain number of liquid crystal molecules present. The perpendicular anchoring imposed by the free volume interface and the solid interface for the thin films on the solid substrates resulted in some evidence for the liquid crystal director undergoing a continual rotation at low temperatures and a definite discontinuous change at higher temperatures. The liquid crystal alignment imparted by these substrates was found to depend upon the topography of the surface and not the direction of the polymer chains in the substrate. The liquid crystal was found to order via an epitaxy-like mechanism. The perpendicular anchoring results in a drop in the order - disorder transition temperature for the molecules in the region between the homeotropic layer at the free volume interface and the planar layers at the solid interface. An increase in the size of this region does not alter the transition temperature. The shape of the liquid crystal molecules is dependent upon the degree of order and thus the nematic

  13. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    Science.gov (United States)

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  14. Dynamic Binding of Driven Interfaces in Coupled Ultrathin Ferromagnetic Layers

    Science.gov (United States)

    Metaxas, P. J.; Stamps, R. L.; Jamet, J.-P.; Ferré, J.; Baltz, V.; Rodmacq, B.; Politi, P.

    2010-06-01

    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H→0. Several features of the bound states are reproduced using a one-dimensional model, illustrating their general nature.

  15. Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    OpenAIRE

    Metaxas, P. J.; Stamps, R. L.; Jamet, J. -P.; Ferr?, J.; Baltz, V.; Rodmacq, B.; Politi, P.

    2010-01-01

    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound ...

  16. Evanescent-wave dynamic light scattering at an oil-water interface: Diffusion of interface-adsorbed colloids

    OpenAIRE

    STOCCO, Antonio; Mokhtari, Tahereh; Haseloff, Günter; Erbe, Andreas; Sigel, Reinhard

    2011-01-01

    A light-scattering goniometer for evanescent-wave dynamic light scattering (EWDLS) measurements at a liquid-fluid interface is introduced, and used for measurements on two charge-stabilized polystyrene colloid systems adsorbed to alkane-water interfaces. The goniometer allows an independent variation of the penetration depth and the scattering vector components parallel and perpendicular to a liquid-fluid interface. The possible illumination geometries are compared. Ellipsometry at the liquid...

  17. Dynamic User Interfaces for Service Oriented Architectures in Healthcare.

    Science.gov (United States)

    Schweitzer, Marco; Hoerbst, Alexander

    2016-01-01

    Electronic Health Records (EHRs) play a crucial role in healthcare today. Considering a data-centric view, EHRs are very advanced as they provide and share healthcare data in a cross-institutional and patient-centered way adhering to high syntactic and semantic interoperability. However, the EHR functionalities available for the end users are rare and hence often limited to basic document query functions. Future EHR use necessitates the ability to let the users define their needed data according to a certain situation and how this data should be processed. Workflow and semantic modelling approaches as well as Web services provide means to fulfil such a goal. This thesis develops concepts for dynamic interfaces between EHR end users and a service oriented eHealth infrastructure, which allow the users to design their flexible EHR needs, modeled in a dynamic and formal way. These are used to discover, compose and execute the right Semantic Web services. PMID:27577496

  18. MPLM On-Orbit Interface Dynamic Flexibility Modal Test

    Science.gov (United States)

    Bookout, Paul S.; Rodriguez, Pedro I.; Tinson, Ian; Fleming, Paolo

    2001-01-01

    Now that the International Space Station (ISS) is being constructed, payload developers have to not only verify the Shuttle-to-payload interface, but also the interfaces their payload will have with the ISS. The Multi Purpose Logistic Module (MPLM) being designed and built by Alenia Spazio in Torino, Italy is one such payload. The MPLM is the primary carrier for the ISS Payload Racks, Re-supply Stowage Racks, and the Resupply Stowage Platforms to re-supply the ISS with food, water, experiments, maintenance equipment and etc. During the development of the MPLM there was no requirement for verification of the on-orbit interfaces with the ISS. When this oversight was discovered, all the dynamic test stands had already been disassembled. A method was needed that would not require an extensive testing stand and could be completed in a short amount of time. The residual flexibility testing technique was chosen. The residual flexibility modal testing method consists of measuring the free-free natural frequencies and mode shapes along with the interface frequency response functions (FRF's). Analytically, the residual flexibility method has been investigated in detail by, MacNeal, Martinez, Carne, and Miller, and Rubin, but has not been implemented extensively for model correlation due to difficulties in data acquisition. In recent years improvement of data acquisition equipment has made possible the implementation of the residual flexibility method as in Admire, Tinker, and Ivey, and Klosterman and Lemon. The residual flexibility modal testing technique is applicable to a structure with distinct points (DOF) of contact with its environment, such as the MPLM-to-Station interface through the Common Berthing Mechanism (CBM). The CBM is bolted to a flange on the forward cone of the MPLM. During the fixed base test (to verify Shuttle interfaces) some data was gathered on the forward cone panels. Even though there was some data on the forward cones, an additional modal test was

  19. Dynamics of nanoparticles in fluids and at interfaces

    Science.gov (United States)

    Chen, Weikang

    In this thesis, we use molecular dynamics simulation to study three basic behaviors or properties of nanoparticles: deposition during droplets evaporation, slip boundary condition and Brownian motion. These three problems address the need for an in-depth understanding of the dynamics of nanoparticles in fluids and at interfaces. In the first problem, evaporation of the droplets dispersed with particles, we investigated the distribution of evaporative flux, inner flow field, density and temperature. And we use these numerical experiments to check on our hydrodynamic theory of the "coffee ring" phenomenon. The simulations reveal the connection between the particle interactions and the deposit structure, and indicate some limitations in continuum modeling. In the second problem, we explore the slip boundary conditions for curved surfaces, which is one of the desired information in modeling the hydrodynamics of micro-fluidic objects. The conclusion we draw is strong: the slip length, defined in a consistent tensorial manner, depends only on the physical properties of the solid and fluid involved and does not vary with the flow configuration. The final part is devoted to the Brownian motion of Janus particle, where we use a simple model to explain the increase of diffusivity of self-propelling Janus particles. We also show that the hydrodynamic image could be used to account for the self-aligning phenomenon at liquid-solid interfaces. The coupling between the translation and rotation is investigated by Brownian simulation, where we modify the standard Langevin equation with coupling terms which derive from the hydrodynamic interaction with the liquid-solid interfaces. The resultant individual trajectories and their diffusivities are consistent with both the laboratory observations and theoretical calculations.

  20. RNA Editing Dynamically Rewrites the Cancer Code

    Science.gov (United States)

    Rayon-Estrada, Violeta; Papavasiliou, F. Nina; Harjanto, Dewi

    2016-01-01

    Global analyses of cancer transcriptomes demonstrate that ADAR (adenosine deaminase, RNA-specific)-mediated RNA editing dynamically contributes to genetic alterations in cancer, and directly correlates with progression and prognosis. RNA editing is abundant and frequently elevated in cancer, and affects functionally and clinically relevant sites in both coding and non-coding regions of the transcriptome. Therefore, ADAR and differentially edited transcripts may be promising biomarkers or targets for therapy.

  1. Ultrafast studies of electron dynamics at metal-dielectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Nien-Hui

    1998-10-01

    Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy

  2. Model of bound interface dynamics for coupled magnetic domain walls

    Science.gov (United States)

    Politi, P.; Metaxas, P. J.; Jamet, J.-P.; Stamps, R. L.; Ferré, J.

    2011-08-01

    A domain wall in a ferromagnetic system will move under the action of an external magnetic field. Ultrathin Co layers sandwiched between Pt have been shown to be a suitable experimental realization of a weakly disordered 2D medium in which to study the dynamics of 1D interfaces (magnetic domain walls). The behavior of these systems is encapsulated in the velocity-field response v(H) of the domain walls. In a recent paper [P. J. Metaxas , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.237206 104, 237206 (2010)] we studied the effect of ferromagnetic coupling between two such ultrathin layers, each exhibiting different v(H) characteristics. The main result was the existence of bound states over finite-width field ranges, wherein walls in the two layers moved together at the same speed. Here we discuss in detail the theory of domain wall dynamics in coupled systems. In particular, we show that a bound creep state is expected for vanishing H and we give the analytical, parameter free expression for its velocity which agrees well with experimental results.

  3. Mapping proteolytic cancer cell-extracellular matrix interfaces.

    NARCIS (Netherlands)

    Wolf, K.A.; Friedl, P.H.A.

    2009-01-01

    For cancer progression and metastatic dissemination, cancer cells migrate and penetrate through extracellular tissues. Cancer invasion is frequently facilitated by proteolytic processing of components of the extracellular matrix (ECM). The cellular regions mediating proteolysis are diverse and depen

  4. Static and dynamic properties of curved vapour-liquid interfaces by massively parallel molecular dynamics simulation

    CERN Document Server

    Horsch, Martin T; Vrabec, Jadran; Glass, Colin W; Niethammer, Christoph; Bernreuther, Martin F; Müller, Erich A; Jackson, George

    2011-01-01

    Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

  5. Ultrafast dynamics of water at the water-air interface studied by femtosecond surface vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Bakker Huib J.

    2013-04-01

    Full Text Available We study the dynamics of water molecules at the water-air interface, using surfacespecific two-dimensional infrared sum-frequency generation (2D-SFG spectroscopy. The data reveal the occurrence of surprisingly fast energy transfer and reorientational dynamics at aqueous interfaces.

  6. Description of waste pretreatment and interfacing systems dynamic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  7. Geometry and dynamics of fluid-fluid interfaces

    Science.gov (United States)

    Thrasher, Matthew Evan

    We observed the evolution of unstable fluid interfaces in experiments on viscous fingering, pinch-off, and bouncing jets. If we can first identify classes of universal behavior, then we can begin building a unified framework to understand nonlinear processes. We performed the first experimental test of the harmonic moments of viscous fingering patterns, grown by injecting air into a thin layer of silicone oil, which was confined between two closely spaced plates, called a Hele-Shaw cell. We observed that the predicted decay of the moments was accurate within our measurement uncertainty, which confirmed the predicted conservation of the moments for zero surface tension. With greater forcing, the air bubble will undergo a secondary tip-splitting instability, where the fingers of air fork into two or more fingers. We discovered two selection rules for the changing base width and the nearly invariant opening angle of fjords, which are the regions of oil between the fingers of air. We then compared our experiments on viscous fingering with diffusion-limited aggregation (DLA), a model of unstable growth. We calculated that DLA and viscous fingering have the same spectrum of singularities [called f(alpha)] within measurement uncertainty. Since the spectrum is a global encapsulation of the growth dynamics and scaling properties, we say that the two processes are in the same scaling universality class. All of these results for viscous fingering are expected to apply to other physical systems which approximate Laplacian growth, a model of an interface where its growth rate is determined by the local gradient of a field φ obeying Laplace's equation ∇2 φ=0. Next we present preliminary work on the experimental test of two predictions for flows in Hele-Shaw cells: (1) soliton-like behavior of two viscous domains and (2) self-similar, universal pinch-off of an inviscid bubble in a viscous liquid. Finally, we report our observations and analysis of a liquid stream with

  8. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A.L.

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  9. Dynamics of particle accumulation at engineered and natural interfaces

    Science.gov (United States)

    Kim, Sechurl

    2000-08-01

    Investigation of the structure of particle aggregates and their morphology is crucial for understanding particle accumulation phenomena at solid-water interfaces. Engineering applications are often restricted by the lack of exact knowledge of this accumulation phenomenon. Natural processes are also not well understood for this reason. Among the wide spectrum of engineered and natural particle accumulation processes, the following important processes are considered in this study: the permeability and formation of fractal porous aggregates in aqueous systems, the solution structure of a dispersing medium, and the influence of hydrodynamic shear on deformable molecular assemblages. The Stokesian Dynamics technique was applied to particles in a suspension to elucidate the structural evolution and the permeability of aggregates. To reduce the computational effort, a special Stokesian dynamics method for a single moving particle in the geometrical environment was developed, and parallel computation with distributed memory scheme was employed for inverting the grand mobility matrix using a Linux cluster composed of 4 nodes. This technique was capable of generating aggregates with 300 primary particles by the processes of differential settling and turbulent shear. Simulated permeabilities of these particles and of synthetically generated aggregates agree well with values reported in the theoretical and experimental literature. The solution structure of a dispersion of charged solute particles was investigated by Monte Carlo simulation and integral equation theory with hypernetted chain closure. Two properties of the solution (dispersion), namely, osmotic pressure and sedimentation coefficient were obtained from the radial distribution function of the solute particles. Hydrodynamic mobility tensors were used to calculate the sedimentation coefficient, and the important effects of hydrodynamic interaction compared to interparticle interaction were demonstrated. Finally, the

  10. Interface dynamics under nonequilibrium conditions: from a self-propelled droplet to dynamic pattern evolution

    CERN Document Server

    Chen, Yong-Jun

    2012-01-01

    In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinthine. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to inter...

  11. Dynamic Response of a Single Interface in a Biocomposite Structure.

    Science.gov (United States)

    Bar-On, B; Bayerlein, B; Blumtritt, H; Zlotnikov, I

    2015-12-01

    Biological composite materials are known to be tough, stiff, stable, viscoelastic bodies, that can creep, recover, absorb energy, and filter vibrations. Their multifunctionality is associated with their architectures, which often consist of mineral units surrounded by organic interfaces that play a key role in the performance of the entire composite. However, the confinement and small dimensions of these organic interfaces pose a challenge in measuring their physical properties by direct methods. We propose an indirect, experimental-analytical framework by which to probe the elastic and viscoelastic behavior of an individual interface. We demonstrate this framework on thin organic interfaces in the shell Pinna nobilis, and discuss its possible uses in various other micro- and nanoscale composite systems. PMID:26684141

  12. Dynamics of bubble growth for Rayleigh--Taylor unstable interfaces

    International Nuclear Information System (INIS)

    A statistical model is analyzed for the growth of bubbles in a Rayleigh--Taylor unstable interface. The model is compared to solutions of the full Euler equations for compressible two phase flow, using numerical solutions based on the method of front tracking. The front tracking method has the distinguishing feature of being a predominantly Eulerian method in which sharp interfaces are preserved with zero numerical diffusion. Various regimes in the statistical model exhibiting qualitatively distinct behavior are explored

  13. Dynamic instabilities of frictional sliding at a bimaterial interface

    Science.gov (United States)

    Brener, Efim A.; Weikamp, Marc; Spatschek, Robert; Bar-Sinai, Yohai; Bouchbinder, Eran

    2016-04-01

    Understanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH ∼ O(1) and by a growth rate that scales with H-1. We then consider the limit kH → ∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results

  14. Oscillation theory for a pair of second order dynamic equations with a singular interface

    Directory of Open Access Journals (Sweden)

    Pallav Kumar Baruah

    2008-03-01

    Full Text Available In this paper we consider a pair of second order dynamic equations defined on the time scale $I = [a,c]cup [sigma(c,b]$. We impose matching interface conditions at the singular interface $c$. We prove a theorem regarding the relationship between the number of eigenvalues and zeros of the corresponding eigenfunctions.

  15. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface...

  16. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces

    OpenAIRE

    Yan WANG; Ruan, Xiulin; Roy, Ajit K.

    2012-01-01

    We have used a two-temperature nonequilibrium molecular dynamics method for predicting interfacial thermal resistance across metal-nonmetal interfaces. This method is an extension of the conventional nonequilibrium molecular dynamics for the dielectric-dielectric interface, where a temperature bias is imposed and the heat current is derived. We have included the electron degree of freedom for the interfacial thermal transport problem by treating the electron-phonon coupling with the two-tempe...

  17. Linear flow dynamics near a T/NT interface

    Science.gov (United States)

    Teixeira, Miguel; Silva, Carlos

    2011-11-01

    The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.

  18. Decoding network dynamics in cancer

    DEFF Research Database (Denmark)

    Linding, Rune

    2014-01-01

    models through computational integration of systematic, large-scale, high-dimensional quantitative data sets. I will review our latest advances in methods for exploring phosphorylation networks. In particular I will discuss how the combination of quantitative mass-spectrometry, systems......-genetics and computational algorithms (NetworKIN [Linding et al. Cell 2007] and NetPhorest [Miller et al. Science Signaling 2008]) made it possible for us to derive systems-level models of JNK and EphR signalling networks [Bakal et al. Science 2008, Jørgensen et al. Science 2009]. I shall discuss work we have done......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...

  19. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    Science.gov (United States)

    Vali, Faisal; Hong, Robert

    2007-01-01

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs. PMID:18694240

  20. Determining gastric cancer resectability by dynamic MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zilai; Zhang, Huan; Du, Lianjun; Ding, Bei; Song, Qi; Ling, Huawei; Huang, Baisong; Chen, Kemin [Jiaotong University, Department of Radiology, Shanghai (China); Yan, Chao [Jiaotong University, Department of Surgery, Shanghai (China)

    2010-03-15

    Multi-detector row CT (MDCT) has been widely used to detect primary lesions and to evaluate TNM staging. In this study we evaluated the accuracy of dynamic MDCT in the preoperative determination of the resectability of gastric cancer. MDCT was used to image 350 cases of gastric cancer diagnosed by biopsy before surgery. MDCT findings regarding TNM staging and resectability were correlated with surgical and pathological findings. The accuracy of MDCT for staging gastric cancer was high, especially for tumour stage T1 (94.3%), lymph node stage N2 (87.3%), and for predicting distant metastases (>96.6%). When resectability was considered to be the outcome, the total accuracy of MDCT was 87.4%, sensitivity was 89.7% and specificity was 76.7%. Results showed high sensitivity for identifying peritoneal seeding (90.0%) and for predicting liver metastasis (80.0%). Dynamic enhanced MDCT is useful for TNM staging of gastric cancers and for predicting tumour respectability preoperatively. (orig.)

  1. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    Science.gov (United States)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  2. interfaces

    Directory of Open Access Journals (Sweden)

    Dipayan Sanyal

    2005-01-01

    macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.

  3. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  4. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    Full Text Available Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.

  5. Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin.

    Science.gov (United States)

    Fuchs, Julian E; Huber, Roland G; Waldner, Birgit J; Kahler, Ursula; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-01-01

    Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design. PMID:26496636

  6. Towards emotion modeling based on gaze dynamics in generic interfaces

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær;

    2005-01-01

    Gaze detection can be a useful ingredient in generic human computer interfaces if current technical barriers are overcome. We discuss the feasibility of concurrent posture and eye-tracking in the context of single (low cost) camera imagery. The ingredients in the approach are posture and eye regi...... extraction based on active appearance modeling and eye tracking using a new fast and robust heuristic. The eye tracker is shown to perform well for low resolution image segments, hence, making it feasible to estimate gaze using a single generic camera....

  7. Dynamic Investigation of Interface Stress on Below-Knee Residual Limb in a Prosthetic Socket

    Institute of Scientific and Technical Information of China (English)

    贾晓红; 张明; 王人成; 金德闻

    2004-01-01

    The dynamic effects of inertial loads on the interface stresses between a residual limb and the trans-tibial prosthetic socket were investigated. A 3-D nonlinear finite element model, based on the actual geometry of the residual limb, including internal bones and socket liner, was developed to study the mechanical interaction between the socket and the residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The results show that interface pressure and shear stress have a similar double-peaked waveform shape in the stance phase. The average difference in interface stresses between the cases with and without consideration of inertial forces is 8.4% in the stance phase and 20.1% in the swing phase. The results suggest that the dynamic effects of inertial loads on interface stress distribution during walking must be considered in prosthetic socket design.

  8. Numerical simulation of continuum models for fluid-fluid interface dynamics

    Science.gov (United States)

    Gross, S.; Reusken, A.

    2013-05-01

    This paper is concerned with numerical methods for two-phase incompressible flows assuming a sharp interface model for interfacial stresses. Standard continuum models for the fluid dynamics in the bulk phases, for mass transport of a solute between the phases and for surfactant transport on the interface are given. We review some recently developed finite element methods for the appropriate discretization of such models, e. g., a pressure extended finite element (XFE) space which is suitable to represent the pressure jump, a space-time extended finite element discretization for the mass transport equation of a solute and a surface finite element method (SurFEM) for surfactant transport. Numerical experiments based on level set interface capturing and adaptive multilevel finite element discretization are presented for rising droplets with a clean interface model and a spherical droplet in a Poisseuille flow with a Boussinesq-Scriven interface model.

  9. A Graphical User Interface for the Computational Fluid Dynamics Software OpenFOAM

    OpenAIRE

    Melbø, Henrik Kaald

    2014-01-01

    A graphical user interface for the computational fluid dynamics software OpenFOAM has been constructed. OpenFOAM is a open source and powerful numerical software, but has much to be wanted in the field of user friendliness. In this thesis the basic operation of OpenFOAM will be introduced and the thesis will emerge in a graphical user interface written in PyQt. The graphical user interface will make the use of OpenFOAM simpler, and hopefully make this powerful tool more available for the gene...

  10. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    CERN Document Server

    Ceriotti, Michele; Manolopoulos, David E

    2014-01-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.

  11. Viscoelastic micromechanical model for dynamic modulus prediction of asphalt concrete with interface effects

    Institute of Scientific and Technical Information of China (English)

    董满生; 高仰明; 李凌林; 王利娜; 孙志彬

    2016-01-01

    A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface functionalization is necessary to realize the full potential of aggregates reinforcement.

  12. Dynamic Evolution of Interface Roughness During Friction and Wear Processes

    NARCIS (Netherlands)

    Kubiak, K. J.; Bigerelle, M.; Mathia, T. G.; Dubois, A.; Dubar, L.

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S-a=0.282-6.73 mu m) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples

  13. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  14. Dynamic contrast enhanced MRI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, Roberto [Marie Curie Research Wing, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom)], E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom); Synarc Inc. 575 Market Street, San Francisco, CA 94105 (United States)], E-mail: anwar.padhani@paulstrickland-scannercentre.org.uk; Allen, Clare [Department of Imaging, University College Hospital, London, 235 Euston Road, NW1 2BU (United Kingdom)], E-mail: clare.allen@uclh.nhs.uk

    2007-09-15

    Angiogenesis is an integral part of benign prostatic hyperplasia (BPH), is associated with prostatic intraepithelial neoplasia (PIN) and is key to the growth and for metastasis of prostate cancer. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) using small molecular weight gadolinium chelates enables non-invasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability surface area product, and extracellular leakage space can be obtained. Two dynamic MRI techniques (T{sub 2}*-weighted or susceptibility based and T{sub 1}-weighted or relaxivity enhanced methods) for prostate gland evaluations are discussed in this review with reference to biological basis of observations, data acquisition and analysis methods, technical limitations and validation. Established clinical roles of T{sub 1}-weighted imaging evaluations will be discussed including lesion detection and localisation, for tumour staging and for the detection of suspected tumour recurrence. Limitations include inadequate lesion characterisation particularly differentiating prostatitis from cancer, and in distinguishing between BPH and central gland tumours.

  15. PREFACE: Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre; Sulpizi, Marialore

    2012-03-01

    Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical

  16. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    OpenAIRE

    Mal-Soon Lee; B. Peter McGrail; Roger Rousseau; Vassiliki-Alexandra Glezakou

    2015-01-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is ent...

  17. Ultrafast Reorientational Dynamics of Leucine at the Air-Water Interface.

    Science.gov (United States)

    Donovan, Michael A; Yimer, Yeneneh Y; Pfaendtner, Jim; Backus, Ellen H G; Bonn, Mischa; Weidner, Tobias

    2016-04-27

    Ultrafast dynamics of protein side chains are involved in important biological processes such as ligand binding, protein folding, and hydration. In addition, the dynamics of a side chain can report on local environments within proteins. While protein side chain dynamics have been probed for proteins in solution with nuclear magnetic resonance and infrared methods for decades, information about side chain dynamics at interfaces is lacking. At the same time, the dynamics and motions of side chains can be particularly important for interfacial binding and protein-driven surface manipulation. We here demonstrate that ultrafast reorientation dynamics of leucine amino acids at interfaces can be recorded in situ and in real time using polarization- and time-resolved pump-probe sum frequency generation (SFG). Combined with molecular dynamics simulations, time-resolved SFG was used to probe the reorientation of the isopropyl methyl groups of l-leucine at the air-water interface. The data show that the methyl units reorient diffusively at an in plane rate of Dφ = 0.07 rad(2)/ps and an out of plane rate of Dθ = 0.05 rad(2)/ps. PMID:27057584

  18. Rupture Dynamics Simulations Along Subduction Zones: Bimaterial Interfaces and Free Surface Interaction

    Science.gov (United States)

    Scala, A.; Vilotte, J. P.; Festa, G.

    2015-12-01

    Largest earthquakes occur along subduction zones, where normal and tangential stress coupling drives the earthquake rupture due to the geometry of the subduction interface between dissimilar materials and the interaction with waves reflected from free surface as the rupture propagates toward the trench. We numerically investigate these effects in the context of dynamic rupture simulations. We revisit the problem of in-plane interface rupture propagation between dissimilar elastic media, in the case of slip-weakening friction, by performing a numerical study using the Spectral Element Method with a non-smooth contact formulation. For classical slip-weakening friction, the problem is ill posed due to a missing length or time scale in the response of the frictional shear stress to dynamic normal stress perturbations. We first perform a parametric study of the regularization formulation proposed by Rubin and Ampuero (2007). We show that the dynamic regularization, driven by local slip rate does not allow for a proper modeling of the asymptotic rupture propagation. We propose a new regularization approach based on the non-local length scale, associated to the actual size of the process zone. Numerical results are shown to be consistent with mathematical modeling of dynamic interface rupture propagation with a process zone ahead of the rupture front. The numerical study is extended to inclined ruptures intersecting a free surface at different angles. We investigate interaction between rupture propagation and stress changes induced by waves reflected from the free surface, in the generation of large interface slip, transient healing and opening effects. Finally, preliminary in-plane dynamic simulations of the 2011 Tohoku earthquake, incorporating the along-dip structure and geometry of the subduction interface, are presented enlightening the role of the geometry of the bi-material interface and of the free surface in the rupture propagation and radiation.

  19. Substructurability: the effect of interface location on a real-time dynamic substructuring test

    Science.gov (United States)

    Terkovics, N.; Neild, S. A.; Lowenberg, M.; Szalai, R.; Krauskopf, B.

    2016-08-01

    A full-scale experimental test for large and complex structures is not always achievable. This can be due to many reasons, the most prominent one being the size limitations of the test. Real-time dynamic substructuring is a hybrid testing method where part of the system is modelled numerically and the rest of the system is kept as the physical test specimen. The numerical-physical parts are connected via actuators and sensors and the interface is controlled by advanced algorithms to ensure that the tested structure replicates the emulated system with sufficient accuracy. The main challenge in such a test is to overcome the dynamic effects of the actuator and associated controller, that inevitably introduce delay into the substructured system which, in turn, can destabilize the experiment. To date, most research concentrates on developing control strategies for stable recreation of the full system when the interface location is given a priori. Therefore, substructurability is mostly studied in terms of control. Here, we consider the interface location as a parameter and study its effect on the stability of the system in the presence of delay due to actuator dynamics and define substructurability as the system's tolerance to delay in terms of the different interface locations. It is shown that the interface location has a major effect on the tolerable delays in an experiment and, therefore, careful selection of it is necessary.

  20. Dynamic recrystallization observed at the tool/chip interface in machining

    OpenAIRE

    SENECAUT, Yannick; WATREMEZ, Michel; BROCAIL, Julien; FOUILLAND-PAILLE, Laurence; Dubar, Laurent

    2015-01-01

    In numerical approaches for high speed machining, the rheological behavior of machined materials is usually described by a Johnson Cook law. However, studies have shown that dynamic recrystallization phenomena appear during machining in the tool/chip interface. The Johnson Cook constitutive law does not include such phenomena. Thus, specific rheological models based on metallurgy are introduced to consider these dynamic recrystallization phenomena. Two empirical models proposed by Kim et al. ...

  1. A Reactive Molecular Dynamics Simulation Of The Silica-Water Interface

    OpenAIRE

    Fogarty, Joseph C.; Aktulga, Hasan Metin; Grama, Ananth Y.; van Duin, Adri C. T.; Pandit, Sagar A.

    2010-01-01

    We report our study of a silica-water interface using reactive molecular dynamics. This first-of-its-kind simulation achieves length and time scales required to investigate the detailed chemistry of the system. Our molecular dynamics approach is based on the ReaxFF force field of van Duin [J. Phys. Chem. A 107, 3803 (2003)]. The specific ReaxFF implementation (SERIALREAX) and force fields are first validated on structural properties of pure silica and water systems. Chemical reactions between...

  2. How do they stick yogether? The statics and dynamics of interfaces

    OpenAIRE

    Stoneham, A. M.; Ramos, Marta M. D.; Sutton, A. P.

    1993-01-01

    The understanding of interfaces between unlike solids is recognized as important both from the traditional static perspective ('What is the work of adhesion?') and dynamically (e.g. 'Can one predict friction and wear?'). These questions have also broadened to cover interfacial control, for instance effects on carrier transport and epitaxial relations. We address these issues by atomic-scale modelling, using mainly molecular dynamics combined with self-consistent chemistry. First we shall cont...

  3. Crawling Ajax-based Web Applications through Dynamic Analysis of User Interface State Changes

    OpenAIRE

    Mesbah, A.; Van Deursen, A.; Lenselink, S.

    2011-01-01

    Using JavaScript and dynamic DOM manipulation on the client-side of web applications is becoming a widespread approach for achieving rich interactivity and responsiveness in modern web applications. At the same time, such techniques, collectively known as Ajax, shatter the metaphor of web ‘pages’ with unique URLs, on which traditional web crawlers are based. This paper describes a novel technique for crawling Ajax-based applications through automatic dynamic analysis of user interface state c...

  4. Dynamics of flexible multibody systems using loaded-interface substructure synthesis approach

    Science.gov (United States)

    Lim, S. P.; Liu, A. Q.; Liew, K. M.

    1994-12-01

    A simple numerical method for dynamic simulation of multibody systems consisting of rigid and flexible bodies is presented. This paper investigates the multibody systems with inertia properties of flexible components that undergo large angular rotations. The equation of motion is derived using the finite element/Lagrange formulation. A substructure synthesis method is employed to reduce the number of elastic coordinates of the multibody system. A modification to the traditional boundary conditions at the free interface has been incorporated. An example is given to demonstrate the accuracy of the computed results which obtained from this new free interface method. This example has been analyzed using the present free interface method and also the finite element method in order to compare the efficient and accuracy of both methods. It was shown that the new free interface substructure synthesis method provides accurate results even with lesser elements.

  5. Dynamic User Interface for Cross-plot, Filtering and Upload/Download of Time Series Data

    Science.gov (United States)

    Olsen, K.; Zhu, J.; Talley, J.

    2006-12-01

    We have generated a user-friendly web-interface that allows for dynamic filtering and cross-plot of time series data. The interface is an extension of our existing php software associated with the Storage Resource Broker (SRB) at the San Diego Supercomputer Center (SDSC). The extension includes the possibility of dynamic low- pass filtering and cross-plotting several time histories associated with a specific site. Moreover, regular-spaced scalar data can be cross-contoured with choice of contour interval, labeling, etc. Also associated with the interface is software to upload and download sets of synthetic time histories and scalar contour data on a regular grid using a web browser. The software is well suited for numerical code validation exercises, generating output such as sliprate histories, rupture time distributions, ground motion histories, and peak ground motions, as well as comparison of ensembles of ground motion scenarios.

  6. Static and dynamic properties of poly(3-hexylthiophene) films at liquid/vacuum interfaces.

    Science.gov (United States)

    Yimer, Yeneneh Y; Tsige, Mesfin

    2012-11-28

    All-atom molecular dynamics simulations are used to study static and dynamic properties of poly(3-hexylthiophene) (P3HT) films at liquid/vacuum interfaces with regards to their dependence on both temperature and molecular weight. The static properties of the films are characterized by calculating specific volume, interfacial width, orientational ordering of the hexyl groups, and surface tension. The specific volume found to be a monotonically decreasing function of the molecular weight while its dependence on temperature follows the Simha-Somcynsky's equation of state. The orientational ordering calculations show the hexyl groups protruding from the vacuum side of the interface, where the degree of order at the interface is found to be strongly dependent on both temperature and molecular weight. The surface tension values show a linear dependence on temperature and the molecular weight dependence is equally described by both M(-2∕3) and M(-1) power law models. The dynamic properties are quantified by calculating diffusion coefficients for the chain centers-of-mass and thiophene ring segments as well as first-order and second-order end-to-end vector autocorrelations and chain backbone torsion autocorrelation. All calculated dynamic properties show strong dependence on both temperature and molecular weight. All the autocorrelations are well described by Kohlrausch-Williams-Watts equation. Our detailed analysis of the static and dynamic properties of P3HT films show that the calculated static and dynamic properties data can be fit with well-known polymer models.

  7. Real Time Dynamics of Laser Activated Interface Processes at the Molecular Scale

    Energy Technology Data Exchange (ETDEWEB)

    Eric Borguet

    2007-12-30

    Nanotechnology is one of the most interesting and challenging frontiers of science and technology. We are motivated by the belief that progress will come from improved understanding and control of structure, dynamics and reactivity at interfaces. First, we provide a summary of our projects and key findings. The following pages provide a more detailed account.

  8. The dynamic histopathologic spectrum of lung cancer.

    Science.gov (United States)

    Yesner, R

    1981-01-01

    The APUD concept has postulated that pulmonary carcinoids and small cell carcinomas arise from the neural crest. In development from hypothesis to tautology is traced, and evidence is presented that all pulmonary epithelial tumors arise from the primitive endoderm. Morphologic studies show that a dynamic spectrum exists. Not only do various cell types appear within a single section, but cell types may change from biopsy to autopsy with or without chemotherapy. The spectrum is sustained at the ultramicroscopic level in regard to organelles such as desmosomes, tonofibrils, and dense core granules. Secretory products such as ACTH and L-dopa decarboxylase also show that all lung cancers are related. Epidemiologic evidence indicates that small cell carcinomas in uranium miners occur after prolonged squamous cell dysplasia, and that carcinoids occur independently of external carcinogens, but show transitions to other tumors. Finally, experimental evidence indicates that the K cells, to which carcinoids are most closely related, are of local origin.

  9. Modeling and numerical simulation of static and dynamic behavior of multilayered plates with interface effects

    Directory of Open Access Journals (Sweden)

    Zaki Smail

    2014-04-01

    Full Text Available In Multilayered structures the interface effects have a wide range of applications in aerospace, automotive and especially in civil engineering. The design and construction of these structures and the account for interface effects require special expertise in modeling, simulation and implementation. Many studies in this case were conducted to address these issues. The objective of this work is the modeling and numerical simulation of static and dynamic behaviors of beams and plates multilayered structures with different types of interfaces. The focus was on the prediction of the behavior of stresses; shears and displacements depending on thickness. The interface can be elastic or viscoelastic of small or large thickness. The state space method has been developed for this purpose. Various types of rolled arbitrary number of isotropic or anisotropic layers structures were considered. The three-dimensional behavior is obtained for different types of static and dynamic loading. The results were compared with those based on the model of Stroh and on the various existing theories of beams and plates. The methodological approach, developed here, will be applied to thick structures, functionally graded, bimorph or multilayer structures and possibly piezoelectric or viscoelastic layered structures with interface effect

  10. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  11. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Benjamin J. [Columbia University, Department of Chemistry (United States); Dzikovski, Boris G. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); Pawsey, Shane; Caporini, Marc; Rosay, Melanie [Bruker BioSpin Corporation (United States); Freed, Jack H. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); McDermott, Ann E., E-mail: aem5@columbia.edu [Columbia University, Department of Chemistry (United States)

    2015-04-15

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  12. Dynamic infrared imaging for skin cancer screening

    Science.gov (United States)

    Godoy, Sebastián E.; Ramirez, David A.; Myers, Stephen A.; von Winckel, Greg; Krishna, Sanchita; Berwick, Marianne; Padilla, R. Steven; Sen, Pradeep; Krishna, Sanjay

    2015-05-01

    Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to detect the most common types of skin cancer. We discuss and propose a standardized analysis method for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously selecting pixels with the same initial temperature. This process compensates the intrinsic limitations of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested the methodology on human subjects using thermal infrared image sequences from a pilot study conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects for the present study. Statistically significant results were obtained that allowed us to distinguish between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% confidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively, and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in conjunction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact, and non-invasive way to screen for common types of skin cancer. As such, it has the potential to significantly reduce the number of biopsies performed on suspicious lesions.

  13. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics.

    Science.gov (United States)

    Rahmani, Amir M; Wang, Anna; Manoharan, Vinothan N; Colosqui, Carlos E

    2016-08-14

    The adsorption of single colloidal microparticles (0.5-1 μm radius) at a water-oil interface has been recently studied experimentally using digital holographic microscopy [Kaz et al., Nat. Mater., 2012, 11, 138-142]. An initially fast adsorption dynamics driven by capillary forces is followed by an unexpectedly slow relaxation to equilibrium that is logarithmic in time and can span hours or days. The slow relaxation kinetics has been attributed to the presence of surface "defects" with nanoscale dimensions (1-5 nm) that induce multiple metastable configurations of the contact line perimeter. A kinetic model considering thermally activated transitions between such metastable configurations has been proposed [Colosqui et al., Phys. Rev. Lett., 2013, 111, 028302] to predict both the relaxation rate and the crossover point to the slow logarithmic regime. However, the adsorption dynamics observed experimentally before the crossover point has remained unstudied. In this work, we propose a Langevin model that is able to describe the entire adsorption process of single colloidal particles by considering metastable states produced by surface defects and thermal motion of the particle and liquid interface. Invoking the fluctuation dissipation theorem, we introduce a drag term that considers significant dissipative forces induced by thermal fluctuations of the liquid interface. Langevin dynamics simulations based on the proposed adsorption model yield close agreement with experimental observations for different microparticles, capturing the crossover from (fast) capillary driven dynamics to (slow) thermally activated kinetics. PMID:27373956

  14. Noise and Topology in Driven Systems - an Application to Interface Dynamics

    CERN Document Server

    Barnes, Stewart E; Giamarchi, Thierry; Lecomte, Vivien

    2011-01-01

    Motivated by a stochastic differential equation describing the dynamics of interfaces, we study the bifurcation behavior of a more general class of such equations. These equations are characterized by a 2-dimensional phase space (describing the position of the interface and an internal degree of freedom). The noise accounts for thermal fluctuations of such systems. The models considered show a saddle-node bifurcation and have furthermore homoclinic orbits, i.e., orbits leaving an unstable fixed point and returning to it. Such systems display intermittent behavior. The presence of noise combined with the topology of the phase space leads to unexpected behavior as a function of the bifurcation parameter, i.e., of the driving force of the system. We explain this behavior using saddle point methods and considering global topological aspects of the problem. This then explains the non-monotonous force-velocity dependence of certain driven interfaces.

  15. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author)

  16. The Silica-Water Interface from the Analysis of Molecular Dynamic Simulations

    KAUST Repository

    Lardhi, Sheikha F.

    2013-05-01

    Surface chemistry is an emerging field that can give detailed insight about the elec- tronic properties and the interaction of complex material surfaces with their neigh- bors. This is for both solid-solid and solid-liquid interfaces. Among the latter class, the silica-water interface plays a major role in nature. Silica is among the most abundant materials on earth, as well in advanced technological applications such as catalysis and nanotechnology. This immediately indicates the relevance of a detailed understanding of the silica-water interface. In this study, we investigate the details of this interaction at microscopic level by analyzing trajectories obtained with ab initio molecular dynamic simulations. The system we consider consists of bulk liquid water confined between two β-cristobalite silica surfaces. The molecular dynamics were generated with the CP2K, an ab initio molecular dynamic simulation tool. The simulations are 25 picoseconds long, and the CP2K program was run on 64 cores on a supercomputer cluster. During the simulations the program integrates Newton’s equations of motion for the system and generates the trajectory for analysis. For analysis, we focused on the following properties that characterize the silica water interface. We calculated the density profile of the water layers from the silica surface, and we also calculated the radial distribution function (RDF) of the hydrogen bond at the silanols on the silica surface. The main focus of this thesis is to write the programs for calculating the atom density profile and the RDF from the generated MD trajectories. The atomic probability density profile shows that water is strongly adsorbed on the (001) cristobalite surface, while the RDF indicates differently ad- sorbed water molecules in the first adsorption layer. As final remark, the protocol and the tools developed in this thesis can be applied to the study of basically any crystal-water interface.

  17. Nanoparticles at fluid interfaces: how capping ligands control adsorption, stability and dynamics

    Science.gov (United States)

    Garbin, Valeria

    2013-03-01

    The spontaneous assembly of nanoparticles at fluid-fluid interfaces is exploited in microfluidic encapsulation, fabrication of nanomaterials, oil recovery, and catalysis. Control over the microstructure formed by interfacial nanoparticles is an important goal in these contexts: the ability to reversibly tune the packing fraction enables for nanomaterials with tunable properties, while control over nanoparticle removal and recycling is desirable for green processes. I will discuss how capping ligands can promote interfacial self-assembly by tuning the interfacial energies of the nanoparticles with the fluids. Ligand-mediated particle interactions at the interface then affect the formation of equilibrium and non-equilibrium two-dimensional phases. Important differences with colloidal interactions in a bulk suspension arise due to the discontinuity in solvent properties at the interface, which cause the ligand brushes to rearrange in asymmetric configurations. I will present experimental results for gold nanoparticles capped with short amphiphilic ligands, which spontaneously adsorb at an oil-water interface. Using pendant drop tensiometry, we measured the surface pressure of the nanoparticle monolayer during adsorption and subsequent compression. In contrast to the commonly observed buckling of solid-like films of interfacial particles, upon compression these nanoparticles are mechanically forced out of the interface and into suspension. Area density measurements by a newly developed optical method reveal that ligand-mediated short-range interparticle repulsion enables desorption upon compression. Brownian dynamics simulations corroborate this picture. Therefore, ligand-mediated interactions also determine the fate of nanoparticle monolayers upon out-of-plane deformation.

  18. Capturing the transient species at the electrode-electrolyte interface by in situ dynamic molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiachao; Zhou, Yufan; Hua, Xin; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-09-01

    The electrochemical interface between the solid electrode and liquid electrolyte has long been studied because of its importance in electrical energy storage, material synthesis, catalysis, and energy conversions.1 However, such interfaces are complex and extremely difficult to observe directly and are poorly under-stood due to lack of true in situ tools.2 Although electrochemical techniques have been widely used to investigate such interfaces, they are based on macroscopic models or current changes that could not provide direct ionic and molecular information of the interfacial structure. Many in situ and ex situ spectroscopy and microscopy techniques have been used to study the solid–liquid (s–l) interface.3,4 In situ TEM in sealed liquid cells has notably become a popular choice to provide structural information of s–l at the atomic level.5,6 However, real-time spatial mapping of the ionic and molecular intermediate species at the dynamic inter-face still remains a key challenge.

  19. Waste pretreatment and interfacing system dynamic simulation model (ITHINK model) FY-96 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, R.W.

    1996-09-30

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation (ITHINK) Model (see WHC-SD-WM-DR-013) was originally created to investigate the required pretreatment facility processing rates required to meet the Tri-Party Agreement (TPA) waste vitrification milestones. The TPA milestones are satisfied by retrieving the TX tank farm (salt cake) single-shell tanks (SSTs)first and by utilizing a relatively constant retrieval rate to the year 2018 when retrieval is completed.

  20. Investigating the effects of introducing nonlinear dynamical processes into digital musical interfaces

    OpenAIRE

    Mudd, Tom; Holland, Simon; Mulholland, Paul; Dalton, Nick

    2015-01-01

    This paper presents the results of a study that explores the effects of including nonlinear dynamical processes in the design of digital musical interfaces. Participants of varying musical backgrounds engaged with a range of representative systems, and their behaviours, responses and attitudes were recorded and analysed. The study suggests links between the inclusion of such processes and the affordance of exploration and serendipitous discovery. Relationships between musical instruments and ...

  1. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface

    OpenAIRE

    Fan, Hao; Wang, Xiaoqin; Zhu, Jiang; Robillard, George T.; Mark, Alan E.

    2006-01-01

    Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic i...

  2. Colloidal particle adsorption at liquid interfaces: Capillary driven dynamics and thermally activated kinetics

    OpenAIRE

    Rahmani, Amir M.; Wang, Anna; Manoharan, Vinothan N.; Colosqui, Carlos E.

    2016-01-01

    The adsorption of single colloidal microparticles (0.5--1 $\\mu$m radius) at a water-oil interface has been recently studied experimentally using digital holographic microscopy [Kaz \\textit{et al., Nat. Mater.}, 2012, \\textbf{11}, 138--142]. An initially fast adsorption dynamics driven by capillary forces is followed by an unexpectedly slow relaxation to equilibrium that is logarithmic in time and can span hours or days. The slow relaxation kinetics has been attributed to the presence of surfa...

  3. Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin

    2010-01-01

    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

  4. Aging and Cancer Mortality: Dynamics of Change and Sex Differences

    OpenAIRE

    Yang, Yang; Li, Ting; Nielsen, Matthew E.

    2012-01-01

    Age-related changes in cancer mortality risk are important for understanding the processes of disease and aging interaction. The extent to which these age changes differ by sex further contributes to this understanding but has not been well studied to date. We conducted a systematic examination of dynamics and heterogeneity of age changes in cancer mortality rates for the top 14 cancer sites using vital statistics from the NCHS and SEER between 1969 and 2007. We assessed patterns of age chang...

  5. Computer simulation study of surface wave dynamics at the crystal--melt interface

    CERN Document Server

    Benet, Jorge; Sanz, Eduardo

    2014-01-01

    We study, by means of computer simulations, the crystal-melt interface of three different systems: hard-spheres, Lennard Jones and the TIP4P/2005 water model. In particular, we focus on the dynamics of surface waves. We observe that the processes involved in the relaxation of surface waves are characterized by distinct time scales: a slow one related to the continuous recrystallization and melting, that is governed by capillary forces; and a fast one which we suggest to be due to a combination of processes that quickly cause small perturbations to the shape of the interface (like e. g. Rayleigh waves, subdiffusion, or attachment/detachment of particles to/from the crystal). The relaxation of surface waves becomes dominated by the slow process as the wavelength increases. Moreover, we see that the slow relaxation is not influenced by the details of the microscopic dynamics. In a time scale characteristic for the diffusion of the liquid phase, the relaxation dynamics of the crystal-melt interface of water is ar...

  6. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  7. Evaluation of Incoherent Interface Strength of Solid-State-Bonded Ti64/Stainless Steel Under Dynamic Impact Loading

    Science.gov (United States)

    Verma, Devendra; Singh, Jogender; Varma, Amit H.; Tomar, Vikas

    2015-08-01

    Ti/steel interfaces are produced using field-assisted sintering technology, a technique known to bring about full consolidation of materials using much lower sintering temperatures and durations. The interface thickness is verified using the energy-dispersive x-ray analysis exhibiting the extent of diffusion in interface regions. The interface mechanical strength is characterized using dynamic indentation experiments at strain rates approaching 400 s-1. The experiments were conducted on the interfaces within the spatial error tolerance of less than 3 µm. The measurements of dynamic hardness values, strain rates, and plastic-residual depths were correlated to show the relation of interface mechanical strength with the bulk-phase mechanical strength properties of Ti and steel. The Johnson-Cook model is fitted to the obtained interface normal stress-normal strain data based on the nanoimpact experiments. The coefficient of restitution in the mechanical loading and its dependence on the interface dynamic hardness and interface impact velocity validate the experimental results. The results show that interfacial properties are affected by the rate of loading and are largely dependent upon the interface structural inhomogeneity.

  8. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    Science.gov (United States)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  9. Interface model coupling in fluid dynamics: application to two-phase flows

    International Nuclear Information System (INIS)

    This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)

  10. Epigenetic mechanisms and cancer: an interface between the environment and the genome.

    Science.gov (United States)

    Herceg, Zdenko; Vaissière, Thomas

    2011-07-01

    Although epidemiological studies support the role of environment in a wide range of human cancers, the precise mechanisms by which environmental exposures promote cancer development and progression remain poorly understood. Environmental factors have been proposed to promote the development of malignancies by eliciting epigenetic changes; however, it is only with recent advances in epigenetics and epigenomics that target genes and the mechanisms underlying environmental influences are beginning to be elucidated. Because epigenetic mechanisms may function as an interface between environmental factors and the genome, deregulation of the epigenome by environmental stressors is likely to disrupt different cellular processes and contribute to cancer risk. In addition, the early appearance and ubiquity of epigenetic changes in virtually all steps of tumor development and progression in most, if not all, human neoplasms, make them attractive targets for biomarker discovery and targeted prevention. At the cellular level, aberrant epigenetic changes associated with environmental exposures may deregulate key cellular processes (including transcriptional control, DNA repair, cell cycle control, and carcinogen detoxification), which can be further modulated by environmental stressors, thus defining not only the phenotype of the disease but also potential biomarkers. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental factors may promote tumor development, with a particular focus on human lung cancer.

  11. Crystallization and melting in the Lennard-Jones system: Equilibration, relaxation, and long-time dynamics of the moving interface

    NARCIS (Netherlands)

    Tepper, H.L.; Briels, W.J.

    2001-01-01

    Nonequilibrium molecular dynamics simulations have been carried out on the growth and melting of the Lennard-Jones (100) interface at small undercoolings and superheatings. Two regimes of linear growth rate were discovered: a short-time regime associated with interface relaxation and a long-time reg

  12. Charge Behaviors around Oxide Device/Pseudo-Physiological Solution Interface with Molecular Dynamic Simulations

    Science.gov (United States)

    Maekawa, Yuki; Shibuta, Yasushi; Sakata, Toshiya

    2013-12-01

    In this study, we investigated the charge behaviors of ions and water molecules at the oxide device/pseudo-physiological solution interface by use of molecular dynamics (MD) simulations because the detection principle of semiconductor-based biosensors is based on the detection of charge density changes at the oxide sensing surface in physiological environments. In particular, we designed an alpha-quartz (100) surface with some charges corresponding to pH=5.5 so that the ionic behaviors for 500 mM each of Na+ and Cl- around the interface were calculated under the surface condition with charges, considering a real system. As a result of the simulation, we defined the region of Debye length from the calculated potential distribution, in which some parameters such as diffusion coefficient and the vibration of water molecules around the interface differed from those of the bulk solution. The elucidation of the solid/liquid interfacial behaviors by the simulation technique should deepen our understanding of the detection principle of semiconductor-based biosensors and will give guidelines for the design of a bio-interface in the field of biosensing technology, because they cannot be demonstrated experimentally.

  13. Aqueous interfaces with hydrophobic room-temperature ionic liquids: a molecular dynamics study.

    Science.gov (United States)

    Chaumont, A; Schurhammer, R; Wipff, G

    2005-10-13

    We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous

  14. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Tatsuya, E-mail: ishiyama@eng.u-toyama.ac.jp [Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555 (Japan); Morita, Akihiro, E-mail: morita@m.tohoku.ac.jp [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520 (Japan); Tahara, Tahei [Molecular Spectroscopy Laboratory, RIKEN and Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  15. Adsorption dynamics of L-glutamic acid copolymers at a heptane/water interface.

    Science.gov (United States)

    Beverung, C J; Radke, C J; Blanch, H W

    1998-02-16

    Random copolymers of glutamic acid (glu-ala, glu-leu, glu-phe, glu-tyr) were employed to investigate the relationship between side chain structure and peptide charge on adsorption behavior at an oil/water boundary. Adsorption of a series of glutamate copolymers at a heptane/water interface was examined by the dynamic pendant-drop method to determine interfacial tension. Incorporation of leucine or phenylalanine into a glutamate copolymer results in greater tension reduction than incorporation of alanine or tyrosine. These effects are amplified at pH values near the isoelectric point of glutamate, where macroscopic adsorbed films of glu-leu and glu-phe exhibit gel-like properties in response to interfacial area compression. Differences in interfacial tension behavior of glu-tyr and glu-phe indicate the importance of the tyrosine p-hydroxyl group on adsorption and aggregation at the oil/water interface. PMID:9540205

  16. High density gas state at water/graphite interface studied by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Wang Chun-Lei; Li Zhao-Xia; Li Jing-Yuan; Xiu Peng; Hu Jun; Fang Hai-Ping

    2008-01-01

    In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a Smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.

  17. Dynamic Surface Properties of Asphaltenes and Resins at the Oil-Air Interface.

    Science.gov (United States)

    Bauget, Fabrice; Langevin, Dominique; Lenormand, Roland

    2001-07-15

    Because of the existence of large reserves, the production of heavy oils is presently the object of much interest. Some heavy oil reservoirs show anomalous behavior in primary production, with rates of production better than predicted. In Canada and Venezuela some heavy oils are produced in the form of "bubbly" oil, which is stable for several hours in open vessels. These crude oils are therefore commonly called "foamy oils". Since the presence of bubbles could be responsible for an enhanced rate of production, a better knowledge of the properties of the gas-oil interface is desirable. We have experimentally studied the effect of concentration of asphaltenes and resins on static and dynamic properties of oil-air interfaces and also on bulk viscosity. The experiments include surface tension measurements using the pendant-drop method, surface viscosity by the oscillating-drop method, foamability by continuous gas injection, and film lifetime. All the experiments were performed using resins and asphaltenes in toluene solutions at 20 degrees C. At first asphaltenes enhance foamability and film lifetime. All the experiments performed showed a change in regime for asphaltene concentrations around 10% by weight, possibly due to clustering. At the studied concentrations, the adsorption process at the air-oil interface is not diffusion controlled but rather involves a reorganization of asphaltene molecules in a network structure. The formation of a solid skin is well identified by the increase of the elastic modulus. This elastic modulus is also an important property for foam stability, since a rigid interface limits bubble rupture. The interface rigidity at long times decreases with increases in resin fraction, which could decrease foam stability as well as emulsion stability. Copyright 2001 Academic Press. PMID:11427016

  18. Computational Molecular Modeling of the Multi-Scale Dynamics of Water and Ions at Cement Interfaces

    International Nuclear Information System (INIS)

    Structural and dynamic behavior of H2O molecules and aqueous at interfaces and in nano-pores of model C-S-H binding phase (tobermorite) is quantified on the basis of molecular dynamics computer simulations. At the (001) surface of tobermorite in contact with 0.25 M KCl aqueous solution, we can effectively distinguish water molecules that spend most of their time within channels between the 'drierketten chains' of silica on the tobermorite surface from the adsorbed molecules residing slightly above the interface. Within the channels, H2O molecules donate H-bonds to both the bridging and non-bridging oxygens of the Si-tetrahedra as well as to other H2O. Some of these molecules form very strong H-bonds persisting over 100 ps and longer, but many others undergo frequent liberations and occasional diffusional jumps from one surface site to another. The average diffusion coefficients of the surface-associated H2O molecules that spend most of their time in the channels and those that lie above the nominal interface differ by about an order of magnitude (D(H2O)[internal]=5.0*10-11 m2/s and D(H2O)[external]=6.0*10-10 m2/s, respectively). The average diffusion coefficient for all surface-associated H2O molecules is about 1.0*10-10 m2/s. All of these values are significantly less than the value of 2.3*10-9 m2/s, characteristic of H2O self-diffusion in bulk liquid water, but they are in very good quantitative agreement with experimental data on the dynamics surface-associated water in similar cement materials obtained by 1H NMR. (authors)

  19. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  20. Paraelectric-ferroelectric interface dynamics induced by latent heat transfer and irreversibility of ferroelectric phase transitions

    Institute of Scientific and Technical Information of China (English)

    Ai Shu-Tao

    2006-01-01

    The temperature gradients that arise in the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer are studied from the point of view that a ferroelectric phase transition is a stationary, thermal-electric coupled transport process. The local entropy production is derived for a ferroelectric phase transition system from the Gibbs equation. Three types of regions in the system are described well by using the Onsager relations and the principle of minimum entropy production. The theoretical results coincides with the experimental ones.

  1. Interface dynamics of a metastable mass-conserving spatially extended diffusion

    CERN Document Server

    Berglund, Nils

    2015-01-01

    We study the metastable dynamics of a discretised version of the mass-conserving stochastic Allen-Cahn equation. Consider a periodic one-dimensional lattice with $N$ sites, and attach to each site a real-valued variable, which can be interpreted as a spin, as the concentration of one type of metal in an alloy, or as a particle density. Each of these variables is subjected to a local force deriving from a symmetric double-well potential, to a weak ferromagnetic coupling with its nearest neighbours, and to independent white noise. In addition, the dynamics is constrained to have constant total magnetisation or mass. Using tools from the theory of metastable diffusion processes, we show that the long-term dynamics of this system is similar to a Kawasaki-type exchange dynamics, and determine explicit expressions for its transition probabilities. This allows us to describe the system in terms of the dynamics of its interfaces, and to compute an Eyring-Kramers formula for its spectral gap. In particular, we obtain ...

  2. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the \\'hydrodynamic resist to dynamic wetting\\', is discovered where the influence of the capillary\\'s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.

  3. Dynamics and pattern formation in a cancer network with diffusion

    Science.gov (United States)

    Zheng, Qianqian; Shen, Jianwei

    2015-10-01

    Diffusion is ubiquitous inside cells, and it is capable of inducing spontaneous pattern formation in reaction-diffusion systems on a spatially homogeneous domain. In this paper, we investigate the dynamics of a diffusive cancer network regulated by microRNA and obtain the condition that the network undergoes a Hopf bifurcation and a Turing pattern bifurcation. In addition, we also develop the amplitude equation of the network model by using Taylor series expansion, multi-scaling and further expansion in powers of a small parameter. As a result of these analyses, we obtain the explicit condition on how the dynamics of the diffusive cancer network evolve. These results reveal that this system has rich dynamics, such as spotted stripe and hexagon patterns. The bifurcation diagram helps us understand the biological mechanism in the cancer network. Finally, numerical simulations confirm our analytical results.

  4. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics

    Science.gov (United States)

    Falk von Rudorff, Guido; Jakobsen, Rasmus; Rosso, Kevin M.; Blumberger, Jochen

    2016-10-01

    The atom-scale characterisation of interfaces between transition metal oxides and liquid water is fundamental to our mechanistic understanding of diverse phenomena ranging from crystal growth to biogeochemical transformations to solar fuel production. Here we report on the results of large-scale hybrid density functional theory-based molecular dynamics simulations for the hematite(001)-liquid water interface. A specific focus is placed on understanding how different terminations of the same surface influence surface solvation. We find that the two dominant terminations for the hematite(001) surface exhibit strong differences both in terms of the active species formed on the surface and the strength of surface solvation. According to present simulations, we find that charged oxyanions (-O-) and doubly protonated oxygens (-OH2+ ) can be formed on the iron terminated layer via autoionization of neutral -OH groups. No such charged species are found for the oxygen terminated surface. In addition, the missing iron sublayer in the iron terminated surface strongly influences the solvation structure, which becomes less well ordered in the vicinity of the interface. These pronounced differences are likely to affect the reactivity of the two surface terminations, and in particular the energetics of excess charge carriers at the surface.

  5. Structural dependence of metal organic interface state dynamics studied with 2PPE

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Manuel; Schwalb, Christian H.; Namgalies, Andreas; Hoefer, Ulrich [Fachbereich Physik und Zentrum fuer Materialwissenschaften, Philipps-Universitaet Marburg, D-35032 Marburg (Germany); Sachs, Soenke; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [Universitaet Wuerzburg, Experimentelle Physik II, D-97074 Wuerzburg (Germany)

    2010-07-01

    Time- and angle-resolved 2-photon photoemission (2PPE) has proven to be a powerful experimental approach to study the electron dynamics at metal organic interfaces. With adsorption of the first monolayer (ML) PTCDA on Ag(111) an unoccupied strongly dispersing interface state (IS) emerges at 0.6 eV above the Fermi Level E{sub F}. Also for 1 ML NTCDA/Ag(111) a similar unoccupied state arises at 0.37 eV above E{sub F}. The respective inelastic electron lifetimes of 54 fs and 110 fs indicate that the states have a significant overlap with the metal substrate and mainly originate from an upshifted Shockley surface state. We systematically studied the disordered precursor phase of the PTCDA monolayer. For this interface a non-dispersing unoccupied state at 0.45 eV above E{sub F} can be observed that has an electron lifetime of 63 fs. The influence of the adsorbate morphology and the origin of this non-dispersing feature is discussed. Either the disorder leads to a localization of the surface state or the signal stems from a molecular state shifted in energy due to the chemical interaction.

  6. Wave dynamics on directional solidification interfaces swept by a flow in a thin sample

    Science.gov (United States)

    Jiang, Tania; Georgelin, Marc; Pocheau, Alain

    2015-05-01

    The effects of a transverse flow on the dynamics of a directional solidification interface are studied experimentally in a thin sample. The set-up enables a non-intrusive visualization of the interface and an independent control of both the flow and the solidification conditions. The flow is forced in the sample from an external thermosiphon which provides an accurate steady velocity up to 1.2 mm/s. A transparent melt of succinonitrile is used with a sample depth allowing the solidification of a single layer of microstructures. Downstream inclinations of microstructures and downstream promotion of dendritic sidebranching are observed. Surprisingly, large scale traveling waves involving a wavelength of several cells or dendrites are evidenced on the interface in a large range of conditions. Two kinds of waves are evidenced, one involving a slow velocity, a weak amplitude and a sinusoidal profile, the other a large velocity, a large amplitude and a non-linear profile. Both result from the coupling between solidification and flow and induce striations in the solid phase.

  7. Control of valley dynamics in silicon quantum dots in the presence of an interface step

    Science.gov (United States)

    Boross, Péter; Széchenyi, Gábor; Culcer, Dimitrie; Pályi, András

    2016-07-01

    Recent experiments on silicon nanostructures have seen breakthroughs toward scalable, long-lived quantum information processing. The valley degree of freedom plays a fundamental role in these devices, and the two lowest-energy electronic states of a silicon quantum dot can form a valley qubit. In this paper, we show that a single-atom high step at the silicon/barrier interface induces a strong interaction of the qubit and in-plane electric fields and that the strength of this interaction can be controlled by varying the relative position of the electron and the step. We analyze the consequences of this enhanced interaction on the dynamics of the qubit. The charge densities of the qubit states are deformed differently by the interface step, allowing nondemolition qubit readout via valley-to-charge conversion. A gate-induced in-plane electric field together with the interface step enables fast control of the valley qubit via electrically driven valley resonance. We calculate single- and two-qubit gate times, as well as relaxation and dephasing times, and present predictions for the parameter range where the gate times can be much shorter than the relaxation time and dephasing is reduced.

  8. Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins

    Science.gov (United States)

    Lebard, David N.; Matyushov, Dmitry V.

    2008-12-01

    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein’s first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at ≃220K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.

  9. Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins

    CERN Document Server

    LeBard, David N

    2008-01-01

    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein/water interface allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On the top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line.

  10. Bio-Inspired Composite Interfaces: Controlling Hydrogel Mechanics via Polymer-Nanoparticle Coordination Bond Dynamics

    Science.gov (United States)

    Holten-Andersen, Niels

    2015-03-01

    In soft nanocomposite materials, the effective interaction between polymer molecules and inorganic nanoparticle surfaces plays a critical role in bulk mechanical properties. However, controlling these interfacial interactions remains a challenge. Inspired by the adhesive chemistry in mussel threads, we present a novel approach to control composite mechanics via polymer-particle interfacial dynamics; by incorporating iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network the resulting hydrogels are crosslinked via reversible coordination bonds at Fe3O4 NP surfaces thereby providing a dynamic gel network with robust self-healing properties. By studying the thermally activated composite network relaxation processes we have found that the polymer-NP binding energy can be controlled by engineering both the organic and inorganic side of the interface.

  11. Effects of crystal orientation on the tensile and shear deformation of nickel–silicon interfaces: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Highlights: ► The deformation and fracture mechanisms of Si–Ni interfaces under tensile and shear loads were studied by MD simulations. ► A higher tensile strength is obtained for interface planes with higher density. ► Sliding of atomic planes occurs at planes with a high density that leads to a fluctuation in the stress–strain curve. ► Amorphization of the interface region was observed when sliding of low density planes was not easy to occur. ► The relationship between the interface strength and the planar density and the width of the disorder zone was demonstrated. - Abstract: Atomistic simulation was used to study the deformation and fracture mechanisms of Ni–Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high local deformation as a result of regional atomic amorphization. The deformation mechanism in shear mode is shown to be controlled by planner sliding and local amorphization at the interface zone. A general agreement between the strength and atomic planar density at the interface is demonstrated.

  12. Prevention of cancer recurrence in tumor margins by stopping microcirculation in the tumor and tumor–host interface

    OpenAIRE

    Hori, Katsuyoshi; Akita, Hirotoshi; Nonaka, Hiroi; Sumiyoshi, Akira; Taki, Yasuyuki

    2014-01-01

    Combretastatins interrupt blood flow of solid tumor vascular networks and lead to necrosis by blocking nutrients. However, tumors recover from tumor blood flow interruption-induced damage and develop viable rims. To investigate why cancer recurs and its prevention, we used a combretastatin derivative, Cderiv (=AC7700), and analyzed changes in tumor–host interface (T-HI) vessels, which were closest to cancer cells in the tumor margin after tumor vessel disruption, and the microenvironment surr...

  13. Dynamic contact with friction of an ultra-low flying head-disk interface with thermal protrusion

    NARCIS (Netherlands)

    Vakis, A.I.; Lee, S.-C.; Polycarpou, A.A.

    2009-01-01

    A dynamic two-degree-of-freedom contact with friction model of the head-disk interface (HDI) is presented accounting for slider thermal protrusion and its influence on the HDI dynamics. Using this model, which includes roughness, the applied power to the thermal protrusion is calculated that leads t

  14. Interfacial dynamic and dilational rheology of polyelectrolyte/surfactant two-component nanoparticle systems at air–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Tong, L.J.; Bao, M.T.; Li, Y.M., E-mail: liym@ouc.edu.cn; Gong, H.Y.

    2014-10-15

    Graphical abstract: - Highlights: • DTAB/PSS mixture can self-assemble nanoparticles in bulk solution. • The nanoparticles can adsorb at the interface forming a nanoparticle monolayer. • The nanoparticles spread at the interface undergo a disassembly process with time. • The nanoparticle monolayer presents peculiar dilational viscoelastic behavior. - Abstract: The interfacial characteristics of nanoparticles and consequent inter-particle interactions at the interface are poorly understood. In this work, the interfacial dynamic and corresponding dilational surface rheology of self-assembled polyelectrolyte/surfactant nanoparticles at the air–water interface are characterized. The nanoparticles are prepared from dodecyltrimethylammonium (DTAB) and poly (sodium 4-styrene-sulfonate) (PSS) by mixing them in aqueous solution. The interfacial dynamic characteristics have been carried out by comparing the surface pressure with the dilational rheological response of these nanoparticles at interface. The results indicate that this type of nanoparticles can adsorb at the interface forming a nanoparticle monolayer, which leads to the surface tension decreased markedly. The dependence of surface pressure on time shows the instability and disassembly process of nanoparticles at the interface. On the basis of these observations, it is proposed that the nanoparticles undergo a dynamic process that interface induced nanoparticles disassembly into DTAB/PSS complexes. The presence of PSS in the subphase can promote the process of nanoparticles disassembly. A transition point in dilational elasticity and viscosity response of the nanoparticles versus oscillation frequency further validate the micro dynamic process of nanoparticles and the formation of polyelectrolyte/surfactant complex monolayer at the interface.

  15. Interfacial dynamic and dilational rheology of polyelectrolyte/surfactant two-component nanoparticle systems at air–water interface

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • DTAB/PSS mixture can self-assemble nanoparticles in bulk solution. • The nanoparticles can adsorb at the interface forming a nanoparticle monolayer. • The nanoparticles spread at the interface undergo a disassembly process with time. • The nanoparticle monolayer presents peculiar dilational viscoelastic behavior. - Abstract: The interfacial characteristics of nanoparticles and consequent inter-particle interactions at the interface are poorly understood. In this work, the interfacial dynamic and corresponding dilational surface rheology of self-assembled polyelectrolyte/surfactant nanoparticles at the air–water interface are characterized. The nanoparticles are prepared from dodecyltrimethylammonium (DTAB) and poly (sodium 4-styrene-sulfonate) (PSS) by mixing them in aqueous solution. The interfacial dynamic characteristics have been carried out by comparing the surface pressure with the dilational rheological response of these nanoparticles at interface. The results indicate that this type of nanoparticles can adsorb at the interface forming a nanoparticle monolayer, which leads to the surface tension decreased markedly. The dependence of surface pressure on time shows the instability and disassembly process of nanoparticles at the interface. On the basis of these observations, it is proposed that the nanoparticles undergo a dynamic process that interface induced nanoparticles disassembly into DTAB/PSS complexes. The presence of PSS in the subphase can promote the process of nanoparticles disassembly. A transition point in dilational elasticity and viscosity response of the nanoparticles versus oscillation frequency further validate the micro dynamic process of nanoparticles and the formation of polyelectrolyte/surfactant complex monolayer at the interface

  16. The Role of Wind Waves in Dynamics of the Air-Sea Interface

    CERN Document Server

    Polnikov, Vladislav G

    2010-01-01

    Wind waves are considered as an intermediate small-scale dynamic process at the air-sea interface,which modulates radically middle-scale dynamic processes of the boundary layers in water and air. It is shown that with the aim of a quantitative description of the impact said, one can use the numerical wind wave models which are added with the blocks of the dynamic atmosphere boundary layer (DABL) and the dynamic water upper layer (DWUL). A mathematical formalization for the problem of energy and momentum transfer from the wind to the upper ocean is given on the basis of the well known mathematical representations for mechanisms of a wind wave spectrum evolution. The problem is solved quantitatively by means of introducing special system parameters: the relative rate of the wave energy input, IRE, and the relative rate of the wave energy dissipation, DRE. For two simple wave-origin situations, the certain estimations for values of IRE and DRE are found, and the examples of calculating an impact of a wind sea on...

  17. CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Coral de Oliveira

    2014-01-01

    Full Text Available Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.

  18. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.

    Science.gov (United States)

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D'Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs.

  19. Dynamic modeling efforts for system interface studies for nuclear hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Nuclear Engineering Division

    2007-08-15

    System interface studies require not only identifying economically optimal equipment configurations, which involves studying mainly full power steady-state operation, but also assessing the operability of a design during load change and startup and assessing safety-related behavior during upset conditions. This latter task is performed with a dynamic simulation code. This report reviews the requirements of such a code. It considers the types of transients that will need to be simulated, the phenomena that will be present, the models best suited for representing the phenomena, and the type of numerical solution scheme for solving the models to obtain the dynamic response of the combined nuclear-hydrogen plant. Useful insight into plant transient behavior prior to running a dynamics code is obtained by some simple methods that take into account component time constants and energy capacitances. Methods for determining reactor stability, plant startup time, and temperature response during load change, and tripping of the reactor are described. Some preliminary results are presented.

  20. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    Science.gov (United States)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend

  1. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    Science.gov (United States)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  2. Automatic dynamic mask extraction for PIV images containing an unsteady interface, bubbles, and a moving structure

    Science.gov (United States)

    Dussol, David; Druault, Philippe; Mallat, Bachar; Delacroix, Sylvain; Germain, Grégory

    2016-07-01

    When performing Particle Image Velocimetry (PIV) measurements in complex fluid flows with moving interfaces and a two-phase flow, it is necessary to develop a mask to remove non-physical measurements. This is the case when studying, for example, the complex bubble sweep-down phenomenon observed in oceanographic research vessels. Indeed, in such a configuration, the presence of an unsteady free surface, of a solid-liquid interface and of bubbles in the PIV frame, leads to generate numerous laser reflections and therefore spurious velocity vectors. In this note, an image masking process is developed to successively identify the boundaries of the ship and the free surface interface. As the presence of the solid hull surface induces laser reflections, the hull edge contours are simply detected in the first PIV frame and dynamically estimated for consecutive ones. As for the unsteady surface determination, a specific process is implemented like the following: i) the edge detection of the gradient magnitude in the PIV frame, ii) the extraction of the particles by filtering high-intensity large areas related to the bubbles and/or hull reflections, iii) the extraction of the rough region containing these particles and their reflections, iv) the removal of these reflections. The unsteady surface is finally obtained with a fifth-order polynomial interpolation. The resulted free surface is successfully validated from the Fourier analysis and by visualizing selected PIV images containing numerous spurious high intensity areas. This paper demonstrates how this data analysis process leads to PIV images database without reflections and an automatic detection of both the free surface and the rigid body. An application of this new mask is finally detailed, allowing a preliminary analysis of the hydrodynamic flow.

  3. On the implementation of error handling in dynamic interfaces to scientific codes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, C.J.

    1993-11-01

    With the advent of powerful workstations with windowing systems, the scientific community has become interested in user friendly interfaces as a means of promoting the distribution of scientific codes to colleagues. Distributing scientific codes to a wider audience can, however, be problematic because scientists, who are familiar with the problem being addressed but not aware of necessary operational details, are encouraged to use the codes. A more friendly environment that not only guides user inputs, but also helps catch errors is needed. This thesis presents a dynamic graphical user interface (GUI) creation system with user controlled support for error detection and handling. The system checks a series of constraints defining a valid input set whenever the state of the system changes and notifies the user when an error has occurred. A naive checking scheme was implemented that checks every constraint every time the system changes. However, this method examines many constraints whose values have not changed. Therefore, a minimum evaluation scheme that only checks those constraints that may have been violated was implemented. This system was implemented in a prototype and user testing was used to determine if it was a success. Users examined both the GUI creation system and the end-user environment. The users found both to be easy to use and efficient enough for practical use. Moreover, they concluded that the system would promote distribution.

  4. Typelets - a rule-based evaluation model for dynamic, statically typed user interfaces

    DEFF Research Database (Denmark)

    Elsman, Martin; Schack-Nielsen, Anders

    2014-01-01

    -inference in MLFi, the features allow for type-level programming of user interfaces. The dynamic behavior of typelets are specified using declarative rules. The technique extends the flat spreadsheet programming model with higher-order rule composition techniques, extensive reuse, and type safety. A layout...... specification language allows layout programmers (e.g., end-users) to reorganize layouts in a type-safe way without being allowed to alter the rule machinery. The resulting framework is highly flexible and allows for creating highly maintainable modules. It is used with success in the context of SimCorp's high......-end performance-critical financial asset-management system with screens containing several hundreds of GUI controls located in group-boxes, sub-tabs, and menu structures and with very complex dependency structures defined using declarative rule composition....

  5. Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100}-water interface

    Institute of Scientific and Technical Information of China (English)

    Zhi-sen ZHANG; Hai-hua PAN; Rui-kang TANG

    2008-01-01

    The understanding of interfaces and interaction of organic molecules and inorganic materials are the important issues in biomineralization. Experimentally, it has been found that amino acids (AA) can regulate the morphology of hydroxyapatite (HAP) crystals significantly. In this study, molecular dynamics simulation is employed to investigate the detailed adsorption behavior of polar, ionic, and hydrophobic AA on the {100} face of HAP at the atomic level. The results indicate that various AA are adsorbed on the HAP crystal surface mainly by amino and carboxylate groups at the specific sites. Multiple inter-action points are found for polar and ionic AA. The adsorbed AA molecules occupy the Ca and P sites of the HAP surfaces which may inhibit and regulate the HAP growth. The adsorbed amino acid layer can also change the interfacial hydration layer and influence the transporta-tion of ions in and out of HAP, which may be another strategy of biological control in biomineralization.

  6. Spectroscopic diagnostics of defect and interface effects on carrier dynamics in semiconductor optoelectronics

    Science.gov (United States)

    Scofield, A. C.; Hudson, A. I.; Liang, B. L.; Wells, N. P.; Huffaker, D. L.; Lotshaw, W. T.

    2016-05-01

    We use steady-state and time-resolved spectroscopy to evaluate optoelectronic material quality and obtain detailed information about carrier generation, transport, and relaxation in semiconductor devices and test structures. This report focuses on time-resolved and steady-state photoluminescence of III-V reference heterostructures at temperatures between 4K and 300K in order to investigate the mechanisms limiting carrier lifetime and to develop the capability to provide actionable feedback to research-and-development efforts for improvement and optimization of material properties and/or device performance. We combine the results of photoluminescence experiments with model-based analyses and simulations of carrier relaxation to assess the impacts of defects and interface quality on the relaxation dynamics of photo-generated carriers in double heterostructure test vehicles grown by MOCVD and MBE.

  7. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  8. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Keng-Hua; Strachan, Alejandro [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-07-21

    Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.

  9. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  10. MULTIPLE SCATTERING AND DYNAMIC STRESS ANALYSIS OF ELASTIC WAVES IN A FIBER—REINFORCED COMPOSITE WITH INTERFACES

    Institute of Scientific and Technical Information of China (English)

    李凤明; 胡超; 徐敏强; 黄文虎

    2003-01-01

    Based on the theory of elastic dynamics, multiple scattering of elastic waves anddynamic stress concentrations in fiber-reinforced composite are studied. The analytical expressions ofelastic waves in different regions are presented. The mode coefficients of elastic waves are determinedin accordance with the continuous conditions of displacement and stress on the boundary of the multi-interfaces. By using the addition theorem of Hankel functions, the formula of scattered wave fields indifferent local coordinates are transformed into those in one local coordinate to determine the unknowncoefficients and dynamic stress concentration factors (DSCFs). The influences of the distance betweentwo inclusions, material properties and structural size on the DSCFs near the interfaces are analyzed.As examples, the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforcedcomposites are presented and discussed.

  11. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-05-06

    Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  12. Microtubule-binding agents: a dynamic field of cancer therapeutics

    OpenAIRE

    Dumontet, Charles; Jordan, Mary Ann

    2010-01-01

    International audience Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agen...

  13. Protein-Protein Interfaces Mimics and Inhibitors Design for Cancers Caused by the disruption of HDAC-3

    Directory of Open Access Journals (Sweden)

    K. Rajaganapathy

    2015-03-01

    Full Text Available Protein-Protein interactions are deregulated or disrupted; it’s a new target for an anti-cancer agent development. In this work, the protein-protein interfaces mimics on a small molecule inhibitors of a molecular combinatorial ligand library (as a similar structure of protein-protein interfaces was designed for disruption of NcoRSIN3- HDAC3 complexes. And molecular docking study was performed with Schrodinger-Maestro-9.3.5-Version, the designed five Ligands was shown good binding interactions and their docking score was around -11.9, As a result of five ligand of a novel analogue is showing superior anti- cancerous histone deacetylase inhibitor caused by the disruption of HDAC-3.

  14. MULTIPLE SCATTERING AND DYNAMIC STRESS ANALYSIS OF ELASTIC WAVES IN A FIBER-REINFORCED COMPOSITE WITH INTERFACES

    Institute of Scientific and Technical Information of China (English)

    李凤明; 胡超; 徐敏强; 黄文虎

    2003-01-01

    Based on the theory of elastic dynamics,multiple scattering of elastic waves and dynamic stress concentrations in fiber-reinforced composite are studied.The analytical expressions of elastic waves in different regions are presented.The mode coefficients of elastic waves are determined in accordance with the continuous conditions of displacement and stress on the boundary of the multiinterfaces.By using the addition theorem of Hankel functions,the formula of scattered wave fields in different local coordinates are transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors (DSCFs).The influences of the distance between two inclusions,material properties and structural size on the DSCFs near the interfaces are analyzed.As examples,the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforced composites are presented and discussed.

  15. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules

    Science.gov (United States)

    Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko

    2016-08-01

    Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.

  16. Interface dynamics and crystal phase switching in GaAs nanowires

    Science.gov (United States)

    Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C.; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A.; Ross, Frances M.

    2016-03-01

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  17. Bearer channel control protocol for the dynamic VB5.2 interface in ATM access networks

    Science.gov (United States)

    Fragoulopoulos, Stratos K.; Mavrommatis, K. I.; Venieris, Iakovos S.

    1996-12-01

    In the multi-vendor systems, a customer connected to an Access network (AN) must be capable of selecting a specific Service Node (SN) according to the services the SN provides. The multiplicity of technologically varying AN calls for the definition of a standard reference point between the AN and the SN widely known as the VB interface. Two versions are currently offered. The VB5.1 is simpler to implement but is not as flexible as the VB5.2, which supports switched connections. The VB5.2 functionality is closely coupled to the Broadband Bearer Channel Connection Protocol (B-BCCP). The B-BCCP is used for conveying the necessary information for dynamic resource allocation, traffic policing and routing in the AN as well as for information exchange concerning the status of the AN before a new call is established by the SN. By relying on such a protocol for the exchange of information instead of intercepting and interpreting signalling messages in the AN, the architecture of the AN is simplified because the functionality related to processing is not duplicated. In this paper a prominent B- BCCP candidate is defined, called the Service node Access network Interaction Protocol.

  18. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction.

    Science.gov (United States)

    Hirayama, Masaaki; Ido, Hedekazu; Kim, KyungSu; Cho, Woosuk; Tamura, Kazuhisa; Mizuki, Jun'ichiro; Kanno, Ryoji

    2010-11-01

    Gaining a thorough understanding of the reactions on the electrode surfaces of lithium batteries is critical for designing new electrode materials suitable for high-power, long-life operation. A technique for directly observing surface structural changes has been developed that employs an epitaxial LiMn(2)O(4) thin-film model electrode and surface X-ray diffraction (SXRD). Epitaxial LiMn(2)O(4) thin films with restricted lattice planes (111) and (110) are grown on SrTiO(3) substrates by pulsed laser deposition. In situ SXRD studies have revealed dynamic structural changes that reduce the atomic symmetry at the electrode surface during the initial electrochemical reaction. The surface structural changes commence with the formation of an electric double layer, which is followed by surface reconstruction when a voltage is applied in the first charge process. Transmission electron microscopy images after 10 cycles confirm the formation of a solid electrolyte interface (SEI) layer on both the (111) and (110) surfaces and Mn dissolution from the (110) surface. The (111) surface is more stable than the (110) surface. The electrode stability of LiMn(2)O(4) depends on the reaction rate of SEI formation and the stability of the reconstructed surface structure. PMID:20939527

  19. Enhancement patterns of prostate cancer in dynamic MRI

    International Nuclear Information System (INIS)

    Our objective was to analyze fast-field-echo dynamic subtracted (FFE/DS) MRI data in prostate cancer, in order to recognize enhancement patterns of tumoral tissue in comparison with non-tumoral peripheral prostatic tissue. Eleven consecutive patients with prostate cancer were proposed for radical prostatectomy. Before surgery, all patients underwent endorectal coil MRI examination. In addition to standard sequences, a dynamic study was performed by FFE/DS to evaluate tumoral behavior after Gd-DTPA rapid infusion. Analysis of the imaging was made by the means of the time/signal intensity curve obtained during early contrast medium enhancement, sampling both the abnormal enhancing focal area and the opposite lobe at the level of the main prostatic tissue. A focal area of increased enhancement was observed in the site of the tumor in all cases. The time/intensity curve sampled on this area and compared with the opposite lobe demonstrated a high confidence interval of the difference of the data: mean tumor maximal intensity 1331 (SD 187) vs normal 470 (SD 139) and mean tumor rise time 103 s (SD 30) vs normal 250 (SD 38; p<0.01). In tumoral tissue, the enhancement percentage of signal intensity (SI%=pre-contrast minus post-contrast/pre-contrast x 100) was 316.7%. At FFE/DS, there is a typical behavior of the time/intensity curve of contrast enhancement in prostatic cancer that might be employed in diagnosis of the disease. (orig.)

  20. Enhancement patterns of prostate cancer in dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Preziosi, Paolo; Orlacchio, Antonio; Di Giambattista, Guido; Di Renzi, Paolo; Bortolotti, Luigi [Department of Radiology, AFaR-CRCCS, Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome (Italy); Fabiano, Alfredo [Department of Pathology, AFaR-CRCCS, Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome (Italy); Cruciani, Enrico [Department of Urology, AFaR-CRCCS, Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome (Italy); Pasqualetti, Patrizio [Department of Statistics, AFaR-CRCCS, Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome (Italy)

    2003-05-01

    Our objective was to analyze fast-field-echo dynamic subtracted (FFE/DS) MRI data in prostate cancer, in order to recognize enhancement patterns of tumoral tissue in comparison with non-tumoral peripheral prostatic tissue. Eleven consecutive patients with prostate cancer were proposed for radical prostatectomy. Before surgery, all patients underwent endorectal coil MRI examination. In addition to standard sequences, a dynamic study was performed by FFE/DS to evaluate tumoral behavior after Gd-DTPA rapid infusion. Analysis of the imaging was made by the means of the time/signal intensity curve obtained during early contrast medium enhancement, sampling both the abnormal enhancing focal area and the opposite lobe at the level of the main prostatic tissue. A focal area of increased enhancement was observed in the site of the tumor in all cases. The time/intensity curve sampled on this area and compared with the opposite lobe demonstrated a high confidence interval of the difference of the data: mean tumor maximal intensity 1331 (SD 187) vs normal 470 (SD 139) and mean tumor rise time 103 s (SD 30) vs normal 250 (SD 38; p<0.01). In tumoral tissue, the enhancement percentage of signal intensity (SI%=pre-contrast minus post-contrast/pre-contrast x 100) was 316.7%. At FFE/DS, there is a typical behavior of the time/intensity curve of contrast enhancement in prostatic cancer that might be employed in diagnosis of the disease. (orig.)

  1. Immature, Semi-mature and Fully mature Dendritic Cells: Towards a DC-cancer cells interface that augments anticancer immunity

    Directory of Open Access Journals (Sweden)

    Aleksandra Maria Dudek

    2013-12-01

    Full Text Available Dendritic cells (DCs are the sentinel antigen-presenting cells of the immune system; such that their productive interface with the dying cancer cells is crucial for proper communication of the non-self status of cancer cells to the adaptive immune system. Efficiency and the ultimate success of such a communication hinges upon the maturation status of the DCs, attained following their interaction with cancer cells. Immature DCs facilitate tolerance towards cancer cells (observed for many apoptotic inducers while fully mature DCs can strongly promote anticancer immunity if they secrete the correct combinations of cytokines (observed when DCs interact with cancer cells undergoing immunogenic cell death (ICD. However, an intermediate population of DC maturation, called semi-mature DCs exists, which can potentiate either tolerogenicity or pro-tumourigenic responses (as happens in the case of certain chemotherapeutics and agents exerting ambivalent immune reactions. Specific combinations of DC phenotypic markers, DC-derived cytokines/chemokines, dying cancer cell-derived danger signals and other less characterized entities (e.g. exosomes can define the nature and evolution of the DC maturation state. In the present review, we discuss these different maturation states of DCs, how they might be attained and which anticancer agents or cell death modalities (e.g. tolerogenic cell death vs. ICD may regulate these states.

  2. Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases

    Directory of Open Access Journals (Sweden)

    Stephanie Seneff

    2013-09-01

    Full Text Available This paper postulates that water structure is altered by biomolecules as well as by disease-enabling entities such as certain solvated ions, and in turn water dynamics and structure affect the function of biomolecular interactions. Although the structural and dynamical alterations are subtle, they perturb a well-balanced system sufficiently to facilitate disease. We propose that the disruption of water dynamics between and within cells underlies many disease conditions. We survey recent advances in magnetobiology, nanobiology, and colloid and interface science that point compellingly to the crucial role played by the unique physical properties of quantum coherent nanomolecular clusters of magnetized water in enabling life at the cellular level by solving the “problems” of thermal diffusion, intracellular crowding, and molecular self-assembly. Interphase water and cellular surface tension, normally maintained by biological sulfates at membrane surfaces, are compromised by exogenous interfacial water stressors such as cationic aluminum, with consequences that include greater local water hydrophobicity, increased water tension, and interphase stretching. The ultimate result is greater “stiffness” in the extracellular matrix and either the “soft” cancerous state or the “soft” neurodegenerative state within cells. Our hypothesis provides a basis for understanding why so many idiopathic diseases of today are highly stereotyped and pluricausal.

  3. Prevention of Urinary Bladder Cancer: The Interface Between Experimental and Human Studies.

    Science.gov (United States)

    Fukushima, Shoji; Wanibuchi, Hideki

    2000-01-01

    1. Introduction: Bladder Cancer and the Environment Historical Aspects 2. Geographical Variation in Histopathological Types of Bladder Cancer Schistosomiasis Arsenic Poisoning Chernobyl 3. Analytical Epidemiological and Linked Experimental Findings Smoking Analgesic Abuse Saccharine 4. Histogenesis of Bladder Cancers Histopathology Molecular pathology 5. Carcinogens and Modification of Tumour Development Carcinogens Promoting agents Inhibitory agents 6. Prevention of Bladder Cancer Primary Prevention/ Lifestyle Factors/Chemoprevention Secondary Prevention/ Screening/Intervention Conclusions

  4. Dynamic FDG PET in characterizing and staging lung cancer

    International Nuclear Information System (INIS)

    CT has proven inadequate for staging lung cancer. This study evaluates F-18 deoxyglucose (FDG) positron emission tomography (PET) in assessing mediastinal metastases of lung tumors, differentiating benign from malignant parenchymal masses, and complementing radiographic and laboratory findings in lymphoma. The authors of this paper examined 13 patients with pulmonary masses as determined by chest radiographs and CT scans. PET scans were obtained with 255.3-592 MBq FDG scanned in dynamic mode at 5 minutes per frame for 45 minutes and one 15 minutes per frame. Image analysis included visual inspection, time activity curves (TAC), and calculation of differential uptake ratio (DUR) in regions of interest versus normal tissue

  5. A thermal-mechanical constitutive model for b-HMX single crystal and cohesive interface under dynamic high pressure loading

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the significant thermal-mechanical effects during hot spot formation in PBX explosives,a thermodynamic constitutive model has been constructed for HMX anisotropic single crystal subjected to dynamic impact loading. The crystal plasticity model based on dislocation dynamics theory was employed to describe the anisotropic plastic behavior along the preferential slip systems. A modified equation of state (EOS) was introduced into the constitutive equations through the decomposing stress tensor and the nonlinear elasticity for materials was taken into account. The one-dimensional strain impact simulations for HMX single crystal and quasi-bicrystal were performed respectively,in which the cohesive elements were inserted over the interface areas for the latter. The predicted particle velocities for the single crystal sample agreed well with the experimental results in the literature. Furthermore,the effects of crystal orientations,interface,misorientations on localized strain,stress and temperature distributions were predicted and discussed.

  6. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Alexander S Rose

    Full Text Available GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R* to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP. To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty, however with the α5 C-terminus (GαCT forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.

  7. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface

    NARCIS (Netherlands)

    Kudryashova, E.V.; Meinders, M.B.J.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de

    2003-01-01

    The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/ water interface adopts a characteristic partially unf

  8. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    International Nuclear Information System (INIS)

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 μmol/m2 at 300 K. For [bmim][Tf2N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are ±0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf2N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers

  9. Ligand-protein docking: cancer research at the interface between biology and chemistry.

    Science.gov (United States)

    Glen, R C; Allen, S C

    2003-05-01

    years. For example, some methods rely on complex molecular dynamics simulations while others use less costly graph matching approaches. There is generally a compromise between speed and accuracy, with some methods giving much more information and insight into the nature of the protein/ligand interactions and other methods optimised for speed of docking thousands of putative ligands. We will describe some of the more common methods and algorithms used to solve the docking problem and in particular, we will review recent applications in cancer research.

  10. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients

  11. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  12. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  13. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials

    Science.gov (United States)

    An, Qi; Zybin, Sergey V.; Goddard, William A., III; Jaramillo-Botero, Andres; Blanco, Mario; Luo, Sheng-Nian

    2011-12-01

    The fundamental processes in shock-induced instabilities of materials remain obscure, particularly for detonation of energetic materials. We simulated these processes at the atomic scale on a realistic model of a polymer-bonded explosive (3,695,375 atoms/cell) and observed that a hot spot forms at the nonuniform interface, arising from shear relaxation that results in shear along the interface that leads to a large temperature increase that persists long after the shock front has passed the interface. For energetic materials this temperature increase is coupled to chemical reactions that lead to detonation. We show that decreasing the density of the binder eliminates the hot spot.

  14. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.

    Science.gov (United States)

    Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F

    2015-02-14

    Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.

  15. Passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: insights from molecular dynamics simulation.

    Science.gov (United States)

    Sahu, Pooja; Ali, Sk Musharaf; Shenoy, Kalasanka Trivikram

    2016-08-24

    The present study reports molecular dynamics simulations for biphasic systems comprising tributyl phosphate (TBP) in dodecane and uranyl nitrate in the aqueous phase, which are key chemical species in the well-known Pu-U extraction (PUREX) process. An attempt has been made to understand the nature of interface and mechanism of 'TBP associated uranyl' crossing under neutral and acidic conditions. Results show that the solvent density undergoes large fluctuation near the interface depending on the nature of the aqueous-organic phase. The study provides compelling evidence of experimentally observed reorganization of interfacial complexes at the interface and their structural reformation during extraction. It has been observed that the surface active nature of TBP and their interfacial coverage is modulated by the nature of incorporated solute species and their location with respect to the interface. Also, the TBP structuring near the interface is destroyed when an acidic interface is considered rather than a neutral one which favors the uranyl extraction. With an acidic interface, the water humidity of organic phase was observed to be increased in the experiments. Furthermore, the acid/water solubility in the organic phase was observed to be influenced by selection of acid models and their concentration. Simulations with high acid concentration show water pocket formation in the organic phase. However, in the case of dissociated ions or a mixture of both, no such water pool is observed and the extracted water remains dispersed in the organic phase, having the tendency to be replaced by HNO3 because of preferred TBP·HNO3 complexation over TBP·H2O. Most remarkably, the present study makes evident the TBP-induced charge redistribution of uranyl complexes during migration from the interface to the bulk organic phase, which contributes to drive uranyl complexes such as UO2·NO3·4TBP, UO2·5TBP and UO2·NO3·3TBP·HNO3 in the organic phase, and this was reestablished by

  16. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab-Initio Molecular Dynamics Simulations

    CERN Document Server

    Kessler, Jan; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-01-01

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

  17. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    Science.gov (United States)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  18. Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water--a molecular dynamics study.

    Science.gov (United States)

    Konieczny, Jan K; Szefczyk, Borys

    2015-03-01

    Ionic liquid (IL) interfaces with vacuum and water are studied by means of classical molecular dynamics simulations. Five ILs are compared: [C2mim][TfO], [C12mim][TfO], [C2mim][NTf2], [C8mim][NTf2] and [C12mim][NTf2], where [C2mim], [C8mim] and [C12mim] stand for 1-ethyl-, 1-octyl- and 1-dodecyl-3-methylimidazolium cation. Physical properties-density, thermal expansion coefficient, compressibility, surface tension, heat of vaporization, self-diffusion coefficient, electric conductivity and viscosity-are calculated and validated against experimental values. The structure of the interfaces is compared in terms of the orientation of the molecules and segregation into layers. It is observed that ILs with short alkyl chains orient at the surface; however, there is no single preferred orientation. ILs with longer chains, on the other hand, orient with alkyl chains protruding into the vacuum at the IL/vacuum interface and into the bulk IL, at the IL/water interface. Anions and water molecules tend to associate with polar imidazolium groups. PMID:25674908

  19. Molecular Dynamics Study of the Separation Behavior at the Interface between PVDF Binder and Copper Current Collector

    Directory of Open Access Journals (Sweden)

    Seungjun Lee

    2016-01-01

    Full Text Available In Li-ion batteries, the mechanical strengths at the interfaces of binder/particle and binder/current collector play an important role in maintaining the mechanical integrity of the composite electrode. In this work, the separation behaviors between polyvinylidene fluoride (PVDF binders and copper current collectors are studied in the opening and sliding modes using molecular dynamics (MD simulations. The simulation shows that the separation occurs inside the PVDF rather than at the interface due to the strong adhesion between PVDF and copper. This fracture behavior is different from the behavior of the PVDF/graphite basal plane that shows a clear separation at the interface. The results suggest that the adhesion strength of the PVDF/copper is stronger than that of the PVDF/graphite basal plane. The methodology used in MD simulation can directly evaluate the adhesion strength at the interfaces of various materials between binders, substrates, and particles at the atomic scales. The proposed method can therefore provide a guideline for the design of the electrode in order to enhance the mechanical integrity for better battery performance.

  20. Atomic structure and thermal stability of interfaces between metallic glass and embedding nano-crystallites revealed by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.Z.; Yang, G.Q.; Xu, B.; Qi, C.; Kong, L.T., E-mail: konglt@sjtu.edu.cn; Li, J.F.

    2015-10-25

    Molecular dynamics simulations were performed to investigate the atomic structure and thermal stability of interfaces formed between amorphous Cu{sub 50}Zr{sub 50} matrix and embedding B2 CuZr nano-crystallites. The interfaces are found to be rather abrupt, and their widths show negligible dependence on the nano-crystallite size. Local atomic configuration in the interfacial region is dominated by geometry characterized by Voronoi polyhedra <0,5,2,6> and <0,4,4,6>, and the contents of these polyhedra also exhibit apparent size dependence, which in turn results in an increasing trend in the interfacial energy against the nano-crystallite size. Annealing of the interface models at elevated temperatures will also enrich these characterizing polyhedra. While when the temperature is as high as the glass transition temperature of the matrix, growth of the nano-crystallites will be appreciable. The growth activation energy also shows size dependence, which is lower for larger nano-crystallites, suggesting that large nano-crystallites are prone to grow upon thermal disturbance. - Highlights: • Special clusters characterizing the local geometry are abundant in the interfaces. • Their content varies with the size of the embedding nano-crystallite. • In turn, size dependences in interfacial thermodynamics and kinetics are observed.

  1. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    Science.gov (United States)

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-01

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  2. Dynamic propagation of a weak-discontinuous interface crack between two dissimilar functionally graded layers under anti-plane shear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jeong Woo [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2011-10-15

    The dynamic propagation of an interface crack between two functionally graded material (FGM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGM layers vary continuously along their thicknesses. The properties of the two FGM layers vary and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. The Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGM to show the effect of the gradient of material properties, crack moving velocity, and thickness of FGM layers. The following are helpful to increase resistance to interface crack propagation in FGMs: a) increasing the gradient of material properties, b) an increase of shear modulus and density from the interface to the upper and lower free surface, and c) increasing the thickness of the FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  3. Ultrafast dynamics and Raman imaging of metal complexes of tetrasulphonated phthalocyanines in human cancerous and noncancerous breast tissues

    Directory of Open Access Journals (Sweden)

    Musial J.

    2013-03-01

    Full Text Available A promising material in medicine, electronics, optoelectronics, electrochemistry, catalysis and photophysics, Al(III phthalocyanine chloride tetrasulfonic acid (AlPcS4 is investigated at biological interfaces of human breast tissue by means of time-resolved spectroscopy. The nature of fast processes and pathways of the competing relaxation mechanisms from the initially excited electronic states of a photosensitizer at biological interfaces have been studied. Comparison between the results in the biological environment of the breast tissues and in aqueous solutions demonstrates that the photochemical mechanisms become dramatically different. The presented results provide a basis for a substantial revision of the commonly accepted assumption that photochemistry of the bulk properties of photosensitizers in solutions can be translated to the interfacial region. First, in solution the dynamics of the photosensitizer is much slower than that at the biological interface. Second, the dynamics of the photosensitizer in the cancerous tissue is dramatically slower than that in noncancerous tissue. Our results provide evidence that molecular structures responsible for harvesting of the light energy in biological tissue find their ways for a recovery through some special features of the potential energy surfaces such as conical intersections, which facilitate the rate of radiationless transitions and maintain the photostability in the biological systems.

  4. Calculation of transient dynamic stress intensity factors at bimaterial interface cracks using a SBFEM-based frequency-domain approach

    Institute of Scientific and Technical Information of China (English)

    Z.J.YANG; A.J.DEEKS

    2008-01-01

    A frequency-domain approach based on the semi-analytical scaled boundary finite element method(SBFEM) was developed to calculate dynamic stress intensity factors(DSIFs) at bimaterial interface cracks subjected to transient loading.Be-cause the stress solutions of the SBFEM in the frequency domain are analytical in the radial direction,and the complex stress singularity at the bimaterial interface crack tip is explicitly represented in the stress solutions,the mixed-mode DSIFs were calculated directly by definition.The complex frequency-response functions of DSIFs were then used by the fast Fourier transform(FFT) and the inverse FFT to calculate time histories of DSIFs.A benchmark example was modelled.Good re-sults were obtained by modelling the example with a small number of degrees of freedom due to the semi-analytical nature of the SBFEM.

  5. Calculation of transient dynamic stress intensity factors at bimaterial interface cracks using a SBFEMbased frequency-domain approach

    Institute of Scientific and Technical Information of China (English)

    Z.J.YANG; A.J.DEEKS

    2008-01-01

    A frequency-domain approach based on the semi-analytical scaled boundary finite element method (SBFEM) was developed to calculate dynamic stress intensity factors (DSIFs) at bimaterial interface cracks subjected to transient loading. Be-cause the stress solutions of the SBFEM in the frequency domain are analytical in the radial direction, and the complex stress singularity at the bimaterial interface crack tip is explicitly represented in the stress solutions, the mixed-mode DSIFs were calculated directly by definition. The complex frequency-response functions of DSIFs were then used by the fast Fourier transform (FFT) and the inverse FFT to calculate time histories of DSIFs. A benchmark example was modelled. Good re-sults were obtained by modelling the example with a small number of degrees of freedom due to the semi-analytical nature of the SBFEM.

  6. Mechanical responses of the bio-nano interface: A molecular dynamics study of graphene-coated lipid membrane

    Directory of Open Access Journals (Sweden)

    Zhigong Song

    2015-11-01

    Full Text Available Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations. In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic pressure or indentation loads. We find that graphene coating provides remarkable resistance to the loads, and the intercalated water layer offers additional protection. These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms, which provide a basis for the rational design of bionanotechnology-enabled applications such as biomedical devices and nanotherapeutics.

  7. Ultrafast slaving dynamics at the protein-water interface studied with 2D-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Kubarych K. J.

    2013-03-01

    Full Text Available The dynamics of hen egg white lysozyme in D2O/glycerol mixtures is studied using two-dimensional infrared spectroscopy. The hydration dynamics and the protein dynamics are studied simultaneously through vibrational probes attached to the protein surface.

  8. Dynamic contrast-enhanced CT in patients with pancreatic cancer

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Ammitzbøl; Eriksen, Rie Østbjerg; Strauch, Louise Søborg;

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library...... into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor...... tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful...

  9. Dynamic contrast-enhanced CT in patients with pancreatic cancer

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Ammitzbøl; Eriksen, Rie Østbjerg; Strauch, Louise Søborg;

    2016-01-01

    tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful......The aim of this systematic review is to provide an overview of the use of Dynamic contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library...... in the investigation of characteristic vascular patterns of pancreatic exocrine tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. Keywords:...

  10. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yaru Wang

    Full Text Available BACKGROUND: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. CONCLUSIONS/SIGNIFICANCE: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  11. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics

    Science.gov (United States)

    Reguera, Javier; Ponomarev, Evgeniy; Geue, Thomas; Stellacci, Francesco; Bresme, Fernando; Moglianetti, Mauro

    2015-03-01

    Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were

  12. Photoresponse dynamics in amorphous-LaAlO3/SrTiO3 interfaces

    Science.gov (United States)

    di Gennaro, Emiliano; Coscia, Ubaldo; Ambrosone, Giuseppina; Khare, Amit; Granozio, Fabio Miletto; di Uccio, Umberto Scotti

    2015-02-01

    The time-resolved photoconductance of amorphous and crystalline LaAlO3/SrTiO3 interfaces, both hosting an interfacial 2-dimensional electron gas, is investigated under irradiation by variable-wavelengths, visible or ultraviolet photons. Unlike bare SrTiO3 single crystals, showing relatively small photoconductance effects, both kinds of interfaces exhibit an intense and highly persistent photoconductance with extraordinarily long characteristic times. The temporal behaviour of the extra photoinduced conductance persisting after light irradiation shows a complex dependence on interface type (whether amorphous or crystalline), sample history and irradiation wavelength. The experimental results indicate that different mechanisms of photoexcitation are responsible for the photoconductance of crystalline and amorphous LaAlO3/SrTiO3 interfaces under visible light. We propose that the response of crystalline samples is mainly due to the promotion of electrons from the valence bands of both SrTiO3 and LaAlO3. This second channel is less relevant in amorphous LaAlO3/SrTiO3, where the higher density of point defects plays instead a major role.

  13. Influence of a lipid interface on protein dynamics in a fungal lipase

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Bywater, R. P.

    2001-01-01

    Lipases catalyze lipolytic reactions and for optimal activity they require a lipid interface. To study the effect of a lipid aggregate on the behavior of the enzyme at the interfacial plane and how the aggregate influences an attached substrate or product molecule in time and space, we have...

  14. A molecular dynamics simulation of the structure of ionic liquid (BMIM+/PF-6)/rutile (110)interface

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; CAO Zhen; LI Shu; YAN TianYing

    2009-01-01

    The interfacial structure between the room-temperature ionic liquid,1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM+/PF6-) and rutile (110) surface is simulated by classical molecular dynamics simulation,aiming to model a crucial constituent of the electrolyte/semiconductor interface.The simulation results show several enhanced layers forming in the interfacial region,especially for the anions.A well ordered double layering structure of the ions is also observed in the interfacial region.The cations are found to organize themselves in a parallel alignment with respect to the TiO2 slab,with an obvious elongation of the side chains.

  15. Molecular dynamics studies of simple membrane — Water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-06-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Bom barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience “interfacial resistance” to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  16. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  17. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface

    KAUST Repository

    Gao, Fengfeng

    2014-12-18

    Carboxyl asphaltene is commonly discussed in the petroleum industry. In most conditions, electroneutral carboxyl asphaltene molecules can be deprotonated to become carboxylate asphaltenes. Both in crude oil and at the oil/water interface, the characteristics of anionic carboxylate asphaltenes are different than those of the carboxyl asphaltenes. In this paper, molecular dynamics (MD) simulations are utilized to study the structural features of different asphaltene molecules, namely, C5 Pe and anionic C5 Pe, at the molecular level. In crude oil, the electroneutral C5 Pe molecules prefer to form a steady face-to-face stacking, while the anionic C5 Pe molecules are inclined to form face-to-face stacking and T-shaped II stacking because of the repulsion of the anionic headgroups. Anionic C5 Pe has a distinct affinity to the oil/water interface during the simulation, while the C5 Pe molecules persist in the crude oil domain. A three-stage model of anionic C5 Pe molecules adsorbed at the oil/water interface is finally developed.

  18. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    Science.gov (United States)

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures. PMID:27091668

  19. Refinements of water parameters for molecular dynamics: Simulations of adsorption at the clay mineral/aqueous solution interface

    DEFF Research Database (Denmark)

    Schäfer, L.; Yu, C.; Teppen, B.J.;

    1999-01-01

    In the context of a long-term program involving molecular dynamics simulations of adsorption phenomena at the clay mineral/aqueous solution interface, we are testing the viability of combining a force field that we developed specificially for clays with other, independently derived potential...... parameters for molecular species which are important in clay adsorption. For the current study the importance of variations in the potential parameters of water were investigated and polarization effects on oxygen studied as a function of intermolecular interactions. For this purpose ab initio MP2/6-311GG...... atomic charges were determined for several oligomers of water and for the water dimer at different intermolecular separations. Charge variations of up to ~0.1 electron charge unit on oxygen are found and, together with changes in van der Waals constants, their significance for dynamics simulations...

  20. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces.

    Science.gov (United States)

    Wei, Wei-Shao; Gharbi, Mohamed Amine; Lohr, Matthew A; Still, Tim; Gratale, Matthew D; Lubensky, T C; Stebe, Kathleen J; Yodh, A G

    2016-05-25

    We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition. PMID:27109759

  1. Phosphate DIstribution and Movement in Soil—Root Interface Zone:Ⅲ.Dynamics

    Institute of Scientific and Technical Information of China (English)

    XUMING-GANG; ZHANGYI-PING; 等

    1995-01-01

    The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphate uptske of wheat or maize,which indicated that the phosphate distribution in soil near the root surface agreed well with the phosphate movement in rhizosphere and phosphate uptake by plant,The relative accumulation zone of phosphate within 0.5mm apart from the root surface developed at the 15th day or so after cultivating wheat or maize since the root phosphate secretion increased gradually in this stage.The phosphate distribution in the soil-root interface zone against the growing time(t)and the distance from the root plane(x) could be described by the non-linear regression equation with the third powers of x and t.

  2. Dynamical screening at the metal-semiconductor interface and excitonic superconductivity

    International Nuclear Information System (INIS)

    We examine the possibility of excitonic superconductivity at a metal - semiconductor interface. An ab initio RPA calculation of the screened Coulomb electron-electron interaction is performed for the silicon-jellium multilayer model. The superconducting kernel for this multilayered system is found to be positive in the whole frequency range considered. We show that the inclusion of local field effects does not change the sign of the kernel and thus does not enhance the excitonic mechanism. (author)

  3. Shape- and Interface-Induced Control of Spin Dynamics of Two-Dimensional Bicomponent Magnonic Crystals.

    Science.gov (United States)

    Choudhury, Samiran; Saha, Susmita; Mandal, Ruma; Barman, Saswati; Otani, YoshiChika; Barman, Anjan

    2016-07-20

    Controlled fabrication of periodically arranged embedded nanostructures with strong interelement interaction through the interface between the two different materials has great potential applications in spintronics, spin logic, and other spin-based communication devices. Here, we report the fabrication of two-dimensional bicomponent magnonic crystals in form of embedded Ni80Fe20 nanostructures in Co50Fe50 thin films by nanolithography. The spin wave (SW) spectra studied by a broadband ferromagnetic resonance spectroscopy showed a significant variation as the shape of the embedded nanostructure changes from circular to square. Significantly, in both shapes, a minimum in frequency is obtained at a negative value of bias field during the field hysteresis confirming the presence of a strong exchange coupling at the interface between the two materials, which can potentially increase the spin wave propagation velocity in such structures leading to faster gigahertz frequency magnetic communication and logic devices. The spin wave frequencies and bandgaps show bias field tunability, which is important for above device applications. Numerical simulations qualitatively reproduced the experimental results, and simulated mode profiles revealed the spatial distribution of the SW modes and internal magnetic fields responsible for this observation. Development of such controlled arrays of embedded nanostructures with improved interface can be easily applied to other forms of artificial crystals. PMID:27345034

  4. Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: Comparison of different solvent models.

    Science.gov (United States)

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-09-28

    We report a Molecular Dynamics (MD) study of the interface between water and the hygroscopic room temperature Ionic Liquid "IL" [BMI][PF6] (1-butyl-3-methyl-imidazolium hexafluorophosphate), comparing the TIP3P, SPC/E and TIP5P models for water and two IL models where the ions are +/-1 or +/-0.9 charged. A recent MD study (A. Chaumont, R. Schurhammer and G. Wipff, J. Phys. Chem. B, 2005, 109, 18964) showed that using TIP3P water in conjunction with the IL(+/-1) model led to water-IL mixing without forming an interface, whereas a biphasic system could be obtained with the IL(+/-0.9) model. With the TIP5P and SPC/E models, the juxtaposed aqueous and IL phases are found to remain distinct for at least 20 ns. The resulting IL humidity, exaggerated with the IL(+/-1) model, is in better agreement with experiment using the IL(+/-0.9) model. We also report demixing simulations on the "randomly mixed" liquids, using the IL(+/-0.9) model for the ionic liquid. With the three tested water models, the phases separate very slowly ( approximately 20 ns or more) compared to "classical" chloroform-water mixtures (less than 1 ns), leading to biphasic systems similar to those obtained after equilibration of the juxtaposed liquids. The characteristics of the interface (size, polarity, ion orientation, electrostatic potential) are compared with the different models. Possible reasons why, among the three tested water models, the widely-used TIP3P model exaggerates the inter-solvent mixing, are analyzed. The difficulty in computationally and experimentally equilibrating water-IL mixtures is attributed to the slow dynamics and micro-heterogeneity of the IL and to the different states of water in the IL phase.

  5. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells.

    Science.gov (United States)

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R

    2014-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to suspended cells in culture is maintained at 7:3 (equilibrium ratio). The ratio was maintained even when we separate the two populations and culture them separately. After 8 h in culture the equilibrium was achieved only from either adherent or suspended population. The adherent cells were found to express less E-selectin binding glycans and demonstrated significantly weaker interaction with E-selectin under flow than the suspended cells. Manipulation of the epithelial-mesenchymal transition (EMT) markers β-catenin and E-cadherin expression, either by siRNA knockdown of β-catenin or incubation with E-cadherin antibody-coated microbeads, shifted the ratio of adherent to suspended cells to 9:1. Interestingly, human plasma supplemented media shifted the ratio of adherent to suspended cells in the opposite direction to 1:9, favoring the suspended state. The dynamic COLO 205 population switch presents unique differential phenotypes of their subpopulations and could serve as a good model for studying cell heterogeneity and the EMT process in vitro. PMID:24575161

  6. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; Alessandro, D' D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, L.; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol

  7. Spatial-Temporal Study of Rab1b Dynamics and Function at the ER-Golgi Interface.

    Science.gov (United States)

    Martinez, Hernán; García, Iris A; Sampieri, Luciana; Alvarez, Cecilia

    2016-01-01

    The GTPase Rab1b is involved in ER to Golgi transport, with multiple Rab1b effectors (located at ERES, VTCs and the Golgi complex) being required for its function. In this study, we performed live-cell dual-expression studies to analyze the dynamics of Rab1b and some effectors located at the ERES-Golgi interface. Rab1b occupied widely distributed mobile punctate and tubular structures, displaying a transient overlaps with its effectors and showing that these overlaps occurred at the same time in spatially distinct steps of ER to Golgi transport. In addition, we assessed Rab1b dynamics during cargo sorting by analyzing the concentration at ERES of a Golgi protein (SialT2-CFP) during Brefeldin A washout (BFA WO). Rab1b was associated to most of the ERES structures, but at different times during BFA WO, and recurrently SialT2-CFP was sorted in the ERES-Rab1b positive structures. Furthermore, we reveal for first time that Rab1b localization time at ERES depended on GBF1, a Rab1b effector that acts as the guanine nucleotide exchange factor of Arf1, and that Rab1b membrane association/dissociation dynamics at ERES was dependent on the GBF1 membrane association and activity, which strongly suggests that GBF1 activity modulates Rab1b membrane cycling dynamic.

  8. Spatial-Temporal Study of Rab1b Dynamics and Function at the ER-Golgi Interface

    Science.gov (United States)

    Martinez, Hernán; García, Iris A.; Sampieri, Luciana

    2016-01-01

    The GTPase Rab1b is involved in ER to Golgi transport, with multiple Rab1b effectors (located at ERES, VTCs and the Golgi complex) being required for its function. In this study, we performed live-cell dual-expression studies to analyze the dynamics of Rab1b and some effectors located at the ERES-Golgi interface. Rab1b occupied widely distributed mobile punctate and tubular structures, displaying a transient overlaps with its effectors and showing that these overlaps occurred at the same time in spatially distinct steps of ER to Golgi transport. In addition, we assessed Rab1b dynamics during cargo sorting by analyzing the concentration at ERES of a Golgi protein (SialT2-CFP) during Brefeldin A washout (BFA WO). Rab1b was associated to most of the ERES structures, but at different times during BFA WO, and recurrently SialT2-CFP was sorted in the ERES-Rab1b positive structures. Furthermore, we reveal for first time that Rab1b localization time at ERES depended on GBF1, a Rab1b effector that acts as the guanine nucleotide exchange factor of Arf1, and that Rab1b membrane association/dissociation dynamics at ERES was dependent on the GBF1 membrane association and activity, which strongly suggests that GBF1 activity modulates Rab1b membrane cycling dynamic. PMID:27500526

  9. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Wirth, CT;

    2008-01-01

    and the overall mechanism is largely unresolved. Here, we present a video-rate environmental transmission electron microscopy study of Si nanowire formation from Pd silicide crystals under disilane exposure. A Si crystal nucleus forms by phase separation, as observed for the liquid Au–Si system, which we use...... as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant...

  10. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    Science.gov (United States)

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  11. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Rie Ø. Eriksen

    2016-09-01

    Full Text Available The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors.

  12. Electron dynamics at the PTCDA/Ag(111) interface studied with 2PPE

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Manuel; Schwalb, Christian; Hoefer, Ulrich [Fachbereich Physik und Zentrum fuer Materialwissenschaften, Philipps-Universitaet Marburg (Germany); Sachs, Soenke; Schoell, Achim [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Umbach, Eberhard [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Forschungszentrum Karlsruhe (Germany)

    2008-07-01

    We investigated epitaxial grown PTCDA (3,4,9,10-perylene-tetracarboxylic acid-dianhydride) on the Ag(111) surface as model system for a metal-organic interface by means of time- and angle-resolved two-photon photoemission (2PPE). In the presence of thin PTCDA films, an unoccupied state with an effective electron mass of 0.39 m{sub e} is observed in the projected band gap of Ag 0.6 eV above E{sub F}. Its inelastic electronic lifetime is {approx_equal}50 fs and the state has an appreciable metallic character, significantly exceeding that of the image-potential states. We assign the new state to a mixture of the former Ag(111) Shockley surface state and the LUMO+1 of the first PTCDA monolayer (ML). In contrast to this interface state, which changes only weakly with PTCDA coverage, the binding energy of the first image-potential state shows a strong dependence. It increases by 135 meV for 1 ML, compared to clean Ag(111), but with absorption of the second ML, a subsequent drop of -70 meV relative to the clean surface occurs. A similar coverage dependence can be seen in the effective electron mass, which decreases by 20% from the first to the second PTCDA layer.

  13. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    Science.gov (United States)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for

  14. Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study.

    Science.gov (United States)

    Islam, Md Mahbubul; Zou, Chenyu; van Duin, Adri C T; Raman, Sumathy

    2016-01-14

    Hydrogen embrittlement (HE) is a well-known material phenomenon that causes significant loss in the mechanical strength of structural iron and often leads to catastrophic failures. In order to provide a detailed atomistic description of HE we have used a reactive bond order potential to adequately describe the diffusion of hydrogen as well as its chemical interaction with other hydrogen atoms, defects, and the host metal. The currently published ReaxFF force field for Fe/C/H systems was originally developed to describe Fischer-Tropsch (FT) catalysis [C. Zou, A. C. T. van Duin and D. C. Sorescu, Top. Catal., 2012, 55, 391-401], and especially had been trained for surface formation energies, binding energies of small hydrocarbon radicals on different surfaces of iron and the barrier heights of surface reactions. We merged this force field with the latest ReaxFF carbon parameters [S. Goverapet Srinivasan, A. C. T. van Duin and P. Ganesh, J. Phys. Chem. A, 2015, 119, 1089-5639] and used the same training data set to refit the Fe/C interaction parameters. The present work is focused on evaluating the applicability of this reactive force field to describe material characteristics and study the role of defects and impurities in the bulk and at the precipitator interfaces. We study the interactions of hydrogen with pure and defective α-iron (ferrite), Fe3C (cementite), and ferrite-cementite interfaces with a vacancy cluster. We also investigate the growth of nanovoids in α-iron using a grand canonical Monte Carlo (GCMC) scheme. The calculated hydrogen diffusion coefficients for both ferrite and cementite phases predict a decrease in the work of separation with increasing hydrogen concentration at the ferrite-cementite interface, suggesting a hydrogen-induced decohesion behavior. Hydrogen accumulation at the interface was observed during molecular dynamics (MD) simulations, which is consistent with experimental findings. These results demonstrate the ability of the Reax

  15. Using Dynamic Interface Modeling and Simulation to Develop a Launch and Recovery Flight Simulation for a UH-60A Blackhawk

    Science.gov (United States)

    Sweeney, Christopher; Bunnell, John; Chung, William; Giovannetti, Dean; Mikula, Julie; Nicholson, Bob; Roscoe, Mike

    2001-01-01

    Joint Shipboard Helicopter Integration Process (JSHIP) is a Joint Test and Evaluation (JT&E) program sponsored by the Office of the Secretary of Defense (OSD). Under the JSHDP program is a simulation effort referred to as the Dynamic Interface Modeling and Simulation System (DIMSS). The purpose of DIMSS is to develop and test the processes and mechanisms that facilitate ship-helicopter interface testing via man-in-the-loop ground-based flight simulators. Specifically, the DIMSS charter is to develop an accredited process for using a flight simulator to determine the wind-over-the-deck (WOD) launch and recovery flight envelope for the UH-60A ship/helicopter combination. DIMSS is a collaborative effort between the NASA Ames Research Center and OSD. OSD determines the T&E and warfighter training requirements, provides the programmatics and dynamic interface T&E experience, and conducts ship/aircraft interface tests for validating the simulation. NASA provides the research and development element, simulation facility, and simulation technical experience. This paper will highlight the benefits of the NASA/JSHIP collaboration and detail achievements of the project in terms of modeling and simulation. The Vertical Motion Simulator (VMS) at NASA Ames Research Center offers the capability to simulate a wide range of simulation cueing configurations, which include visual, aural, and body-force cueing devices. The system flexibility enables switching configurations io allow back-to-back evaluation and comparison of different levels of cueing fidelity in determining minimum training requirements. The investigation required development and integration of several major simulation system at the VMS. A new UH-60A BlackHawk interchangeable cab that provides an out-the-window (OTW) field-of-view (FOV) of 220 degrees in azimuth and 70 degrees in elevation was built. Modeling efforts involved integrating Computational Fluid Dynamics (CFD) generated data of an LHA ship airwake and

  16. Selective optical switching of interface-coupled relaxation dynamics in carbon nanotube-Si heterojunctions

    KAUST Repository

    Ponzoni, Stefano

    2014-10-16

    By properly tuning the photon energy of a femtosecond laser pump, we disentangle, in carbon nanotube-Si (CNT/Si) heterojunctions, the fast relaxation dynamics occurring in CNT from the slow repopulation dynamics due to hole charge transfer at the junction. In this way we are able to track the transfer of the photogenerated holes from the Si depletion layer to the CNT layer, under the action of the built-in heterojunction potential. This also clarifies that CNT play an active role in the junction and do not act only as channels for charge collection and transport.

  17. Dynamic response of cancer under the influence of immunological activity and therapy

    NARCIS (Netherlands)

    De Vladar, H.P.; Gonzalez, J.A.

    2004-01-01

    The dynamical basis of tumoral growth has been controversial. Many models have been proposed to explain cancer development. The descriptions employ exponential, potential, logistic or Gompertzian growth laws. Some of these models are concerned with the interaction between cancer and the immunologica

  18. Accumulation of host-guest ion complexes with different counterions at the water-supercritical CO2 interface: a molecular dynamics study

    International Nuclear Information System (INIS)

    Modeling of ionic complexes on the surface of the water-supercritical carbon dioxide interface was made by the method of molecular dynamics. The following complexes were studied: Cs+-calix[4]crown[6]ether, complex Sr2+-18C6 with picrate or perfluorooctanoate counterions. Results of the modeling suggest that the interface between the aqueous phase and nonmixing organic liquids is similar to water-CO2 interface. The modeling revealed the important role of counterions in extraction of the cations into supercritical CO2 phase. Mechanism of stimulated ion transfer into CO2 phase is discussed

  19. Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles

    CERN Document Server

    Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M

    2008-01-01

    The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...

  20. Tilt dynamics of an electrostatically actuated microoscillator at a liquid-liquid interface

    International Nuclear Information System (INIS)

    We investigate the time-domain tilt response of an electrostatically actuated mechanical microoscillator positioned at a liquid-liquid interface. An analytical model is presented to simulate the microoscillator's rotational motion inside a microchannel completely filled with two immiscible liquids. The model considers two coupled ordinary differential equations; one simulates the mechanical response of the microplate-microbeam assembly making-up the mi-crooscillator and the other provides the behaviour of the electrical charge responsible for the electrostatic moment that tilts the microplate. Results show that remarkable improvements in sampling time and sensitivity can be obtained using a bi-liquid configuration versus its single-liquid counterpart. Therefore, enhanced performance of mechanical microsensors for liquids could be achieved.

  1. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface

    NARCIS (Netherlands)

    Deshmukh, O.S.; Maestro, A.; Duits, M.H.G.; Ende, van den D.T.M.; Cohen Stuart, M.A.; Mugele, F.

    2014-01-01

    Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylami

  2. Crawling Ajax-based Web Applications through Dynamic Analysis of User Interface State Changes

    NARCIS (Netherlands)

    Mesbah, A.; Van Deursen, A.; Lenselink, S.

    2011-01-01

    Using JavaScript and dynamic DOM manipulation on the client-side of web applications is becoming a widespread approach for achieving rich interactivity and responsiveness in modern web applications. At the same time, such techniques, collectively known as Ajax, shatter the metaphor of web ‘pages’ wi

  3. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    Energy Technology Data Exchange (ETDEWEB)

    Schrider, Keegan J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-09-21

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  4. The amorphous silica–liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder

    International Nuclear Information System (INIS)

    The structural organization of water at a model of amorphous silica–liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H-bond donors to water. The vicinal silanols are simultaneously found to be H-bond acceptors from water. The geminal pairs are also characterized by the formation of water H-bonded rings, which could provide special pathways for proton transfer(s) at the interface. The first water layer above the surface is overall rather disordered, with three main domains of orientations of the water molecules. We discuss the similarities and differences in the structural organization of the interfacial water layer at the surface of the amorphous silica and at the surface of the crystalline (0 0 0 1) quartz surface. (paper)

  5. Heterogeneous growth of calcite at aragonite {001}- and vaterite {001}-melt interfaces: A molecular dynamics simulation study

    Science.gov (United States)

    Nada, Hiroki; Nishimura, Tatsuya; Sakamoto, Takeshi; Kato, Takashi

    2016-09-01

    Crystal growth at the interface between a calcium carbonate (CaCO3) crystal and its melt at a high temperature of 1500 K is investigated by means of a molecular dynamics simulation. The simulation is performed for the interfaces of a calcite {104} plane, aragonite {001}, {100}, and {010} planes, and vaterite {001}, {110}, and {100} planes. The growth from a pure melt and that from a melt containing Mg2+ are examined. Calcite growth occurs on the calcite {104} plane, aragonite growth occurs on the aragonite {100}, and {010} planes, and vaterite growth occurs on the vaterite {110} and {100} planes. However, the heterogeneous growth of calcite occurs on the {001} plane of aragonite and vaterite, irrespective of the presence of Mg2+. The results advance our understanding of geological processes that occur at high temperature, such as the formation of CaCO3 crystals from carbonatite magma and the formation of marble. Moreover, the results provide useful information for the control of CaCO3 crystal formation in material design.

  6. Dynamics of electron transport at the PTCDA/Ag(111)-interface studied with time-resolved 2PPE

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, Christian; Marks, Manuel B.; Hoefer, Ulrich [Fachbereich Physik, Zentrum fuer Materialwissenschaften, Philipps-Universitaet Marburg, D-35032 Marburg (Germany); Sachs, Soenke; Schoell, Achim [Universitaet Wuerzburg, Experimentelle Physik II, D-97074 Wuerzburg (Germany); Umbach, Eberhard [Universitaet Wuerzburg, Experimentelle Physik II, D-97074 Wuerzburg (Germany); Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)

    2009-07-01

    Time-resolved two-photon photoemission (2PPE) is able to provide very detailed information about the electronic structure and the dynamics of electron transfer processes of well-ordered interfaces between organic semiconductors and metals. As a model system we have investigated thin epitaxial PTCDA films on Ag(111). A dispersing unoccupied state with an effective electron mass of 0.39 m{sub e} at the anti {gamma}-point emerges 0.6 eV above the metallic Fermi level E{sub F}. Its short lifetime of 55 fs is a clear indication that this state has a strong overlap with the metal and essentially originates from an upshift of the Shockley surface state of the Ag substrate. In order to investigate the role of the interface state for charge carrier injection, we populate the LUMO of PTCDA in films of varying thickness and simultaneously record fluorescence and photoemission spectra. A long lived component observed in the 2PPE signal close to E{sub F} clearly correlates with film thickness and fluorescence lifetime.

  7. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces

    Science.gov (United States)

    Selcuk, Sencer; Selloni, Annabella

    2016-10-01

    Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in many of the properties of TiO2. Understanding their behaviour is important for improving the performance of TiO2 in energy-related applications. We focus on anatase, the TiO2 polymorph most relevant in photocatalysis and solar energy conversion. Using first-principles simulations, we investigate the states and dynamics of excess electrons from different donors near the most common anatase (101) and (001) surfaces and aqueous interfaces. We find that the behaviour of excess electrons depends strongly on the exposed anatase surface, the environment and the character of the electron donor. Whereas no electron trapping is observed on the (101) surface in vacuo, an excess electron at the aqueous (101) interface can trigger water dissociation and become trapped into a stable surface Ti3+-bridging OH complex. By contrast, electrons avoid the (001) surface, indicating that oxidation reactions are favoured on this surface. Our results provide a bridge between surface science experiments and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between {101} and {001} facets could provide a way to enhance the photocatalytic activity of this material.

  8. Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface.

    Science.gov (United States)

    Dai, Wenyang; Shao, Feng; Szczerbiński, Jacek; McCaffrey, Ryan; Zenobi, Renato; Jin, Yinghua; Schlüter, A Dieter; Zhang, Wei

    2016-01-01

    A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

  9. Geocadabra Construction Box: A dynamic geometry interface within a 3D visualization teaching-learning trajectory for elementary learners

    Directory of Open Access Journals (Sweden)

    Jacqueline Sack

    2013-07-01

    Full Text Available This study focuses on the integration of a 3-D dynamic geometry interface to enhance the 3-D visualization capacity of 8-9-year-old children who attend an after-school program. Each year, all third grade children, who attend a dual-language urban elementary school, are invited to participate, typically beginning with 20-25 participants. The program runs for one hour per week for the duration of the academic year. The research team (a university researcher and one or more classroom teachers uses design research principles (Cobb, et al., 2003 to develop and refine teaching-learning trajectories for the program. They use socially mediated instructional strategies, constantly challenging learners to find multiple solutions and explanations to a wide variety ofspatial problems. Learners work with figures made from wooden cubes, 2-D pictures that resemble these figures, and with iconic representations (such as top-view numeric or top, side and front plane views that do not directly resemble the figures. Through the integration of Geocadabra (Lecluse, 2005, the 3-D dynamic digital interface, learners move easily among the different representations and then can mentally abstract properties of these figures. They were able to visualize and accurately enumerate cubes of a complex 2-D conventional picture, but were also able to determine multiple solutions for given sets of front, side and top view diagrams, which do not always correlate with only one 3-D solution. With the current curricular focus on predominantly symbolic numeration, systematic integration of visualization, even as a representation tool for number work, into the elementary curriculum is problematic.

  10. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    Science.gov (United States)

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  11. Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Cherian, C. T. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); Özyilmaz, B. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); NanoCore, 4 Engineering Drive 3, National University of Singapore, Singapore 117576 (Singapore); Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456 (Singapore)

    2015-01-19

    We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.

  12. Dynamics at the Polymer/Nanoparticle Interface in Poly(2-vinylpyridine)/Silica Nanocomposites.

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Adam P [ORNL; Griffin, Phillip [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Bocharova, Vera [ORNL; Agapov, Alexander L [ORNL; Imel, Adam E [ORNL; Dadmun, Mark D [ORNL; Sangoro, Joshua R [ORNL; Sokolov, Alexei P [ORNL

    2014-01-01

    The static and dynamic properties of poly(2-vinylpyridine)/silica nanocomposites are investigated by temperature modulated differential scanning calorimetry, broadband dielectric spectroscopy (BDS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. Both BDS and SAXS detect the existence of an interfacial polymer layer on the surface of nanoparticles. The results show that whereas the calorimetric glass transition temperature varies only weakly with nanoparticle loading, the segmental mobility of the polymer interfacial layer is slower than the bulk polymer by 2 orders of magnitude. Detailed analysis of BDS and SAXS data reveal that the interfacial layer has a thickness of 4 6 nm irrespective of the nanoparticle concentration. These results demonstrate that in contrast to some recent articles on polymer nanocomposites, the interfacial polymer layer is by no means a dead layer . However, its existence might provide some explanation for controversies surrounding the dynamics of polymer nanocomposites.

  13. On Averaging Interface Response During Dynamic Rupture and Energy Partitioning Diagrams for Earthquakes

    OpenAIRE

    Noda, Hiroyuki; Lapusta, Nadia

    2012-01-01

    Earthquakes occur as dynamic shear cracks and convert part of the elastic strain energy into radiated and dissipated energy. Local evolution of shear strength that governs this process, which is variable in space and time, can be studied from laboratory experiments and rupture models. At the same time, increasingly accurate measurements of radiated energy and other quantities characterize earthquakes in a rupture-averaged way. Here, we present and study two approaches to averaging frictional ...

  14. Dynamic electro-chemo-mechanical analysis at the metal-electrolyte interface

    OpenAIRE

    Deng, Qibo

    2014-01-01

    The link between the mechanical deformation and the electrochemical processes on the surfaces of metal electrodes is experimentally studied. Firstly, Dynamic Electro-Chemo-Mechanical Analysis (DECMA) is designed and validated as a precise experimental strategy to investigate the potential- and current- modulation in response to the cyclic elastic strain during the cyclic voltammetry. Secondly, the mechanically modulated catalysis is investigated experimentally by monitoring the reaction ...

  15. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering.

    Science.gov (United States)

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J

    2011-08-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  16. [?]Nonlinear Issues in the Aerothermochemistry of Gases and Materials and the Associated Physics and Dynamics of Interfaces

    Science.gov (United States)

    Johnson, Joseph A., III

    1996-01-01

    Our research and technology are focused on nonlinear issues in the aerothermochemistry of gases and materials and the associated physics and dynamics of interfaces. Our program is now organized to aggressively support the NASA Aeronautics Enterprise so as to: (a) develop a new generation of environmentally compatible, economic subsonic aircraft; (b) develop the technology base for an economically viable and environmentally compatible high-speed civil transport; (c) develop the technology options for new capabilities in high-performance aircraft; (d) develop hypersonic technologies for air-breathing flight; and (e) develop advanced concepts, understanding of physical phenomena, and theoretical, experimental, and computational tools for advanced aerospace systems. The implications from our research for aeronautical and aerospace technology have been both broad and deep. For example, using advanced computational techniques, we have determined exact solutions for the Schrodinger equation in electron-molecule scattering allowing us to evaluate atmospheric models important to reentry physics. We have also found a new class of exact solutions for the Navier Stokes equations. In experimental fluid dynamics, we have found explicit evidence of turbulence modification of droplet sizes in shock tube flow with condensation. We have developed a new diagnostic tool for the direct estimation of flow velocities at MHz sampling rates in quasi-one dimensional turbulent flow. This procedure suggests an unexpected confirmation of the possibility of 'natural' closure in Reynolds stresses with deep implications for the development of turbulent models. A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of the expected relaminarization. A unique diamond-shaped nozzle has been

  17. Dynamics in Sunspot Umbra as Seen in New Solar Telescope and Interface Region Imaging Spectrograph Data

    CERN Document Server

    Yurchyshyn, Vasyl; Kilcik, Ali

    2014-01-01

    We analyse sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured the Mg II k 2796.35\\AA\\ and Si IV 1393.76\\AA\\ line formation levels changes during the observed period and peak-to-peak delays may range from 40~s to zero. The intensity of chromospheric shocks also displays a long term (about 20~min) variations. NST's high spatial resolution \\ha\\ data allowed us to conclude that in this sunspot umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. Time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and ...

  18. The second generation intelligent user interface for the crustal dynamics data information system

    Science.gov (United States)

    Short, Nicholas, Jr.; Wattawa, Scott L.

    1988-01-01

    For the past decade, operations and research projects that support a major portion of NASA's overall mission have experienced a dramatic increase in the volume of generated data and resultant information that is unparalleled in the history of the agency. The effect of such an increase is that most of the science and engineering disciplines are undergoing an information glut, which has occurred, not only because of the amount, but also because of the type of data being collected. This information glut is growing exponentially and is expected to grow for the foreseeable future. Consequently, it is becoming physically and intellectually impossible to identify, access, modify, and analyze the most suitable information. Thus, the dilemma arises that the amount and complexity of information has exceeded and will continue to exceed, using present information systems, the ability of all the scientists and engineers to understand and take advantage of this information. As a result of this information problem, NASA has initiated the Intelligent Data Management (IDM) project to design and develop Advanced Information Management Systems (AIMS). The first effort of the Project was the prototyping of an Intelligent User Interface (IUI) to an operational scientific database using expert systems, natural language processing, and graphics technologies. An overview of the IUI formulation and development for the second phase is presented.

  19. A graphical interface based model for wind turbine drive train dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Abdulwahid, U.; Rogers, A. [Univ. of Massachusetts, Amherst, MA (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1996-12-31

    This paper presents a summary of a wind turbine drive train dynamics code that has been under development at the University of Massachusetts, under National Renewable Energy Laboratory (NREL) support. The code is intended to be used to assist in the proper design and selection of drive train components. This work summarizes the development of the equations of motion for the model, and discusses the method of solution. In addition, a number of comparisons with analytical solutions and experimental field data are given. The summary includes conclusions and suggestions for future work on the model. 13 refs., 10 figs.

  20. Dynamics of cancer progression and suppression: A novel evolutionary game theory based approach.

    Science.gov (United States)

    Banerjee, Jeet; Ranjan, Tanvi; Layek, Ritwik Kumar

    2015-01-01

    In this paper, a novel mathematical approach is proposed for the dynamics of progression and suppression of cancer. We define mutant cell density, ρ(μ) (μ × ρ), as a primary factor in cancer dynamics, and use logistic growth model and replicator equation for defining the dynamics of total cell density (ρ) and mutant fraction (μ), respectively. Furthermore, in the proposed model, we introduce an analytical expression for a control parameter D (drug), to suppress the proliferation of mutants with extra fitness level σ. Lastly, we present a comparison of the proposed model with some existing models of tumour growth.

  1. Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    Science.gov (United States)

    Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.

    2016-09-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.

  2. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    Science.gov (United States)

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-01

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

  3. The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties.

    Science.gov (United States)

    Tadiello, L; D'Arienzo, M; Di Credico, B; Hanel, T; Matejka, L; Mauri, M; Morazzoni, F; Simonutti, R; Spirkova, M; Scotti, R

    2015-05-28

    Silica-styrene butadiene rubber (SBR) nanocomposites were prepared by using shape-controlled spherical and rod-like silica nanoparticles (NPs) with different aspect ratios (AR = 1-5), obtained by a sol-gel route assisted by a structure directing agent. The nanocomposites were used as models to study the influence of the particle shape on the formation of nanoscale immobilized rubber at the silica-rubber interface and its effect on the dynamic-mechanical behavior. TEM and AFM tapping mode analyses of nanocomposites demonstrated that the silica particles are surrounded by a rubber layer immobilized at the particle surface. The spherical filler showed small contact zones between neighboring particles in contact with thin rubber layers, while anisotropic particles (AR > 2) formed domains of rods preferentially aligned along the main axis. A detailed analysis of the polymer chain mobility by different time domain nuclear magnetic resonance (TD-NMR) techniques evidenced a population of rigid rubber chains surrounding particles, whose amount increases with the particle anisotropy, even in the absence of significant differences in terms of chemical crosslinking. Dynamic measurements demonstrate that rod-like particles induce stronger reinforcement of rubber, increasing with the AR. This was related to the self-alignment of the anisotropic silica particles in domains able to immobilize rubber. PMID:25899456

  4. Car-Parrinello molecular dynamics study of the uranyl behaviour at the gibbsite/water interface

    Science.gov (United States)

    Lectez, Sébastien; Roques, Jérôme; Salanne, Mathieu; Simoni, Eric

    2012-10-01

    The uranyl cation UO22+ adsorption on the basal face of gibbsite is studied via Car-Parrinello molecular dynamics. In a first step, we study the water sorption on a gibbsite surface. Three different sorption modes are observed and their hydrogen bond patterns are, respectively, characterized. Then we investigate the sorption properties of an uranyl cation, in the presence of water. In order to take into account the protonation state of the (001) gibbsite face, both a neutral (001) face and a locally deprotonated (001) face are modeled. In the first case, three adsorbed uranyl complexes (1 outer sphere and 2 inner spheres) with similar stabilities are identified. In the second case, when the gibbsite face is locally deprotonated, two adsorbed complexes (1 inner sphere and 1 outer one) are characterized. The inner sphere complex appears to be the most strongly linked to the gibbsite face.

  5. Probing Dynamics at Interfaces: Molecular Motions in Lipid Bilayers studied by Neutron Backscattering

    CERN Document Server

    Rheinstädter, M C; Salditt, T; Rheinst\\"adter, Maikel C.; Seydel, Tilo; Salditt, Tim

    2004-01-01

    Lipid membranes in a physiological context cannot be understood without taking into account their mobile environment. Here, we report on a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine). This technique allows discriminating the Q-dependent onset of mobility and provides a benchmark test regarding the feasibility of dynamical neutron scattering investigations on these sample systems. Apart from freezing of the lipid acyl-chains, we could observe a second freezing temperature that we attribute to the hydration water in between the membrane stacks. The freezing is lowered several degrees as compared to (heavy) bulk water.

  6. Binding hot-spots in an antibody-ssDNA interface: a molecular dynamics study.

    Science.gov (United States)

    Wang, Yeng-Tseng; Lee, Wen-Jay

    2012-10-30

    Simulating antigen-antibody interactions is essential for elucidating antigen-antibody mechanics. Proteins interactions are vital for elucidating antibody-ssDNA associations in immunology. Therefore, this study investigated the dissociation of the human systemic lupus erythematosus antibody-ssDNA complex structure. Dissociation (i.e. the distance between the center of mass of the ssDNA and the antibody) is also studied using the potential of mean force calculations based on molecular dynamics and the explicit water model. The MM-PBSA method is also used to prove our dissociation simulations. With 605 nanosecond molecular dynamics simulations, the results indicate that the 8 residues (i.e. Gly44 (HCDR2), Asn54 (HCDR2), Arg98 (HCDR3), Tyr100 (HCDR3), Asp101 (HCDR3), Tyr32 (LCDR1), Tyr49 (LCDR2) and Asn50 (LCDR2)), and the five inter-protein molecular hydrogen bonds may profoundly impact the antibody-ssDNA interaction, a finding which may be useful for protein engineering of this antibody-ssDNA structure. Experimental binding affinity of this antibody-ssDNA complex equals 7.00 kcal mol(-1). Our dissociation binding affinity is 7.96 ± 0.33 kcal mol(-1) and MM-PBSA binding affinity is 9.12 ± 1.65 kcal mol(-1), which is close to the experimental value. Additionally, the 8 residues Gly44 (HCDR2), Asn54 (HCDR2), Arg98 (HCDR3), Tyr100 (HCDR3), Asp101 (HCDR3), Tyr32 (LCDR1), Tyr49 (LCDR2) and Asn50 (LCDR2) may play a more significant role in developing bioactive antibody analogues. PMID:23079742

  7. Numerical Modeling and In-Situ Observations of the Dynamics of the Solid/Liquid Interface Morphology During Directional Solidification of Alloys

    Science.gov (United States)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Curreri, Peter A.; Kaukler, W. F.

    1999-01-01

    The departure from interface planarity and the subsequent evolution to a periodic array of cells or dendrites is a fundamental process that characterizes most microstructures in solidified alloys. The growing demand for high quality alloys and semiconductor crystals requires a precise methodology to predict and subsequently control both the interface morphology and the distribution of impurities, additives, and phases in the grown crystal. Apart from its practical significance, the study of morphological evolution has also been viewed as a means to unearth a general paradigm for pattern formation in nature. A previously developed 2D numerical model for the solid/liquid interface tracking has been further refined and used to simulate the time-evolution of the perturbations on the interface. The dynamics of the local growth velocity, interface undercooling and solute concentration at the interface has been theoretically predicted by means of the numerical model for Al-Cu and Pb-Sn alloys. The model shows that perturbations with a wavelengths, lambda greater than a critical wavelength lambda(sub c) continue to grow in time whereas perturbations with lambda < lambda(sub c) cease to propagate. The model further predicts that under certain conditions perturbation can also propagate along the interface. Comparison of these predictions with existing theories of pattern formation and experimental results will be discussed.

  8. Dynamics and hydrodynamic mixing of reactive solutes at stable fresh-salt interfaces

    Science.gov (United States)

    van der Zee, Sjoerd E. A. T. M.; Eeman, Sara; Cirkel, Gijsbert; Leijnse, Toon

    2014-05-01

    In coastal zones with saline groundwater, but also in semi-arid regions, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. A similar situation is found in situations where groundwater is not saline, but has a different chemical signature than rainwater-affected groundwater. Then also, vegetation patches and botanic biodiversity may depend sensitively on the depth of the interface between different types of groundwater. In this presentation, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens properties by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominate on the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of irregularly varying daily recharge data. Starting from a step response function

  9. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation.

    Science.gov (United States)

    Radivoyevitch, T; Sachs, R K; Gale, R P; Molenaar, R J; Brenner, D J; Hill, B T; Kalaycio, M E; Carraway, H E; Mukherjee, S; Sekeres, M A; Maciejewski, J P

    2016-02-01

    Risks of acute myeloid leukemia (AML) and/or myelodysplastic syndromes (MDS) are known to increase after cancer treatments. Their rise-and-fall dynamics and their associations with radiation have, however, not been fully characterized. To improve risk definition we developed SEERaBomb R software for Surveillance, Epidemiology and End Results second cancer analyses. Resulting high-resolution relative risk (RR) time courses were compared, where possible, to results of A-bomb survivor analyses. We found: (1) persons with prostate cancer receiving radiation therapy have increased RR of AML and MDS that peak in 1.5-2.5 years; (2) persons with non-Hodgkin lymphoma (NHL), lung and breast first cancers have the highest RR for AML and MDS over the next 1-12 years. These increased RR are radiation specific for lung and breast cancer but not for NHL; (3) AML latencies were brief compared to those of A-bomb survivors; and (4) there was a marked excess risk of acute promyelocytic leukemia in persons receiving radiation therapy. Knowing the type of first cancer, if it was treated with radiation, the interval from first cancer diagnosis to developing AML or MDS, and the type of AML, can improve estimates of whether AML or MDS cases developing in this setting are due to background versus other processes. PMID:26460209

  10. Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics.

    Directory of Open Access Journals (Sweden)

    Pratik Y Chhatbar

    Full Text Available Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata. We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone, and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force related variables, should allow for more natural

  11. Dynamics of Cancer Cell near Collagen Fiber Chain

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  12. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces

    Science.gov (United States)

    DePaolo, D. J.

    2012-12-01

    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  13. A web-deployed interface for performing ab initio molecular dynamics, optimization, and electronic structure in FIREBALL

    Science.gov (United States)

    Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.

    2009-03-01

    FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are

  14. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.

    Science.gov (United States)

    Reid, T; VanMensel, D; Droppo, I G; Weisener, C G

    2016-09-01

    Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75

  15. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of interface dynamics

    CERN Document Server

    Li, Q

    2013-01-01

    In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multi-range potential was devised to adjust the surface tension [Sbragaglia et al., Phys. Rev. E, 2007, 75, 026702; Sbragaglia et al. Soft Matter, 2012, 8, 10773]. However, this approach was found to be unable to keep the density ratio unchanged when the surface tension is adjusted. An alternative approach is therefore proposed in the present work. The basic strategy is to add a new source term to the LB equation so as to tune the surface tension of the pseudopotential LB model. The proposed approach can guarantee that the adjustment of the surface tension does not affect the mechanical stability condition of the pseudopotential LB model, and thus provides a separate c...

  16. AFDM: An advanced fluid-dynamics model. Volume 6: EOS-AFDM interface

    Energy Technology Data Exchange (ETDEWEB)

    Henneges, G.; Kleinheins, S. [comps.] [Kernforschungszentrum Karlsruhe (Germany)

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices.

  17. Site and bond-specific dynamics of reactions at the gas-liquid interface.

    Science.gov (United States)

    Tesa-Serrate, Maria A; King, Kerry L; Paterson, Grant; Costen, Matthew L; McKendrick, Kenneth G

    2014-01-01

    The dynamics of the interfacial reactions of O((3)P) with the hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene) have been studied experimentally. Laser-induced fluorescence (LIF) was used to detect the nascent gas-phase OH products. The O((3)P) atoms are acutely sensitive to the chemical differences of the squalane and squalene surfaces. The larger exothermicity of abstraction from allylic C-H sites in squalene is reflected in markedly hotter OH rotational and vibrational distributions. There is a more modest increase in translational energy release. A larger fraction of the available energy is deposited in the liquid for squalene than for squalane, consistent with a more extensive geometry change on formation of the allylic radical co-product. Although the dominant reaction mechanism is direct, impulsive scattering, there is some evidence for OH being accommodated at both liquid surfaces, resulting in thermalised translation and rotational distributions. Despite the H-abstraction reaction being strongly favoured energetically for squalene, the yield of OH is substantially lower than for squalane. This is very likely due to competitive addition of O((3)P) to the unsaturated sites in squalene, implying that double bonds are extensively exposed at the liquid surface.

  18. Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces.

    Science.gov (United States)

    Herzog, Florian A; Braun, Lukas; Schoen, Ingmar; Vogel, Viola

    2016-05-10

    Specific interactions of protein side chains and lipid membranes regulate the localization, orientation, and activity of many peripheral proteins. Here, we introduce a modification of the coarse-grained MARTINI protein model, called 'side chain fix' (scFix), that was necessary and sufficient to correctly sample the side chain dynamics of β-strands in several globular proteins. When compared to μs long atomistic simulations or previous experimental findings, scFix MARTINI simulations reproduced all key interactions between the well-studied PLC-δ1 pleckstrin homology domain and a phosphatidylinositol-4,5-bisphosphate (PIP2) containing lipid membrane. Moreover, the extended runtime and higher sampling speed enabled the systematic mapping of the protein's rolling motion at the membrane, the identification of short-lived and stable binding orientations, as well as the verification and prediction of already known and of novel transient PIP2 binding sites. scFix also showed promise to maintain proper side chain orientation in other secondary structural motifs of the α-spectrin SH3 domain, the B1 domain of protein G, and the villin headpiece. This suggests that scFix improves on the predictive power of MARTINI simulations regarding protein-lipid and protein-ligand interactions. PMID:27042944

  19. Dynamic User Interface Based on Cognitive Approach in Web Based Learning

    Directory of Open Access Journals (Sweden)

    L Jayasimman

    2011-07-01

    Full Text Available With bandwidth increasing at a constant pace, technology in education has become an important part for delivery of educational content to students. Online learning in various forms is gaining popularity but lacks the adaptability required to hold the learners attention due to its rigid structure. Though animation and powerful graphics enhance the learning content, delivery of content according to learners need is yet to become a reality. It is not possible to build a learning system that can satisfy every learner as some people respond best when they see basic facts on a clean page, others when they have a lot of charts and graphs at their fingertips. To overcome these shortcomings the content delivery itself can be made dynamic based on the learnerand#039;s need. In this paper we propose a novel method to identify a userand#039;s need based on the cognitive behavior of the user. Based on the response of the user, an decision tree induction algorithm is used to predict the requirements of future users.

  20. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface.

    Science.gov (United States)

    Volkmann, Till H M; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2016-05-01

    Plants rely primarily on rainfall infiltrating their root zones - a supply that is inherently variable, and fluctuations are predicted to increase on most of the Earth's surface. Yet, interrelationships between water availability and plant use on short timescales are difficult to quantify and remain poorly understood. To overcome previous methodological limitations, we coupled high-resolution in situ observations of stable isotopes in soil and transpiration water. We applied the approach along with Bayesian mixing modeling to track the fate of (2) H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems. We resolve how rainwater infiltrates the root zones in a nonequilibrium process and show that tree species differ in their ability to quickly acquire the newly available source. Sessile oak (Quercus petraea) adjusted root uptake to vertical water availability patterns under drought, but readjustment toward the rewetted topsoil was delayed. By contrast, European beech (Fagus sylvatica) readily utilized water from all soil depths independent of water depletion, enabling faster uptake of rainwater. Our results demonstrate that species-specific plasticity and responses to water supply fluctuations on short timescales can now be identified and must be considered to predict vegetation functional dynamics and water cycling under current and future climatic conditions.

  1. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D.

    Science.gov (United States)

    Kuznetsov, Igor R; Evans, Evan A

    2013-04-01

    We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

  2. Toward Cultural Oncology: The Evolutionary Information Dynamics of Cancer

    OpenAIRE

    Wallace, Rodrick; Wallace, Deborah; Robert G Wallace

    2003-01-01

    'Racial' disparities among cancers, particularly of the breast and prostate, are something of a mystery. For the US, in the face of slavery and its sequelae, centuries of interbreeding have greatly leavened genetic differences between 'Blacks' and 'whites', but marked contrasts in disease prevalence and progression persist. 'Adjustment' for socioeconomic status and lifestyle, while statistically accounting for much of the variance in breast cancer, only begs the question of ultimate causali...

  3. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  4. Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics.

    Science.gov (United States)

    Skelton, A A; Wesolowski, D J; Cummings, P T

    2011-07-19

    Two different terminations of the (1010) surface of quartz (α and β) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The β termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the β termination. It is suggested that this may play a role in the greater resistance to dissolution of the β termination than that of the α termination.

  5. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  6. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Science.gov (United States)

    Lee, Juhyun; Moghadam, Mahdi Esmaily; Kung, Ethan; Cao, Hung; Beebe, Tyler; Miller, Yury; Roman, Beth L; Lien, Ching-Ling; Chi, Neil C; Marsden, Alison L; Hsiai, Tzung K

    2013-01-01

    Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  7. Fluorescence correlation spectroscopy in thin films at reflecting substrates as a means to study nanoscale structure and dynamics at soft-matter interfaces

    Science.gov (United States)

    Täuber, Daniela; Radscheit, Kathrin; von Borczyskowski, Christian; Schulz, Michael; Osipov, Vladimir Al.

    2016-07-01

    Structure and dynamics at soft-matter interfaces play an important role in nature and technical applications. Optical single-molecule investigations are noninvasive and capable to reveal heterogeneities at the nanoscale. In this work we develop an autocorrelation function (ACF) approach to retrieve tracer diffusion parameters obtained from fluorescence correlation spectroscopy (FCS) experiments in thin liquid films at reflecting substrates. This approach then is used to investigate structure and dynamics in 100-nm-thick 8CB liquid crystal films on silicon wafers with five different oxide thicknesses. We find a different extension of the structural reorientation of 8CB at the solid-liquid interface for thin and for thick oxide. For the thin oxides, the perylenediimide tracer diffusion dynamics in general agrees with the hydrodynamic modeling using no-slip boundary conditions with only a small deviation close to the substrate, while a considerably stronger decrease of the interfacial tracer diffusion is found for the thick oxides.

  8. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  9. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  10. Structure and dynamics of water near the interface with oligo(ethylene oxide) self-assembled monolayers

    Science.gov (United States)

    Ismail, Ahmed E.; Grest, Gary S.; Stevens, Mark J.

    2007-03-01

    Oligo(ethylene oxide) self-assembled monolayers (OEO SAM's) deposited on Au are the prototypical materials used to study protein resistance. Recently, protein resistance has been shown to vary as a function of surface coverage and to be maximal at about two-thirds coverage, not complete coverage. We use molecular dynamics simulations to study the nature of the interface between water and the OEO SAM for a range of SAM coverages. As SAM coverage decreases, the amount of water within the OEO monolayer increases monotonically; however, the penetration depth of the water shows a maximum near the experimentally-found maximal coverage. As the water content increases, the SAM-water mixture becomes harder to distinguish from bulk water. Since the oxygen atoms of OEO are hydrogen bond acceptors, a hydrogen bond network forms within the SAM-water mixture. The water molecules diffuse freely within the monolayer and exchange with the bulk water. Because the monolayer becomes increasingly like bulk water as the coverage decreases, proteins stay in their bulk soluble conformation and do not adsorb. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.

  11. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang [Electronic Science and Engineering School, Southeast University, Nanjing (China); National Center for Nanoscience and Technology, Beijing (China); Yang, Xiaoxia; Liu, Mingju [National Center for Nanoscience and Technology, Beijing (China); Tao, Zhi; Wei, Lei, E-mail: lw@seu.edu.cn; Li, Chi, E-mail: lichi@seu.edu.cn; Zhang, Xiaobing; Wang, Baoping [Electronic Science and Engineering School, Southeast University, Nanjing (China); Dai, Qing, E-mail: daiq@nanoctr.cn [National Center for Nanoscience and Technology, Beijing (China); London Center for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Nathan, Arokia [Electronic Science and Engineering School, Southeast University, Nanjing (China); London Center for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (∼10{sup 4} A/W 450 nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  12. Managing the interface - An approach through the complexity of the collaborative process of design, integration and realization: a transactional model of the interface actor and dynamics of exchange spaces

    International Nuclear Information System (INIS)

    In large projects such as particle accelerators or detectors, interfaces and boundaries reveal themselves to be both critical and underestimated. The technical manager, an actor among others, finds himself placed at network nodes where he must set up exchanges spaces in order to generate collaborative behaviours. Starting with case studies from the field of CERN, the thesis follows three principles based on the dia-logical, the hologramic and the self-eco-organization principles, as expanded in the writings on complexity. It puts forward an original methodological matrix construction leading to a transactional model of the interface actor. The collaborative exchanges spaces builds itself as a place for the dynamic transformation of the interface actor into a boundary actor. Intermediate objects, created during the design / integration process, are simultaneously transformed into boundary objects. They are instrumental in the realization of the product: this takes place in the framework of the project which has been determined through a recursive process. The interest generated by such a global and combined approach of this dynamic process leads to the proposal of a 'hyper-compass', with the aim of providing the means for the technical manager to orient his 'acting ↔ thinking'. (author)

  13. Dynamic modularity in protein interaction networks predicts breast cancer outcome

    DEFF Research Database (Denmark)

    Taylor, Ian W; Linding, Rune; Warde-Farley, David;

    2009-01-01

    in biochemical structure were observed between the two types of hubs. Signaling domains were found more often in intermodular hub proteins, which were also more frequently associated with oncogenesis. Analysis of two breast cancer patient cohorts revealed that altered modularity of the human interactome may...... to predict patient outcome. An analysis of hub proteins identified intermodular hub proteins that are co-expressed with their interacting partners in a tissue-restricted manner and intramodular hub proteins that are co-expressed with their interacting partners in all or most tissues. Substantial differences...... be useful as an indicator of breast cancer prognosis....

  14. Usefulness of dynamic CT in the evaluation of percutaneous microwave coagulation therapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Naoki [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1999-07-01

    This paper is concerned with effects of percutaneous microwave coagulation therapy (PMCT) and evaluation of PMCT by dynamic computed tomography (CT). Between January 1996 and March 1998, 23 patients with liver cancer were selected for this study. In 5 patients in the series, the extent of heating with irradiation at 60 Watts for 60 seconds was measured. In remaining 18 patients, PMCT was repeated till the hyperechogenic areas extended the whole target area on ultrasonography (US). Dynamic CT obtained one week after PMCT was compared with histological findings of the resected specimen that had been obtained 8 days after PMCT. The temperature rose over 60degC within 7.5 mm-area from the electrode. Each area coagulated by PMCT was shown as low density one both in early and delayed phase of dynamic CT. Accurate diagnoses whether undestroyed cancerous tissue was left or not were obtained by dynamic CT in 6 of 8 patients whose tumor was incompletely destroyed, and in all of 10 patients whose tumor was completely destroyed after PMCT. PMCT as a local treatment for liver cancer was considered to be a highly effective technique, because a certain area around punctured electrode fell into necrosis without exception. And dynamic CT was revealed to be a useful method for the patients with liver cancer to evaluate the effect of PMCT. (author)

  15. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands

    Science.gov (United States)

    Encarnación, Medina-Carmona; Palomino-Morales, Rogelio J.; Fuchs, Julian E.; Esperanza, Padín-Gonzalez; Noel, Mesa-Torres; Salido, Eduardo; Timson, David J.; Pey, Angel L.

    2016-02-01

    Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S, and to develop new pharmacological therapies to rescue this function.

  16. Evaluation of the role of dynamic 64-MDCT in the characterization and work up of breast cancer

    OpenAIRE

    Moustafa A. Kader A. Wahab; Hoda Abdel Kareem

    2015-01-01

    Background: Imaging of the breast is a vital component not only for breast cancer screening, but also for diagnosis and treatment. Dynamic MDCT has a very promising role as diagnostic tool in breast cancer patients. Objective: This study aimed to emphasize the role of 64 MDCT in the work up of breast cancer. Patients and methods: Between October 2012 to April 2014, 100 consecutive patients with suspicious breast lesions underwent bilateral mammography, breast ultrasound and dynamic MDCT...

  17. Soft Interfaces

    Science.gov (United States)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  18. Computational modeling of the spatiotemporal dynamics of cancer stem cells

    Science.gov (United States)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    2015-03-01

    Cancer stem cells can differentiate into any cell type in a particular tumor, and thus can reform a tumor even when seeded from a single cell. Despite their importance, the identification of stem cells, their interactions, and how and why they malfunction to cause cancer and form tumors are not well understood. We have developed discrete element modeling (DEM) simulations to investigate the role of stem cells in the formation of heterogeneous cell populations in melanoma tumors. The DEM simulations include elastic, excluded volume, and signaling interactions between cells and rates for cell differentiation, apoptosis, and growth. The DEM is calibrated to results from experimental studies of melanoma tumor growth in mouse models. We use the simulations to generate virtual tumors and study their morphology and cell subtype populations as a function of time.

  19. Breast and cervical cancer screening in Great Britain: Dynamic interrelated processes.

    Science.gov (United States)

    Labeit, Alexander; Peinemann, Frank

    2015-12-01

    No previous analysis has investigated the determinants of screening uptake for breast and cervical cancer screening for possible spillover effects from one type of screening examination to the other type of screening examination with a dynamic bivariate panel probit model. For our analysis, we used a dynamic random effects bivariate panel probit model with initial conditions (Wooldridge-type estimator) and dependent variables were the participation of breast and cervical cancer screening in the recent year. The balanced panel sample consisted of 844 women from the British Household Panel Survey (BHPS) from the time period 1992 to 2008. Our analysis showed the high relevance of past screening behaviour and the importance of state dependency for the same and the other type of cancer screening examinations even after controlling for covariates and unobserved heterogeneity. The uptake for breast and cervical cancer screening was higher when the same screening examination was done one or three years earlier. This result is in accordance with the medical screening programmes in Great Britain. With regard to breast and cervical cancer screening positive spillover effects existed between screening examinations in the third order lags. Women with a previous visit to a general practitioner and individuals in the recommended age groups had a higher uptake for breast and cervical cancer screening. Other socioeconomic and health related variables had non-uniform results in both screening examinations. Promoting the uptake of one female prevention activity could also enhance the uptake of the other prevention activity. PMID:26487452

  20. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  1. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    NARCIS (Netherlands)

    Brisset, Jean-Christophe; Hoff, Benjamin A.; Chenevert, Thomas L.; Jacobson, Jon A.; Boes, Jennifer L.; Galban, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D.; Pienta, Kenneth J.; Galban, Craig J.; Meyer, Charles R.; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S.; Hussain, Maha; Ross, Brian D.; Schakel, Tim

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellul

  2. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.

    Science.gov (United States)

    Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-Ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo

    2016-04-19

    With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip. PMID:27018633

  3. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces.

    Science.gov (United States)

    Sieffert, Nicolas; Wipff, Georges

    2006-10-01

    We report a molecular dynamics (MD) study of the interfacial behavior of key partners involved in the Cs(+) cation extraction by a calix[4]arene-crown-6 host (L), comparing an ionic liquid (IL) to a classical molecular solvent (chloroform) as receiving "oil" phase. The IL is composed of hydrophobic 1-butyl-3-methylimidazolium cations (BMI(+)) and bis(trifluoromethylsulfonyl)imide anions (Tf(2)N(-)) and forms a biphasic system with water. The simulations reveal similarities but also interesting differences between the two types of interfaces. Much longer times are needed to "equilibrate" IL systems, compared to classical liquid mixtures, and there is more intersolvent mixing with the IL than with chloroform, especially concerning the water-in-oil content. There is also some excess of the BMI(+) cations over the Tf(2)N(-) anions in the aqueous phase. Simulations on the Na(+)NO(3)(-) and Cs(+)NO(3)(-) ions show that they sometimes interact at the interface with the IL ions, forming hydrated intimate ion pairs, whereas they are "repelled" by the classical interface. The LCs(+) complex and L ligand also behave differently, depending on the "oil phase". They are better solvated by the IL than by chloroform and thus poorly attracted at the IL interface, whereas they adsorb at the chloroform interface, adopting well-defined amphiphilic orientations. The results are discussed in the context of assisted ion transfer and provide a number of arguments explaining the specificity and efficiency of IL based, compared to classical extraction systems.

  4. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  5. The role of telomere dynamics in aging and cancer

    Science.gov (United States)

    Blagoev, Krastan; Goodwin, Edwin

    2006-03-01

    Telomere length changes are far more dynamic than previously thought. In addition to a gradual loss of ˜100 base pairs per telomere in each cell division, losses as well as gains may occur within a single cell cycle. We are investigating how telomere exchange, extension, and deletion affect the proliferative potential of telomerase-negative somatic cells. Experimental techniques are being devised to detect dynamic telomere processes and quantify both the frequency and length changes of each. In parallel, a ``dynamic telomere model'' is being used that incorporates telomere dynamics to study how the telomere size distribution evolves with time. This is an essential step towards understanding the role that telomere dynamics play in the normal aging of tissues and organisms. The model casts light on relationships not otherwise easily explained by a deterministic ``mitotic clock,'' or to what extent the shortest initial telomere determines the onset of senescence. We also expect to identify biomarkers that will correlate with aging better than average telomere length and to shed light on the transition to unlimited growth found in telomerase-negative tumor cells having the ALT (alternative lengthening of telomeres) phenotype, and to evaluate strategies to suppress the growth of these tumors.

  6. Hierarchic Theory of Condensed Matter Role of water in protein dynamics, function and cancer emergency

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    1. Role of inter-domain water clusters in large-scale dynamics of proteins; 2. Description of large-scale dynamics of proteins based on generalized Stokes-Einstein and Eyring-Polany equation; 3. Dynamic model of protein-ligand complexes formation; 4. The life-time of quasiparticles and frequencies of their excitation; 5. Mesoscopic mechanism of enzyme catalysis; 6. The mechanism of ATP hydrolysis energy utilization in muscle contraction and protein polymerization; 7. Water activity as a regulative factor in the intra- and inter-cell processes; 8. Water and cancer.

  7. A molecular dynamics simulation of the structure of ionic liquid (BMIM+/PF6-)/rutile (110) interface

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The interfacial structure between the room-temperature ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM+/PF6-) and rutile (110) surface is simulated by classical molecular dynam-ics simulation, aiming to model a crucial constituent of the electrolyte/semiconductor interface. The simulation results show several enhanced layers forming in the interfacial region, especially for the anions. A well ordered double layering structure of the ions is also observed in the interfacial region. The cations are found to organize themselves in a parallel alignment with respect to the TiO2 slab, with an obvious elongation of the side chains.

  8. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    International Nuclear Information System (INIS)

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion. (paper)

  9. Study of Rough Effect on Dynamic Characteristic of Contact Interface%粗糙度对接触界面动态特性的影响研究

    Institute of Scientific and Technical Information of China (English)

    郑淑丽

    2014-01-01

    接触界面的刚度和阻尼对机械结构的动态特性有重要影响,为了描述接触界面粗糙度对机械结构动态特性的影响,建立了振动应力波在粗糙接触界面传播的数学模型,并进行了数值仿真和模型试验。试验结果表明:较小的表面粗糙度有利于振动应力波通过接触界面传播;随着粗糙度值的增加,通过接触界面的振动应力波减少,说明较大的粗糙度界面消耗振动能量,但是产生了高次谐波,使振动状态变得复杂。%Contact interface stiffness and damping have an important influence on dynamic characteristics of the mechanical structure. In order to study on contact interface rough effect on dynamic characteristic of machinery, the model of vibration stress wave propagation was established in this paper. The test results show that small surface rough is benefit for vibration stress wave reducing through contact interface, with the surface rough increase, vibration stress wave reducing through contact interface. The larger roughness is benefit to impede vibration stress wave propagation at contact interface, but higher harmonic would be produced and the vibration state becomes complicated.

  10. Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus.

    Science.gov (United States)

    Martinez, Pierre; Timmer, Margriet R; Lau, Chiu T; Calpe, Silvia; Sancho-Serra, Maria Del Carmen; Straub, Danielle; Baker, Ann-Marie; Meijer, Sybren L; Kate, Fiebo J W Ten; Mallant-Hent, Rosalie C; Naber, Anton H J; van Oijen, Arnoud H A M; Baak, Lubbertus C; Scholten, Pieter; Böhmer, Clarisse J M; Fockens, Paul; Bergman, Jacques J G H M; Maley, Carlo C; Graham, Trevor A; Krishnadath, Kausilia K

    2016-01-01

    Surveillance of Barrett's oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm(2) (95% CI: 0.09-4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett's and that the malignant potential of 'benign' Barrett's lesions is predetermined, with important implications for surveillance programs. PMID:27538785

  11. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  12. Novel experimental methods for investigating high speed friction of titanium-aluminum-vanadium/tool steel interface and dynamic failure of extrinsically toughened DRA composites

    Science.gov (United States)

    Irfan, Mohammad Abdulaziz

    Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly

  13. The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid-liquid interface.

    Science.gov (United States)

    Sieffert, N; Wipff, G

    2006-07-01

    We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.

  14. Dynamics of microalgal communities in the water-column/sediment interface of the inner shelf off Parana State, Southern Brazil

    OpenAIRE

    Ricardo Luiz Queiroz; Frederico Pereira Brandini; Franciane Maria Pellizzari

    2004-01-01

    The composition and biomass of the microalgal community at the water-column/sediment interface on the continental shelf off Parana State (Brazil) were studied every 2 months during 1999. Samples for cell identification and determination of chlorophyll a were taken from the interface layer and at discrete depths up to 4 m above the sediment. Results showed a community mainly formed by benthic and planktonic diatoms >30 µm, benthic diatoms 30 µm, which accounted for most of the pigment biomass,...

  15. Nonlinear dynamics of the interface of dielectric liquids in a strong electric field: Reduced equations of motion

    OpenAIRE

    Zubarev, Nikolay M.

    2005-01-01

    The evolution of the interface between two ideal dielectric liquids in a strong vertical electric field is studied. It is found that a particular flow regime, for which the velocity potential and the electric field potential are linearly dependent functions, is possible if the ratio of the permittivities of liquids is inversely proportional to the ratio of their densities. The corresponding reduced equations for interface motion are derived. In the limit of small density ratio, these equation...

  16. Carcinoembryonic antigen (CEA) dynamics in stomach cancer patients receiving cryotherapy

    International Nuclear Information System (INIS)

    Radioimmunologic assays of blood serum carcinoembryonic antigen (CEA) level were conducted at major stages of treatment of gastric cancer by subtotal stomach resection and gastrectomy with preliminary cryotreatment and thawing of tumor. A short-term rise in CEA level occurred in 53.9 % of cases 3-4 days after combined therapy. A decrease in CEA concentration at discharge from hospital as compared with preoperative level and that registered 3-4 days after operation was observed in 50 and 75 % of cases of combined therapy, respectively, and 47.5 and 37.5 % of controls (surgery without cryotreatment). There was nocorrelation between cryotreatment and changes in CEA level in gastric ulcer patients

  17. Telomere dynamics and homeostasis in a transmissible cancer.

    Directory of Open Access Journals (Sweden)

    Beata Ujvari

    Full Text Available BACKGROUND: Devil Facial Tumour Disease (DFTD is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". METHODOLOGY/PRINCIPAL FINDINGS: In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN, and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2 provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. CONCLUSIONS/SIGNIFICANCE: DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might

  18. Information dynamics in living systems: prokaryotes, eukaryotes, and cancer.

    Directory of Open Access Journals (Sweden)

    B Roy Frieden

    Full Text Available BACKGROUND: Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. FINDINGS: We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum, which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria, are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. CONCLUSIONS: We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a

  19. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods

    Science.gov (United States)

    Schreuder, Martijn; Höhne, Johannes; Blankertz, Benjamin; Haufe, Stefan; Dickhaus, Thorsten; Tangermann, Michael

    2013-06-01

    Objective. In brain-computer interface (BCI) research, systems based on event-related potentials (ERP) are considered particularly successful and robust. This stems in part from the repeated stimulation which counteracts the low signal-to-noise ratio in electroencephalograms. Repeated stimulation leads to an optimization problem, as more repetitions also cost more time. The optimal number of repetitions thus represents a data-dependent trade-off between the stimulation time and the obtained accuracy. Several methods for dealing with this have been proposed as ‘early stopping’, ‘dynamic stopping’ or ‘adaptive stimulation’. Despite their high potential for BCI systems at the patient's bedside, those methods are typically ignored in current BCI literature. The goal of the current study is to assess the benefit of these methods. Approach. This study assesses for the first time the existing methods on a common benchmark of both artificially generated data and real BCI data of 83 BCI sessions, allowing for a direct comparison between these methods in the context of text entry. Main results. The results clearly show the beneficial effect on the online performance of a BCI system, if the trade-off between the number of stimulus repetitions and accuracy is optimized. All assessed methods work very well for data of good subjects, and worse for data of low-performing subjects. Most methods, however, are robust in the sense that they do not reduce the performance below the baseline of a simple no stopping strategy. Significance. Since all methods can be realized as a module between the BCI and an application, minimal changes are needed to include these methods into existing BCI software architectures. Furthermore, the hyperparameters of most methods depend to a large extend on only a single variable—the discriminability of the training data. For the convenience of BCI practitioners, the present study proposes linear regression coefficients for directly estimating

  20. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  1. Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6].

    Science.gov (United States)

    Kislenko, Sergey A; Samoylov, Igor S; Amirov, Ravil H

    2009-07-21

    The structure of the electrical double layer in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) near a basal plane of graphite was investigated by molecular dynamics simulation. The calculations were performed both for an uncharged graphite surface and for positively and negatively charged ones. It is found that near an uncharged surface the ionic liquid structure differs from its bulk structure and represents a well-ordered region, extending over approximately 20 A from the surface. Three dense layers of ca 5 A thick are clearly observed at the interface, composed of negative ions and positively charged rings. It is established that in the first adsorption layer the imidazolium ring in the [BMIM]+ cation tends to be arranged in parallel to the graphite surface at a distance of 3.5 A. The [PF6]- anion is oriented in such a way that the phosphorus atom is at a distance of 4.1 A from the surface and triplets of fluorine atoms form two planes parallel to the graphite surface. Ions adsorbed at the uncharged surface are arranged in a highly defective 2D hexagonal lattice and the corresponding lattice spacing is approximately four times larger than that of the graphene substrate. The influence of the electrode potential on the distribution of electrolyte ions and their orientation has also been investigated. Increase in the electrode potential induces broadening of the angle distribution of adsorbed rings and a shift of the most probable tilt angle towards bigger values. It was shown that there are no adsorbed anions on the negatively charged surface (sigma = -8.2 microC cm(-2)), but the surface concentration of adsorbed cations on the positively charged surface (sigma = +8.2 microC cm(-2)) has a nonzero value. In addition, the influence of the surface charge (+/- sigma) on the volume charge density and electric potential profiles in an electrolyte was studied. The differences in the cation and anion structure result in the fact that the

  2. Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer.

    Science.gov (United States)

    Brisset, Jean-Christophe; Hoff, Benjamin A; Chenevert, Thomas L; Jacobson, Jon A; Boes, Jennifer L; Galbán, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D; Pienta, Kenneth J; Galbán, Craig J; Meyer, Charles R; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S; Hussain, Maha; Ross, Brian D

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (pprostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease. PMID:25859981

  3. Dynamics of microalgal communities in the water-column/sediment interface of the inner shelf off Parana State, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Luiz Queiroz

    2004-12-01

    Full Text Available The composition and biomass of the microalgal community at the water-column/sediment interface on the continental shelf off Parana State (Brazil were studied every 2 months during 1999. Samples for cell identification and determination of chlorophyll a were taken from the interface layer and at discrete depths up to 4 m above the sediment. Results showed a community mainly formed by benthic and planktonic diatoms >30 µm, benthic diatoms 30 µm, which accounted for most of the pigment biomass, were resuspended from the interface after turbulent periods, and may take advantage of calm periods to stay and grow at the interface. Small benthic diatoms were more susceptible to wind-induced turbulence occurring in higher densities in the water column just above the water-sediment interface. A cyanobacterial bloom (Trichodesmiun was observed at these bottom layers in the spring-summer periods.A composição geral e a biomassa da comunidade microalgal da interface sedimento/água da plataforma do Estado do Paraná (Brasil foram estudadas em 1999 em relação ao regime de ventos. A cada dois meses foram coletadas amostras para a identificação de organismos e determinação de clorofila a, na interface água-sedimento e em profundidades discretas, ao longo da coluna d'água, até 4m acima do sedimento. Os resultados obtidos revelaram uma comunidade constituída principalmente por diatomáceas planctônicas e bentônicas maiores que 30 µm, diatomáceas bentônicas menores que 30 µm, e cianobactérias coloniais. As densidades celulares foram geralmente mais altas na interface. Eventos de mistura e sedimentação parecem ser determinantes na regulação da composição e biomassa de tais comunidades. Formas menores, mais susceptíveis à turbulência, dominaram a comunidade de água de fundo na maioria das ocasiões, e foram as mais abundantes na interface apenas em períodos de extrema estabilidade. Células maiores, aparentemente contendo a maior parte

  4. Interface colloidal robotic manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  5. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface.

    Science.gov (United States)

    Nishida, S; Surblys, D; Yamaguchi, Y; Kuroda, K; Kagawa, M; Nakajima, T; Fujimura, H

    2014-02-21

    Molecular dynamics simulations of a nanoscale liquid droplet on a solid surface are carried out in order to examine the pressure tensor field around the multiphase interfaces, and to explore the validity of Young's equation. By applying the virial theorem to a hemicylindrical droplet consisting of argon molecules on a solid surface, two-dimensional distribution of the pressure tensor is obtained. Tensile principal pressure tangential to the interface is observed around the liquid-vapor transition layer, while both tensile and compressive principal pressure tangential to the interface exists around the solid-liquid transition layer due to the inhomogeneous density distribution. The two features intermix inside the overlap region between the transition layers at the contact line. The contact angle is evaluated by using a contour line of the maximum principal pressure difference. The interfacial tensions are calculated by using Bakker's equation and Young-Laplace equation to the pressure tensor distribution. The relation between measured contact angle and calculated interfacial tensions turns out to be consistent with Young's equation, which is known as the description of the force balance at the three-phase interface. PMID:24559360

  6. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface.

    Science.gov (United States)

    Nishida, S; Surblys, D; Yamaguchi, Y; Kuroda, K; Kagawa, M; Nakajima, T; Fujimura, H

    2014-02-21

    Molecular dynamics simulations of a nanoscale liquid droplet on a solid surface are carried out in order to examine the pressure tensor field around the multiphase interfaces, and to explore the validity of Young's equation. By applying the virial theorem to a hemicylindrical droplet consisting of argon molecules on a solid surface, two-dimensional distribution of the pressure tensor is obtained. Tensile principal pressure tangential to the interface is observed around the liquid-vapor transition layer, while both tensile and compressive principal pressure tangential to the interface exists around the solid-liquid transition layer due to the inhomogeneous density distribution. The two features intermix inside the overlap region between the transition layers at the contact line. The contact angle is evaluated by using a contour line of the maximum principal pressure difference. The interfacial tensions are calculated by using Bakker's equation and Young-Laplace equation to the pressure tensor distribution. The relation between measured contact angle and calculated interfacial tensions turns out to be consistent with Young's equation, which is known as the description of the force balance at the three-phase interface.

  7. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    International Nuclear Information System (INIS)

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  8. Dynamic changes and surveillance function of prion protein expression in gastric cancer drug resistance

    Institute of Scientific and Technical Information of China (English)

    Ji-Heng Wang; Jing-Ping Du; Ying-Hai Zhang; Xiao-Jun Zhao; Ru-Ying Fan; Zhi-Hong Wang; Zi-Tao Wu; Ying Han

    2011-01-01

    AIM: To explore the dynamic changes of prion protein (PrPc) in the process of gastric cancer drug resistance and the role of PrPc expression in the prognosis of gastric cancer patients receiving chemotherapy. METHODS: A series of gastric cancer cell lines resistant to different concentrations of adriamycin was established,and the expression of PrPc, Bcl-2 and Bax was detected in these cells. Apoptosis was determined using Annexin V staining. Western blotting and immunohistochemistry were performed to detect the expression of PrPc in patients receiving chemotherapy and to explore the role of PrPc expression in predicting the chemosensitivity and the outcome of gastric cancer patients receiving chemotherapy. Follow-up was performed for 2 years. RESULTS: PrPc expression was increased with the increase in drug resistance. Bcl-2, together with PrPc, increased the level of anti-apoptosis of cancer cells. Increased PrPc expression predicted the enhanced level of anti-apoptosis and resistance to anticancer drugs. PrPc expression could be used as a marker for predicting the efficacy of chemotherapy and the prognosis of gastric cancer. Increased PrPc expression predicted both poor chemosensitivity and a low 2-year survival rate. Contrarily, low PrPc expression predicted favorable chemosensitivity and a relatively high 2-year survival rate.CONCLUSION: PrPc expression is associated with histological types and differentiation of gastric cancer cells; The PrPc expression level might be a valuable marker in predicting the efficacy of chemotherapy and the prognosis of gastric cancer patients receiving chemotherapy.

  9. Differentiation of early gastric cancer with ulceration and resectable advanced gastric cancer using multiphasic dynamic multidetector CT

    International Nuclear Information System (INIS)

    Early gastric cancer with ulceration (EGC-U) mimics advanced gastric cancer (AGC), as EGC-Us and ACGs often have similar endoscopic appearance to ulceration. The purpose of this retrospective study was to determine whether multiphasic dynamic multidetector CT (MDCT) can help differentiate EGC-Us from AGCs. Patients with EGC-Us with ulcer stages Ul-III or IV and AGCs with tumour stages T2 to T4a were enrolled. MDCT images were obtained 40 s (arterial phase), 70 s (portal phase) and 240 s (delayed phase) after injection of non-ionic contrast material. Two readers independently measured the attenuation values of the lesions by placing regions of interest. We compared the EGC-Us and AGCs using the mean attenuation values in each phase and peak enhancement phase. We analysed the diagnostic performance of CT for differentiating EGC-Us from AGCs. Forty cases (16 EGC-Us and 24 AGCs) were analysed. The mean attenuation values of the EGC-Us were significantly lower than those of the AGCs in both the arterial and portal phases (all p < 0.0001 for each reader). The peak enhancement was significantly different between the EGC-Us and AGCs for both readers (Reader 1, p = 0.0131; Reader 2, p = 0.0006). Multiphasic dynamic contrast-enhanced MDCT can help differentiate EGC-Us from AGCs. (orig.)

  10. Differentiation of early gastric cancer with ulceration and resectable advanced gastric cancer using multiphasic dynamic multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Tsurumaru, Daisuke; Miyasaka, Mitsutoshi; Nishimuta, Yusuke; Asayama, Yoshiki; Nishie, Akihiro; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Kawanami, Satoshi [Kyushu University, Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Fukuoka (Japan); Oki, Eiji [Kyushu University, Department of Surgery and Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Hirahashi, Minako [Kyushu University, Department of Anatomic Pathology and Pathological Sciences, Graduate School of Medical Sciences, Fukuoka (Japan)

    2016-05-15

    Early gastric cancer with ulceration (EGC-U) mimics advanced gastric cancer (AGC), as EGC-Us and ACGs often have similar endoscopic appearance to ulceration. The purpose of this retrospective study was to determine whether multiphasic dynamic multidetector CT (MDCT) can help differentiate EGC-Us from AGCs. Patients with EGC-Us with ulcer stages Ul-III or IV and AGCs with tumour stages T2 to T4a were enrolled. MDCT images were obtained 40 s (arterial phase), 70 s (portal phase) and 240 s (delayed phase) after injection of non-ionic contrast material. Two readers independently measured the attenuation values of the lesions by placing regions of interest. We compared the EGC-Us and AGCs using the mean attenuation values in each phase and peak enhancement phase. We analysed the diagnostic performance of CT for differentiating EGC-Us from AGCs. Forty cases (16 EGC-Us and 24 AGCs) were analysed. The mean attenuation values of the EGC-Us were significantly lower than those of the AGCs in both the arterial and portal phases (all p < 0.0001 for each reader). The peak enhancement was significantly different between the EGC-Us and AGCs for both readers (Reader 1, p = 0.0131; Reader 2, p = 0.0006). Multiphasic dynamic contrast-enhanced MDCT can help differentiate EGC-Us from AGCs. (orig.)

  11. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  12. Dynamic Interactions between a Silica Sphere and Deformable Interfaces in Organic Solvents Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kuznicki, Natalie P; Harbottle, David; Masliyah, Jacob; Xu, Zhenghe

    2016-09-27

    Recent studies have successfully measured surface forces using atomic force microscope (AFM) and modeled surface deformations using the Stokes-Reynolds-Young-Laplace (SRYL) equations for particle-droplet, particle-bubble, droplet-droplet, and bubble-bubble systems in various solutions. The current work focuses on interactions between spherical silica particles and a viscoelastic interface of water droplets in crude oil. The self-assembly of surface active natural polyaromatic molecules (NPAMs) at the oil-water interface has previously been shown to change a viscous dominant oil-water interface to an elastic dominant interface upon aging, due to gradual formation of rigid interfacial networks. AFM was used to measure the interactions between a small silica sphere (D ≈ 8 μm) and a deformable water droplet (D ≈ 70 μm), which exhibits time-dependent interfacial viscoelasticity in NPAM solutions. Unlike the systems studied previously, the measured deformation shown as a repulsive force over the region of constant compliance could not be modeled adequately by the conventional SRYL equations which are applicable only to purely Laplacian interfaces. As the water droplet ages in NPAM solutions, a rigid "skin" forms at the oil-water interface, with the interface exhibiting increased elasticity. Over a short aging period (up to 15 min in NPAM-in-toluene solution), interfacial deformation is well predicted by the SRYL model. However, upon further exposure to the NPAM solution, droplet deformation is overpredicted by the model. Physical properties of this mechanical barrier as a function of interfacial aging were further investigated by measuring interfacial tension, dilatational rheology, and interfacial "crumpling" (non-smooth, non-Laplacian interface) upon droplet volume reduction. By introducing a viscoelasticity parameter to account for interfacial stiffening and using experimentally determined elasticity, we are able to correct this discrepancy and predict droplet

  13. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    OpenAIRE

    Jean-Christophe Brisset; Hoff, Benjamin A.; Thomas L Chenevert; Jacobson, Jon A.; Boes, Jennifer L.; Stefanie Galbán; Alnawaz Rehemtulla; Timothy D. Johnson; Pienta, Kenneth J.; Galbán, Craig J.; Meyer, Charles R.; Timothy Schakel; Klaas Nicolay; Alva, Ajjai S.; Maha Hussain

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI a...

  14. Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature

    OpenAIRE

    Kaznatcheev, Artem; Velde, Robert Vander; Scott, Jacob G.; Basanta, David

    2016-01-01

    Background: Tumours are diverse ecosystems with persistent heterogeneity in various cancer hallmarks like self-sufficiency of growth factor production for angiogenesis and reprogramming of energy-metabolism for aerobic glycolysis. This heterogeneity has consequences for diagnosis, treatment, and disease progression. Methods: We introduce the double goods game to study the dynamics of these traits using evolutionary game theory. We model glycolytic acid production as a public good for all tumo...

  15. Replicator Dynamics of of Cancer Stem Cell; Selection in the Presence of Differentiation and Plasticity

    OpenAIRE

    Kaveh, Kamran; Kohandel, Mohammad; Sivaloganathan, Siv

    2014-01-01

    Stem cells have the potential to produce lineages of non-stem cell populations (differentiated cells) via a ubiquitous hierarchal division scheme. Differentiation of a stem cell into (partially) differentiated cells can happen either symmetrically or asymmetrically. The selection dynamics of a mutant cancer stem cell should be investigated in the light of a stem cell proliferation hierarchy and presence of a non-stem cell population. By constructing a three-compartment Moran-type model compos...

  16. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    Science.gov (United States)

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells.

  17. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    Science.gov (United States)

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  18. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    Science.gov (United States)

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  19. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients

    OpenAIRE

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-01-01

    Abstract Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients. Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into ...

  20. Soil Moisture Dynamics in the Shallow Subsurface Near the Land/Atmospheric Interface- Challenges and New Research Approaches (Invited)

    Science.gov (United States)

    Illangasekare, T. H.; Smits, K. M.; Trautz, A.; Rice, A. K.; Cihan, A.; Davarzani, H.

    2013-12-01

    SSoil moisture processes in the subsurface/near-land-surface, play a crucial role in the hydrologic cycle and global water budget. This zone is subject to both natural and human induced disturbances, resulting in continually changing soil structure and hydraulic, thermal, and mechanical properties. Understanding of the dynamics of soil moisture distribution in this zone is of interest in various applications in hydrology such as land-atmospheric interaction, soil evaporation and evapotranspiration, as well as emerging problems on assessing the risk of leakage of sequestrated CO2 from deep geologic formations to the shallow subsurface, and potential leakage of methane to the atmosphere in shale gas development that contributes to global warming. Shallow subsurface soil moisture is highly influenced by diurnal temperature variations, evaporation/condensation, precipitation and liquid water and water vapor flow, all of which are strongly coupled. Modeling studies, have shown that soil moisture in this zone is highly sensitive to the heat and mass flux boundary conditions at the land surface. Hence, approximation of these boundary conditions without properly incorporating complex feedback between the land and the atmospheric boundary layer are expected to result in significant errors. Even though considerable knowledge exists on how soil moisture changes in response to the flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability at higher spatial and temporal resolutions than what is needed in traditional applications in soil physics and vadose zone hydrology. These factors lead to many modeling challenges, primarily of which is the issue of up-scaling. It is our contention that knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solutions cannot be obtained using only field data. Basic to this limitation is the

  1. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Soimakallio, S; Järvenpää, R; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Dastidar, P

    2008-01-01

    Five combinations of image-processing algorithms were applied to dynamic infrared (IR) images of six breast cancer patients preoperatively to establish optimal enhancement of cancer tissue before frequency analysis. mid-wave photovoltaic (PV) IR cameras with 320x254 and 640x512 pixels were used. The signal-to-noise ratio and the specificity for breast cancer were evaluated with the image-processing combinations from the image series of each patient. Before image processing and frequency analysis the effect of patient movement was minimized with a stabilization program developed and tested in the study by stabilizing image slices using surface markers set as measurement points on the skin of the imaged breast. A mathematical equation for superiority value was developed for comparison of the key ratios of the image-processing combinations. The ability of each combination to locate the mammography finding of breast cancer in each patient was compared. Our results show that data collected with a 640x512-pixel mid-wave PV camera applying image-processing methods optimizing signal-to-noise ratio, morphological image processing and linear image restoration before frequency analysis possess the greatest superiority value, showing the cancer area most clearly also in the match centre of the mammography estimation. PMID:18666012

  2. Dynamic study of a sliding interface wear process of TiAlN and CrN multi-layers by X-ray absorption

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.;

    Wear of surfaces is a complicated sequence of dynamic processes, which occurs not only on the coating surface, but also throughout the coated layer and at the interfaces. The induced degradation may lead to structural changes in crystallinity, to amorphization and also to possible tribochemical...... studies of hard coatings by SR are possible and that the tribological wear of a multi-layer system can be monitored with an embedded CrN marker layer. This was achieved by keeping the SR energy on the chromium K-edge energy (close to 6 keV), while a drop in absorption was monitored. The absorption drop...

  3. Soft Interfaces

    International Nuclear Information System (INIS)

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  4. Simulating the multicellular homeostasis with a cell-based discrete receptor dynamics model: The non-mutational origin of cancer and aging.

    Science.gov (United States)

    Lou, Yuting; Chen, Yu

    2016-09-01

    The purpose of the study is to investigate the multicellular homeostasis in epithelial tissues over very large timescales. Inspired by the receptor dynamics of IBCell model proposed by Rejniak et al. an on-grid agent-based model for multicellular system is constructed. Instead of observing the multicellular architectural morphologies, the diversity of homeostatic states is quantitatively analyzed through a substantial number of simulations by measuring three new order parameters, the phenotypic population structure, the average proliferation age and the relaxation time to stable homeostasis. Nearby the interfaces of distinct homeostatic phases in 3D phase diagrams of the three order parameters, intermediate quasi-stable phases of slow dynamics that features quasi-stability with a large spectrum of relaxation timescales are found. A further exploration on the static and dynamic correlations among the three order parameters reveals that the quasi-stable phases evolve towards two terminations, tumorigenesis and degeneration, which are respectively accompanied by rejuvenation and aging. With the exclusion of the environmental impact and the mutational strategies, the results imply that cancer and aging may share the non-mutational origin in the intrinsic slow dynamics of the multicellular systems. PMID:27196967

  5. Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts.

    Directory of Open Access Journals (Sweden)

    Weikang Wang

    Full Text Available Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy.

  6. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  7. Structure and dynamics of the interface between a binary hard-sphere crystal of NaCl type and its coexisting binary fluid

    CERN Document Server

    Sibug-Aga, R; Sibug-Aga, Rachel; Laird, Brian B.

    2002-01-01

    Molecular dynamics simulations are performed to study the [100] and [111] orientations of the crystal-melt interface between an ordered two-component hard sphere with a NaCl structure and its coexisting binary hard-sphere fluid. The diameter ratio of the two types of hard spheres making up the mixture is taken to be 0.414. This work complements our earlier interface simulations [J. Chem. Phys.116, 3410] for the same diameter ratio at lower pressures where the smaller component is immiscible in the solid and the fluid mixture coexists with a pure FCC crystal of large particles. Density profiles and diffusion coefficient profiles are presented for the AB interfacial system. We find that for this system, the transition from crystal-like to fluid-like behavior of both the density and diffusion constant profiles occurs over a narrower region than that seen in our previous studies [J. Chem. Phys. 116, 3410] of the FCC/binary fluid system. But similar to what was found in the FCC/binary fluid interface the transitio...

  8. iWRAP: An interface threading approach with application to prediction of cancer related protein-protein interactions

    OpenAIRE

    Hosur, R.; Xu, J.; Bienkowska, J.; Berger, B.

    2010-01-01

    Current homology modeling methods for predicting protein–protein interactions (PPIs) have difficulty in the “twilight zone” (< 40%) of sequence identities. Threading methods extend coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a best-fit template complex to predict an entire three-dimensional structure. We introduce a threading approach, iWRAP, which focuses only on the protein interface. Our approach combines a novel linear programming formul...

  9. Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Brisset

    Full Text Available Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05. These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease.

  10. Lung cancer mortality trends in Chile and six-year projections using Bayesian dynamic linear models.

    Science.gov (United States)

    Torres-Avilés, Francisco; Moraga, Tomás; Núñez, Loreto; Icaza, Gloria

    2015-09-01

    The objectives were to analyze lung cancer mortality trends in Chile from 1990 to 2009, and to project the rates six years forward. Lung cancer mortality data were obtained from the Chilean Ministry of Health. To obtain mortality rates, population projections were used, based on the 2002 National Census. Rates were adjusted using the world standard population as reference. Bayesian dynamic linear models were fitted to estimate trends from 1990 to 2009 and to obtain projections for 2010-2015. During the period under study, there was a 19.9% reduction in the lung cancer mortality rate in men. In women, there was increase of 28.4%. The second-order model showed a better fit for men, and the first-order model a better fit for women. Between 2010 and 2015 the downward trend continued in men, while a trend to stabilization was projected for lung cancer mortality in women in Chile. This analytical approach could be useful implement surveillance systems for chronic non-communicable disease and to evaluate preventive strategies. PMID:26578021

  11. 高速轧机工作界面非稳态润滑过程界面动力学特性%Interface dynamic characteristics of high-speed rolling mill work interface based on unsteady lubrication process

    Institute of Scientific and Technical Information of China (English)

    王桥医; 陈娟; 高瑞进; 赵勇

    2013-01-01

    综合运用轧制理论、流体力学理论、摩擦润滑理论,建立考虑非稳态润滑过程轧机系统力学模型.该模型综合运用界面摩擦模型、轧制力、轧制力矩模型、流体动力润滑模型构成的多重耦合模型,定量分析高速轧机工作界面非稳态润滑过程界面动力学特性.研究结果表明:对于较小的压下率,摩擦应力很小,摩擦应力最大值发生在入口和出口的边缘处,并且在较小的压下率下油膜压应力变化非常小;在较大的张应力条件下,工作区压应力低,油膜剪切应力小,压力梯度也相当小;摩擦应力在入口和出口边缘达到最大;随着张应力的减小,油膜压力增大,剪切应力增大更快,最终达到了润滑油抗剪强度;在全膜润滑或者表面粗糙度很小的情况下,轧制力的平均值和轧制力变化的幅度随着压下率的增加而增加,轧制力的最小值几乎一样,不受表面粗糙度和压下率变化的影响;轧制力矩的变化趋势和轧制力的变化非常相似,然而对于带材表面粗糙度很大的轧制过程,轧制力矩的变化幅度比轧制力的变化小.%On the basis of rolling theory, hydromechanics theory, lubrication and friction theory, the mechanical model of rolling mill system based on the rolling gap during unsteady lubrication process was presented. In the analysis of interface dynamic characteristic process, the coupling model that consists of interface friction model, the rolling force and rolling torque model and hydrodynamic lubrication model was taken into account, and the interface dynamic characteristics of the high-speed rolling mill work interface based on unsteady lubrication process were discussed quantificationally. The results show that for small reductions, the friction stress values are low and their maximum values occur at the inlet and outlet edges, and for small reductions, the change of lubricant pressure is small. At high tension stress, the pressure

  12. Quantitative mathematical modeling of PSA dynamics of prostate cancer patients treated with intermittent androgen suppression

    Institute of Scientific and Technical Information of China (English)

    Yoshito Hirata; Koichiro Akakura; Celestia S.Higano; Nicholas Bruchovsky; Kazuyuki Aihara

    2012-01-01

    If a mathematical model is to be used in the diagnosis,treatment,or prognosis of a disease,it must describe the inherent quantitative dynamics of the state.An ideal candidate disease is prostate cancer owing to the fact that it is characterized by an excellent biomarker,prostate-specific antigen (PSA),and also by a predictable response to treatment in the form of androgen suppression therapy.Despite a high initial response rate,the cancer will often relapse to a state of androgen independence which no longer responds to manipulations of the hormonal environment.In this paper,we present relevant background information and a quantitative mathematical model that potentially can be used in the optimal management of patients to cope with biochemical relapse as indicated by a rising PSA.

  13. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation

    Directory of Open Access Journals (Sweden)

    Díaz JA

    2011-05-01

    Full Text Available Jairo A Díaz, Mauricio F Murillo, Alvaro BarreroDepartment of Pathology, Hospital Departmental Villavicencio, Hospital Departmental Granada, Medicine School, University Cooperative of Colombia, Villavicencio, Meta, ColombiaAbstract: We have documented self-assembled geometric triangular chiral crystal complexes (GTCHC and a framework of collagen vascular invariant geometric attractors in cancer tissues. This article shows how this system evolves in time. These structures are incorporated together and evolve in different ways. When the geometric core is stable, and the tissue architecture collapses, fragmented components emerge, which reveal a hidden interior identifying how each molecule is reassembled into the original mold, using one common connection, ie, a fractal self-similarity that guided the system from the beginning. GTCHC complexes generate ejected crystal comet tail effects and produce strange helicity states that arise in the form of spin domain interactions. As the crystal growth vibration stage progresses, biofractal echo images converge in a master-built construction of embryoid bodies with enolase-selective immunopositivity in relation to clusters of triangular chiral cell organization. In our electro-optic collision model, we were able to predict and replicate all the characteristics of this complex geometry that connects a physical phenomenon with the signal patterns that generate biologic chaos. Intrinsically, fractal geometry makes spatial correction errors embrace the chaotic system in a way that permits new structures to emerge, and as a result, an ordered self-assembly of embryoid bodies with neural differentiation at the final stage of cancer development is a predictable process. We hope that further investigation of these structures will lead not only to a new way of thinking about physics and biology, but also to a rewarding area in cancer research.Keywords: embryoid bodies, cancer, electro-optic collision model

  14. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mills, F.; Makino, Kyoko; Berz, Martin; Johnstone, C.

    2010-09-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  15. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    International Nuclear Information System (INIS)

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  16. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation

    International Nuclear Information System (INIS)

    We have documented self-assembled geometric triangular chiral crystal complexes (GTCHC) and a framework of collagen vascular invariant geometric attractors in cancer tissues. This article shows how this system evolves in time. These structures are incorporated together and evolve in different ways. When the geometric core is stable, and the tissue architecture collapses, fragmented components emerge, which reveal a hidden interior identifying how each molecule is reassembled into the original mold, using one common connection, ie, a fractal self-similarity that guided the system from the beginning. GTCHC complexes generate ejected crystal comet tail effects and produce strange helicity states that arise in the form of spin domain interactions. As the crystal growth vibration stage progresses, biofractal echo images converge in a master-built construction of embryoid bodies with enolase-selective immunopositivity in relation to clusters of triangular chiral cell organization. In our electro-optic collision model, we were able to predict and replicate all the characteristics of this complex geometry that connects a physical phenomenon with the signal patterns that generate biologic chaos. Intrinsically, fractal geometry makes spatial correction errors embrace the chaotic system in a way that permits new structures to emerge, and as a result, an ordered self-assembly of embryoid bodies with neural differentiation at the final stage of cancer development is a predictable process. We hope that further investigation of these structures will lead not only to a new way of thinking about physics and biology, but also to a rewarding area in cancer research

  17. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner.

    Science.gov (United States)

    McGrail, Daniel J; Khambhati, Niti N; Qi, Mark X; Patel, Krishan S; Ravikumar, Nithin; Brandenburg, Chandler P; Dawson, Michelle R

    2015-04-17

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.

  18. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  19. Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers.

    Science.gov (United States)

    Xie, Haibing; López-Marino, Simon; Olar, Tetiana; Sánchez, Yudania; Neuschitzer, Markus; Oliva, Florian; Giraldo, Sergio; Izquierdo-Roca, Victor; Lauermann, Iver; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2016-02-01

    Cu2SnZn(S,Se)4 (CZTSSe) solar cells based on earth abundant and nontoxic elements currently achieve efficiencies exceeding 12%. It has been reported that, to obtain high efficiency devices, a post thermal treatment of absorbers or devices at temperatures ranging between 150 and 400 °C (post low temperature treatment, PLTT) is advisable. Recent findings point toward a beneficial passivation of grain boundaries with SnOx or Cu-depleted surface and grain boundaries during the PLTT process, but no investigation regarding alkali doping is available, even though alkali dynamics, especially Na, are systematically reported to be crucial within the field. In this work, CZTSSe absorbers were subjected to the PLTT process under different temperatures, and solar cells were completed. We found surprisingly behavior in which efficiency decreased to nearly 0% at 200 °C during the PLTT process, being recovered or even improved at temperatures above 300 °C. This unusual behavior correlates well with the Na dynamics in the devices, especially with the in-depth distribution of Na in the active CZTSSe/CdS interface region, indicating the key importance of Na spatial distribution on device properties. We present an innovative model for Na dynamics supported by theoretical calculations and additional specially designed experiments to explain this behavior. After optimization of the PLTT process, a Se-rich CZTSSe solar cell with 8.3% efficiency was achieved. PMID:26836750

  20. Stability and transient dynamics of a propeller-shaft system as induced by nonlinear friction acting on bearing-shaft contact interface

    Science.gov (United States)

    Zhang, Zhenguo; Zhang, Zhiyi; Huang, Xiuchang; Hua, Hongxing

    2014-06-01

    This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller-shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing-shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.

  1. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding

    International Nuclear Information System (INIS)

    A three-dimensional sharp interface model is proposed to investigate the self-consistent keyhole and weld pool dynamics in deep penetration laser welding. The coupling of three-dimensional heat transfer, fluid flow and keyhole free surface evolutions in the welding process is simulated. It is theoretically confirmed that under certain low heat input welding conditions deep penetration laser welding with a collapsing free keyhole could be obtained and the flow directions near the keyhole wall are upwards and approximately parallel to the keyhole wall. However, significantly different weld pool dynamics in a welding process with an unstable keyhole are numerically found. Many flow patterns in the welding process with an unstable keyhole, verified by x-ray transmission experiments, were successfully simulated and analysed. Periodical keyhole collapsing and bubble formation processes are also successfully simulated and believed to be in good agreement with experiments. The mechanisms of keyhole instability are found to be closely associated with the behaviour of humps on the keyhole wall, and it is found that the welding speed and surface tension are closely related to the formation of humps on the keyhole wall. It is also shown that the weld pool dynamics in laser welding with an unstable keyhole are closely associated with the transient keyhole instability and therefore modelling keyhole and weld pool in a self-consistent way is significant to understand the physics of laser welding.

  2. Multi-purpose droop controllers incorporating a passivity-based stabilizer for unified control of electronically interfaced distributed generators including primary source dynamics.

    Science.gov (United States)

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2016-07-01

    This paper presents multi-purpose droop controllers for electronically-interfaced distributed generators (EI-DGs). These controllers allow the micro-grids to operate in grid-connected mode, islanded mode and mode transition transients with a unique control configuration. The active and reactive-power sharing among EI-DGs are satisfied by the proposed droop controllers in islanded mode. On the other hand, in the grid-connected mode, the droop controllers adjust the output active and reactive-powers of EI-DGs at the pre-programmed constant levels. The provision of sufficient damping capability and maintenance of the transient stability in all operational modes of EI-DGs are warranted by the suggested stabilizer. This stabilizer, which is designed using the passivity-based control (PBC) approach, is incorporated in the droop controllers to dampen power-angle, frequency and voltage deviations during large transients using solely local information. The primary source dynamics of EI-DGs are also considered. It is analytically proven that the presence of the primary source dynamics leads to attenuation of the damping capability of EI-DGs in transients. To compensate the adverse effect of the primary source dynamics during transients a novel compensator is inserted in the frequency-droop loop. Finally, time-domain simulations are performed on a multi-resources MG to verify the analytical results compared to those obtained, based on a recently-developed strategy.

  3. Multi-purpose droop controllers incorporating a passivity-based stabilizer for unified control of electronically interfaced distributed generators including primary source dynamics.

    Science.gov (United States)

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2016-07-01

    This paper presents multi-purpose droop controllers for electronically-interfaced distributed generators (EI-DGs). These controllers allow the micro-grids to operate in grid-connected mode, islanded mode and mode transition transients with a unique control configuration. The active and reactive-power sharing among EI-DGs are satisfied by the proposed droop controllers in islanded mode. On the other hand, in the grid-connected mode, the droop controllers adjust the output active and reactive-powers of EI-DGs at the pre-programmed constant levels. The provision of sufficient damping capability and maintenance of the transient stability in all operational modes of EI-DGs are warranted by the suggested stabilizer. This stabilizer, which is designed using the passivity-based control (PBC) approach, is incorporated in the droop controllers to dampen power-angle, frequency and voltage deviations during large transients using solely local information. The primary source dynamics of EI-DGs are also considered. It is analytically proven that the presence of the primary source dynamics leads to attenuation of the damping capability of EI-DGs in transients. To compensate the adverse effect of the primary source dynamics during transients a novel compensator is inserted in the frequency-droop loop. Finally, time-domain simulations are performed on a multi-resources MG to verify the analytical results compared to those obtained, based on a recently-developed strategy. PMID:27085670

  4. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study.

    Science.gov (United States)

    Radak, Brian K; Yockel, Scott; Kim, Dongwook; Schatz, George C

    2009-07-01

    To better understand the reactivity of gases with liquid surfaces, experimentalists have recently probed the reactive scattering of atomic fluorine at the surface of liquid squalane (C(30)H(62)). In this paper we further this research by simulating this scattering process at collision energies of 0.5 and 1.0 eV using a hybrid QM/MM molecular dynamics scheme. To model the structure of the liquid surface, classical molecular dynamics calculations were performed utilizing the OPLS-AA force field. During the F + squalane molecular dynamics simulation, QM/MM calculations are performed at every trajectory step by combining the MSINDO semiempirical Hamiltonian with OPLS-AA and using a dynamic partitioning of the atoms in the QM or MM regions via a "seed atom" method. This computational model provides a type of "on-the-fly" direct dynamics applicable to larger scale chemical processes that include the making/breaking of chemical bonds not available in standard force field models. Our results show that H abstraction is the only reactive scattering pathway and that most trajectories result in reactive scattering. Reaction statistics at the squalane surface are discussed, including variation of the results with incident angle and collision energy, and the probability of reaction as a function of carbon atom type, collision depth, and residence time. Product states, including angular distributions and final translational and rovibrational energies, are also considered and found to be significantly affected by the exothermic reaction energy for H abstraction. The vibrational distributions are in good agreement with recent experiments, but the rotational distributions are dominated by a nonthermal component while the experiments, which involve thermal incident energies, show comparable thermal and nonthermal contributions. Results for O + squalane at 1.0 eV, which we also present, show analogous comparisons with experiment, with OH vibrational distributions which are cold and

  5. Uranyl ion interaction at the water/NiO(100) interface: A predictive investigation by first-principles molecular dynamic simulations

    Science.gov (United States)

    Sebbari, Karim; Roques, Jérôme; Domain, Christophe; Simoni, Eric

    2012-10-01

    The behavior of the UO22+ uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT + U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 Å above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d_{U{-O}_{adsorption}}= 2.39 Å. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  6. Uranyl ion interaction at the water/NiO(100) interface: A predictive investigation by first-principles molecular dynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sebbari, Karim [EDF-R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Ecuelles, 77818 Moret Sur Loing (France); Institut de Physique Nucleaire d' Orsay, Universite Paris-Sud, CNRS UMR 8608, 15 rue Georges Clemenceau, Batiment 100, 91406 Orsay Cedex (France); Roques, Jerome; Simoni, Eric [Institut de Physique Nucleaire d' Orsay, Universite Paris-Sud, CNRS UMR 8608, 15 rue Georges Clemenceau, Batiment 100, 91406 Orsay Cedex (France); Domain, Christophe [EDF-R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Ecuelles, 77818 Moret Sur Loing (France)

    2012-10-28

    The behavior of the UO{sub 2}{sup 2+} uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT +U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 A above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d{sub U-O{sub a{sub d{sub s{sub o{sub r{sub p{sub t{sub i{sub o{sub n}}}}}}}}}}}=2.39 A. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  7. Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy

    Directory of Open Access Journals (Sweden)

    Luciana Dini

    2012-08-01

    Full Text Available Autophagy is an important cellular program with a “double face” role, since it promotes either cell survival or cell death, also in cancer therapies. Its survival role occurs by recycling cell components during starvation or removing stressed organelles; when damage becomes extensive, autophagy provides another programmed cell death pathway, known as Autophagic Cell Death (ACD. The induction of autophagy is a common outcome in PhotoDynamic Therapy (PDT, a two-step process involving the irradiation of photosensitizer (PS-loaded cancer cells. Upon tissue oxygen interaction, PS provokes immediate and direct Reactive Oxygen Species (ROS-induced damage to Endoplasmic Reticulum (ER, mitochondria, plasma membrane, and/or lysosomes. The main biological effects carried out in cancer PDT are direct cytotoxicity to tumor cells, vasculature damage and induction of inflammatory reactions stimulating immunological responses. The question about the role of autophagy in PDT and its putative immunological impact is hotly controversial and largely studied in recent times. This review deals with the induction of autophagy in PDT protocols and its dual role, also considering its interrelationship with apoptosis, the preferential cell death program triggered in the photodynamic process.

  8. Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT

    Directory of Open Access Journals (Sweden)

    Louise S. Strauch

    2016-07-01

    Full Text Available The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2. The initial search yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow are important perfusion values for predicting treatment outcome. However, the heterogeneity in scan protocols, scan parameters, and time between scans makes it difficult to compare the included studies.

  9. Quantum-state resolved reaction dynamics at the gas-liquid interface: Direct absorption detection of HF(v,J) product from F(2P)+squalane

    Science.gov (United States)

    Zolot, Alexander M.; Harper, Warren W.; Perkins, Bradford G.; Dagdigian, Paul J.; Nesbitt, David J.

    2006-07-01

    Exothermic reactive scattering of F atoms at the gas-liquid interface of a liquid hydrocarbon (squalane) surface has been studied under single collision conditions by shot noise limited high-resolution infrared absorption on the nascent HF (v,J) product. The nascent HF (v,J) vibrational distributions are inverted, indicating insufficient time for complete vibrational energy transfer into the surface liquid. The HF (v=2,J) rotational distributions are well fit with a two temperature Boltzmann analysis, with a near room temperature component (TTD≈290K) and a second much hotter scattering component (THDS≈1040K). These data provide quantum state level support for microscopic branching in the atom abstraction dynamics corresponding to escape of nascent HF from the liquid surface on time scales both slow and fast with respect to rotational relaxation.

  10. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations.

    Science.gov (United States)

    Valla, Maxence; Rossini, Aaron J; Caillot, Maxime; Chizallet, Céline; Raybaud, Pascal; Digne, Mathieu; Chaumonnot, Alexandra; Lesage, Anne; Emsley, Lyndon; van Bokhoven, Jeroen A; Copéret, Christophe

    2015-08-26

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively. PMID:26244620

  11. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides' structure: implications for peptide toxicity and activity

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2006-01-01

    Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively...... properties. Based on the simulations, we argue that secondary structure stability often leads to toxic properties. We also propose that G10 and T7 operate by the carpet mechanism of cell lysis. Toxicity of peptides operating by the carpet mechanism can be attenuated by reducing the peptide helical content...... amphipathic peptide structures, which bind weakly to the micelle. Simulations in SDS were carried out to compare the influence of membrane electrostatics on peptide structure. All three peptides bound strongly to SDS, and retained helical form. This corresponds well with their equally potent antibacterial...

  12. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    Science.gov (United States)

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-06-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10–100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.

  13. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    OpenAIRE

    Xin Ming; Yuanming Feng; Huan Liu; Ying Zhang; Li Zhou; Jun Deng

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercia...

  14. Exciton dynamics at the heteromolecular interface between N,N′-dioctyl-3,4,9,10-perylenedicarboximide and quaterrylene, studied using time-resolved photoluminescence

    Directory of Open Access Journals (Sweden)

    Nobuya Hiroshiba

    2014-06-01

    Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.

  15. miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer.

    Science.gov (United States)

    Mühlberg, Leonie; Kühnemuth, Benjamin; Costello, Eithne; Shaw, Victoria; Sipos, Bence; Huber, Magdalena; Griesmann, Heidi; Krug, Sebastian; Schober, Marvin; Gress, Thomas M; Michl, Patrick

    2016-06-01

    Myeloid cells including tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) are known as important mediators of tumor progression in solid tumors such as pancreatic cancer. Infiltrating myeloid cells have been identified not only in invasive tumors, but also in early pre-invasive pancreatic intraepithelial precursor lesions (PanIN). The functional dynamics of myeloid cells during carcinogenesis is largely unknown. We aimed to systematically elucidate phenotypic and transcriptional changes in infiltrating myeloid cells during carcinogenesis and tumor progression in a genetic mouse model of pancreatic cancer. Using murine pancreatic myeloid cells isolated from the genetic mouse model at different time points during carcinogenesis, we examined both established markers of macrophage polarization using RT-PCR and FACS as well as transcriptional changes focusing on miRNA profiling. Myeloid cells isolated during carcinogenesis showed a simultaneous increase of established markers of M1 and M2 polarization during carcinogenesis, indicating that phenotypic changes of myeloid cells during carcinogenesis do not follow the established M1/M2 classification. MiRNA profiling revealed distinct regulations of several miRNAs already present in myeloid cells infiltrating pre-invasive PanIN lesions. Among them miRNA-21 was significantly increased in myeloid cells surrounding both PanIN lesions and invasive cancers. Functionally, miRNA-21-5p and -3p altered expression of the immune-modulating cytokines CXCL-10 and CCL-3 respectively. Our data indicate that miRNAs are dynamically regulated in infiltrating myeloid cells during carcinogenesis and mediate their functional phenotype by facilitating an immune-suppressive tumor-promoting micro-milieu. PMID:27471627

  16. Static and Dynamic Mechanics Analysis on Artificial Hip Joints with Different Interface Designs by the Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    Hai-bo Jiang

    2007-01-01

    Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the calculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.

  17. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    OpenAIRE

    Wolthers, M.; Di Tommaso, D.; Du, Z; de Leeuw, N. H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different s...

  18. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer.

    Directory of Open Access Journals (Sweden)

    Joanna Zhuang

    2012-02-01

    Full Text Available Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that hypermethylation at stem cell PolyComb Group Target genes (PCGTs occurs in cytologically normal cells three years in advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are heavily Methylated in Embryonic Stem Cells (MESCs and increases significantly with cancer invasion in both the epithelial and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally, we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.

  19. A qualitative analysis of changes in relationship dynamics and roles between people with cancer and their primary informal carer.

    Science.gov (United States)

    Ussher, Jane M; Tim Wong, W K; Perz, Janette

    2011-11-01

    It is widely accepted that cancer is an intersubjective experience that impacts upon the psychological well-being of people with cancer and informal carers, as well as on couple relationships. This qualitative study examined the nature and consequences of cancer on the relationship between informal carers and the person with cancer, from the perspective of Australian cancer carers. Sixty-two carers (42 women and 20 men), across a range of cancer types, stages and relationship dyads took part in semi-structured interviews. Participants reported that cancer had precipitated a change in roles and in the dynamics of the relationship, including having to take on quasi-medical tasks and decisions, neglecting self and other relationships, changes to the emotions or personality of the person with cancer, changed patterns of communication, and changes to sexuality and intimacy. The impact of the changed relationship included sadness, anger and frustration, as well as feelings of love and being closer together, resulting in relationship enhancement. Women were more likely to report changes in the person with cancer and to mourn the previous relationship, while more men reported relationship enhancement.

  20. Dynamic volume perfusion CT in patients with lung cancer: Baseline perfusion characteristics of different histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jingyun, E-mail: shijingyun89179@126.com [Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine (China); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Schmid-Bindert, Gerald, E-mail: gerald.schmid-bindert@medma.uni-heidelberg.de [Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Fink, Christian, E-mail: Christian.Fink@akh-celle.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Sudarski, Sonja, E-mail: sonja_sudarski@gmx.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Apfaltrer, Paul, E-mail: Paul.Apfaltrer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Pilz, Lothar R., E-mail: Lothar.Pilz@medma.uni-heidelberg.de [Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1, 68167 Mannheim (Germany); Liu, Bo, E-mail: bo.liu@siemens.com [Siemens Healthcare, No. 278, Zhouzhu Road, Shanghai, 201318 (China); Haberland, Ulrike, E-mail: ulrike.haberland@siemens.com [Siemens Healthcare Sector, H IM CR R and D PA SC, Siemensstraße 1, 91301 Forchheim (Germany); Klotz, Ernst, E-mail: ernst.klotz@siemens.com [Siemens Healthcare Sector, H IM CR R and D PA SC, Siemensstraße 1, 91301 Forchheim (Germany); and others

    2013-12-01

    Objective: To evaluate dynamic volume perfusion CT (dVPCT) tumor baseline characteristics of three different subtypes of lung cancer in untreated patients. Materials and methods: 173 consecutive patients (131 men, 42 women; mean age 61 ± 10 years) with newly diagnosed lung cancer underwent dVPCT prior to biopsy. Tumor permeability, blood flow (BF), blood volume (BV) and mean transit time (MTT) were quantitatively assessed as well as tumor diameter and volume. Tumor subtypes were histologically determined and compared concerning their dVPCT results. dVPCT results were correlated to tumor diameter and volume. Results: Histology revealed adenocarcinoma in 88, squamous cell carcinoma in 54 and small cell lung cancer (SCLC) in 31 patients. Tumor permeability was significantly differing between adenocarcinoma, squamous cell carcinoma and SCLC (all p < 0.05). Tumor BF and BV were higher in adenocarcinomathan in SCLC (p = 0.001 and p = 0.0002 respectively). BV was also higher in squamous cell carcinoma compared to SCLC (p = 0.01). MTT was not differing between tumor subtypes. Regarding all tumors, tumor diameter did not correlate with any of the dVPCT parameters, whereas tumor volume was negatively associated with permeability, BF and BV (r = −0.22, −0.24, −0.24, all p < 0.05). In squamous cell carcinoma, tumor diameter und volume correlated with BV (r = 0.53 and r = −0.40, all p < 0.05). In SCLC, tumor diameter und volume correlated with MTT (r = 0.46 and r = 0.39, all p < 0.05). In adenocarcinoma, no association between morphological and functional tumor characteristics was observed. Conclusions: dVPCT parameters are only partially related to tumor diameter and volume and are significantly differing between lung cancer subtypes.

  1. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    Science.gov (United States)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  2. Real-time in situ characterization of interface dynamics in microstructure formation during 3D-directional solidification of transparent alloys

    Science.gov (United States)

    Bergeon, N.; Trivedi, R.; Billia, B.; Echebarria, B.; Karma, A.; Liu, S.; Weiss, C.

    The properties of structural materials are to a large extent determined by the solid microstructure so that the understanding of the fundamental physics of microstructure formation is critical in the engineering of materials. Also, microstructure selection occurs during the dynamical growth process so that in situ observation of spatio-temporal evolution of the solid-liquid interface shape is necessary. Under terrestrial conditions, convection effects dominates in bulk samples which prevent precise characterization of microstructure selection. As the glass ampoule conducts heat better than transparent materials, e.g. succinonitrile, the sample near the wall is cooler and convection arises. This leads to concave interface and non-uniform morphological instability starting at the center, while the region near the wall remains smooth. Diffusion-controlled experiments in thin samples give microstructures that are neither 2D nor 3D. When the spacing between glass plates is smaller than the spacing, the cell shape near the tip is 3D, and becomes 2D away from the tip. Preliminary rigorous phase-field results show that in 3D tube geometry (reasonable approximation for a hexagonal array), axisymmetric cells only exist over a narrow range of spacing whereas in 2D steady-state shapes span a wide range of spacing. A benchmark experimental study in bulk samples is thus required under low gravity conditions. In the frame of the joint work of DSIP and MISOL3D projects, respectively selected by NASA and CNES, microgravity experiments in a model transparent system are planned on ISS using the Directional Solidification Insert in the DECLIC facility. The critical aspects of hardware design, the key fundamental issues identified through 1g-experiments, the proposed study on ISS, and the results of rigorous theoretical modeling will be presented. The cellular/dendritic interface morphologies will be examined by systematically varying the process parameters, yielding insight into the

  3. The second generation intelligent user interface for the crustal dynamics data information system. [for nasa space missions

    Science.gov (United States)

    Short, Nicholas, Jr.; Wattawa, Scott L.

    1988-01-01

    For the past decade, operations and research projects that support a major portion of NASA's overall mission have experienced a dramatic increase in the volume of generated data and resultant information that is unparalleled in the history of the agency. The effect of such an increase is that most of the science and engineering disciplines are undergoing an information glut, which has occurred, not only because of the amount, but also because of the type of data being collected. This information glut is growing exponentially and is expected to grow for the foreseeable future. Consequently, it is becoming physically and intellectually impossible to identify, access, modify, and analyze the most suitable information. Thus, the dilemma arises that the amount and complexity of information has exceeded and will continue to exceed, using present information systems, the ability of all the scientists and engineers to understand and take advantage of this information. As a result of this information problem, NASA has initiated the Intelligent Data Management (IDM) project to design and develop Advanced Information Management (IDM) project to design and develop Advanced Information Management Systems (AIMS). The first effort of the Project was the prototyping of an Intelligent User Interface (IUI) to an operational scientific database using expert systems, natural language processing, and graphics technologies. An overview of the IUI formulation and development for the second phase is presented.

  4. Supramolecular control of the spin-dependent dynamics of long-lived charge-separated states at the micellar interface as studied by magnetic field effect.

    Science.gov (United States)

    Miura, Tomoaki

    2013-05-30

    Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.

  5. DYNAMICS OF ON-DISK PLUMES AS OBSERVED WITH THE INTERFACE REGION IMAGING SPECTROGRAPH, THE ATMOSPHERIC IMAGING ASSEMBLY, AND THE HELIOSEISMIC AND MAGNETIC IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Vaibhav; Mazumder, Rakesh; Banerjee, Dipankar; Panditi, Vemareddy [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Dolla, Laurent [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Prasad, S. Krishna, E-mail: vaibhav@iiap.res.in [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2015-07-01

    We examine the role of small-scale transients in the formation and evolution of solar coronal plumes. We study the dynamics of plume footpoints seen in the vicinity of a coronal hole using the Atmospheric Imaging Assembly (AIA) images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS). Quasi-periodic brightenings are observed in the base of the plumes and are associated with magnetic flux changes. With the high spectral and spatial resolution of IRIS, we identify the sources of these oscillations and try to understand what role the transients at the footpoints can play in sustaining the coronal plumes. IRIS “sit-and-stare” observations provide a unique opportunity to study the evolution of footpoints of the plumes. We notice enhanced line width and intensity, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of flows at the footpoints of plumes. We propose that outflows (jet-like features) as a result of small-scale reconnections affect the line profiles. These jet-like features may also be responsible for the generation of propagating disturbances (PDs) within the plumes, which are observed to be propagating to larger distances as recorded from multiple AIA channels. These PDs can be explained in terms of slow magnetoacoustic waves.

  6. The impact of different phytosterols on the molecular dynamics in the hydrophobic/hydrophilic interface phosphatidylcholine- liposomes

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sandelius, A.S.

    2001-01-01

    Plant sterols differ from cholesterol in having an alkyl group at Delta -24, and, in the case of stigmasterol, also a Delta -22 double bond. The effects of 10 mol% of three plant sterols (campesterol, fl-sitosterol, stigmasterol) and cholesterol on the molecular dynamics and phase behavior...... of dipolar relaxation of water molecules close to the glycerol backbone of PC. Our results showed that the Delta -24 alkyl group of plant sterols did not affect their ability to reduce molecular mobility in this region of the PC membranes. However, the plant sterols had a decreased capacity compared...... to cholesterol to inhibit formation of co-existing domains of gel and liquid-crystalline phases in membranes composed of equimolar dilauroyl-PC and dipalmitoyl-PC. The Delta -22 double bond present in stigmasterol decreased the ability of this sterol, compared to the other phytosterols, to reduce the molecular...

  7. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    Science.gov (United States)

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules. PMID:25416903

  8. Investigation of the electron dynamics at the PTCDA/Ag(111)-interface; Untersuchung der Elektronendynamik an der PTCDA-Ag (111) - Grenzflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Schwalb, Christian

    2008-12-17

    In this work the electron dynamics at the PTCDA/Ag(111) interface have been studied with time- and angleresolved Two-photon photoemission (2PPE) as well as time-resolved photoluminescence (PL). The first part of this work concentrates on the characterization of an unoccupied electronic state, that develops 0.6 eV above the Fermi level due to the adsorption of the PTCDA molecules, whereas the shockley surface state of the clean surface vanishes. The measurements clearly identify this state as an interface state that is located between the metal surface and the first layer of the molecules. Dispersion measurements yield an effective mass of this state of 0.39 m{sub e} at the Gamma-point and show backfolding at the zone boundaries of the rectangular PTCDA unit cell. Time-resolved measurements show a surprisingly short lifetime of t=54 fs, clearly indicating a strong coupling of the state with the metal. This behaviour can be explained by a shift of the shockley surface state. This for the clean Ag(111)-surface normally occupied state shifts above the Fermi level because of the highly polarizable PTCDA molecules. Calculations with a one dimensional model potential support this interpretation. Angleresolved lifetime measurements as a function of parallel momentum show a correlation of the decay dynamics of the interface state with the measured bandstructure. The observed drop of the lifetime for larger parallel momentum is significantly smaller as expected for the pure shockley state. This behaviour can be explained due to a hybridisation of the shockley state with the LUMO+1 of the first PTCDA monolayer for k parallel >>0. The second part of this work deals with the intramolecular excitation at the PTCDA/Ag(111) interface after excitation with laser pulses with 2.33 eV and 4.66 eV photon energy. Time-resolved photoluminescence measurements show a strong rise in the PL-lifetime as a function of PTCDA coverage, that can be explained by an increase in the crystallinity of

  9. Photochemistry at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  10. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Science.gov (United States)

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  11. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Anaar Siletz

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  12. Transforming growth factor-beta plasma dynamics and post-irradiation lung injury in lung cancer patients

    NARCIS (Netherlands)

    Novakova-Jiresova, A; van Gameren, MM; Coppes, RP; Kampinga, HH; Groen, HJM

    2004-01-01

    Purpose: To investigate the relevance of transforming growth factor-beta (TGF-beta) dynamics in plasma for identification of patients at low risk for developing pneumonitis as a complication of thoracic radiotherapy (RT). Patients and methods: Non-small cell lung cancer patients undergoing conventio

  13. Dynamics of the risk of smoking-induced lung cancer : A compartmental hidden markov model for longitudinal analysis

    NARCIS (Netherlands)

    Chadeau-Hyam, Marc; Tubert-Bitter, Pascale; Guihenneuc-Jouyaux, Chantal; Campanella, Gianluca; Richardson, Sylvia; Vermeulen, Roel; De Iorio, Maria; Galea, Sandro; Vineis, Paolo

    2014-01-01

    BACKGROUND:: To account for the dynamic aspects of carcinogenesis, we propose a compartmental hidden Markov model in which each person is healthy, asymptomatically affected, diagnosed, or deceased. Our model is illustrated using the example of smoking-induced lung cancer. METHODS:: The model was fit

  14. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  15. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    Science.gov (United States)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  16. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers

    Science.gov (United States)

    Muzumdar, Mandar Deepak; Dorans, Kimberly Judith; Chung, Katherine Minjee; Robbins, Rebecca; Tammela, Tuomas; Gocheva, Vasilena; Li, Carman Man-Chung; Jacks, Tyler

    2016-01-01

    Although it has become increasingly clear that cancers display extensive cellular heterogeneity, the spatial growth dynamics of genetically distinct clones within developing solid tumours remain poorly understood. Here we leverage mosaic analysis with double markers (MADM) to trace subclonal populations retaining or lacking p53 within oncogenic Kras-initiated lung and pancreatic tumours. In both models, p53 constrains progression to advanced adenocarcinomas. Comparison of lineage-related p53 knockout and wild-type clones reveals a minor role of p53 in suppressing cell expansion in lung adenomas. In contrast, p53 loss promotes both the initiation and expansion of low-grade pancreatic intraepithelial neoplasia (PanINs), likely through differential expression of the p53 regulator p19ARF. Strikingly, lineage-related cells are often dispersed in lung adenomas and PanINs, contrasting with more contiguous growth of advanced subclones. Together, these results support cancer type-specific suppressive roles of p53 in early tumour progression and offer insights into clonal growth patterns during tumour development. PMID:27585860

  17. Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs.

    Science.gov (United States)

    Sardar, Samim; Chaudhuri, Siddhi; Kar, Prasenjit; Sarkar, Soumik; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    In recent times, significant achievements in the use of zinc oxide (ZnO) nanoparticles (NPs) as delivery vehicles of cancer drugs have been made. The present study is an attempt to explore the key photoinduced dynamics in ZnO NPs upon complexation with a model cancer drug protoporphyrin IX (PP). The nanohybrid has been characterized by FTIR, Raman scattering and UV-Vis absorption spectroscopy. Picosecond-resolved Förster resonance energy transfer (FRET) from the defect mediated emission of ZnO NPs to PP has been used to study the formation of the nanohybrid at the molecular level. Picosecond-resolved fluorescence studies of PP-ZnO nanohybrids reveal efficient electron migration from photoexcited PP to ZnO, eventually enhancing the ROS activity. The dichlorofluorescin (DCFH) oxidation and no oxidation of luminol in PP/PP-ZnO nanohybrids upon green light illumination unravel that the nature of ROS is essentially singlet oxygen rather than superoxide anions. Surface mediated photocatalysis of methylene blue (MB) in an aqueous solution of the nanohybrid has also been investigated. Direct evidence of the role of electron transfer as a key player in enhanced ROS generation from the nanohybrid is also clear from the photocurrent measurement studies. We have also used the nanohybrid in a model photodynamic therapy application in a light sensitized bacteriological culture experiment.

  18. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers.

    Science.gov (United States)

    Muzumdar, Mandar Deepak; Dorans, Kimberly Judith; Chung, Katherine Minjee; Robbins, Rebecca; Tammela, Tuomas; Gocheva, Vasilena; Li, Carman Man-Chung; Jacks, Tyler

    2016-01-01

    Although it has become increasingly clear that cancers display extensive cellular heterogeneity, the spatial growth dynamics of genetically distinct clones within developing solid tumours remain poorly understood. Here we leverage mosaic analysis with double markers (MADM) to trace subclonal populations retaining or lacking p53 within oncogenic Kras-initiated lung and pancreatic tumours. In both models, p53 constrains progression to advanced adenocarcinomas. Comparison of lineage-related p53 knockout and wild-type clones reveals a minor role of p53 in suppressing cell expansion in lung adenomas. In contrast, p53 loss promotes both the initiation and expansion of low-grade pancreatic intraepithelial neoplasia (PanINs), likely through differential expression of the p53 regulator p19ARF. Strikingly, lineage-related cells are often dispersed in lung adenomas and PanINs, contrasting with more contiguous growth of advanced subclones. Together, these results support cancer type-specific suppressive roles of p53 in early tumour progression and offer insights into clonal growth patterns during tumour development. PMID:27585860

  19. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  20. Testing Interfaces

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;

    1999-01-01

    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns.The major problem is expected to lie in the interface between...... two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time, destroy...

  1. Testing Interfaces

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;

    1999-01-01

    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns. The major problem is expected to lie in the interface...... between two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time...

  2. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.

    Science.gov (United States)

    Wolthers, M; Di Tommaso, D; Du, Z; de Leeuw, N H

    2012-11-21

    Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. PMID:23042085

  3. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    Science.gov (United States)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  4. DMPD: Regulation of TLR4 signaling and the host interface with pathogens and danger:the role of RP105. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17470533 Regulation of TLR4 signaling and the host interface with pathogens and dan...tion of TLR4 signaling and the host interface with pathogens and danger:the role ...of RP105. PubmedID 17470533 Title Regulation of TLR4 signaling and the host interface with pathogens and dan

  5. Molecular dynamics simulations of the structure of the graphene-ionic liquid/alkali salt mixtures interface.

    Science.gov (United States)

    Méndez-Morales, Trinidad; Carrete, Jesús; Pérez-Rodríguez, Martín; Cabeza, Óscar; Gallego, Luis J; Lynden-Bell, Ruth M; Varela, Luis M

    2014-07-14

    We performed molecular dynamics simulations of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate and potassium tetrafluoroborate between two charged and uncharged graphene walls, in order to analyze the structure of the well-known formation of layers that takes place on liquids under confinement. For this purpose, we studied the molecular density profiles, free energy profiles for bringing lithium and potassium cations from the bulk mixture to the graphene wall and the orientational distributions of imidazolium rings within the first adsorbed layer as a function of salt concentration and electrode potential. The charge densities in the electrodes were chosen to be zero and ±1 e nm(-2), and the salt molar percentages were %salt = 0, 10 and 25. We found that the layered structure extends up to 1-2 nm, where the bulk behaviour is recovered. In addition, whereas for the neutral surface the layers are composed of both ionic species, increasing the electrode potential, the structure changes to alternating cationic and anionic layers leading to an overcompensation of the charge of the previous layer. We also calculated the distribution of angles of imidazolium rings near neutral and charged graphene walls, finding a limited influence of the added salt. In addition, the average tilt of the imidazolium ring within the first layer goes from 36° with respect to a normal vector to the uncharged graphene wall to 62° in the presence of charged walls. The free energy profiles revealed that lithium and potassium ions are adsorbed on the negative surface only for the highest amount of salt, since the free energy barriers for approaching this electrode are considerably higher than kBT. PMID:24871696

  6. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice

    Science.gov (United States)

    Hoffman, Robert M.

    2006-02-01

    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  7. Subseafloor to Sea-Air Interface Characterization of Methane Dynamics in the northern US Atlantic Margin Seep Province

    Science.gov (United States)

    Ruppel, C. D.; Kluesner, J.; Danforth, W. W.; Casso, M.; Pohlman, J.

    2015-12-01

    Since the discovery of hundreds of northern US Atlantic margin (USAM) cold seeps in 2012 and 2013, the USGS Gas Hydrates Project has undertaken intensive studies of the along-margin gas hydrate/free gas distribution, the plumbing systems sustaining seeps, seafloor gas emissions, and sea-air methane flux. Interest in the USAM is motivated both by climate change (i.e., documented ocean warming may contribute to seepage) and energy resource (i.e., the amount of gas-in-place in hydrates on the USAM is about the same as that in the northern Gulf of Mexico) issues. USGS-led field efforts have included an April 2015 study to acquire high-resolution multichannel seismic data, coincident split-beam water column methane plume imaging data, and real-time sea-air methane flux measurements between Wilmington and Norfolk Canyons and a September 2015 cruise (with OSU, UCLA, and Geomar) to collect piston cores, multicores, heat flow data, subbottom imagery, CTDs, and coincident water column imagery from Block Canyon to the Currituck Slide. In April 2015, we discovered methane seeps not included in the previously-published database, but found that some known seeps were not active. New high-resolution multi-channel seismic data revealed clear differences between the deep gas distribution in mid-Atlantic upper slope zones that are replete with (up to 240 sites) and lacking in seeps. Based on sea-air flux measurements, even shallow-water outer shelf (~125 m water depth) seeps and a 900-m-high methane plume originating on the mid-slope do not contribute methane to the atmosphere. Using thermistors placed on piston core outriggers, we will in September 2015 acquire thermal data to identify zones of high fluid advection and to constrain background geotherms in areas where heat flow has never been measured. During that same cruise, we will collect a series of piston cores across the no-hydrate/hydrate transition on the upper slope to constrain fluid and gas dynamics in this zone.

  8. Microprocessor interfacing

    CERN Document Server

    Vears, R E

    2014-01-01

    Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl

  9. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study.

    Science.gov (United States)

    Gang, Hongze; Liu, Jinfeng; Mu, Bozhong

    2015-10-01

    The binding structure and kinetics of ionized surfactin monolayer formed at the air/water interface to five counterions, Li+, Na+, K+, Ca2+, and Ba2+ (molar ratios of surfactin to monovalent and divalent counterions are 1:2 and 1:1 respectively), have been studied using molecular dynamics simulation. The results show that surfactin exhibits higher binding affinity to divalent counterions, Ca2+, and Ba2+, and smaller monovalent counterion, Li+, than Na+ and K+. Both carboxyl groups in surfactin are accessible for counterions, but the carboxyl group in Glu1 is easier to access by counterions than Asp5. Salt bridges are widely built between carboxyl groups by counterions, and the probability of the formation of intermolecular salt bridge is markedly larger than that of intramolecular salt bridge. Divalent counterions perform well in forming salt bridges between carboxyl groups. The salt bridges mediated by Ca2+ are so rigid that the lifetimes are about 0.13 ns, and the break rates of these salt bridges are 1-2 orders of magnitude smaller than those mediated by K+ which is about 5 ps in duration. The positions of the hydration layer of carboxyl groups are independent of counterions, but the bound counterions induce the dehydration of carboxyl groups and disturb the hydrogen bonds built between carboxyl group and hydration water.

  10. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  11. Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide

    Science.gov (United States)

    Spencer, Ben F.; Cliffe, Matthew J.; Graham, Darren M.; Hardman, Samantha J. O.; Seddon, Elaine A.; Syres, Karen L.; Thomas, Andrew G.; Sirotti, Fausto; Silly, Mathieu G.; Akhtar, Javeed; O'Brien, Paul; Fairclough, Simon M.; Smith, Jason M.; Chattopadhyay, Swapan; Flavell, Wendy R.

    2015-11-01

    We describe a new experimental pump-probe methodology where a 2D delay-line detector enables fast (ns) monitoring of a narrow XPS spectrum in combination with a continuous pump laser. This has been developed at the TEMPO beamline at Synchrotron SOLEIL to enable the study of systems with intrinsically slow electron dynamics, and to complement faster measurements that use a fs laser as the pump. We demonstrate its use in a time-resolved study of the surface photovoltage of the m-plane ZnO (10 1 bar 0) surface which shows persistent photoconductivity, requiring monitoring periods on ms timescales and longer. We make measurements from this surface in the presence and absence of chemically-linked quantum dots (QDs), using type I PbS and type II CdSe/ZnSe (core/shell) QDs as examples. We monitor signals from both the ZnO substrate and the bound QDs during photoexcitation, yielding evidence for charge injection from the QDs into the ZnO. The chemical specificity of the technique allows us to observe differences in the extent to which the QD systems are influenced by the field of the surface depletion layer at the ZnO surface, which we attribute to differences in the band structure at the interface.

  12. Capillary flows with forming interfaces

    CERN Document Server

    Shikhmurzaev, Yulii D

    2007-01-01

    PREFACEINTRODUCTION Free-surface flows in nature and industryScope of the bookFUNDAMENTALS OF FLUID MECHANICS Main concepts Governing equations Elements of thermodynamics Classical boundary conditions Physically meaningful solutions and paradoxes of modelingMOVING CONTACT LINES: AN OVERVIEW Essence of the problem Experimental observations Molecular dynamics simulations Review of theoriesThe key to the moving contact-line problemBOUNDARY CONDITIONS ON FORMING INTERFACES Modeling of interfacesConservation lawsLiquid-gas and liquid-solid interfacesLiquid-liquid interfaces SummaryOpen questions an

  13. Urban water interfaces

    Science.gov (United States)

    Gessner, M. O.; Hinkelmann, R.; Nützmann, G.; Jekel, M.; Singer, G.; Lewandowski, J.; Nehls, T.; Barjenbruch, M.

    2014-06-01

    Urban water systems consist of large-scale technical systems and both natural and man-made water bodies. The technical systems are essential components of urban infrastructure for water collection, treatment, storage and distribution, as well as for wastewater and runoff collection and subsequent treatment. Urban aquatic ecosystems are typically subject to strong human influences, which impair the quality of surface and ground waters, often with far-reaching impacts on downstream aquatic ecosystems and water users. The various surface and subsurface water bodies in urban environments can be viewed as interconnected compartments that are also extensively intertwined with a range of technical compartments of the urban water system. As a result, urban water systems are characterized by fluxes of water, solutes, gases and energy between contrasting compartments of a technical, natural or hybrid nature. Referred to as urban water interfaces, boundaries between and within these compartments are often specific to urban water systems. Urban water interfaces are generally characterized by steep physical and biogeochemical gradients, which promote high reaction rates. We hypothesize that they act as key sites of processes and fluxes with notable effects on overall system behaviour. By their very nature, urban water interfaces are heterogeneous and dynamic. Therefore, they increase spatial heterogeneity in urban areas and are also expected to contribute notably to the temporal dynamics of urban water systems, which often involve non-linear interactions and feedback mechanisms. Processes at and fluxes across urban water interfaces are complex and less well understood than within well-defined, homogeneous compartments, requiring both empirical investigations and new modelling approaches at both the process and system level. We advocate an integrative conceptual framework of the urban water system that considers interfaces as a key component to improve our fundamental

  14. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion.

    Science.gov (United States)

    Iliopoulos, Dimitrios; Hirsch, Heather A; Wang, Guannan; Struhl, Kevin

    2011-01-25

    Tumors are often heterogeneous, being composed of multiple cell types with different phenotypic and molecular properties. Cancer stem-like cells (CSCs) are a highly tumorigenic cell type found in developmentally diverse tumors or cancer cell lines, and they are often resistant to standard chemotherapeutic drugs. The origins of CSCs and their relationships to nonstem cancer cells (NSCCs) are poorly understood. In an inducible breast oncogenesis model, CSCs are generated from nontransformed cells at a specific time during the transformation process, but CSC formation is not required for transformation. MicroRNA profiles indicate that CSCs and NSCCs are related, but different cell types arising from a common nontransformed population. Interestingly, medium from the transformed population stimulates NSCCs to become CSCs, and conversion of NSCCs to CSCs occurs in mouse xenografts. Furthermore, IL6 is sufficient to convert NSCCs to CSCs in genetically different breast cell lines, human breast tumors, and a prostate cell line. Thus, breast and prostate CSCs and NSCCs do not represent distinct epigenetic states, and these CSCs do not behave as or arise from classic stem cells. Instead, tumor heterogeneity involves a dynamic equilibrium between CSCs and NSCCs mediated by IL6 and activation of the inflammatory feedback loop required for oncogenesis. This dynamic equilibrium provides an additional rationale for combining conventional chemotherapy with metformin, which selectively inhibits CSCs. PMID:21220315

  15. Hydro-dynamic CT preoperative staging of gastric cancer: correlation with pathological findings. A prospective study of 107 cases

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, F.; Zingarelli, A.; Grani, M. [Dept. of Radiology, S. Donato Hospital, Arezzo (Italy); Palli, D. [Dept. of Epidemiology CSPO, Florence (Italy)

    2000-12-01

    The aim of this study was to evaluate the accuracy of dynamic CT in the preoperative staging of gastric cancer. One hundred seven patients affected by gastric cancer diagnosed by endoscopic biopsy were prospectively staged by dynamic CT prior to tumor resection. After an oral intake of 400-600 ml of tap water and an intravenous infusion of a hypotonic agent, 200 ml of non-ionic contrast agent were administered by power injector using a biphasic technique. The CT findings were prospectively analyzed and correlated with the pathological findings at surgery. The accuracy of dynamic CT for tumor detection was 80 and 99 % in early and advanced gastric cancer, respectively, with overall detection rate of 96 % (103 of 107). Three early (pT1) and one advanced (pT2) cancers were undetected. Tumor stage as determined by dynamic CT agreed with pathological findings in 83 of 107 patients with an overall accuracy of 78 %. The accuracy of CT in detecting increasing degrees of depth of tumor invasion when compared with pathological TNM staging was 20 % (3 of 15) and 87 % (80 of 92) in early and advanced cancer, respectively. The sensitivity, specificity, and accuracy of CT in the preoperative staging (pT3-pT4 vs pT1-pT2) was 93, 90, and 91.6 %, respectively. The sensitivity, specificity, and accuracy of CT in assessing metastasis to regional lymph nodes was 97.2, 65.7, and 87 %, respectively. Computed tomography correctly staged liver metastases in 105 of 107 patients with an overall sensitivity of 87.5 % and specificity of 99 %. The sensitivity of peritoneal involvement was 30 % when ascites or peritoneal nodules were absent. Our findings show that dynamic CT can play a role in the preoperative definition of gastric cancer stage. The results can be used to optimize the therapeutic strategy for each individual patient prior to surgery, thus avoiding unnecessary intervention and allowing careful planning of extended surgery in eligible patients. (orig.)

  16. Ovarian Cancer Cell Adhesion/Migration Dynamics on Micro-Structured Laminin Gradients Fabricated by Multiphoton Excited Photochemistry

    Directory of Open Access Journals (Sweden)

    Ruei-Yu He

    2015-07-01

    Full Text Available Haptotaxis, i.e., cell migration in response to adhesive gradients, has been previously implicated in cancer metastasis. A better understanding of cell migration dynamics and their regulation could ultimately lead to new drug targets, especially for cancers with poor prognoses, such as ovarian cancer. Haptotaxis has not been well-studied due to the lack of biomimetic, biocompatible models, where, for example, microcontact printing and microfluidics approaches are primarily limited to 2D surfaces and cannot produce the 3D submicron features to which cells respond. Here we used multiphoton excited (MPE phototochemistry to fabricate nano/microstructured gradients of laminin (LN as 2.5D models of the ovarian basal lamina to study the haptotaxis dynamics of a series of ovarian cancer cells. Using these models, we found that increased LN concentration increased migration speed and also alignment of the overall cell morphology and their cytoskeleton along the linear axis of the gradients. Both these metrics were enhanced on LN compared to BSA gradients of the same design, demonstrating the importance of both topographic and ECM cues on the adhesion/migration dynamics. Using two different gradient designs, we addressed the question of the roles of local concentration and slope and found that the specific haptotactic response depends on the cell phenotype and not simply the gradient design. Moreover, small changes in concentration strongly affected the migration properties. This work is a necessary step in studying haptotaxis in more complete 3D models of the tumor microenvironment for ovarian and other cancers.

  17. Cancer

    Science.gov (United States)

    ... Blood tests (which look for chemicals such as tumor markers) Bone marrow biopsy (for lymphoma or leukemia) Chest ... the case with skin cancers , as well as cancers of the lung, breast, and colon. If the tumor has spread ...

  18. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  19. Annexin A2 at the Interface of Actin and Membrane Dynamics: A Focus on Its Roles in Endocytosis and Cell Polarization

    Directory of Open Access Journals (Sweden)

    Adam G. Grieve

    2012-01-01

    Full Text Available Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2. Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.

  20. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Karahaliou, A; Skiadopoulos, S; Yiakoumelos, A; Costaridou, L [Department of Medical Physics, Faculty of Medicine, University of Patras, 26500 Patras (Greece); Vassiou, K [Department of Anatomy, Faculty of Medicine, University of Thessaly, 41110 Larissa (Greece); Kanavou, T [Department of Radiology, Faculty of Medicine, University of Thessaly, 41110 Larissa (Greece)], E-mail: costarid@upatras.gr

    2009-07-15

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960{+-}0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  1. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    Science.gov (United States)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  2. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  3. Dynamic contrast-enhanced MR imaging of endometrial cancer. Optimizing the imaging delay for tumour-myometrium contrast

    International Nuclear Information System (INIS)

    To investigate the optimal imaging delay time of dynamic contrast-enhanced magnetic resonance (MR) imaging in women with endometrial cancer. This prospective single-institution study was approved by the institutional review board, and informed consent was obtained from the participants. Thirty-five women (mean age, 54 years; age range, 29-66 years) underwent dynamic contrast-enhanced MR imaging with a temporal resolution of 25-40 seconds. The signal intensity difference ratios between the myometrium and endometrial cancer were analyzed to investigate the optimal imaging delay time using single change-point analysis. The optimal imaging delay time for appropriate tumour-myometrium contrast ranged from 31.7 to 268.1 seconds. The median optimal imaging delay time was 91.3 seconds, with an interquartile range of 46.2 to 119.5 seconds. The median signal intensity difference ratios between the myometrium and endometrial cancer were 0.03, with an interquartile range of -0.01 to 0.06, on the pre-contrast MR imaging and 0.20, with an interquartile range of 0.15 to 0.25, on the post-contrast MR imaging. An imaging delay of approximately 90 seconds after initiating contrast material injection may be optimal for obtaining appropriate tumour-myometrium contrast in women with endometrial cancer. (orig.)

  4. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  5. Cellular calcium dynamics in lactation and breast cancer: From physiology to pathology

    Science.gov (United States)

    Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mi...

  6. 68Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer

    International Nuclear Information System (INIS)

    We aim to investigate the pharmacokinetics and distribution of the recently clinically introduced radioligand 68Ga-PSMA-11 in men with recurrent prostate cancer (PC) by means of dynamic and whole-body PET/CT. The correlation between PSA levels and 68Ga-PSMA-11 PET parameters is also investigated. 31 patients with biochemical failure after primary PC treatment with curative intent (median age 71.0 years) were enrolled in the analysis. The median PSA value was 2.0 ng/mL (range = 0.1 - 130.0 ng/mL) and the median Gleason score was 7 (range = 5 - 9). 8/31 (25.8 %) of the included patients had a PSA value < 0.5 ng/ml. All patients underwent dynamic PET/CT (dPET/CT) scanning (60 min) of the pelvis and lower abdomen as well as whole-body PET/CT with 68Ga-PSMA-11. dPET/CT assessment was based on qualitative evaluation, SUV calculation, and quantitative analysis based on a two-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). 22/31 patients (71.0 %) were 68Ga-PSMA-11-positive, while 9/31 (29.0 %) patients were 68Ga-PSMA-11-negative. The median PSA value in the 68Ga-PSMA-11-positive group was significantly higher (median = 2.35 ng/mL; range = 0.19 - 130.0 ng/mL) than in the 68Ga-PSMA-11-negative group (median value: 0.34 ng/mL; range = 0.10 - 4.20 ng/mL). A total of 76 lesions were semi-quantitatively evaluated. PC recurrence-associated lesions demonstrated a mean SUVaverage = 12.4 (median = 9.0; range = 2.2 - 84.5) and mean SUVmax = 18.8 (median = 14.1; range = 3.1 - 120.3). Dynamic PET/CT studies of the pelvis revealed the following mean values for the PC recurrence-suspicious lesions: K1 = 0.26, k3 = 0.30, influx = 0.14 and FD = 1.24. Time-activity curves derived from PC-recurrence indicative lesions revealed an increasing 68Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate, but significant, correlation between PSA levels and the number of lesions detected on 68Ga

  7. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  8. Claudin 1 Expression Levels Affect miRNA Dynamics in Human Basal-Like Breast Cancer Cells.

    Science.gov (United States)

    Majer, Anna; Blanchard, Anne A; Medina, Sarah; Booth, Stephanie A; Myal, Yvonne

    2016-07-01

    Deemed a putative tumor suppressor in breast cancer, the tight junction protein claudin 1 has now been shown to be highly expressed in the basal-like molecular subtype. Moreover, recent in vitro studies show that claudin 1 can regulate breast cancer cell motility and proliferation. Herein, we investigated whether microRNA (miRNA) dysregulation is associated with alterations in the level of claudin 1. Using next-generation sequencing (NGS), we identified seven miRNAs (miR-9-5p, miR-9-3p, let-7c, miR-127-3p, miR-99a-5p, miR-129-5p, and miR-146a-5p) that were deregulated as a consequence of claudin 1 overexpression in the MDA-MB231 human breast cancer (HBC) cell line. Most of these miRNAs have been associated with tumor suppression in a variety of cancers, including breast cancer. Moreover, through gene expression profiling analysis, we identified epithelial-mesenchymal transition-related genes, including platelet-derived growth factor receptor-beta (PDGFRB) and cadherin 1 (CDH1, E cadherin), whose downregulation correlated with claudin 1 overexpression. Collectively, we show for the first time that in HBC, claudin 1 can alter the dynamics of a number of miRNAs involved in tumor progression. Our data suggest that the dysregulated expression of these miRNAs, in conjunction with the high claudin 1 levels, could serve as a useful biomarker that identifies a subset of tumors within the poorly characterized basal-like subtype of breast cancer. Further studies are warranted to determine the role of these miRNAs in facilitating the function of claudin 1 in breast cancer. PMID:26982264

  9. Atomistic modeling of dislocation-interface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Los Alamos National Laboratory; Valone, Steven M [Los Alamos National Laboratory; Beyerlein, Irene J [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Germann, T. C. [Los Alamos National Laboratory

    2011-01-31

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  10. Designer interface peptide grafts target estrogen receptor alpha dimerization.

    Science.gov (United States)

    Chakraborty, S; Asare, B K; Biswas, P K; Rajnarayanan, R V

    2016-09-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. PMID:27462021

  11. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, Yonago (Japan); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kido, Aki, E-mail: akikido@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Baba, Tsukasa [Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Fujimoto, Koji; Daido, Sayaka [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Matsumura, Noriomi; Konishi, Ikuo [Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2015-04-15

    Highlights: •We have assessed the peritumoral enhancement (PTE), which mimics SEE on DCE. •We evaluated the diagnostic accuracy of SEE for the myometrial invasion and the frequency of PTE. •We assessed the relationship between these enhancements and important pathologic factors. •PTE Type 1 is the main factor causing the overestimation of myometrial invasion using SEE on DCE. •PTE Type 2 correlates the myometrial invasion and may play an important role in the diagnosis of LVSI. -- Abstract: Objectives: To evaluate the diagnostic accuracy of subendometrial enhancement (SEE) in assessing the myometrial invasion in endometrial cancer, the frequency and clinical significance of peritumoral enhancement (PTE) on dynamic contrast enhanced (DCE) imaging. Materials and methods: MR images of 147 patients with endometrial cancer were retrospectively analyzed for intact SEE and PTEs: Type 1, a focal early enhancement peritumorally, and Type 2, an irregular thin-layered early intense enhancement peritumorally. Two radiologists independently assessed intact SEE and PTEs on DCE imaging and compared the lesions by the presence and depth of myometrial invasion, grade, lymphovascular space involvement (LVSI), and lymph node metastasis. The relationship between SEE, PTEs, and each factor was analyzed using univariate and multivariate analyses. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated for SEE. Results: The sensitivity, specificity, PPV, NPV and diagnostic accuracy for myometrial invasion based on SEE disruption on DCE were 96.6%, 32.1–46.4%, 85.8–88.5%, 69.2–76.5%, and 84.4–87.1%. According to multivariate analysis, SEE significantly predicted myometrial invasion (p < 0.0001). PTE Type 2 significantly predicted myometrial invasion presence (p < 0.05) and depth (p < 0.01). Conclusion: Diagnosis of myometrial invasion only by using SEE might be difficult on DCE-MRI due to the

  12. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging

    International Nuclear Information System (INIS)

    Highlights: •We have assessed the peritumoral enhancement (PTE), which mimics SEE on DCE. •We evaluated the diagnostic accuracy of SEE for the myometrial invasion and the frequency of PTE. •We assessed the relationship between these enhancements and important pathologic factors. •PTE Type 1 is the main factor causing the overestimation of myometrial invasion using SEE on DCE. •PTE Type 2 correlates the myometrial invasion and may play an important role in the diagnosis of LVSI. -- Abstract: Objectives: To evaluate the diagnostic accuracy of subendometrial enhancement (SEE) in assessing the myometrial invasion in endometrial cancer, the frequency and clinical significance of peritumoral enhancement (PTE) on dynamic contrast enhanced (DCE) imaging. Materials and methods: MR images of 147 patients with endometrial cancer were retrospectively analyzed for intact SEE and PTEs: Type 1, a focal early enhancement peritumorally, and Type 2, an irregular thin-layered early intense enhancement peritumorally. Two radiologists independently assessed intact SEE and PTEs on DCE imaging and compared the lesions by the presence and depth of myometrial invasion, grade, lymphovascular space involvement (LVSI), and lymph node metastasis. The relationship between SEE, PTEs, and each factor was analyzed using univariate and multivariate analyses. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated for SEE. Results: The sensitivity, specificity, PPV, NPV and diagnostic accuracy for myometrial invasion based on SEE disruption on DCE were 96.6%, 32.1–46.4%, 85.8–88.5%, 69.2–76.5%, and 84.4–87.1%. According to multivariate analysis, SEE significantly predicted myometrial invasion (p < 0.0001). PTE Type 2 significantly predicted myometrial invasion presence (p < 0.05) and depth (p < 0.01). Conclusion: Diagnosis of myometrial invasion only by using SEE might be difficult on DCE-MRI due to the

  13. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    Science.gov (United States)

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field. PMID:25757322

  14. Somatostatin, somatostatin analogs and somatostatin receptor dynamics in the biology of cancer progression.

    Science.gov (United States)

    Ruscica, M; Arvigo, M; Steffani, L; Ferone, D; Magni, P

    2013-05-01

    The pharmacological effects (i.e., inhibition of endocrine secretion and cell proliferation) mediated by the hormone somatostatin (SRIF) are derived from its universal high-affinity binding to five different G proteincoupled receptors (GPCRs), named sst1-5. However, SRIF has a half-life of less than 3 min, whereas the available mono- and bi-specific SRIF preferential analogs show prolonged half-life and increased potency. These compounds may control tumor development, cell proliferation and metastatization by direct actions, including cell division arrest in G0/G1 phase (i.e., induction of cyclin-dependent kinase inhibitor p27(kip1) or p21(Cip1)), induction of apoptosis (i.e., induction of p53 and Bax) and suppression of cell invasion. Along with these direct actions on the biology of cancer progression, in vivo SRIF analogs may also regulate tumor growth through indirect actions, by suppressing the secretion of growth-promoting hormones and growth factors and angiogenesis. Interestingly, when ssts are co-expressed, they may interact forming homo- or heterodimers, also with other GPCRs such as type 2 dopamine receptor and the μ-opioid receptor 1, altering their original pharmacological and functional properties. Dimers can be not only constitutive, but perhaps also ligandpromoted: hence, compounds with high affinity for different ssts isoforms may be used to achieve effects elicited by specific dimers. Future developments in the knowledge of ssts dynamics upon SRIF and SRIF analogs binding in neoplastic tissues may allow the full elucidation of the pathophysiological role of this system and the exploitation of the therapeutic potential of its modulation.

  15. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    "Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...

  16. [Cancer].

    Science.gov (United States)

    de la Peña-López, Roberto; Remolina-Bonilla, Yuly Andrea

    2016-09-01

    Cancer is a group of diseases which represents a significant public health problem in Mexico and worldwide. In Mexico neoplasms are the second leading cause of death. An increased morbidity and mortality are expected in the next decades. Several preventable risk factors for cancer development have been identified, the most relevant including tobacco use, which accounts for 30% of the cancer cases; and obesity, associated to another 30%. These factors, in turn, are related to sedentarism, alcohol abuse and imbalanced diets. Some agents are well knokn to cause cancer such as ionizing radiation, viruses such as the papilloma virus (HPV) and hepatitis virus (B and C), and more recently environmental pollution exposure and red meat consumption have been pointed out as carcinogens by the International Agency for Research in Cancer (IARC). The scientific evidence currently available is insufficient to consider milk either as a risk factor or protective factor against different types of cancer. PMID:27603890

  17. Density-functional theory molecular dynamics simulations of a-HfO2/Ge(100)(2 × 1) and a-ZrO2/Ge(100)(2 × 1) interface passivation.

    Science.gov (United States)

    Chagarov, E A; Porter, L; Kummel, A C

    2016-02-28

    The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation. PMID:26931715

  18. Museets interface

    DEFF Research Database (Denmark)

    Pold, Søren

    2007-01-01

    Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes...

  19. Enhanced resting-state dynamics of the hemoglobin signal as a novel biomarker for detection of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Graber, Harry L., E-mail: harry.graber@downstate.edu; Xu, Yong; Barbour, Randall L. [SUNY Downstate Medical Center, Brooklyn, New York 11203 (United States); NIRx Medical Technologies, LLC, Glen Head, New York 11545 (United States); Al abdi, Rabah [Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110 (Jordan); Asarian, Armand P.; Pappas, Peter J. [The Brooklyn Hospital Center, Brooklyn, New York 11201 (United States); Dresner, Lisa [SUNY Downstate Medical Center, Brooklyn, New York 11203 (United States); Patel, Naresh [Kaiser Permanente-Modesto Medical Center, Modesto, California 95356 (United States); Jagarlamundi, Kuppuswamy [Sarah Bush Lincoln Regional Cancer Center, 1000 Health Center Drive, Mattoon, Illinois 61938 (United States); Solomon, William B. [Maimonides Medical Center, Brooklyn, New York 11219 (United States)

    2015-11-15

    Purpose: The work presented here demonstrates an application of diffuse optical tomography (DOT) to the problem of breast-cancer diagnosis. The potential for using spatial and temporal variability measures of the hemoglobin signal to identify useful biomarkers was studied. Methods: DOT imaging data were collected using two instrumentation platforms the authors developed, which were suitable for exploring tissue dynamics while performing a simultaneous bilateral exam. For each component of the hemoglobin signal (e.g., total, oxygenated), the image time series was reduced to eight scalar metrics that were affected by one or more dynamic properties of the breast microvasculature (e.g., average amplitude, amplitude heterogeneity, strength of spatial coordination). Receiver-operator characteristic (ROC) analyses, comparing groups of subjects with breast cancer to various control groups (i.e., all noncancer subjects, only those with diagnosed benign breast pathology, and only those with no known breast pathology), were performed to evaluate the effect of cancer on the magnitudes of the metrics and of their interbreast differences and ratios. Results: For women with known breast cancer, simultaneous bilateral DOT breast measures reveal a marked increase in the resting-state amplitude of the vasomotor response in the hemoglobin signal for the affected breast, compared to the contralateral, noncancer breast. Reconstructed 3D spatial maps of observed dynamics also show that this behavior extends well beyond the tumor border. In an effort to identify biomarkers that have the potential to support clinical aims, a group of scalar quantities extracted from the time series measures was systematically examined. This analysis showed that many of the quantities obtained by computing paired responses from the bilateral scans (e.g., interbreast differences, ratios) reveal statistically significant differences between the cancer-positive and -negative subject groups, while the

  20. Photo-dynamic therapy (pdt) for skin cancer using a xenon arc lamp with interference filters

    International Nuclear Information System (INIS)

    Full text: Phototherapy involves the production of photochemical reactions in cells by the direct action of light, including Ultra Violet, leading to biological effects, including cell death. Photo Dynamic Therapy involves the application of light, at wavelengths and intensity which has no biological effects, in combination with a photosensitizing compound, which is biologically inert in the absence of light, which once located in cells, can produce cellular damage when activated by light of certain wavelengths. The active compound produced during PDT is singlet Oxygen which has a half life of 3 microseconds. This necessitates the use of very powerful light sources, such as lasers, in order to achieve treatment delivery within a reasonable time, say minutes. Even though PDT is very effective in the treatment of skin cancer using topically applied photosensitizing drugs, the cost of powerful lasers, required to produce light in the red part of the spectrum, has been prohibitively expensive for widespread application of the above technique. A 300 Watt Xenon arc light source, with tuneable wavelength and bandwidth, used predominantly for Forensic Science applications, manufactured by Rofin Australia Pty, Ltd, has been modified by the manufacturer, boosting the power to 500 Watts. A group of Interference filters have been specifically made to facilitate irradiation at 670nm, 620nm and 600 nm, at relatively narrow bandwidth, typically 50 nm. This would provide adequate penetration of the light, for a variety of skin cancers, depending on the thickness of the lesion and the skin type involved. A relatively broad band Ultra Violet interference filter has also been inserted in the instrument for observation of Fluorescence of the lesion prior to treatment, as an indicator of photosensitizing drug uptake by the lesion involved. Patients with skin cancers such as Basal Cell Carcinoma (BCC) and Paget's Extramammary disease were treated at the Peter MacCallum Cancer Centre

  1. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  2. Interobserver and Intraobserver Reproducibility with Volume Dynamic Contrast Enhanced Computed Tomography (DCE-CT) in Gastroesophageal Junction Cancer

    DEFF Research Database (Denmark)

    Lundsgaard Hansen, Martin; Fallentin, Eva; Axelsen, Thomas;

    2016-01-01

    The purpose of this study was to assess inter- and intra-observer reproducibility of three different analytic methods to evaluate quantitative dynamic contrast-enhanced computed tomography (DCE-CT) measures from gastroesophageal junctional cancer. Twenty-five DCE-CT studies with gastroesophageal ...... were narrower for 3D analysis compared to 2D analysis. Three-dimensional volume DCE-CT analysis of gastroesophageal junction cancer provides higher inter- and intra-observer reproducibility with narrower limits of agreement between readers compared to 2D analysis.......The purpose of this study was to assess inter- and intra-observer reproducibility of three different analytic methods to evaluate quantitative dynamic contrast-enhanced computed tomography (DCE-CT) measures from gastroesophageal junctional cancer. Twenty-five DCE-CT studies with gastroesophageal...... for each observation. Inter- and intra-observer variability were assessed by Intraclass Correlation Coefficient (ICC) and Bland-Altman statistics. Interobserver ICC was excellent for arterial flow (0.88), for blood volume (0.89) and for permeability (0.91) with 3D-VOI analysis. The 95% limits of agreement...

  3. Diagnosis of breast cancer extent and enhancement patterns using 3D-dynamic MR imaging. Correlation with intraductal component

    International Nuclear Information System (INIS)

    The usefulness of 3D-dynamic MR imaging with fat suppression and magnetization transfer contrast for assessing breast cancer extent and tumor profile was evaluated in 74 breasts with 67 malignant and 7 benign lesions. We classified breast cancer by the intraductal component of the main tumor. Five histological types were assigned: type 1 (DS 0) invasive carcinoma without intraductal component, type 2 (DS 1): intraductal component is less than 50% of whole tumor, type 3 (DS 2): intraductal component is nearly equal to 50%, type 4 (DS 3): intraductal component is more than 50%, type 5 (DS 4): pure DSIC or DCIS associated with microinvasive foci. Histologic results and preoperative MR imaging were analyzed regarding tumor size and enhancement pattern for the various tumor types (DS 0, 1, 2, 3 and 4). The three tumors occult to MR imaging were two DCIS and one Paget's disease. The other 64 breast cancers were detected on MR imaging. Tumor size measured with MR imaging correlated closely with histologic measurement in DS 0, 1 and 2, whereas less accuracy was noted in DS 3 and 4. Rapid enhancement was frequently seen in DS 0, 1, 2 and 3. Peripheral enhancement was highly specific for breast cancer. However, peripheral enhancement was not found in all cases of DS 4. Linear and nodular enhancement was frequently seen in DS 3 and 4. MR imaging was useful in predicting the intraductal component. (author)

  4. Molecular dynamics simulations of hydrophobous ions at the liquid-liquid interfaces: case of dicarbollide anions as synergy agents and of ionic liquids as extracting medium; Simulations par dynamique moleculaire d'ions hydrophobes aux interfaces liquide - liquide: le cas des anions dicarbollides comme agents de synergie et celui des liquides ioniques comme milieu extractant

    Energy Technology Data Exchange (ETDEWEB)

    Chevrot, G

    2008-01-15

    Based on molecular dynamics simulations, we first describe the distribution of dicarbollide salts (CCD{sup -}, Mn{sup +}) in concentrated monophasic solutions (water, chloroform, octanol, nitrobenzene) and in the corresponding biphasic 'oil' - water solutions. We point to the importance of surface activity of the CCD{sup -}s and of their self-aggregation in water, with marked counterions effects, and we explain the synergistic effect of CCD{sup -}s in the Eu{sup 3+} extraction by BTP ligands. In the second part of the thesis we report exploratory simulations on the extraction of Sr{sup 2+} by 18-crown-6 to an hydrophobic ionic liquid ([BMI][PF6]), focusing on the liquid - liquid interface. Analogies and differences with a classical aqueous interface are outlined. (author)

  5. DMPD: Pathways connecting inflammation and cancer. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18325755 Pathways connecting inflammation and cancer. Allavena P, Garlanda C, Borre...llo MG, Sica A, Mantovani A. Curr Opin Genet Dev. 2008 Feb;18(1):3-10. Epub 2008 Mar 5. (.png) (.svg) (.html) (.csml) Show Pathways... connecting inflammation and cancer. PubmedID 18325755 Title Pathways connecting infl

  6. Interface Screenings

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2015-01-01

    In Wim Wenders' film Until the End of the World (1991), three different diagrams for the visual integration of bodies are presented: 1) GPS tracking and mapping in a landscape, 2) video recordings layered with the memory perception of these recordings, and 3) data-created images from dreams...... and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...

  7. SU-E-T-381: Radio-Dynamic Therapy (RDT) for the Treatment of Late-Stage Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Chen, L; Price, R [Fox Chase Cancer Center, Philadelphia, PA (United States); Zhang, Q [Wu Xi Yi Ren Tumor Hosiptal, Wuxi, Jiangsu (China); Zeng, J; Xu, K; Sun, Q [Wuxi Yiren Cancer Hospital, Wuxi, Jiangsu (China)

    2014-06-01

    Purpose: Photo-dynamic therapy (PDT) is an effective treatment modality because of the preferential absorption of photosensitizing agent in tumor cells than in surrounding normal tissues. A limitation of PDT for cancer therapy is the finite penetration of laser light to activate the targeting agent in deep-seated tumors. Radio-dynamic therapy (RDT) is designed to overcome this problem by the combination of high-energy (up to 45MV) photon beams and photo/radio-sensitizers. This work investigates the feasibility of PDT for late-stage cancer patients who are no longer respond to conventional therapies available. Methods: The high-energy photon beams are generated using a LA45 RaceTrack Microtron (Top Grade Medical, Beijing, China). The targeting agent investigated is 5- aminolevulinic acid (5-ALA). Both in vitro cell lines and in vivo animal models have been used to investigate the mechanisms of RDT and its therapeutic effects and normal tissue toxicities. Oral 5-ALA (30-60 mg/kg) was administered 4-6 hours before the radiation treatment and the total radiation dose varied between 0.1-4.0Gy in 1-4 fractions. Clinical trials are initiated in China for late-stage cancer patients targeting both primary tumors utilizing localized therapies such as 3DCRT/IMRT and metastases using TBI. Results: There is clear correlation between the cell death and the 5-ALA concentration/radiation dose. The therapeutic effect of RDT is demonstrated using an animal model where the volume of parotid tumors for the RT only group continued to grow after 3Gy irradiation while the RDT group showed a complete response with the same radiation dose. The preliminary clinical results showed encouraging clinical outcome. Conclusion: RDT is a novel treatment technique that may be developed into an effective cancer treatment modality. Further studies on the mechanisms of RDT and its potential clinical applications are warranted.

  8. Scale-free brain dynamics under physical and psychological distress: pre-treatment effects in women diagnosed with breast cancer.

    Science.gov (United States)

    Churchill, Nathan W; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Berman, Marc G

    2015-03-01

    Stressful life events are related to negative outcomes, including physical and psychological manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report impaired attention and working memory prior to adjuvant therapy, which may be induced by distress. In this article, we examine whether brain dynamics show systematic changes due to the distress associated with cancer diagnosis. We hypothesized that impaired working memory is associated with suppression of "long-memory" neuronal dynamics; we tested this by measuring scale-free ("fractal") brain dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a specific time-scale, possessing a spectral power curve P(f)∝ f(-β); they are "long-memory" processes, with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned three groups during a working memory task: women scheduled to receive chemotherapy or radiotherapy and aged-matched controls. Surprisingly, patients' BOLD signal exhibited greater H with increasing intensity of anticipated treatment. However, an analysis of H and functional connectivity against self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress (Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus (Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory processing. This is also linked to decreased functional connectivity in these brain regions. Our results indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive measure of the interaction between psychological versus physical distress. PMID:25388082

  9. Scale-free brain dynamics under physical and psychological distress: pre-treatment effects in women diagnosed with breast cancer.

    Science.gov (United States)

    Churchill, Nathan W; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Berman, Marc G

    2015-03-01

    Stressful life events are related to negative outcomes, including physical and psychological manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report impaired attention and working memory prior to adjuvant therapy, which may be induced by distress. In this article, we examine whether brain dynamics show systematic changes due to the distress associated with cancer diagnosis. We hypothesized that impaired working memory is associated with suppression of "long-memory" neuronal dynamics; we tested this by measuring scale-free ("fractal") brain dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a specific time-scale, possessing a spectral power curve P(f)∝ f(-β); they are "long-memory" processes, with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned three groups during a working memory task: women scheduled to receive chemotherapy or radiotherapy and aged-matched controls. Surprisingly, patients' BOLD signal exhibited greater H with increasing intensity of anticipated treatment. However, an analysis of H and functional connectivity against self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress (Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus (Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory processing. This is also linked to decreased functional connectivity in these brain regions. Our results indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive measure of the interaction between psychological versus physical distress.

  10. Dose-response relationship in cisplatin-treated breast cancer xenografts monitored with dynamic contrast-enhanced ultrasound

    OpenAIRE

    Chen, Yao; Han, Feng; Cao, Long-hui; Li, Cheng; Wang, Jian-Wei; Li, Qing; Zheng, Wei; Guo, Zhi-xing; Li, An-Hua; Zhou, Jian-Hua

    2015-01-01

    Background Exactly assessing tumor response to different dose of chemotherapy would help to tailor therapy for individual patients. This study was to determine the feasibility of dynamic contrast-enhanced ultrasound (CEUS) in the evaluation of tumor vascular response to different dose cisplatin. Methods MCF-7 breast cancer bearing mice were treated with different dose of cisplatin in group B (1 mg/kg) and group C (3 mg/kg). A control group A was given with saline. Sequential CEUS was performe...

  11. Analysis of the relationship between lung cancer drug response level and atom connectivity dynamics based on trimmed Delaunay triangulation

    Science.gov (United States)

    Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong

    2016-05-01

    Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.

  12. Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds

    Directory of Open Access Journals (Sweden)

    Melissa L Sokolosky

    2012-06-01

    Full Text Available The advent of modern medicine has allowed for significant advances within the fields of emergency care, surgery, and infectious disease control. Health threats that were historically responsible for immeasurable tolls on human life are now all but eradicated within certain populations, specifically those that enjoy higher degrees of socio-economic status and access to healthcare. However, modernization and its resulting lifestyle trends have ushered in a new era of chronic illness; one in which an unprecedented number of people are estimated to contract cancer and other inflammatory diseases. Here, we explore the idea that homeostasis has been redefined within just a few generations, and that diseases such as colorectal cancer are the result of fluctuating physiological and molecular imbalances. Phytochemical-deprived, pro-inflammatory diets combined with low-dose exposures to environmental toxins, including bisphenol-A (BPA and other endocrine disruptors, are now linked to increasing incidences of cancer in westernized societies and developing countries. There is recent evidence that disease determinants are likely set in utero and further perpetuated into adulthood dependent upon the innate and environmentally-acquired genetic profile unique to each individual. In order to address a disease as multi-factorial, case-specific, and remarkably adaptive as cancer, research must focus on its root causes in order to elucidate the molecular mechanisms by which they can be prevented or counteracted via plant-derived compounds like epigallocatechin-3-gallate (EGCG and resveratrol. The significant role of epigenetics in the regulation of these complex processes is emphasized here to form a comprehensive view of the dynamic interactions that influence modern-day carcinogenesis, and how restoring homeostatic balance may be the key to the cancer riddle.

  13. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire

  14. User interface concerns

    Science.gov (United States)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  15. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  16. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    Science.gov (United States)

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  17. Interobserver and Intraobserver Reproducibility with Volume Dynamic Contrast Enhanced Computed Tomography (DCE-CT) in Gastroesophageal Junction Cancer.

    Science.gov (United States)

    Lundsgaard Hansen, Martin; Fallentin, Eva; Axelsen, Thomas; Lauridsen, Carsten; Norling, Rikke; Svendsen, Lars Bo; Nielsen, Michael Bachmann

    2016-02-01

    The purpose of this study was to assess inter- and intra-observer reproducibility of three different analytic methods to evaluate quantitative dynamic contrast-enhanced computed tomography (DCE-CT) measures from gastroesophageal junctional cancer. Twenty-five DCE-CT studies with gastroesophageal junction cancer were selected from a previous longitudinal study. Three radiologists independently reviewed all scans, and one repeated the analysis eight months later for intraobserver analysis. Review of the scans consisted of three analysis methods: (I) Four, fixed small sized regions of interest (2-dimensional (2D) fixed ROIs) placed in the tumor periphery, (II) 2-dimensional regions of interest (2D-ROI) along the tumor border in the tumor center, and (III) 3-dimensional volumes of interest (3D-VOI) containing the entire tumor volume. Arterial flow, blood volume and permeability (k(trans)) were recorded for each observation. Inter- and intra-observer variability were assessed by Intraclass Correlation Coefficient (ICC) and Bland-Altman statistics. Interobserver ICC was excellent for arterial flow (0.88), for blood volume (0.89) and for permeability (0.91) with 3D-VOI analysis. The 95% limits of agreement were narrower for 3D analysis compared to 2D analysis. Three-dimensional volume DCE-CT analysis of gastroesophageal junction cancer provides higher inter- and intra-observer reproducibility with narrower limits of agreement between readers compared to 2D analysis.

  18. Interobserver and Intraobserver Reproducibility with Volume Dynamic Contrast Enhanced Computed Tomography (DCE-CT in Gastroesophageal Junction Cancer

    Directory of Open Access Journals (Sweden)

    Martin Lundsgaard Hansen

    2016-02-01

    Full Text Available The purpose of this study was to assess inter- and intra-observer reproducibility of three different analytic methods to evaluate quantitative dynamic contrast-enhanced computed tomography (DCE-CT measures from gastroesophageal junctional cancer. Twenty-five DCE-CT studies with gastroesophageal junction cancer were selected from a previous longitudinal study. Three radiologists independently reviewed all scans, and one repeated the analysis eight months later for intraobserver analysis. Review of the scans consisted of three analysis methods: (I Four, fixed small sized regions of interest (2-dimensional (2D fixed ROIs placed in the tumor periphery, (II 2-dimensional regions of interest (2D-ROI along the tumor border in the tumor center, and (III 3-dimensional volumes of interest (3D-VOI containing the entire tumor volume. Arterial flow, blood volume and permeability (ktrans were recorded for each observation. Inter- and intra-observer variability were assessed by Intraclass Correlation Coefficient (ICC and Bland-Altman statistics. Interobserver ICC was excellent for arterial flow (0.88, for blood volume (0.89 and for permeability (0.91 with 3D-VOI analysis. The 95% limits of agreement were narrower for 3D analysis compared to 2D analysis. Three-dimensional volume DCE-CT analysis of gastroesophageal junction cancer provides higher inter- and intra-observer reproducibility with narrower limits of agreement between readers compared to 2D analysis.

  19. Usefulness and biological background of dynamic contrast-enhanced MR images in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Dynamic contrast-enhanced MR images were obtained between September 1998 and May 2000 from 44 primary breast cancer patients who were scheduled to undergo breast-conserving surgery. The MR images and clinico-pathological findings were analyzed to investigate the risk factors for histologically positive margins and histologically positive lymph node metastases. We elucidated the relationship between MR images and the biological background of breast cancer. The following interesting findings were made from these analyses. An irregular shape and unclear border of the tumor mass and the coexistence of daughter nodule(s) were significant risk factors for positive-surgical margins; an irregularly shaped tumor mass and spiculated tumor mass were significant risk factors for positive lymph node metastases; breast tumors with a strand-like appearance had a significantly lower histological grade; breast tumors with high contrast enhancement ratios had a significantly higher nuclear grade and progesterone receptor negativity; and breast tumors showing a ring-like enhancement expressed a low level of VEGF. These findings suggest that preoperative MR images of primary breast cancer provide not only useful information on the extent of breast tumors and the possibility of lymph node metastasis but also on the malignant potency and hormone responsiveness of breast tumors. (author)

  20. Active matter clusters at interfaces.

    Science.gov (United States)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  1. Active matter clusters at interfaces.

    Directory of Open Access Journals (Sweden)

    Katherine eCopenhagen

    2016-03-01

    Full Text Available Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped, where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  2. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    scales. Silicalite and tobermorite, a layered calcio-silicate model of cement and Vycor are analyzed. Gordillo and Martí consider structural and dynamical properties of water confined or close to carbon nanotubes or inside a slit pore of a single graphene sheet. Jedlovszky et al introduce a new method to determine the molecules located right at the boundary of two phases in a computer simulation. The new method is applied to the analysis of the interface of water with different apolar phases. Melchionna et al consider phenomena related to water in contact with thermophilic protein interfaces. In particular, they discuss the role of water in stabilizing these proteins. Rotenberg et al report results on the structure and dynamics of water at a clay surface. They analyze, in particular, the influence on the H-bond network of the surface oxygens and ions and investigate the surface H-bond formation and dissociation dynamics. Smirnov and Bougeard present examples of the spatial organization of molecules and of the short- and long-time dynamical behaviour of water confined in the pores of crystalline aluminosilicates, such as zeolites and clays, and in nanostructured materials. The last group opens with Sulpizi and Sprik who present density functional calculations of the dissociation constant of liquid water, implemented with a proton insertion/removal method. Jung and Marcus consider, more specifically, the properties of water in organic catalysis and discuss theoretical models and results obtained with quantum mechanical calculations. As organizers of the CECAM workshop 'Modeling and Simulation of Water at Interfaces from Ambient to Supercooled Conditions' we would like to thank CECAM, ESF-Simbioma, Wanda Andreoni, Emilie Bernard and Jordi Brusa. As guest editors of this special issue we would like to thank Gerhard Kahl and Philip Semple.

  3. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  4. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Alexander Friedrich [Department of Radio-Oncology, Academic Teaching Hospital Feldkirch, Feldkirch (Austria); Piringer, Gudrun, E-mail: gudrun.piringer@hotmail.com [Department of Oncology, Wels-Grieskirchen Medical Hospital, Wels (Austria); Kremser, Christian; Judmaier, Werner [Department of Radiology, Innsbruck Medical University, Innsbruck (Austria); Saely, Christoph Hubert [Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch (Austria); Lukas, Peter [Department of Radio-Oncology, Innsbruck Medical University, Innsbruck (Austria); Öfner, Dietmar [Department of Surgery, Paracelsus Medical University, Salzburg (Austria)

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  5. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T1 mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer

  6. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients.

    Science.gov (United States)

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-05-01

    Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients.Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into local recurrence (n = 12) or posttreatment change (n = 12) groups according to the results of biopsy or clinicoradiologic follow-up. The types of time-signal intensity (TSI) curves were classified as follows: "progressive increment" as type I, "plateau" as type II, and "washout" as type III. TSI curve types and their parameters (i.e., wash-in, Emax, Tmax, area under the curve [AUC]60, AUC90, and AUC120) were compared between the 2 study groups.The distributions of TSI curve types for local recurrence versus posttreatment change were statistically significant (P AUC parameters between 2 groups (P < 0.0083 [0.05/6]). Receiver operating characteristic (ROC) curve analyses indicated that the TSI curve type was the best predictor of local recurrence with a sensitivity of 100% (95% CI, 73.5-100.0) and a specificity of 83.3% (95% CI, 51.6-97.9) (cutoff with type II).Model-free DCE-MRI using TSI curves and TSI curve-derived parameters detects local recurrence in head and neck cancer patients with a high diagnostic accuracy. PMID:27175712

  7. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rouviere, Olivier; Lyonnet, Denis [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Universite de Lyon, Lyon (France); Universite de Lyon 1, Faculte de medecine Lyon Nord, Lyon (France); Inserm, U556, Lyon (France); Girouin, Nicolas; Glas, Ludivine; Ben Cheikh, Alexandre [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Universite de Lyon, Lyon (France); Universite de Lyon 1, Faculte de medecine Lyon Nord, Lyon (France); Gelet, Albert [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Inserm, U556, Lyon (France); Mege-Lechevallier, Florence [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Pathology, Lyon (France); Rabilloud, Muriel [Hospices Civils de Lyon, Department of Biostatistics, Lyon (France); Universite de Lyon 1, UMR CNRS, Laboratoire Biostatistiques-Sante, Pierre-Benite (France); Chapelon, Jean-Yves [Inserm, U556, Lyon (France)

    2010-01-15

    The objective was to evaluate T2-weighted (T2w) and dynamic contrast-enhanced (DCE) MRI in detecting local cancer recurrences after prostate high-intensity focused ultrasound (HIFU) ablation. Fifty-nine patients with biochemical recurrence after prostate HIFU ablation underwent T2-weighted and DCE MRI before transrectal biopsy. For each patient, biopsies were performed by two operators: operator 1 (blinded to MR results) performed random and colour Doppler-guided biopsies (''routine biopsies''); operator 2 obtained up to three cores per suspicious lesion on MRI (''targeted biopsies''). Seventy-seven suspicious lesions were detected on DCE images (n=52), T2w images (n=2) or both (n=23). Forty patients and 41 MR lesions were positive at biopsy. Of the 36 remaining MR lesions, 20 contained viable benign glands. Targeted biopsy detected more cancers than routine biopsy (36 versus 27 patients, p=0.0523). The mean percentages of positive cores per patient and of tumour invasion of the cores were significantly higher for targeted biopsies (p<0.0001). The odds ratios of the probability of finding viable cancer and viable prostate tissue (benign or malignant) at targeted versus routine biopsy were respectively 3.35 (95% CI 3.05-3.64) and 1.38 (95% CI 1.13-1.63). MRI combining T2-weighted and DCE images is a promising method for guiding post-HIFU biopsy towards areas containing recurrent cancer and viable prostate tissue. (orig.)

  8. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer

    Science.gov (United States)

    Ray, Debolina; Kidane, Dawit

    2016-01-01

    Gut microbiota are required for host nutrition, energy balance, and regulating immune homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted (dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by base excision repair (BER), however, the role of this altered function of BER, as well as microbiota-mediated genomic instability and colon cancer development, is still poorly understood. In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of dysbiotic microbiota mediated genomic instability and colon cancer.

  9. Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals.

    Science.gov (United States)

    Pinchetti, Valerio; Meinardi, Francesco; Camellini, Andrea; Sirigu, Gianluca; Christodoulou, Sotirios; Bae, Wan Ki; De Donato, Francesco; Manna, Liberato; Zavelani-Rossi, Margherita; Moreels, Iwan; Klimov, Victor I; Brovelli, Sergio

    2016-07-26

    Two-color emitting colloidal semiconductor nanocrystals (NCs) are of interest for applications in multimodal imaging, sensing, lighting, and integrated photonics. Dual color emission from core- and shell-related optical transitions has been recently obtained using so-called dot-in-bulk (DiB) CdSe/CdS NCs comprising a quantum-confined CdSe core embedded into an ultrathick (∼7-9 nm) CdS shell. The physical mechanism underlying this behavior is still under debate. While a large shell volume appears to be a necessary condition for dual emission, comparison between various types of thick-shell CdSe/CdS NCs indicates a critical role of the interface "sharpness" and the presence of potential barriers. To elucidate the effect of the interface morphology on the dual emission, we perform side-by-side studies of CdSe/CdS DiB-NCs with nominally identical core and shell dimensions but different structural properties of the core/shell interface arising from the crystal structure of the starting CdSe cores (zincblende vs wurtzite). While both structures exhibit dual emission under comparable pump intensities, NCs with a zincblende core show a faster growth of shell luminescence with excitation fluence and a more readily realized regime of amplified spontaneous emission (ASE) even under "slow" nanosecond excitation. These distinctions can be linked to the structure of the core/shell interface: NCs grown from the zincblende cores contain a ∼3.5 nm thick zincblende CdS interlayer, which separates the core from the wurtzite CdS shell and creates a potential barrier for photoexcited shell holes inhibiting their relaxation into the core. This helps maintain a higher population of shell states and simplifies the realization of dual emission and ASE involving shell-based optical transitions.

  10. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  11. Distinctions between dynamic characteristics of the single EG5 motor protein along neural vs. cancerous microtubules.

    Science.gov (United States)

    Feizabadi, Mitra Shojania; Jun, Yonggun; Reddy, J N Babu

    2016-09-30

    The kinesin 5 motor contributes critically to mitosis, and is often upregulated in cancer. In vitro motility studies of kinesin 5 moving along bovine brain microtubules indicate that the motors have limited processivity. Cancer cells have abnormal mitotic behavior, so one might wonder whether the functional properties of kinesin 5 change in such a background. Because there could be multiple unknown changes in cancerous vs normal cells, we chose to address this question in a controlled in vitro environment. Specifically, through a series of parallel experiments along bovine brain vs. breast cancer microtubules, we quantified the in vitro motility characteristics of single Eg5 molecular motors along these two types of microtubules, combining the utilization of an optical trapping technique with a study of motion in the unloaded regime. The obtained values indicate that Eg5 processivity is 40% less along MCF7 microtubules, compared to that measured on bovine brain MTs. Interestingly, not all single-molecule properties are altered, as the velocity of the single motor doesn't show any significant changes on either track, though the binding time along MCF7 microtubules is almost 25% shorter. The current results, in conjunction with our previously reported outcomes of the evaluation of the Eg5's characteristics under external load, show that in transition from no-load to high-load regime, the Eg5 binding time has less sensitivity on MCF7 as compared to bovine brain MTs. This finding is intriguing, as it suggests that, potentially, groups of Eg5 motors function more effectively in the cancer background of a large ensemble, possibly contributing to faster mitosis in cancer cells. PMID:27590585

  12. Determination of the cis-trans isomerization barriers of L-alanyl-L-proline in aqueous solutions and at water/hydrophobic interfaces by on-line temperature-jump relaxation HPLC and dynamic on-column reaction HPLC.

    Science.gov (United States)

    Shibukawa, Masami; Miyake, Ayaka; Eda, Sayaka; Saito, Shingo

    2015-09-15

    Proline cis-trans isomerization is known to play a key role in the rate-determining steps of protein folding. It is thus very important to understand the influence of environments, not only bulk solutions but also microenvironments such as interfaces, on the isomerization reaction of proline peptides. Here we present two HPLC methods for measurements of kinetic and equilibrium parameters for the isomerization reactions in bulk solutions and at liquid/solid interfaces. On-line temperature-jump relaxation HPLC (T-jump HPLC) allows the determination of forward and reverse rate constants of the isomerization in a bulk solution by monitoring the whole time course of conversion of pure isomers from both sides of the reaction, in contrast to other HPLC and capillary zone electrophoresis as well as spectrometric and calorimetric methods, which use a mixture of the isomers. We can then determine cis-trans isomerization barriers of the peptide at liquid/solid interfaces from the kinetic data obtained by dynamic on-column reaction HPLC and T-jump HPLC. We observed that the interconversion around the peptide bond for l-alanyl-l-proline (Ala-Pro) in water is accelerated at the surfaces of an alkyl-bonded silica and a poly(styrene-divinylbenzene) copolymer resin, and this is caused by a remarkable decrease in the enthalpy of activation. The molecular structures of the cis and trans forms of Ala-Pro estimated by quantum mechanics calculation reveal that an equilibrium shift toward the cis form as well as the rapid isomerization of Ala-Pro at the water/hydrophobic interfaces can be attributed to the lower polarity of the interfacial water at the surfaces of the hydrophobic materials compared to that of bulk water.

  13. Molecular Dynamics Simulation on Adsorbing Behavior of Anionic Gemini Surfactants at Decane/Water Interface%阴离子Gemini表面活性剂在油/水界面行为的分子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    刘梅堂; 浦敏锋; 马鸿文

    2012-01-01

    Molecular dynamics simulations were performed to investigate the adsorbing behavior of anionic sul-fonate Gemini surfactants at oil/water interface. Effects of spacer on the aggregation and interfacial properties of surfactants were studied in detail. The interfacial structure and density profiles of adsorbents show the existence of Gemini surfactants monolayer. The interfacial thickness increased significantly and the interface formation energy decreased when incorporating the Gemini surfactants into the oil/water interface. Better interfacial properties are also found in this work when the spacer has six carbons. Except for water molecular diffusion properties, only little effect of spacer on the adsorbing structure and properties of water and Na+ surrounding the interface of Gemini surfactants are found.%采用分子动力学方法研究了磺酸盐型阴离子Gemini表面活性剂在油/水界面的吸附行为,考察了不同长度的连接基(Spacer)对表面活性剂在界面的聚集形态及界面性质的影响.密度分布和微观结构信息显示,Gemini表面活性剂能在油/水界面形成单层膜结构.Gemini表面活性剂能使油/水界面的厚度显著增大,并使界面形成能降低.当连接基为6个碳时,此类磺酸盐型Gemini表面活性剂的界面厚度最大,形成的界面最稳定.连接基长度对Gemini表面活性剂单层膜周围的水分子和Na+的吸附结构影响不大,但是能影响水分子的扩散行为.

  14. NMR studies of the molecules dynamics to the solid-liquid interfaces: from graded porous materials to oil rocks; Etudes RMN de la dynamique des molecules aux interfaces solide-liquide: des materiaux poreux calibres aux roches petroliferes

    Energy Technology Data Exchange (ETDEWEB)

    Godefroy, S.

    2001-11-01

    Low field NMR relaxation for laboratory or in-situ applications provides critical information for oil recovery such as porosity, saturation, and permeability of rocks. In addition, pore size distribution and wettability can also be obtained in some cases. The technique relies on the measurement of proton longitudinal (T{sub 1}) or transverse (T{sub 2}) nuclear relaxation times. For better predictions, the surface micro-dynamics and the chemical properties of the liquids entrapped in the pore space are important and must be characterized. It is well known that the NMR relaxation is enhanced by the paramagnetic impurities at the pore surface but many other parameters influence the relaxation time distributions. These parameters are used to derive the petrophysical properties of the rocks. We propose here an original method to probe the dynamics of water and oil at the pore surface. In the present study, we used both nuclear relaxation at 2.2 MHz and field cycling Nuclear Magnetic Relaxation Dispersion (NMRD) techniques. We applied these two techniques to different kinds of water or oil saturated macroporous media (grain packings, outcrop and reservoir rocks with SiO{sub 2} or CaCO{sub 3} surfaces). We studied the dependence of NMR relaxation on pore size, magnetic field and temperature. Varying the pore size and the surface density of paramagnetic impurities of water saturated grain packings allowed experimental evidence for the two limiting regimes of the water relaxation in pores (surface- and diffusion-limited regimes). NMRD technique (evolution of 1/T{sub 1} with the magnetic field) allowed us to probe liquid surface dynamics in water or oil fully saturated grain packing, outcrop rocks or reservoir rocks (water- and oil-wet surfaces). We evidenced a two-dimensional molecular surface diffusion and directly estimated important parameters such as correlation times, residence times and molecular self-diffusion on the surface. Finally, we proved that the temperature

  15. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  16. On the shear instability of fluid interfaces

    OpenAIRE

    Alexakis, A.; Young, Y; Rosner, R

    2001-01-01

    We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize previous work to arbitrary Atwood number, and to allow for surface tension and weak compressibility. The motivation derives from instances in astrophysical systems where mixing across material interfaces driven by shear flows may significantly affect the dynamical evolution of these systems.

  17. Steady-state kinetics and dynamics of morphine in cancer patients

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Sjøgren, P; Jensen, N H;

    1999-01-01

    Eighteen patients suffering from chronic pain due to cancer completed a balanced, double-blind, double-dummy, two period cross-over trial comparing the pharmacokinetics (PK) and pharmacodynamics (PD) of morphine and its metabolites, morphine-3-glucuronide and morphine-6-glucuronide, after adminis...

  18. Prostate Cancer Screening: the role of biopsy, PSA, PSA dynamics and isoforms

    NARCIS (Netherlands)

    P.F.J. Raaijmakers (René)

    2009-01-01

    textabstractIn the beginning of the past century, A. Astraldi urologist from Buenos Aires, Argentina, recognized the importance of early detection of prostate cancer and was unsatisfied with the available diagnostic tools he had to his disposal. The only diagnostic means for the urologist at that ti

  19. Differential diagnosis of sclerosing cholangitis with autoimmune pancreatitis and periductal infiltrating cancer in the common bile duct at dynamic CT, endoscopic retrograde cholangiography and MR cholangiography

    International Nuclear Information System (INIS)

    To compare findings at dynamic computed tomography (CT), endoscopic retrograde cholangiography (ERC) and magnetic resonance cholangiography (MRC) in patients with sclerosing cholangitis with autoimmune pancreatitis (SC-AIP) and periductal infiltrating cancer in the common bile duct (CBD), and to evaluate the diagnostic performance of ERC and MRC in differentiating between the two diseases. Bile duct changes at dynamic CT, ERC and MRC were compared in 58 patients with SC-AIP and CBD involvement and 93 patients with periductal infiltrating CBD cancer. Two radiologists rated their confidence in differentiating between the two diseases and the diagnostic performances of ERC and MRC were compared. At CT, SC-AIP was more frequently associated with intrapancreatic CBD involvement, thinner CBD walls, concentric wall thickening, smooth outer margins, and lower degrees of upstream ductal dilatation and contrast enhancement (P ≤ 0.05) than CBD cancer. At ERC and MRC, SC-AIP was more frequently associated with smooth margins, gradual and symmetric narrowing, multifocal involvement and hourglass appearance (P ≤ 0.027) than CBD cancer. MRC showed good diagnostic performance comparable to ERC. Dynamic CT, ERC and MRC can be helpful in distinguishing SC-AIP from periductal infiltrating CBD cancer. MRC may be a useful diagnostic alternative to ERC in differentiating between the two diseases. (orig.)

  20. Differential diagnosis of sclerosing cholangitis with autoimmune pancreatitis and periductal infiltrating cancer in the common bile duct at dynamic CT, endoscopic retrograde cholangiography and MR cholangiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee; Byun, Jae Ho; Lee, So Jung; Park, Seong Ho; Kim, Hyoung Jung; Lee, Seung Soo; Lee, Moon-Gyu [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Asanbyeongwon-gil 86, Songpa-Gu, Seoul (Korea, Republic of); Kim, Myung-Hwan [University of Ulsan College of Medicine, Asan Medical Center, Department of Internal Medicine, Asanbyeongwon-gil 86, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jihun [University of Ulsan College of Medicine, Asan Medical Center, Department of Diagnostic Pathology, Asanbyeongwon-gil 86, Songpa-Gu, Seoul (Korea, Republic of)

    2012-11-15

    To compare findings at dynamic computed tomography (CT), endoscopic retrograde cholangiography (ERC) and magnetic resonance cholangiography (MRC) in patients with sclerosing cholangitis with autoimmune pancreatitis (SC-AIP) and periductal infiltrating cancer in the common bile duct (CBD), and to evaluate the diagnostic performance of ERC and MRC in differentiating between the two diseases. Bile duct changes at dynamic CT, ERC and MRC were compared in 58 patients with SC-AIP and CBD involvement and 93 patients with periductal infiltrating CBD cancer. Two radiologists rated their confidence in differentiating between the two diseases and the diagnostic performances of ERC and MRC were compared. At CT, SC-AIP was more frequently associated with intrapancreatic CBD involvement, thinner CBD walls, concentric wall thickening, smooth outer margins, and lower degrees of upstream ductal dilatation and contrast enhancement (P {<=} 0.05) than CBD cancer. At ERC and MRC, SC-AIP was more frequently associated with smooth margins, gradual and symmetric narrowing, multifocal involvement and hourglass appearance (P {<=} 0.027) than CBD cancer. MRC showed good diagnostic performance comparable to ERC. Dynamic CT, ERC and MRC can be helpful in distinguishing SC-AIP from periductal infiltrating CBD cancer. MRC may be a useful diagnostic alternative to ERC in differentiating between the two diseases. (orig.)

  1. Planning study to compare dynamic and rapid arc techniques for postprostatectomy radiotherapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cambria, R.; Cattani, F.; Pansini, F.; Vigorito, S.; Russo, S. [Istituto Europeo di Oncologia, Department of Medical Physics, Milan (Italy); Jereczek-Fossa, B.A.; Orecchia, R. [Istituto Europeo di Oncologia, Department of Radiation Oncology, Milan (Italy); Universita degli Studi di Milano, Milan (Italy); Ciardo, D.; Zerini, D. [Istituto Europeo di Oncologia, Department of Radiation Oncology, Milan (Italy); Cozzi, L. [Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)

    2014-06-15

    To compare our standard technique for postprostatectomy radiotherapy of prostate cancer, i.e. using two lateral conformal dynamic arcs with volumetric-modulated arc therapy (VMAT) performed with the RapidArc {sup registered} (Varian Medical Systems, Palo Alto, CA, USA). The plans were referred to as DA and RA, respectively. The treatment plans of 44 patients receiving adjuvant/salvage radiotherapy in the first months of 2010 were compared. In all cases, the prescribed total dose was 66-68.2 Gy (2.2 Gy per fraction). Both DA and RA plans were optimized in terms of dose coverage and constraints. Small differences between the techniques were observed for planning target volume (PTV) dose distribution, whereas significant differences in sparing of organs at risk (OARs) were recorded (p < 0.0001). The OAR values (median; 95 % confidence interval, CI) were: rectum: D{sub 30} {sub %} = 60.7 Gy (59.40-62.04 Gy) and 48.2 Gy (46.40-52.72 Gy), D{sub 60} {sub %} = 34.1 Gy (28.50-38.92 Gy) and 27.7 Gy (21.80-31.51 Gy); bladder: D{sub 30} {sub %} = 57.3 Gy (45.83-64.53 Gy) and 46.4 Gy (33.23-61.48 Gy), D{sub 50} {sub %} = 16.4 Gy (11.89-42.38 Gy) and 17.2 Gy (10.97-27.90 Gy), for DA and RA, respectively. Treatment times were very similar, whereas the monitor units (MU) were 550 ± 29 versus 277 ± 3 for RA and DA, respectively. Dose-volume histograms (DVHs) show improvements in OAR sparing with RA. However, the RA technique is associated with almost double the number of MUs compared to DA. Regarding the PTV, DA is slightly superior in terms of D{sub 2} {sub %} and dose homogeneity. On the whole, the results suggest that RA be the favorable technique. (orig.) [German] Vergleich unserer Standardtechnik bei der Strahlentherapie nach Prostatektomie bei Prostatakrebs, ausgefuehrt mit zwei lateral dynamischen Rotationsbestrahlungen, der volumenmodulierten Arc-Therapie (VMAT, DA) und der RapidArc {sup registered} (RA, Varian Medical Systems, Palo Alto, CA, USA). Es wurden die

  2. Dynamic expression of pepsinogen C in gastric cancer, precancerous lesions and Helicobacter pylori associated gastric diseases

    Institute of Scientific and Technical Information of China (English)

    Pei-Fang Ning; Hui-Jie Liu; Yuan Yuan

    2005-01-01

    AIM: To investigate the relationship between the expression of pepsinogen C (PGC) and gastric cancer, precancerous diseases, and Helicobacter pylori ( H pylori) infection. METHODS: The expression of PGC was determined by immunohistochemistry method in 430 cases of gastric mucosa. H pylori infection was determined by HE staining, PCR and ELISA in 318 specimens.RESULTS: The positive rate of PGC expression in 54 cases of normal gastric mucosa was 100%. The positive rates of PGC expression in superficial gastritis or gastric ulcer or erosion, atrophic gastritis or gastric dysplasia and gastric cancer decreased significantly in sequence (P<0.05;100%/89.2% vs 14.3%/15.2% vs 2.4%). The overexpression rate of PGC in group of superficial gastritis with H pylori infection was higher than that in group without H pylori infection (P<0.05; χ2= 0.032 28/33 vs 15/25).The positive rate of PGC expression in group of atrophic gastritis with H pylori infection was lower than that in group without H pylori infection (P<0.01; χ2 = 0.003 4/61vs 9/30), and in dysplasia and gastric cancer. CONCLUSION: The level of PGC expression has a close relationship with the degree of malignancy of gastric mucosa and development of gastric lesions. There is a relationship between H pylori infection and expression of antigen PGC in gastric mucosa, the positive rate of PGC expression increases in early stage of gastric lesions with H pylori infection such as gastric inflammation and decreases during the late stage such as precancerous diseases and gastric cancer. PGC-negative cases with H pylori-positive gastric lesions should be given special attention.

  3. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer

    Directory of Open Access Journals (Sweden)

    Paulsen Frank

    2005-12-01

    Full Text Available Abstract Background Hypoxia compromises local control in patients with head-and-neck cancer (HNC. In order to determine the value of [18F]-fluoromisonidazole (Fmiso with regard to tumor hypoxia, a patient study with dynamic Fmiso PET was performed. For a better understanding of tracer uptake and distribution, a kinetic model was developed to analyze dynamic Fmiso PET data. Methods For 15 HNC patients, dynamic Fmiso PET examinations were performed prior to radiotherapy (RT treatment. The data was analyzed using a two compartment model, which allows the determination of characteristic hypoxia and perfusion values. For different parameters, such as patient age, tumor size and standardized uptake value, the correlation to treatment outcome was tested using the Wilcoxon-Mann-Whitney U-test. Statistical tests were also performed for hypoxia and perfusion parameters determined by the kinetic model and for two different metrics based on these parameters. Results The kinetic Fmiso analysis extracts local hypoxia and perfusion characteristics of a tumor tissue. These parameters are independent quantities. In this study, different types of characteristic hypoxia-perfusion patterns in tumors could be identified. The clinical verification of the results, obtained on the basis of the kinetic analysis, showed a high correlation of hypoxia-perfusion patterns and RT treatment outcome (p = 0.001 for this initial patient group. Conclusion The presented study established, that Fmiso PET scans may benefit from dynamic acquisition and analysis by a kinetic model. The pattern of distribution of perfusion and hypoxia in the tissue is correlated to local control in HNC.

  4. CANCER

    Directory of Open Access Journals (Sweden)

    N. Kavoussi

    1973-09-01

    Full Text Available There are many carcinogenetic elements in industry and it is for this reason that study and research concerning the effect of these materials is carried out on a national and international level. The establishment and growth of cancer are affected by different factors in two main areas:-1 The nature of the human or animal including sex, age, point and method of entry, fat metabolism, place of agglomeration of carcinogenetic material, amount of material absorbed by the body and the immunity of the body.2 The different nature of the carcinogenetic material e.g. physical, chemical quality, degree of solvency in fat and purity of impurity of the element. As the development of cancer is dependent upon so many factors, it is extremely difficult to determine whether a causative element is principle or contributory. Some materials are not carcinogenetic when they are pure but become so when they combine with other elements. All of this creates an industrial health problem in that it is almost impossible to plan an adequate prevention and safety program. The body through its system of immunity protects itself against small amounts of carcinogens but when this amount increases and reaches a certain level the body is not longer able to defend itself. ILO advises an effective protection campaign against cancer based on the Well –equipped laboratories, Well-educated personnel, the establishment of industrial hygiene within factories, the regular control of safety systems, and the implementation of industrial health principles and research programs.

  5. Dynamics of internalization and recycling of the prometastatic membrane type 4 matrix metalloproteinase (MT4-MMP) in breast cancer cells.

    Science.gov (United States)

    Truong, Alice; Yip, Cassandre; Paye, Alexandra; Blacher, Silvia; Munaut, Carine; Deroanne, Christophe; Noel, Agnès; Sounni, Nor Eddine

    2016-02-01

    Membrane type 4 matrix metalloproteinase (MT4-MMP) [matrix metalloproteinase (MMP) 17] is a GPI-anchored membrane-type MMP expressed on the cell surface of human breast cancer cells. In triple-negative breast cancer cells, MT4-MMP promotes primary tumour growth and lung metastases. Although the trafficking and internalization of the transmembrane membrane type 1 MMP have been extensively investigated, little is known about the regulatory mechanisms of the GPI-anchored MT4-MMP. Here, we investigated the fate and cellular trafficking of MT4-MMP by analysing its homophilic complex interactions, internalization and recycling dynamics as compared with an inert form, MT4-MMP-E249A. Oligomeric and dimeric complexes were analysed by cotransfection of cells with FLAG-tagged or Myc-tagged MT4-MMP in reducing and nonreducing immunoblotting and coimmunoprecipitation experiments. The trafficking of MT4-MMP was studied with an antibody feeding assay and confocal microscopy analysis or cell surface protein biotinylation and western blot analysis. We demonstrate that MT4-MMP forms homophilic complexes at the cell surface, and internalizes in early endosomes, and that some of the enzyme is either autodegraded or recycled to the cell surface. Our data indicate that MT4-MMP is internalized by the clathrin-independent carriers/GPI-enriched early endosomal compartments pathway, a mechanism that differs from that responsible for the internalization of other membrane-type MMP members. Although MT4-MMP localizes with caveolin-1, MT4-MMP internalization was not affected by inhibitors of caveolin-1 or clathrin endocytosis pathways, but was reduced by CDC42 or RhoA silencing with small interfering RNA. We provide a new mechanistic insight into the regulatory mechanisms of MT4-MMP, which may have implications for the design of novel therapeutic strategies for metastatic breast cancer.

  6. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    International Nuclear Information System (INIS)

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  7. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Cheikh, Alexandre Ben; Girouin, Nicolas [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France)]|[Universite de Lyon, Lyon (France)]|[Universite de Lyon 1, faculte de medecine Lyon Nord, Lyon (France); Colombel, Marc; Marechal, Jean-Marie [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Gelet, Albert [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France)]|[Inserm, U556, Lyon (France); Bissery, Alvine; Rabilloud, Muriel [Hospices Civils de Lyon, Department of Biostatistics, Lyon (France)]|[Universite de Lyon 1, UMR CNRS 5558, Laboratoire Biostatistiques-Sante, Pierre-Benite (France); Lyonnet, Denis [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France)]|[Universite de Lyon, Lyon (France)]|[Universite de Lyon 1, faculte de medecine Lyon Nord, Lyon (France)]|[Inserm, U556, Lyon (France); Rouviere, Olivier [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France)]|[Universite de Lyon, Lyon (France)]|[Universite de Lyon 1, faculte de medecine Lyon Nord, Lyon (France)]|[Inserm, U556, Lyon (France)]|[Hopital Edouard Herriot, Department of Urinary and Vascular Radiology, Pavillon P Radio, Lyon Cedex 03 (France)

    2009-03-15

    We assessed the accuracy of T2-weighted (T2w) and dynamic contrast-enhanced (DCE) 1.5-T magnetic resonance imaging (MRI) in localizing prostate cancer before transrectal ultrasound-guided repeat biopsy. Ninety-three patients with abnormal PSA level and negative prostate biopsy underwent T2w and DCE prostate MRI using pelvic coil before repeat biopsy. T2w and DCE images were interpreted using visual criteria only. MR results were correlated with repeat biopsy findings in ten prostate sectors. Repeat biopsy found prostate cancer in 23 patients (24.7%) and 44 sectors (6.6%). At per patient analysis, the sensitivity, specificity, positive and negative predictive values were 47.8%, 44.3%, 20.4% and 79.5% for T2w imaging and 82.6%, 20%, 24.4% and 93.3% for DCE imaging. When all suspicious areas (on T2w or DCE imaging) were taken into account, a sensitivity of 82.6% and a negative predictive value of 100% could be achieved. At per sector analysis, DCE imaging was significantly less specific (83.5% vs. 89.7%, p < 0.002) than T2w imaging; it was more sensitive (52.4% vs. 32.1%), but the difference was hardly significant (p = 0.09). T2w and DCE MRI using pelvic coil and visual diagnostic criteria can guide prostate repeat biopsy, with a good sensitivity and NPV. (orig.)

  8. A tunable cancer cell filter using magnetic beads: cellular and fluid dynamic simulations

    CERN Document Server

    Gusenbauer, Markus; Bance, Simon; Exl, Lukas; Reichel, Franz; Oezelt, Harald; Schrefl, Thomas

    2011-01-01

    In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We develop a simulation tool that combines micromagnetics, discrete particle dynamics and fluid dynamics, in order to design micropost arrays made of interacting beads. For the simulation of blood flow we use the Lattice-Boltzmann method with immersed elastic blood cell models. Parallelization distributes large fluid and particle dynamic simulations over available resources to reduce overall calculation time.

  9. 基于结合面的立式加工中心进给系统的动态特性分析%The dynamic characteristics analysis of feeding system of a vertical machining center based on conjoint interfaces

    Institute of Scientific and Technical Information of China (English)

    翁德凯; 程寓; 夏玲玲; 李奎

    2012-01-01

    The dynamic characteristics of the finding system directly affect the positioning accuracy of the machine tod,so the analysis of dynamic characteristics of the feeding system is very meaningfut to improve the machining accuracy and processing properties of the machtne tool.By taking a ball screwing feeding system of a vertical machining center as a study example ,a FEM model containing the conjoint interfaces cahracteriticsof the feeding system is established by applying the software ansys.On this basis, through, modid analyzing and harmonic response analyzing the natural frequency and tnbraiion chnrwteris?tics of the feeding system are ohttdned.Through analyzing the impact of the conjoint interfaces'stiffness changing on the natural frequency of the feeding system .its relative weaker conjoint interfaces are found. which stiffness vtdue is optimized und dynamic churacierisucs of the feeding system are improved.%机床进给系统的动态特性的优良直接影响到机床的定位精度,因此对进给系统的动态特性进行分析对提高机床加工精度及加工性能有重要意义.以某立式加工中心的滚珠丝杠进给系统为研究对象,利用Ansys建立包含结合部特性的进给系统有限元模型.在此基础上,通过模态分析和谐响应分析,得到了进给系统的固有频率和振动特性.通过分析改变各个结合面刚度对系统固有频率影响的敏感程度,找到了系统的薄弱结合面,并对这些结合面刚度值进行优化,提高了进给系统的动态特性.

  10. Evaluation of pancreatic cancer by multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiuzhong, E-mail: yao.xiuzhong@zs-hospital.sh.cn [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Zeng, Mengsu, E-mail: zengmengsu@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Wang, He, E-mail: herry258@hotmail.com [Global Applied Science Laboratory of GE Healthcare, No. 1, Huatuo Road, Zhangjiang Hi-tech Park, Pudong District, Shanghai 201203 (China); Sun, Fei, E-mail: fei.sun@med.ge.com [Global Applied Science Laboratory of GE Healthcare, No. 1, Huatuo Road, Zhangjiang Hi-tech Park, Pudong District, Shanghai 201203 (China); Rao, Shengxiang, E-mail: rao.shengxiang@zs-hospital.sh.cn [Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China); Ji, Yuan, E-mail: Ji.yuan@zs-hospital.sh.cn [Department of Pathology, Zhongshan Hospital of Fudan University, No. 138, Fenglin Road, Xuhui District, Shanghai 200032 (China)

    2012-08-15

    Objective: To investigate the microcirculation in pancreatic cancer by pharmacokinetic analysis of multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. Materials and methods: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging was performed in 40 healthy volunteers and 40 patients with pancreatic cancer proven by histopathology using an axial three-dimensions fat-saturated T1-weighted spoiled-gradient echo sequence at 3.0 T. A two compartment model with T1 correction was used to quantify the transfer constant, the rate constant of backflux from the extravascular extracellular space to the plasma and the extravascular extracellular space fractional volume in pancreatic cancer, obstructive pancreatitis distal to the malignant tumor, adjacent pancreatic tissue proximal to the tumor and normal pancreas. All parameters were statistically analyzed. Results: Statistical differences were noticed in both the transfer constant (p = 0.000075) and the rate constant of backflux (p = 0.006) among different tissues. Both the transfer constant and the rate constant of backflux in pancreatic cancer were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). Both the transfer constant and the rate constant of backflux in obstructive pancreatitis were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). The extravascular extracellular space fractional volume in pancreatic cancer was statistically lager than that in normal pancreas (p = 0.002). Conclusion: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging offers a useful technique to evaluate the microenvironment in pancreatic cancer at 3.0 T. Compared to normal pancreas, pancreatic cancer has lower transfer constant, rate constant of backflux and larger extravascular extracellular space fractional volume.

  11. Evaluation of pancreatic cancer by multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T

    International Nuclear Information System (INIS)

    Objective: To investigate the microcirculation in pancreatic cancer by pharmacokinetic analysis of multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. Materials and methods: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging was performed in 40 healthy volunteers and 40 patients with pancreatic cancer proven by histopathology using an axial three-dimensions fat-saturated T1-weighted spoiled-gradient echo sequence at 3.0 T. A two compartment model with T1 correction was used to quantify the transfer constant, the rate constant of backflux from the extravascular extracellular space to the plasma and the extravascular extracellular space fractional volume in pancreatic cancer, obstructive pancreatitis distal to the malignant tumor, adjacent pancreatic tissue proximal to the tumor and normal pancreas. All parameters were statistically analyzed. Results: Statistical differences were noticed in both the transfer constant (p = 0.000075) and the rate constant of backflux (p = 0.006) among different tissues. Both the transfer constant and the rate constant of backflux in pancreatic cancer were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). Both the transfer constant and the rate constant of backflux in obstructive pancreatitis were statistically lower than those in normal pancreas and adjacent pancreatic tissue (p < 0.05). The extravascular extracellular space fractional volume in pancreatic cancer was statistically lager than that in normal pancreas (p = 0.002). Conclusion: Multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging offers a useful technique to evaluate the microenvironment in pancreatic cancer at 3.0 T. Compared to normal pancreas, pancreatic cancer has lower transfer constant, rate constant of backflux and larger extravascular extracellular space fractional volume.

  12. Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(1 0 0)-water interface: Implications for MRI probes

    Science.gov (United States)

    Gonçalves, Mateus A.; Peixoto, Fernando C.; da Cunha, Elaine F. F.; Ramalho, Teodorico C.

    2014-08-01

    Magnetite is an iron oxide widely used as contrast agent in MRI, receiving considerable interest from nanoscience and nanotechnology. In this work, the face 1 0 0 of the magnetite structure was studied with water in order to obtain 1H hyperfine coupling constants (HFCCs). Molecular dynamics (MD) calculations were performed using the ReaxFF program and for statistical inefficiency, structures were selected for HFCC and NMR calculations. From our theoretical findings, the magnetite in solution considerably increases the 1H HFCC of water molecules. From our results, it is essential to incorporate the dynamics and solvent effects into NMR calculations of relaxation parameters.

  13. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    Science.gov (United States)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  14. Combined dynamic and static optical tomography for prediction of treatment outcome in breast cancer patients

    Science.gov (United States)

    Gunther, Jacqueline; Lim, Emerson; Kim, Hyun Keol; Flexman, Molly; Zweck, Lukas; Arora, Sindhiya; Refice, Susan; Brown, Mindy; Kalinsky, Kevin; Hershman, Dawn; Hielscher, Andreas H.

    2015-07-01

    We explored evidence that a combination of dynamic and static diffuse optical tomography can be used to predict treatment response in patients undergoing neo adjuvant chemotherapy. Both blood chromophore concentrations and hemodynamic signatures were measured over the 5-month course of treatment.

  15. Dynamic contrast-enhanced (DCE) imaging for tumor delineation in prostate cancer

    NARCIS (Netherlands)

    Korporaal, J.G.

    2011-01-01

    Dynamic contrast-enhanced (DCE) MR imaging is frequently used for the detection and localization of prostate tumors. After injection of a bolus of contrast agent into the blood circulation, the behavior of the contrast agent in the prostate can be measured by repetitive imaging of the prostate. Pros

  16. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  17. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  18. Evaluation of enhancement patterns using three-dimensional dynamic contrast-enhanced MR imaging in 209 cases of breast cancer

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate contrast-enhanced patterns using three-dimensional (3D) dynamic MR imaging in 209 cases of breast cancer. Three-dimensional dynamic imaging of the breast (1.5-T scanner) was performed in 755 cases. Of 227 breast carcinomas, 209 cases that were histologically confirmed were enrolled in this study. The histological diagnoses included ductal carcinoma in situ (DCIS) (n=12), invasive ductal carcinoma (n=176), mucinous carcinoma (n=10), meduliary carcinoma (n=4), invasive lobular carcinoma (n=6), and other (n=1). Tumor size was a mean 24.6 mm in diameter (range, 7-110 mm), including 110 cases of small breast carcinomas (≤2 cm). The contrast-enhancement pattern was analyzed from the early phase of 3D-MRI and the post-contrast T1-weighted spin echo (SE) image acquired before the delayed phase of 3D-MRI. The type of peripheral enhancement (PE) was evaluated on the early and delayed phases of 3D-MRI. These enhancement patterns were also compared with the histological findings of small breast carcinomas. The sensitivity of the 209 cases of breast carcinoma was 99% (207/209) on 3D dynamic MRI. Two hundred six cases (98.6%), including all DCIS, showed strong enhancement on the early phase of 3D MRI. An increased washout pattern showing signal intensity lower than that of fat on post-contrast T1-weighted imaging was noted in 201 cases (96.1%), of which 179 cases (85.6%) showed washout patterns. PE was identified in 63 cases (30.4%) and in 35 of 110 cases of small breast carcinoma (31.8%). Delayed PE following central washout was noted in 65% of 63 cases and 71.4% of 35 cases of small breast carcinoma. Delayed PE was well correlated with marginal fibrosis. Three-dimensional dynamic MRI of the breast was highly sensitive for breast carcinoma. Delayed PE following central washout was considered a specific finding of breast carcinoma. It is important to understand the enhancement patterns of 3D dynamic MRI for excellent specificity of

  19. Poled-glass devices: Influence of surfaces and interfaces

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2007-01-01

    Devices in periodically poled glass must have a large periodic variation of the built-in field. We show that the periodic variation can be severely degraded by charge dynamics taking place at the external (glass–air) interface or at internal (glass–glass) interfaces if the interfaces have imperfe...

  20. Diagnostic value of dynamic and morphologic breast MRI analysis in the diagnosis of breast cancer

    OpenAIRE

    Stusińska, Małgorzata; Szabo-Moskal, Jadwiga; Bobek-Billewicz, Barbara

    2014-01-01

    Summary Background Mammography is the most widely used method of breast imaging. However, its low sensitivity poses a problem. Breast MRI is one of so the called “complementary” breast imaging methods. The purpose of this study was to improve the specificity of breast MRI by combining 2 methods: dynamic and morphologic analysis of enhancing lesions. Material/Methods 222 women aged 19–76 years, who underwent breast MRI examination between November 2002 and April 2004 at the Radiology Departmen...

  1. Systems-level analysis of the regulation and function of p53 dynamics in cancer

    Science.gov (United States)

    Batchelor, Eric

    Living cells use complex signaling pathways to detect environmental stimuli and generate appropriate responses. As methods for quantifying intracellular signaling have improved, several signaling pathways have been found to transmit information using signals that pulse in time. The transcription factor p53 is a key tumor suppressor and stress-response regulator that exhibits pulsatile dynamics. In response to DNA double-strand breaks, the concentration of p53 in the cell nucleus increases in pulses with a fixed amplitude, duration, and period; the mean number of pulses increases with DNA damage. p53 regulates the expression of over 100 target genes involved in a range of cellular stress responses including apoptosis, cell cycle arrest, and changes in metabolism. p53 pulsing directly impacts p53 function: altering p53 dynamics by pharmacologically inhibiting p53 degradation changes patterns of target gene expression and cell fate. While p53 pulsing serves an important signaling function, it is less clear what it accomplishes mechanistically. Here we will describe our recent efforts to determine the impact of p53 pulsing on the dynamics and coordination of target gene expression.

  2. Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Ammitzbøl; Eriksen, Rie Østbjerg; Strauch, Louise Søborg;

    2016-01-01

    after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow...... yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability...... are important perfusion values for predicting treatment outcome. However, the heterogeneity in scan protocols, scan parameters, and time between scans makes it difficult to compare the included studies....

  3. Responses and relationship dynamics of men and their spouses during active surveillance for prostate cancer

    DEFF Research Database (Denmark)

    Kayser, Lars; Hansen-Nord, Nete S; Osborne, Richard H;

    2015-01-01

    responses to a Health Literacy Questionnaire can be used to identify individuals in need of information and support and to reveal differences in perception and understanding in health related situations within couples. METHODS: We used the nine-domain Health Literacy Questionnaire (HLQ) as a framework...... to explore health literacy in eight couples where the men were on active surveillance for prostate cancer progression. Scores were calculated for each domain for both individuals. For each couple differences in scores were also calculated and related to the informants' self-reported experiences...... to six of the HLQ domains, i.e. involvement of spouses and other people around the men; support from and interaction with healthcare professionals; and use of the Internet for information retrieval. CONCLUSIONS: Using the HLQ as an interview framework provided insight into the differences within couples...

  4. Tumor regression dynamics with external radiotherapy in cancer cervix and its implications

    Directory of Open Access Journals (Sweden)

    Datta N

    2004-01-01

    Full Text Available BACKGROUND : To study the external radiotherapy (EXTRT regression patterns in cancer of the cervix. AIMS : Evaluate EXTRT tumor regression doses (TRD for 50% (TRD50, 80% response (TRD80, normalized dose response gradient (γ50 and slope (slope50 with clinical outcome. SETTINGS AND DESIGN : Patients, treated solely with radiotherapy and enrolled for other prospective studies having weekly tumor regressions recorded were considered. MATERIAL AND METHODS : Seventy-seven patients received 50Gy of EXTRT at 2 Gy/fraction followed by 18Gy of high-dose rate intracavitary brachytherapy at 6 Gy/fraction. Loco-regional regressions were assessed clinically at weekly intervals during EXTRT to generate EXTRT dose-response curves. STATISTICAL ANALYSIS USED : Student′s t test, logistic regression, Kaplan Meier and Cox′s proportional hazard model. Scatter plots were fitted using cubic fit. RESULTS : Age (P=0.052 and absence or presence of gross residual tumor (AGRT and PGRT respectively following EXTRT (P< 0.001 were the only determinants for complete response (CR at 1 month following completion of radiotherapy. EXTRT tumor regression sigmoid curves obtained for various patient characteristics differed only for those with AGRT and PGRT with differences in TRD50, (P< 0.001; TRD80 (P< 0.001 and slope50 (P=0.001. Response status to EXTRT was a prognosticator for loco-regional disease free survival (LDFS (AGRT vs. PGRT; P=0.046. On multivariate analysis, both TRD50 and TRD80 emerged as significant predictors for tumor status at end of EXTRT while TRD80 was the sole determinant of LDFS. CONCLUSION : Extent of tumor regression to EXTRT is an important predictor for treatment outcome in cancer cervix as evident from TRD50 and TRD80 values of EXTRT tumor regression curves.

  5. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  6. Structures of the Sgt2/SGTA Dimerization Domain with the Get5/UBL4A UBL Domain Reveal an Interaction that Forms a Conserved Dynamic Interface

    Directory of Open Access Journals (Sweden)

    Justin W. Chartron

    2012-12-01

    Full Text Available In the cytoplasm, the correct delivery of membrane proteins is an essential and highly regulated process. The posttranslational targeting of the important tail-anchor membrane (TA proteins has recently been under intense investigation. A specialized pathway, called the guided entry of TA proteins (GET pathway in yeast and the transmembrane domain recognition complex (TRC pathway in vertebrates, recognizes endoplasmic-reticulum-targeted TA proteins and delivers them through a complex series of handoffs. An early step is the formation of a complex between Sgt2/SGTA, a cochaperone with a presumed ubiquitin-like-binding domain (UBD, and Get5/UBL4A, a ubiquitin-like domain (UBL-containing protein. We structurally characterize this UBD/UBL interaction for both yeast and human proteins. This characterization is supported by biophysical studies that demonstrate that complex formation is mediated by electrostatics, generating an interface that has high-affinity with rapid kinetics. In total, this work provides a refined model of the interplay of Sgt2 homologs in TA targeting.

  7. Tire/runway friction interface

    Science.gov (United States)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  8. SH波与界面多圆孔的散射及动应力集中%DYNAMIC STRESS CONCENTRATION & SCATTERING OFSH-WAVE BY INTERFACE MULTIPLE CIRCLE CANYONS

    Institute of Scientific and Technical Information of China (English)

    史守峡; 刘殿魁

    2001-01-01

    研究了平面SH波对相邻多个界面圆孔的散射及其动应力集中.为了求解,首先利用复变函数和多极坐标方法构造了在含有多个半圆形缺口的弹性半空间,水平面上任一点承受时间谐和出平面线源载荷作用时的位移,即Green函数,且采用``契合''模型,推导了SH波对相邻多个界面圆孔散射的定解积分方程组,进而求得圆孔附近的动应力系数,作为算例,讨论了具有两个界面圆孔对SH波的散射及其相互影响,给出了孔附近的动应力分布曲线.%In this paper, the dynamic stress concentration and the scattering ofSH-wave by interface multiple circle canyons are investigated. Thesuitable Green's function is based on the wave functions and obtained bythe use of complex function as well as multi-polar coordinate systems,which is the solution of displacement field for elastic half space withmultiple semi-circle impacted by out-plane harmonic line source loadingat horizontal surface. Therefore the interaction problems amonginterface canyons are solved. In the process of analysis, theproblem can be regarded as harmony model: it can be divided into upperand down half plane along horizontal interface. In order to satisfy theinterface continuity condition, the unknown anti-plane forces are addedat the interface. The Fredholm integral equation for determiningthe unknown forces can be set up through continuitycondition. The integral equations can be transformed into algebraicequations andsolved numerically. So the dynamic stress concentration factor (DSCF)around circle canyons can be determined.   As an example, the scatteringof SH-wave from only two interface circle canyons and the influencebetween them are discussed. The distribution of dynamics stressconcentration factor curve close to the circle canyons is made out.The influences of the right canyon to the left canyon are discussed under differentmaterials constants. When the distance between the two circle canyons

  9. Molecular dynamics study of cascade damage at SiC/C interface%SiC/C界面辐照性能的分子动力学研究*

    Institute of Scientific and Technical Information of China (English)

    王成龙; 王庆宇; 张跃; 李忠宇; 洪兵; 苏折; 董良

    2014-01-01

    Continuous silicon carbide (SiC) fiber-reinforced SiC (SiCf/SiC) composites have been considered to be used as structural materials in advanced nuclear reactors for its excellent properties. Their mechanical properties have been greatly improved during the last decade. But the radiation damage at the SiC and pyrolytic carbon interface would degrade the mechanical integrity of the composites, while the mechanism of degradation is remaining unknown at present. In this study, molecular dynamics simulations have been used to model the irradiation cascade of five SiC/C composite systems. According to the angle between the graphite layer and the interface, the models are marked as M0, M28, M56, M77 and M90, in which the number represents the angle. Forty primary knock-on atoms (PKAs) at different positions in each composite system are used to bombard the interface. In each run a collision cascade may be initiated by giving one of the 40 atoms 1.5 keV kinetic energy. The relationships between the distribution of defects and simulation time and PKA position are systematically studied, and compared with those in bulk SiC, which are marked as MW. Results show that the radiation damage resistance of SiC/C interface is significantly lower than bulk SiC, and the interface structure has an impact on the number of defects. Radial distribution function (RDF) is employed to examine the coordination of interfacial atoms. The results show that the higher the density of graphite atoms in the interface, the larger impact the irradiation on the RDF and coordination.%本文通过分子动力学模拟的方法,研究了5种含不同空间结构的SiC/C界面的材料受辐照后的缺陷分布随时间以及PKA位置的变化关系,并与单质SiC中缺陷分布情况进行对比。利用径向分布函数分析了辐照对界面原子排列情况的影响。研究结果表明, SiC/C界面的抗辐照能力明显低于SiC内部,不同的空间结构对界面缺陷数量存在一

  10. A diffuse interface model with immiscibility preservation

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arpit, E-mail: atiwari2@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Pantano, Carlos [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2013-11-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical-bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results.

  11. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Espe Hansen, Adam; Hjort Johannesen, Helle;

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real......-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range...

  12. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth;

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real......-time investigation of in vivo metabolism. The development of this new method has been demonstrated to enhance the nuclear polarization more than 10,000-fold, thereby significantly increasing the sensitivity of the MRS with a spatial resolution to the millimeters and a temporal resolution at the subsecond range...

  13. Modeling Piezoelectric Interfacial Wave Near an Imperfect Interface

    Institute of Scientific and Technical Information of China (English)

    XU Li-mei; FAN Hui; CHEN Min; LI Hui

    2006-01-01

    The interface wave propagating along an imperfect interface between two piezoelectric half spaces is derived firstly. The wave equations based on the interface modeled, called "spring model", are presented. The micro-scale structures of the interface for connecting the spring constant with the interface micro-structures are examined. For some simple interface micro-structure, exact dynamic solution is available, and the spring constant is obtained by comparing solutions. For the complex micro structures, it remains as a challenge of micro-mechanics modeling to connect the "spring constant" and micro-structure.

  14. Water at interface with proteins

    CERN Document Server

    Franzese, Giancarlo; Iskrov, Svilen

    2010-01-01

    Water is essential for the activity of proteins. However, the effect of the properties of water on the behavior of proteins is only partially understood. Recently, several experiments have investigated the relation between the dynamics of the hydration water and the dynamics of protein. These works have generated a large amount of data whose interpretation is debated. New experiments measure the dynamics of water at low temperature on the surface of proteins, finding a qualitative change (crossover) that might be related to the slowing down and stop of the protein's activity (protein glass transition), possibly relevant for the safe preservation of organic material at low temperature. To better understand the experimental data several scenarios have been discussed. Here, we review these experiments and discuss their interpretations in relation with the anomalous properties of water. We summarize the results for the thermodynamics and dynamics of supercooled water at an interface. We consider also the effect o...

  15. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology

    International Nuclear Information System (INIS)

    Purpose: To evaluate the use of semi-quantitative dynamic contrast-enhanced MRI (DCE-MRI) parameters for the detection of prostatic carcinoma in correlation to whole-mount histopathology. Materials and methods: Fifty-three patients with biopsy-proven prostate cancer were examined by DCE-MRI at 1.5-T. Cancerous and benign prostatic tissue regions of interest were delineated based on the histopathology of whole-mount sections and several semi-quantitative parameters were calculated: time to peak (TTP), maximal contrast enhancement (Cpeak), speed of contrast uptake (Wash-in) and clearance rate of the contrast agent (Wash-out). The area under the ROC curve was determined for each parameter. Results: Within individual patients, a consistently higher Cpeak and faster Wash-in were present in cancerous compared to benign prostatic tissue. Both the TTP and the Wash-out occurred more rapidly in tumour tissue than in normal prostatic tissue. Despite a considerable inter-patient overlap of parameter values between tumour and normal prostatic tissue, area under the ROC curve analysis demonstrated that the Wash-in was a good discriminator for cancer and benign tissue (AUC 0.82). Combination of the Wash-in and the Wash-out proved to be even more accurate (AUC 0.87) to discriminate between cancerous and benign prostatic regions. Conclusion: The Wash-in is a useful parameter for prostate cancer detection by DCE-MRI.

  16. Active matter clusters at interfaces

    CERN Document Server

    Copenhagen, Katherine

    2016-01-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), wher...

  17. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection.

    Science.gov (United States)

    Pandey, Chandra Mouli; Dewan, Srishti; Chawla, Seema; Yadav, Birendra Kumar; Sumana, Gajjala; Malhotra, Bansi Dhar

    2016-09-21

    We report results of the studies relating to controlled deposition of the amino-functionalized silica-coated zinc oxide (Am-Si@ZnO) nano-assemblies onto an indium tin oxide (ITO) coated glass substrate using Langmuir-Blodgett (LB) technique. The monolayers have been deposited by transferring the spread solution of Am-Si@ZnO stearic acid prepared in chloroform at the air-water interface, at optimized pressure (16 mN/m), concentration (10 mg/ml) and temperature (23 °C). The high-resolution transmission electron microscopic studies of the Am-Si@ZnO nanocomposite reveal that the nanoparticles have a microscopic structure comprising of hexagonal assemblies of ZnO with typical dimensions of 30 nm. The surface morphology of the LB multilayer observed by scanning electron microscopy shows uniform surface of the Am-Si@ZnO film in the nanometer range (<80 nm). These electrodes have been utilized for chronic myelogenous leukemia (CML) detection by covalently immobilizing the amino-terminated oligonucleotide probe sequence via glutaraldehyde as a crosslinker. The response studies of these fabricated electrodes carried out using electrochemical impedance spectroscopy show that this Am-Si@ZnO LB film based nucleic acid sensor exhibits a linear response to complementary DNA (10(-6)-10(-16) M) with a detection limit of 1 × 10(-16) M. This fabricated platform is validated with clinical samples of CML positive patients and the results demonstrate its immense potential for clinical diagnosis. PMID:27590542

  18. Dynamic contrast enhanced magnetic resonance imaging of bladder cancer and implications for biological image-adapted radiotherapy

    International Nuclear Information System (INIS)

    Purpose. To assess the role of image parameters derived from dynamic contrast enhanced magnetic resonance imaging (DCEMRI) in bladder cancer staging, and to investigate the potential use of such parameter images in biological image-adapted radiotherapy (RT). Materials and methods. High-resolution volumetric interpolated breath-hold (VIBE) DCEMRI of 26 patients diagnosed with bladder cancer was performed. DCEMRI parameters derived from tumor and muscle contrast uptake curves were extracted and subjected to correlation analysis with tumor volume as well as clinical, pathological, histological and T2-weighted MR tumor stage. For parameters showing a significant correlation with tumor stage, 3D malignancy maps were generated. As an initial step towards delivery of biologically adapted intensity modulated radiotherapy (IMRT) it was hypothesized that the malignancy map could be used as a RT dose prescription map. Simulating IMRT delivery with multi-leaf collimators (MLCs), idealized dose distributions, constituted by dose cubes, were adapted to the prescription map. The size of the dose cubes were varied to mimic MLCs of varying leaf width. The difference between the adapted and prescribed dose distributions was quantified by the root mean square deviation (RMSD). Results. No significant relationships were found between tumor volume and extracted DCEMRI parameters. The normalized area between tumor and muscle contrast uptake curves (nABC) evaluated from 0-180 seconds (nABC180) and 0-480s (nABC480) correlated significantly with tumor stage (p=0.047 and p=0.035, respectively). Dose prescription maps for 10 patients were generated from the nABC480. The RMSD between the prescribed and adapted dose distribution decreased with decreasing size of the dose cubes. Large interpatient variations in the RMSD and in the dependence of the RMSD on different dose cube sizes were found. Conclusions. The nABC180 and nABC480 may provide added value in staging of bladder cancer. High

  19. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  20. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    Science.gov (United States)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.