WorldWideScience

Sample records for cancer dose limits

  1. Dose limits

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1987-12-01

    The dose limit is defined to be the level of harmfulness which must not be exceeded, so that an activity can be exercised in a regular manner without running a risk unacceptable to man and the society. The paper examines the effects of radiation categorised into stochastic and non-stochastic. Dose limits for workers and the public are discussed

  2. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S; Van Duyse, B; Schelfhout, J; De Neve, W

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  3. High-dose-rate brachytherapy using molds for oral cavity cancer. The technique and its limitations

    International Nuclear Information System (INIS)

    Nishimura, Yasumasa; Yokoe, Yoshihiko; Nagata, Yasushi; Okajima, Kaoru; Nishida, Mitsuo; Hiraoka, Masahiro

    1998-01-01

    With the availability of a high-dose-rate (HDR) remote afterloading device, a Phase I/II protocol was initiated at our institution to assess the toxicity and efficacy of HDR intracavitary brachytherapy, using molds, in the treatment of squamous cell carcinomas of the oral cavity. Eight patients with squamous cell carcinoma of the oral cavity were treated by the technique. The primary sites of the tumors were the buccal mucosa, oral floor, and gingiva. Two of the buccal mucosal cancers were located in the retromolar trigon. For each patient, a customized mold was fabricated, in which two to four afterloading catheters were placed for an 192 Ir HDR source. Four to seven fractions of 3-4 Gy, 5 mm below the mold surface, were given following external radiation therapy of 40-60 Gy/ 2 Gy. The total dose of HDR brachytherapy ranged from 16 to 28Gy. Although a good initial complete response rate of 7/8 (88%) was achieved, there was local recurrence in four of these seven patients. Both of the retromolar trigon tumors showed marginal recurrence. No serious (e.g., ulcer or bone exposure) late radiation damage has been observed thus far in the follow up period of 15-57 months. High-dose-rate brachytherapy using the mold technique seems a safe and useful method for selected early and superficial oral cavity cancer. However, it is not indicated for thick tumors and/or tumors located in the retromolar trigon. (author)

  4. Dose. Detriment. Limit assessment

    International Nuclear Information System (INIS)

    Breckow, J.

    2015-01-01

    One goal of radiation protection is the limitation of stochastic effects due to radiation exposure. The probability of occurrence of a radiation induced stochastic effect, however, is only one of several other parameters which determine the radiation detriment. Though the ICRP-concept of detriment is a quantitative definition, the kind of detriment weighting includes somewhat subjective elements. In this sense, the detriment-concept of ICRP represents already at the stage of effective dose a kind of assessment. Thus, by comparing radiation protection standards and concepts interconvertible or with those of environment or occupational protection one should be aware of the possibly different principles of detriment assessment.

  5. Dose limits cause unacceptable risk

    International Nuclear Information System (INIS)

    Collier, Sylvia.

    1985-01-01

    This paper on radiation dose limits for workers and the public discusses the following: Medical Research Council report; safety standards; risk assessment; deaths from cancers; biological radiation effects; UK legislation; low-level radiation; public concern; UKAEA staff survey; Ionising Radiations Regulations; United Nations Scientific Committee on Effects of Atomic Radiation; US studies on work force in nuclear establishments; problems of extrapolation; Japanese data from Hiroshima and Nagasaki; International Commission on Radiological Protection recommendations; studies on uranium miners; UK Health and Safety Executive; UK National Radiological Protection Board. (U.K.)

  6. Concurrent cisplatin, infusional fluorouracil, and conventionally fractionated radiation therapy in head and neck cancer: Dose-limiting mucosal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Denham, J.W.; Abbott, R.L. (Royal Adelaide Hospital (Australia))

    1991-03-01

    After a preliminary dose-finding study involving 12 patients with advanced or locally recurrent head and neck cancer, 27 patients were treated on a phase II protocol, using fluorouracil 350 mg/m2/d by continuous intravenous (IV) infusion over 5 days, followed on the sixth day by a 2-hour IV infusion of cisplatin 50 mg/m2, administered during the first and fourth weeks of radiation therapy to total doses between 60 and 64 Gy, using 2 Gy daily fractions. Eight of these 27 patients had American Joint Committee on Cancer Staging (AJCC) stage III disease, and 12 had stage IV disease. Four had recurrent disease after surgery. Three-year follow-up is now available. Twenty-one (77.8%) remitted completely following treatment, and 11 remain free of local and regional relapse at 3 years. Four have developed systemic metastases. Following successful salvage treatment in two cases, estimated determinate survival at 3 years is 64%. Acute toxicity was manageable with this regime. Eleven instances of grade 3 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) mucositis were observed, which caused interruptions to radiotherapy in only four cases. No late sequelae have so far been recorded. It is concluded that the protocol described is tolerable but probably did not cause a greater number of locoregional cures than would have been expected following conventional radiotherapy alone in this group of patients. The use of infusional fluorouracil with concurrent conventionally fractionated radiation therapy and cisplatin infusion results in mucositis that limits the dose of fluorouracil to levels that are probably subtherapeutic.

  7. Dealing with initial chemotherapy doses: a new basis for treatment optimization in limited small-cell lung cancer

    International Nuclear Information System (INIS)

    Le Chevalier, T.; Le Cesne, A.; Arriagada, R.

    1995-01-01

    Treatment of patients with small-cell lung cancer (SCLC) remains disappointing despite high initial complete response rates. The dramatic initial chemosensitivity of tumor cells is frustrated by the early emergence of chemoresistant clonogenic cells, regardless of front line treatments. Although the dose relationship is fairly well established regarding the response rate, its effect on survival is inconclusive. From 1980 to 1988, 202 patients with limited SCLC were included in four consecutive protocols using an alternating schedule of thoracic radiotherapy and chemotherapy. Despite an increase of chemotherapy and/or total radiation doses, no significant difference was observed between the four protocols in terms of response rate, disease free and overall survival. However, a retrospective analysis performed on a total of 131 consecutive patients led us to propose the hypothesis that a moderate increase in the initial dose, ie first course, of cisplatin and cyclophosphamide could improve overall survival. From 1988 to 1991, 105 patients were subsequently included in a large randomized trial raising this question. The treatment difference only concerned the initial doses of cisplatin (80 vs 100 mg/m 2 ) and cyclophosphamide (900 vs 1200 mg/m 2 ). The trial was closed after inclusion of 105 patients, 32 months after the start of the study because at that time overall survival was significantly better in the higher-dose group (p = 0.001). The emergence of this debatable concept opens new directions in the therapeutic strategy of SCLC and the contribution of hematopoietic growth factors may be a great interest in the management of this disease. (authors). 27 refs., 1 tab

  8. Occupational dose equivalent limits

    International Nuclear Information System (INIS)

    Goldfinch, E.P.

    1980-01-01

    This paper considers methods of limiting individual radiation risks by recognizing the variation of risk with age at exposure, taking into account both somatic and genetic risks and proposes a simple formula for controlling individual cumulative exposure and hence risk. (Author)

  9. Dose limits for ionising radiation

    International Nuclear Information System (INIS)

    Gifford, D.

    1989-01-01

    Dose limits for exposure to ionising radiation are assessed to see if they give sufficient protection both for the occupationally exposed and for the general public. It is concluded that current limits give a level of safety that satisfies the necessary criteria in the light of present knowledge and further reductions would be unlikely to improve standards of safety. (author)

  10. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer

    NARCIS (Netherlands)

    Wendrich, Anne W; Swartz, Justin E; Bril, Sandra I; Wegner, Inge; de Graeff, Alexander; Smid, Ernst J; de Bree, Remco; Pothen, Ajit J

    OBJECTIVES: Low skeletal muscle mass (SMM) or sarcopenia is emerging as an adverse prognostic factor for chemotherapy dose-limiting toxicity (CLDT) and survival in cancer patients. Our aim was to determine the impact of low SMM on CDLT in patients with locally advanced head and neck squamous cell

  11. Sarcopenic obesity: A probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients.

    Science.gov (United States)

    Anandavadivelan, Poorna; Brismar, Torkel B; Nilsson, Magnus; Johar, Asif M; Martin, Lena

    2016-06-01

    Profound weight loss and malnutrition subsequent to severe dysphagia and cancer cachexia are cardinal symptoms in oesophageal cancer (OC). Low muscle mass/sarcopenia has been linked to toxicity during neo-adjuvant therapy in other cancers, with worser effects in sarcopenic obesity. In this study the association between sarcopenia and/or sarcopenic obesity and dose limiting toxicity (DLT) during cycle one chemotherapy in resectable OC patients was evaluated. Body composition was assessed from computed tomography scans of 72 consecutively diagnosed OC patients. Lean body mass and body fat mass were estimated. Patients were grouped as sarcopenic or non-sarcopenic based on pre-defined gender-specific cut-offs for sarcopenia, and as underweight/normal (BMI sarcopenia combined with overweight and obesity. DLT was defined as temporary reduction/delay or permanent discontinuation of drugs due to adverse effects. Odds ratios for developing toxicity were ascertained using multiple logistic regression. Of 72 patients, 85% (n = 61) were males. Sarcopenia and sarcopenic obesity were present in 31 (43%) and 10 (14%), respectively, prior to chemotherapy. Sarcopenic patients had significantly lower adipose tissue index (p = 0.02) compared to non-sarcopenic patients. Patients with DLT (n = 24) had lower skeletal muscle mass (p = 0.04) than those without DLT. Sarcopenic patients (OR = 2.47; 95% CI: 0.88-6.93) showed a trend towards increased DLT risk (p < 0.10). Logistic regression with BMI as an interaction term indicated higher DLT risk in sarcopenic patients with normal BMI (OR = 1.60; 95% CI 0.30-8.40), but was non-significant. In the sarcopenic obese, risk of DLT increased significantly (OR = 5.54; 95% CI 1.12-27.44). Sarcopenic and sarcopenic obese OC patients may be at a higher risk for developing DLT during chemotherapy compared to non-sarcopenic OC patients. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All

  12. Compliance with public dose limits

    International Nuclear Information System (INIS)

    Mason, G.C.

    1991-01-01

    Radiation, in various forms, is ubiquitous in the environment. Natural background radiation leads to an average radiation exposure for the general population of about 2 mSv per year. The mining and milling of radioactive ores - uranium and mineral sands - may cause a small increase in radiation exposure for some members of the public. Because any such increment in exposure is small compared with a natural exposure that is variable and difficult to quantify accurately, it is not easy to determine what proportion of the total dose received by a member of the public can be attributed to mining and milling activities. Consequently, because public dose limits apply and to those doses caused by human activity, such as mining and milling, the task of demonstrating compliance can be hampered by uncertainty. Some strategies for handling this situation are discussed. While the discussion concentrates on public dose limits, much of it may also be applicable, or adaptable, to occupational exposure. 4 refs., 2 figs

  13. The philosophy of dose limitation

    International Nuclear Information System (INIS)

    Recht, P.

    1981-01-01

    The evolution of concepts and terms appearing in the European Rules of 15 July 1980 is briefly described. After a period where ''tolerance doses'' represent definite limits which should be respected, appears the concept of a ''as low as possible'' and ''as low as practicable'' level. The hypothesis that any exposure represents a risk which should be avoided is taken into account in the later evolution. As a consequence one has to examine the advantages and disadvantages in other words to make a cost-benefit analysis. This evolution leads to the concepts of justification and optimization used at the present time. (author)

  14. Radiation risk factors and dose limits

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1979-01-01

    The contents of the ICRP publications 9 (1965) and 26 (1977) are outlined and the research conducted during these years considered. Expressions are derived for the frequency for induction of cancer from the most common irradiations - X rays, gamma rays and electrons. The dose limits advised by the ICRP are discussed and the first two fundamental principles are presented - that no one should be subjected to radiation without useful cause and that in those cases where irradiation is thought necessary, the medical, scientific, social and economic advantages need to be carefully considered with respect to the possible disadvantages. (C.F.)

  15. Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens

    International Nuclear Information System (INIS)

    Ali, Raafi; Sawyer, Michael B.; Bianchi, Laurent; Roberts, Sarah; Mollevi, Caroline; Senesse, Pierre; Baracos, Vickie E.; Assenat, Eric

    2016-01-01

    Evidence suggests that lean body mass (LBM) may be useful to normalize chemotherapy doses. Data from one prospective and one retrospective study were used to determine if the highest doses of oxaliplatin/kg LBM within FOLFOX regimens would be associated with dose-limiting toxicity (DLT) in colon cancer patients. Toxicity over four cycles was graded according to NCI Common Toxicity Criteria V2 or V3 (Common Terminology Criteria for Adverse Events, National Cancer Institute, Bethesda, MD). Muscle tissue was measured by computerized tomography (CT) and used to evaluate the LBM compartment of the whole body. In prospective randomized clinical trials conducted in France (n = 58), for patients given FOLFOX-based regimens according to body surface area, values of oxaliplatin/kg LBM were highly variable, ranging from 2.55 to 6.6 mg/kg LBM. A cut point of 3.09 mg oxaliplatin/kg LBM for developing toxicity was determined by Receiver Operating Characteristic (ROC) analysis, below this value 0/17 (0.0%) of patients experienced DLT; in contrast above this value 18/41 (44.0%) of patients were dose reduced or had treatment terminated owing to toxicity (≥Grade 3 or neuropathy ≥Grade 2); for 9/41 the DLT was sensory neuropathy. These findings were validated in an independent cohort of colon cancer patients (n = 80) receiving FOLFOX regimens as part of standard care, in Canada. Low LBM is a significant predictor of toxicity and neuropathy in patients administered FOLFOX-based regimens using conventional body surface area (BSA) dosing

  16. Analysis of Incidental Radiation Dose to Uninvolved Mediastinal/Supraclavicular Lymph Nodes in Patients with Limited-Stage Small Cell Lung Cancer Treated Without Elective Nodal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL (United States); Fulp, William J. [Biostatistics Core, H. Lee Moffitt Cancer Center, Tampa, FL (United States); Dilling, Thomas J., E-mail: Thomas.Dilling@moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI{sub off}) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI{sub on}). Nodal stations were contoured using published guidelines, then placed into 4 'bins' (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI{sub on} plans demonstrated a statistically significant degradation in dose coverage compared with the ENI{sub off} plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the '1 echelon away' nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to

  17. Analysis of incidental radiation dose to uninvolved mediastinal/supraclavicular lymph nodes in patients with limited-stage small cell lung cancer treated without elective nodal irradiation.

    Science.gov (United States)

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes

  18. The biological basis for dose limitation to the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    Ionizing radiation may cause deterministic effects and cancer. It has been the policy to base dose limits for radiation protection of the skin on the prevention of deterministic effects (1). In the case of cancer in general, dose limitation for radiation protection is based on limiting excess cancer mortality to low levels of radiation. Since skin cancers are seldom lethal, the general radiation protection standards will protect against an increase in excess mortality from skin cancer. However, with the dose limits selected to prevent deterministic effects, there is a significant probability of an excess incidence of skin cancer occurring as a result of exposure during a working lifetime. The induction of skin cancer by radiation is influenced significantly by subsequent exposure to ultraviolet radiation (UVR) from sunlight. This finding raises not only interesting questions about the mechanisms involved, but also about the differences in risk of skin cancer in different populations. The amount and distribution of melanin in the skin determines the degree of the effect of UVR. This paper discusses the mechanisms of the induction of both deterministic and stochastic effects in skin exposed to radiation in relation to radiation protection. (author)

  19. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose-Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States); Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States)

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V{sub 70}), 65 Gy (V{sub 65}), and 40 Gy (V{sub 40}). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V{sub 70} {<=}10%, V{sub 65} {<=}20%, and V{sub 40} {<=}40%; 92% for men with rectal V{sub 70} {<=}20%, V{sub 65} {<=}40%, and V{sub 40} {<=}80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged {>=}70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints

  20. Dose limits to the eye lens

    International Nuclear Information System (INIS)

    Sion, N.

    2016-01-01

    Protecting the human body from the effects of ionizing radiation is essential to forestall stochastic effects and require placing limits on the effective dose. Dose limits on specific organs are also necessary to reduce the deterministic effects and tissue reactions. The standard for radiation protection was ISO 15382 (2002) which mainly dealt with beta radiation for nuclear power plant workers. Clearly an update is required to allow for new technology and the proliferative use of radiation in medical practices. There is a need for more explicit radiation monitoring to operators and staff. ICRP118 (International Commission on Radiological Protection), Ref. 1, evolved their recommendations to include eye lens doses as a follow on to their publication 103 and to focus on radiation exposures. It provides updated estimates of 'practical' threshold doses for tissue injury at the level of 1% incidence. This paper discusses the current status and the recommendation for a drastic reduction of the dose limit to the eye lens. (author)

  1. New dose limits and distribution of annual doses for controlled groups

    International Nuclear Information System (INIS)

    Vukcevic, M.; Stankovic, S.; Kovacevic, M.

    1993-01-01

    The new calculations of neutron doses received by the population of Hiroshima and Nagasaki, as well as the epidemiological data on the incidence of fatal cancers in the survivors, had led to the conclusion that the risk estimates should be raised by the factor 2 or 3. In this work, the distribution of monthly doses for occupationals was analysed in order to determine the percent of workers who might be considered as overexposed, on the basis of the new dose limits. (author)

  2. Phase I North Central Cancer Treatment Group Trial-N9923 of escalating doses of twice-daily thoracic radiation therapy with amifostine and with alternating chemotherapy in limited stage small-cell lung cancer

    International Nuclear Information System (INIS)

    Garces, Yolanda I.; Okuno, Scott H.; Schild, Steven E.; Mandrekar, Sumithra J.; Bot, Brian M.; Martens, John M.; Wender, Donald B.; Soori, Gamini S.; Moore, Dennis F.; Kozelsky, Timothy F.; Jett, James R.

    2007-01-01

    Purpose: The primary goal was to identify the maximum tolerable dose (MTD) of thoracic radiation therapy (TRT) that can be given with chemotherapy and amifostine for patients with limited-stage small-cell lung cancer (LSCLC). Methods and Materials: Treatment began with two cycles of topotecan (1 mg/m 2 ) Days 1 to 5 and paclitaxel (175 mg/m 2 ) Day 5 (every 3 weeks) given before and after TRT. The TRT began at 6 weeks. The TRT was given in 120 cGy fractions b.i.d. and the dose escalation (from 4,800 cGy, dose level 1, to 6,600 cGy, dose level 4) followed the standard 'cohorts of 3' design. The etoposide (E) (50 mg/day) and cisplatin (C) (3 mg/m 2 ) were given i.v. before the morning TRT and amifostine (500 mg/day) was given before the afternoon RT. This was followed by prophylactic cranial irradiation (PCI). The dose-limiting toxicities (DLTs) were defined as Grade ≥4 hematologic, febrile neutropenia, esophagitis, or other nonhematologic toxicity, Grade ≥3 dyspnea, or Grade ≥2 pneumonitis. Results: Fifteen patients were evaluable for the Phase I portion of the trial. No DLTs were seen at dose levels 1 and 2. Two patients on dose level 4 experienced DLTs: 1 patient had a Grade 4 pneumonitis, dyspnea, fatigue, hypokalemia, and anorexia, and 1 patient had a Grade 5 hypoxia attributable to TRT. One of 6 patients on dose level 3 had a DLT, Grade 3 esophagitis. The Grade ≥3 toxicities seen in at least 10% of patients during TRT were esophagitis (53%), leukopenia (33%), dehydration (20%), neutropenia (13%), and fatigue (13%). The median survival was 14.5 months. Conclusion: The MTD of b.i.d. TRT was 6000 cGy (120 cGy b.i.d.) with EP and amifostine

  3. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  4. Dose limits to the eye lens

    Energy Technology Data Exchange (ETDEWEB)

    Sion, N.

    2016-09-15

    Protecting the human body from the effects of ionizing radiation is essential to forestall stochastic effects and require placing limits on the effective dose. Dose limits on specific organs are also necessary to reduce the deterministic effects and tissue reactions. The standard for radiation protection was ISO 15382 (2002) which mainly dealt with beta radiation for nuclear power plant workers. Clearly an update is required to allow for new technology and the proliferative use of radiation in medical practices. There is a need for more explicit radiation monitoring to operators and staff. ICRP118 (International Commission on Radiological Protection), Ref. 1, evolved their recommendations to include eye lens doses as a follow on to their publication 103 and to focus on radiation exposures. It provides updated estimates of 'practical' threshold doses for tissue injury at the level of 1% incidence. This paper discusses the current status and the recommendation for a drastic reduction of the dose limit to the eye lens. (author)

  5. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer.

    Science.gov (United States)

    Wendrich, Anne W; Swartz, Justin E; Bril, Sandra I; Wegner, Inge; de Graeff, Alexander; Smid, Ernst J; de Bree, Remco; Pothen, Ajit J

    2017-08-01

    Low skeletal muscle mass (SMM) or sarcopenia is emerging as an adverse prognostic factor for chemotherapy dose-limiting toxicity (CLDT) and survival in cancer patients. Our aim was to determine the impact of low SMM on CDLT in patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) treated with primary radiochemotherapy (RCT). Consecutive patients diagnosed with LA-HNSCC and treated with primary RCT between 2007 and 2011 in our center were included. Clinical variables were retrospectively retrieved and SMM was measured at the level of the third cervical vertebra using pre-treatment head and neck CT-scans. After determining a cut-off value for low SMM, multivariate analysis was performed to identify prognostic factors for CDLT. Of 112 patients included, 30.4% experienced CDLT. The optimal cut-off value for low SMM as a predictor of CDLT was ≤43.2cm 2 /m 2 . Using this cut-off, 54.5% patients had low SMM. Patients with low SMM experienced CDLT more frequently than patients with normal SMM (44.3% vs. 13.7%, pSMM, p=0.044). At multivariate analysis, low SMM was independently inversely associated with CDLT (OR 0.93, 95%CI: 0.88-0.98). Patients experiencing CDLT had a lower overall survival than patients who did not (mean 36.6vs. 54.2months, p=0.038). Low SMM is an independent risk factor for CDLT in LA-HNSCC patients treated with primary RCT. Pre-therapeutic estimation of SMM using routine CT-scans of the head and neck region may identify patients at risk of CDLT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Smathers, James; Deye, James

    2003-01-01

    Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies. Based on these discussions, the workshop developed recommendations for future NCI-funded research and development efforts. This paper briefly summarizes the issues presented at the workshop and the recommendations developed by the group

  7. Multi-institutional phase I study of low-dose ultra-fractionated radiotherapy as a chemosensitizer for gemcitabine and erlotinib in patients with locally advanced or limited metastatic pancreatic cancer

    International Nuclear Information System (INIS)

    Konski, Andre; Meyer, Joshua E.; Joiner, Michael; Hall, Michael J.; Philip, Philip; Shields, Anthony; McSpadden, Erin; Choi, Minsig; Adaire, Beth; Duncan, Gail; Meropol, Neal J.; Cescon, Terrence P.; Cohen, Steven J.

    2014-01-01

    Purpose: Gemcitabine (G) has been shown to sensitize pancreatic cancer to radiotherapy but requires lower doses of G and thus delays aggressive systemic treatment, potentially leading to distant failure. We initiated a phase I trial combining ultra-fractionated low-dose radiotherapy with full dose G and erlotinib in the treatment of patients with advanced pancreatic cancer. Methods: Patients with locally advanced or metastatic pancreatic cancer confined to the abdomen and an ECOG performance status (PS) of 0–1 who had received 0–1 prior regimens (without G or E) and no prior radiotherapy were eligible. Patients were treated in 21 day cycles with G IV days 1 and 8, E once PO QD, and twice daily RT fractions separated by at least 4 h on days 1, 2, 8, and 9. Whole abdominal RT fields were used. Primary endpoint was to define dose limiting toxicity (DLT) and the maximum tolerated dose (MTD). Results: 27 patients (median age 64 years and 15 male) were enrolled between 11/24/08 and 4/12/12. 1 patient withdrew consent prior to receiving any protocol therapy. 17 patients had a PS of 1. The majority of patients were stage IV. One DLT was noted out of 7 patients at dose level (DL) 1. Subsequently no DLTs were noted in 3 patients each enrolled at DL2-4 or 11 patients in the expansion cohort. The majority of grade 3 toxicities were hematologic with 1 grade 5 bowel perforation in dose level 1 in cycle 4. Best response in 24 evaluable patients: PR (8), stable (15), PD 1. Median survival for the entire group was 9.1 months. Conclusion: This phase I study combining low-dose ultra-fractionated RT as a sensitizer to full dose G plus E was well tolerated with encouraging efficacy. This represents a novel strategy worthy of further investigation in advanced pancreatic cancer patients

  8. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  9. Occupational exposures and the case for reducing dose limits

    International Nuclear Information System (INIS)

    Gee, David

    1987-01-01

    This chapter describes the General, Municipal, Boilermakers and Allied Trades Union approach to all harmful agents encountered in either the workplace or the general environment; summarizes current radiation exposures in the UK and their arguments for a five-fold reduction in dose limits; and concludes with a summary of the only agreed compensation scheme in the world for radiation-induced cancer amongst workers. (author)

  10. Dose. Detriment. Limit assessment; Dosis. Schadensmass. Grenzwertsetzung

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, J. [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2015-07-01

    One goal of radiation protection is the limitation of stochastic effects due to radiation exposure. The probability of occurrence of a radiation induced stochastic effect, however, is only one of several other parameters which determine the radiation detriment. Though the ICRP-concept of detriment is a quantitative definition, the kind of detriment weighting includes somewhat subjective elements. In this sense, the detriment-concept of ICRP represents already at the stage of effective dose a kind of assessment. Thus, by comparing radiation protection standards and concepts interconvertible or with those of environment or occupational protection one should be aware of the possibly different principles of detriment assessment.

  11. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  12. On the constitutionality of dose limiting values

    International Nuclear Information System (INIS)

    Goetz, V.

    1976-01-01

    The fundamental right according to Art. 2 par. 2 sentence 1 of the German Constitution is relevant for the set-up and application of radiation protection law. Resulting from Art. 2 par. 2 sentence 1 of the Constitution it is a general obligation of the state to protect life (Federal Constitutional Court, judgment of 25th Feb., 1975, BVerfGE 39.1) and physical soundness. The subjective basic right of everybody to defend against official encroachments his personal integrity corresponds to the right of the individual within the framework of the official obligation for protection from the state (to ward off danger). The term of danger, as to the degree of its determination, corresponds to that of the encroachment. To speak of danger in a legal sense, the causal connection between a certain source of danger and certain damage must be ascertained and proved. Topical controversies as to the admissibility of activity discharges of low doses range in the field of risk reduction and thus in the field of the duty of the state to take precautionary steps against risks (Art. 2 par. 2 sentence 1 of the Constitution). The constitution, however, does not contain any basic right that every risk has to be avoided. On the other hand, the necessity of cautions valuation of radiation risks can be derived from the Constitution. The fixation of dose limits and their application in connection with general radiation protection principles (paragraph 28 E of the Radiation Protection Ordinance) do not contain any 'interference' with the basic right in the sense of Art. 2 par. 2 sentence 3 of the Constitution. Neither from aspects of the principle of the legal state nor from Art. 80 par. 1 of the Constitution can the use of the legal form of the Ordinance be doubted. (orig./HP) [de

  13. The dose limits in radiation protection: foundations and evolution perspectives

    International Nuclear Information System (INIS)

    Lochard, J.

    1999-01-01

    The first part of this article is devoted to the evolution of dose limits in radiation protection since 1928. The second part tackles the difficulties to whom the ICRP system of limitation collides with. The notions of dose limits, ALARA principle are explained and the concept of dose constraints is introduced. (N.C.)

  14. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  15. Effect of dose of thoracic irradiation on recurrence in patients with limited stage small cell lung cancer. Initial results of a Canadian Multicenter Randomized Trial

    International Nuclear Information System (INIS)

    Coy, P.; Hodson, I.; Payne, D.G.; Evans, W.K.; Feld, R.; MacDonald, A.S.; Osoba, D.; Pater, J.L.

    1988-01-01

    Patients with limited stage small cell lung cancer were initially randomized to receive either three courses of Cyclophosphamide, Adriamycin, and Vincristine (CAV) followed by three courses of VP-16 and Cis-platin (VP-PT) or six courses of alternating CAV and VP-PT. Responding patients received prophylactic cranial radiation (PCI) after three courses of chemotherapy (CT) and loco-regional thoracic radiation (LRTR) after six courses. No maintenance chemotherapy was given. Patients receiving LRTR were randomized to receive either 25 Gy in ten fractions over 2 weeks (SD) or 37.5 Gy in 15 fractions over 3 weeks (HD). In both arms the pre-chemotherapy disease was treated with a 2 cm margin around the primary tumor volume. The mediastinum was included in the treatment volume and the supraclavicular nodes were also included if involved originally. The spinal cord was shielded after 32 Gy. Of the 333 patients enrolled by the time the trial closed in October 1984, 168 were eventually randomized to LRTR and are eligible for response assessment. The overall response rate after combined RT and CT was 94% (CR 67%, PR 27%). The CR rate for SD was 65% and for HD 69%. The combined treatment was well tolerated by most patients. Forty-nine percent of HD patients developed dysphagia compared to 26% of those SD (p less than 0.01). At the time of this analysis the median duration of follow-up since randomization to radiotherapy is 30 months. The median local progression-free survival on HD is 49 weeks. On SD it is 38 weeks (p = 0.05, one sided). The actuarial incidence of local progression by 2 years is 69% on HD and 80% on LD. There is as yet no significant difference in overall survival between the two arms. It appears that HD radiotherapy as administered in this study may have an impact on local control, but it is too early to determine if this will translate into a survival benefit

  16. Dose concentration and dose verification for radiotherapy of cancer

    International Nuclear Information System (INIS)

    Maruyama, Koichi

    2005-01-01

    The number of cancer treatments using radiation therapy is increasing. The background of this increase is the accumulated fact that the number of successful cases is comparative to or even better than surgery for some types of cancer due to the improvement in irradiation technology and radiation planning technology. This review describes the principles and technology of radiation therapy, its characteristics, particle therapy that improves the dose concentration, its historical background, the importance of dose concentration, present situation and future possibilities. There are serious problems that hinder the superior dose concentration of particle therapy. Recent programs and our efforts to solve these problems are described. A new concept is required to satisfy the notion of evidence based medicine, i.e., one has to develop a method of dose verification, which is not yet available. This review is for researchers, medical doctors and radiation technologists who are developing this field. (author)

  17. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    Science.gov (United States)

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  18. General considerations of the choice of dose limits, averaging areas and weighting factors for the skin in the light of revised skin cancer risk figures and experimental data on non-stochastic effects

    International Nuclear Information System (INIS)

    Charles, M.W.

    1990-01-01

    Recent biological data from man and pig on the non-stochastic effects following exposure with a range of β-emitters are combined with recent epidemiological analyses of skin cancer risks in man to form a basis for suggested improved protection criteria following whole- or partial-body skin exposures. Specific consideration is given to the choice of an organ weighting factor for evaluation of effective dose-equivalent. Since stochastic and non-stochastic end-points involve different cell types at different depths in the skin, the design of an ideal physical dosemeter may depend on the proportion of the body skin exposed and the radiation penetrating power. Possible choices of design parameters for skin dosemeters are discussed. Limitation of skin exposure from small radioactive sources ('hot particles') is addressed using animal data. (author)

  19. Limitations of high dose carrier based formulations.

    Science.gov (United States)

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  20. The revision of dose limits for exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Hughes, D.

    1990-01-01

    The paper reviews the current dose limits for exposure to ionizing radiations and the risk factors on which they are based, and summarizes the revised risk factors and the draft proposals for new dose limits published by the International Commission on Radiological Protection. (author)

  1. Screening Doses for Induction of Cancers Calculated with the Interactive RadioEpidemiological Program (IREP)

    National Research Council Canada - National Science Library

    Kocher, David C; Apostoaei, Julian A

    2007-01-01

    This report presents tabulations of equivalent doses of ionizing radiation, referred to as screening doses, that correspond to an estimated probablity of causation of specific cancers of approximately 50% at the upper 99% credibility limit...

  2. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  3. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  4. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  5. ICRP-recommendations on dose limits for workers

    International Nuclear Information System (INIS)

    Beninson, D.J.

    1976-01-01

    Dose limits proposed by the ICRP have been incorporated in most national and international standards and their respect has caused a distribution of doses with a average not exceeding 1/10 of the maximum permissible dose. This distribution corresponds to a risk which is well within the risks in 'safe industries'. There are at present some inconsistancies in the current system of recommended limits, for example having the same limit of 5 rem for the whole-body and also for some organs. Hopefully, this incosistancy will be removed in the next recommendation of the ICRP. But the whole-body limit of 5 rem in a year has been safe and there is little ground to reduce this limit on the basis of comparisons with 'safe industries'. (orig./HP) [de

  6. Fetal dose evaluation during breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Antypas, Christos; Sandilos, Panagiotis; Kouvaris, John; Balafouta, Ersi; Karinou, Eleftheria; Kollaros, Nikos; Vlahos, Lambros

    1998-01-01

    Purpose: The aim of the work was to estimate the radiation dose delivered to the fetus in a pregnant patient irradiated for breast cancer. Methods and Materials: A 45-year woman was treated for left breast cancer using a 6 MV photon beam with two isocentric opposing tangential unwedged fields. Daily dose was 2.3 Gy at 95% isodose line given by two fields/day, 5 days/week. A total dose of 46 Gy was given in 20 fractions over a 4-week period. Pregnancy confirmed during the second therapeutic week. Treatment lasted between the second and sixth gestation week. Radiation dose to fetus was estimated from in vivo and phantom measurements using thermoluminescence dosimeters and an ionization chamber. In vivo measurements were performed by inserting either a catheter with TL dosimeters or ionization chamber into the patient's rectum. Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. Results: TLD measurements (in vivo and phantom) revealed fetal dose to be 0.085% of the tumor dose, corresponding to a cumulative fetal dose of 3.9 cGy for the entire treatment of 46 Gy. Chamber measurements (in vivo and phantom) revealed a fetal dose less than the TLD result: 0.079 and 0.083% of the tumor dose corresponding to cumulative fetal dose of 3.6 cGy and 3.8 cGy for in vivo and phantom measurement, respectively. Conclusions: It was concluded that the cumulative dose delivered to the unshielded fetus was 3.9 cGy for a 46 Gy total tumor dose. The estimated fetal dose is low compared to the total tumor dose given due to the early stage of pregnancy, the large distance between fundus-radiation field, and the fact that no wedges and/or lead blocks were used. No deterministic biological effects of radiation on the live-born embryo are expected. The lifetime risk for radiation-induced fatal cancer is higher than the normal incidence, but is considered as inconsequential

  7. I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident

    OpenAIRE

    Brenner, Alina V.; Tronko, Mykola D.; Hatch, Maureen; Bogdanova, Tetyana I.; Oliynik, Valery A.; Lubin, Jay H.; Zablotska, Lydia B.; Tereschenko, Valery P.; McConnell, Robert J.; Zamotaeva, Galina A.; O?Kane, Patrick; Bouville, Andre C.; Chaykovskaya, Ludmila V.; Greenebaum, Ellen; Paster, Ihor P.

    2011-01-01

    Background: Current knowledge about Chornobyl-related thyroid cancer risks comes from ecological studies based on grouped doses, case?control studies, and studies of prevalent cancers. Objective: To address this limitation, we evaluated the dose?response relationship for incident thyroid cancers using measurement-based individual iodine-131 (I-131) thyroid dose estimates in a prospective analytic cohort study. Methods: The cohort consists of individuals < 18 years of age on 26 April 1986 who ...

  8. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  9. Radiation dose and subsequent risk for stomach cancer in long-term survivors of cervical cancer

    DEFF Research Database (Denmark)

    Kleinerman, Ruth A; Smith, Susan A; Holowaty, Eric

    2013-01-01

    To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer.......To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer....

  10. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  11. High-dose vitamin C and cancer

    Directory of Open Access Journals (Sweden)

    Ahmet Unlu, M.D.

    2016-01-01

    Full Text Available Vitamin C (ascorbic acid, ascorbate is a basic compound that is of great importance with its role in various enzymatic reactions including the synthesis of collagen, as well as with its redox functions. Vitamin C has become the center of interest in cancer studies, in consequence of the facts that connective tissue changes and vitamin C deficiency were first alleged to be associated with cancer in the 1950s; and that high doses of vitamin C was asserted to be cytotoxic for cancer cells, later on. The results of the first study carried out in the 1970s were promising; but afterwards, the studies were ascertained to be faulty. Despite the positive results achieved from some laboratory and animal experiments, randomized clinical trials did not verify those findings, and no clear benefit of vitamin C for cancer treatment could be demonstrated. As for studies, where its use in combination with other cancer treatment regimens was assessed, conflicting results were obtained. Although intake of high doses of vitamin C is alleged to be harmless, based on that it is in the group of water soluble vitamins and is not stored in the body, there are many side effects and drug interactions reported in the literature. For now, it is better to abstain from this treatment, until the benefit of the treatment (if any is clearly demonstrated, considering the potential side effects and interactions.

  12. Experience with dose limitation during preparations for sea dumping operations

    International Nuclear Information System (INIS)

    Fieuw, G.; Voorde, N. van de; Baekelandt, L.

    1982-01-01

    Since 1967 low-level radioactive wastes from operational nuclear facilities in Belgium have been dumped into the sea. The dumping is carried out in accordance with the recommendations issued by the IAEA under the London Convention. All these dumping operations have taken place under the surveillance of the Nuclear Energy Agency of the OECD. To limit the doses received by workers and the public during the various phases leading up to sea dumping, appropriate measures are required in connection with waste treatment and packaging, limitation of radiation levels, storage and handling, organization and selection of the means of transport and organization and means of monitoring. Although treatment and handling at the nuclear sites are entrusted to occupationally exposed workers, temporary labour is used for the transport and handling operations. Effective treatment and packaging reduce the risk of internal exposure to a negligible value. Meticulous planning and permanent personnel monitoring reduce the doses received by the workers to acceptable values not exceeding the statutory dose limits. The doses received by personnel involved in the preparations for sea dumping operations from 1967 to 1980 are given and a relationship is established between these doses and the activities handled. Experience shows that sea dumping operations do not entail unacceptable risks either for the workers concerned or for the population and allows us to optimize the methods used for loading, handling and transport. (author)

  13. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    International Nuclear Information System (INIS)

    Maldonado, Delis

    2012-01-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  14. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  15. Prostate cancer: Doses and volumes of radiotherapy

    International Nuclear Information System (INIS)

    Hennequin, C.; Rivera, S.; Quero, L.; Latorzeff, I.

    2010-01-01

    Radiotherapy is nowadays a major therapeutic option in prostate cancer. Technological improvements allowed dose escalation without increasing late toxicity. Some randomized trials have shown that dose escalation decreases the biochemical failure rate, without any benefit in survival with the present follow-up. However, some studies indicate that the distant metastases rate is also decreased. Most of these studies have been done without hormonal treatment, and the role of dose escalation in case of long-term androgen deprivation is unknown. The target volume encompassed the whole gland: however, complete or partial focal treatment of the prostate can be done with sophisticated IMRT technique and must be evaluated. Proximal part of the seminal vesicles must be included in the target volumes. The role of nodal irradiation is another debate, but it could be logically proposed for the unfavourable group. (authors)

  16. Should repository release criteria be based on collective dose, release limits, or individual doses?

    International Nuclear Information System (INIS)

    Channell, J.K.; Neill, R.H.

    1999-01-01

    The advantages and disadvantages of using each of 3 alternative methods (collective dose, release limits, and individual dose) as release criteria for determining long-term high level or transuranic waste repository performance of naturally occurring releases or man-made intrusions are evaluated. Each of the alternative approaches have positive aspects and each has uncertainties that require some arbitrary assumptions. A comparison of the numerical results from evaluating the three alternatives at WIPP leads to the conclusion that a collective dose is preferable because it is more site specific and allows consideration of the full effects of human intrusion. The main objection to release limits is they do not use site specific criteria to determine the radiological effect on local and regional populations. Individual dose criteria used and recommended in the United States have ignored doses to drillers and the public from wastes brought to the surface by human intrusion because these doses can be greater than acceptable limits. Also, there is disagreement about defining the location and lifestyle of the individual

  17. Rethinking basic concepts in ICRP's system of dose limitation

    International Nuclear Information System (INIS)

    Mills, W.A.; Mossman, K.L.

    1991-01-01

    The present criterion for radiation protection appears to be exposure reduction rather than adequate protection of health. The 1990 ICRP draft recommendations for a system of dose limitation would further implement this more restrictive criterion by implementing certain academic concepts and assumptions. These concepts and assumptions are discussed and the suggestion is made that the radiation protection community needs to carefully examine the need for the complex system proposed

  18. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Shah, Chirag; Badiyan, Shahed; Berry, Sameer; Khan, Atif J.; Goyal, Sharad; Schulte, Kevin; Nanavati, Anish; Lynch, Melanie; Vicini, Frank A.

    2014-01-01

    Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging

  19. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Bartenstein, Peter; Belka, Claus; Ganswindt, Ute

    2010-01-01

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the

  20. State of the art in Europe on dose limit

    International Nuclear Information System (INIS)

    Munoz, M. J.; Amor, I.

    2002-01-01

    The process of setting up new radiological protection limits and requirements constitutes a long and laborious task, since the definition of the scientific bases that support them until their obliged fulfillment by adoption in national regulations. This paper analyzes the most important news contained in the Directive 96/29/Euratom, that are being transposed into Member States national legislations. Additionally the implications derived from the process are taken into consideration. Certain items as the new dose limits for exposed workers and public, the application of dose constraints, and the requirements for the protection of pregnant women and fetus, were object of special controversy during the development of the directive and they are not being transposed in a common way. So the different approach in the setting up of occupational doses can generate difficulties in the context of the european market. Through the directive constitutes the framework for the radiological protection in the European Union, there are certain difficulties for common implementation that will require subsequent explanations from the Commission and the Competent National Authorities. (Author)

  1. Evaluation of effective dose and excess lifetime cancer risk from ...

    African Journals Online (AJOL)

    Evaluation of effective dose and excess lifetime cancer risk from indoor and outdoor gamma dose rate of university of Port Harcourt Teaching Hospital, Rivers State. ... Therefore, the management of University of Port Harcourt teaching hospital ...

  2. The principles of dose limitation in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1988-01-01

    The aim of radiation protection is to protect individuals, their offspring and the population as a whole against harmful effects from ionizing radiation and radioactive substances. Harmful effects may be either somatic, i.e. occurring in the exposed person himself/herself, or hereditary, i.e. occurring in the exposed person's offspring. Successful radiation protection involves (a) protective measures based on the results of research into the biological and biophysical effects of radiation and (b) ensuring that activities necessitating exposure are justified and that the degree of exposure is minimal. This benefit/risk principle ceases to apply if a radiation source is out of control, since the main aim is then to introduce risk limitation measures, provided that these are of positive net benefit to the individual and the population as a whole. This paper discusses the principles of dose limitation as a function of exposure conditions, i.e. controlled or uncontrolled exposure to a source of radiation

  3. Absorbed dose measurement by the MIRD system in the 131-I treated Thyroid Cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woon; Lim, Sang Mu; Kim, Chang Hui; Kim, Ki Sub; Cho, Jong Sio; Jeong, Jin Sung; Park, Heung Kyu; Kwon, Oh Jin [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    Medical Internal Radiation Dose(MIRD) schema was developed for calculating the absorbed dose from the administrated radiopharmaceuticals. With the biological distribution data and physical properties of the radionuclide, we can estimated the absorbed dose by the MIRD schema. For the thyroid cancer patients received high dose 131-I therapy, the absorbed dose to the bone marrow is limiting factor to the administered dose and the duration of admission is determined by the retained activity in the whole body. To the monitoring of whole body radioactivity, we used Eberline Smart 200 system using ionization chamber as a detector. With the time activity (Author).

  4. Revision of risk estimates and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    It has been apparent for some time that our estimates of the risks associated with exposure to ionizing radiation must be increased above those values reported by UNSCEAR in 1977 an dused by ICRP to form their present recommendations. NRPB foresaw some of these changes and introduced interim advice within the UK to restrict exposures of wordkers and members of the public to levels below the existing limits. Since that advice was given, UNSCEAR has produced a 1988 report reviewing human data to provide new estimates of risks associated with exposure at high doses and high doserates. These risk figures are up to 4 times higher than when UNSCEAR reported in 1977. In this paper, the reasons for the changes in the estimates of risk will be described and the current NRPB guidelines for risk factors for protection purposes will be presented. The implications of these new risk factors for the setting of dose limits will then be discussed. (Author). 10 refs.; 2 tabs

  5. Impact of reduced dose limits on NRC licensed activities. Major issues in the implementation of ICRP/NCRP dose limit recommendations: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B. [Brookhaven National Lab., Upton, NY (United States)

    1995-05-01

    This report summarizes information required to estimate, at least qualitatively, the potential impacts of reducing occupational dose limits below those given in 10 CFR 20 (Revised). For this study, a questionnaire was developed and widely distributed to the radiation protection community. The resulting data together with data from existing surveys and sources were used to estimate the impact of three dose-limit options; 10 mSv yr{sup {minus}1} (1 rem yr{sup {minus}1}), 20 mSv yr{sup {minus}1} (2 rem yr{sup {minus}1}), and a combination of an annual limit of 50 mSv yr{sup {minus}1} (5 rem yr{sup {minus}1}) coupled with a cumulative limit, in rem, equal to age in years. Due to the somewhat small number of responses and the lack of data in some specific areas, a working committee of radiation protection experts from a variety of licensees was employed to ensure the exposure data were representative. The following overall conclusions were reached: (1) although 10 mSv yr{sup {minus}1} is a reasonable limit for many licensees, such a limit could be extraordinarily difficult to achieve and potentially destructive to the continued operation of some licensees, such as nuclear power, fuel fabrication, and medicine; (2) twenty mSv yr{sup {minus}1} as a limit is possible for some of these groups, but for others it would prove difficult. (3) fifty mSv yr{sup {minus}1} and age in 10s of mSv appear reasonable for all licensees, both in terms of the lifetime risk of cancer and severe genetic effects to the most highly exposed workers, and the practicality of operation.

  6. Impact of reduced dose limits on NRC licensed activities. Major issues in the implementation of ICRP/NCRP dose limit recommendations: Final report

    International Nuclear Information System (INIS)

    Meinhold, C.B.

    1995-05-01

    This report summarizes information required to estimate, at least qualitatively, the potential impacts of reducing occupational dose limits below those given in 10 CFR 20 (Revised). For this study, a questionnaire was developed and widely distributed to the radiation protection community. The resulting data together with data from existing surveys and sources were used to estimate the impact of three dose-limit options; 10 mSv yr -1 (1 rem yr -1 ), 20 mSv yr -1 (2 rem yr -1 ), and a combination of an annual limit of 50 mSv yr -1 (5 rem yr -1 ) coupled with a cumulative limit, in rem, equal to age in years. Due to the somewhat small number of responses and the lack of data in some specific areas, a working committee of radiation protection experts from a variety of licensees was employed to ensure the exposure data were representative. The following overall conclusions were reached: (1) although 10 mSv yr -1 is a reasonable limit for many licensees, such a limit could be extraordinarily difficult to achieve and potentially destructive to the continued operation of some licensees, such as nuclear power, fuel fabrication, and medicine; (2) twenty mSv yr -1 as a limit is possible for some of these groups, but for others it would prove difficult. (3) fifty mSv yr -1 and age in 10s of mSv appear reasonable for all licensees, both in terms of the lifetime risk of cancer and severe genetic effects to the most highly exposed workers, and the practicality of operation

  7. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  8. Cancer chemoprevention through dietary flavonoids: what's limiting?

    Science.gov (United States)

    Amawi, Haneen; Ashby, Charles R; Tiwari, Amit K

    2017-06-19

    Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug-drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.

  9. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  10. Dose-response relationship for breast cancer induction at radiotherapy dose

    Directory of Open Access Journals (Sweden)

    Gruber Günther

    2011-06-01

    Full Text Available Abstract Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i the analysis of breast cancer induction after Hodgkin's disease, (ii a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients.

  11. Cervical cancer: intracavitary dose specification and prescription

    International Nuclear Information System (INIS)

    Potish, R.A.; Gerbi, B.J.

    1987-01-01

    Dose and volume specifications for reporting intracavitary therapy were analyzed according to criteria recommended by the International Commission on Radiation Units and Measurements (ICRU). Ninety Fletcher-Suit radium applications were studied to examine the validity of the assumptions of the ICRU and the merit of their routine reporting. It was demonstrated that the reporting recommendations were inconsistent with clinical prescription systems and added little to dose specification. The distinction between dose specification and dose prescription was stressed

  12. Cancer and non-cancer risk at low doses of radiation: biological basis of radiation-environment interplay

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2013-01-01

    Cancer and non-cancer risk at low doses of ionizing radiation remains poorly defined due to ambiguity at low doses caused by limitations in statistical power and information available on interplay with environment. To deal with these problems, a novel non-parametric statistics was developed based on artificial neural networks theorem and applied to cancer and non-cancer risk in A-bomb survivors. The analysis revealed several unique features at low doses that could not be accounted for by nominal radiation dose alone. They include (1) threshold that varies with organ, gender and age, including cardiovascular diseases, (2) prevalence of infectious diseases, and (3) suppression of pathogenesis of HTLV1. The threshold is unique as it is manifested as negative excess relative risk, a reduction of spontaneous rate at low doses. The response is consistent with currently emerging laboratory data on DNA double-strand break (DSB) repair pathway choice and its sustainability as epigenetic memory in accordance with histone code theory. In response to DSB, of radiation or DNA replication arrest origin, distinct and competitively operating repair pathways are instigated. Activation by low doses of restitution-directed canonical non-homologous end-joining (C-NHEJ) suppresses both error-prone alternative end-joining (Alt-NHEJ) and homologous recombination (HR). The latter two present major pathways to mutagenesis at stalled replication folk associated with endogenous and exogenous genotoxin such as tobacco smoke metabolites and AID-associated somatic hypermutation and class switch recombination in Ig gene. Suppression of these error-prone pathways by low doses of low LET radiation is consistent with the reduction of cancer occurrence by environmental genotoxin, immunodiversity and stable integration of retrovirus DNA, providing a significant modulator of dose linearity at low doses. Whole picture may bring about a new landscape of cancer and non-cancer molecular epidemiology which

  13. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  14. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  15. Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer

    International Nuclear Information System (INIS)

    Cohen, A.F.; Cohen, B.L.

    1978-01-01

    The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, sex, age group, geographic area, and time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners over-estimates the total number of observed lung cancers in many countries in the early years of this century; the discrepancy is substantially increased if the 30-44 year age range and/or if only females are considered, and by the fact that many other causes of lung cancer are shown to have been important at that time. The degree to which changes of diagnostic efficiency with time can influence the analysis is considered at some length. It is concluded that the linear relationship substantially over-estimates effects of low radiation doses. A similar analysis is applied to leukemia induced by natural radiation, applying selectivity by age, sex, natural background level, and date, and considering other causes. It is concluded that effects substantially larger than those obtained from linear extrapolation are excluded. The use of the selectivities mentioned above is justified by the fact that the incidence of cancer or leukemia is an upper limit on the rate at which it is caused by radiation effects; in determining upper limits it is justifiable to select situations which minimize it. (author)

  16. Radiation dose and second cancer risk in patients treated for cancer of the cervix

    International Nuclear Information System (INIS)

    Boice, J.D. Jr.; Engholm, G.; Kleinerman, R.A.

    1988-01-01

    The risk of cancer associated with a broad range of organ doses was estimated in an international study of women with cervical cancer. Among 150,000 patients reported to one of 19 population-based cancer registries or treated in any of 20 oncology clinics, 4188 women with second cancers and 6880 matched controls were selected for detailed study. Radiation doses for selected organs were reconstructed for each patient on the basis of her original radiotherapy records. Very high doses, on the order of several hundred gray, were found to increase the risk of cancers of the bladder [relative risk (RR) = 4.0], rectum (RR = 1.8), vagina (RR = 2.7), and possibly bone (RR = 1.3), uterine corpus (RR = 1.3), cecum (RR = 1.5), and non-Hodgkin's lymphoma (RR = 2.5). For all female genital cancers taken together, a sharp dose-response gradient was observed, reaching fivefold for doses more than 150 Gy. Several gray increased the risk of stomach cancer (RR = 2.1) and leukemia (RR = 2.0). Although cancer of the pancreas was elevated, there was no evidence of a dose-dependent risk. Cancer of the kidney was significantly increased among 15-year survivors. A nonsignificant twofold risk of radiogenic thyroid cancer was observed following an average dose of only 0.11 Gy. Breast cancer was not increased overall, despite an average dose of 0.31 Gy and 953 cases available for evaluation (RR = 0.9); there was, however, a weak suggestion of a dose response among women whose ovaries had been surgically removed. Doses greater than 6 Gy to the ovaries reduced breast cancer risk by 44%. A significant deficit of ovarian cancer was observed within 5 years of radiotherapy; in contrast, a dose response was suggested among 10-year survivors

  17. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  18. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  19. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  20. Low doses of prophylactic cranial irradiation effective in limited stage small cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Rubenstein, James H.; Dosoretz, Daniel E.; Katin, Michael J.; Blitzer, Peter H.; Salenius, Sharon A.; Floody, Patrick A.; Harwin, William N.; Teufel, Thomas E.; Raymond, Michael G.; Reeves, James A.; Hart, Lowell L.; McCleod, Michael J.; Pizarro, Alejandro; Gabarda, Antonio L.; Rana, Van G.

    1995-01-01

    Purpose: Prophylactic cranial irradiation (PCI) for the prevention of brain metastasis in small cell lung cancer remains controversial, both in terms of efficacy and the optimal dose-fractionation scheme. We performed this study to evaluate the efficacy of PCI at low doses. Methods and Materials: One hundred and ninety-seven patients were referred to our institution for treatment of limited stage small cell carcinoma of the lung between June 1986 and December 1992. Follow-up ranged from 1.1 to 89.8 months, with a mean of 19 months. Eighty-five patients received PCI. Results: Patients receiving PCI exhibited brain failure in 15%, while 38% of untreated patients developed metastases. This degree of prophylaxis was achieved with a median total dose of 25.20 Gy and a median fraction size of 1.80 Gy. At these doses, acute and late complications were minimal. Patients receiving PCI had significantly better 1-year and 2-year overall survivals (68% and 46% vs. 33% and 13%). However, patients with a complete response (CR) to chemotherapy and better Karnofsky performance status (KPS) were overrepresented in the PCI group. In an attempt to compare similar patients in both groups (PCI vs. no PCI), only patients with KPS ≥ 80, CR or near-CR to chemotherapy, and treatment with attempt to cure, were compared. In this good prognostic group, survival was still better in the PCI group (p = 0.0018). Conclusion: In this patient population, relatively low doses of PCI have accomplished a significant reduction in the incidence of brain metastasis with little toxicity. Whether such treatment truly improves survival awaits the results of additional prospective randomized trials

  1. Cancer risk at low doses of ionizing radiation. Artificial neural networks inference from atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (1) the presence of a threshold that varied with organ, gender and age at exposure, and (2) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239 Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. (author)

  2. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  3. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  4. Low-dose irradiation for controlling prostate cancer

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    2003-01-01

    Prostate cancer is the second most commonly diagnosed cancer among North American men and the second leading cause of death in those aged 65 and over. The American Cancer Society recommends testing those over age 50 who are expected to live at least 10 years, even though the ability of early detection to decrease prostate cancer mortality has not been demonstrated. So controversy exists about the appropriateness of screening because of the considerable economic and social burden of diagnosing and treating prostate cancer, coupled with the projected large increase in the number of new cases as the population ages. This very important public health issue could be addressed at low cost by total-body low-dose irradiation therapy to stimulate the patient's own defences to prevent and control most cancers, including prostate cancer, with no symptomatic side effects. (author)

  5. Dose escalation with 3-D CRT in prostate cancer: five year dose responses and optimal treatment

    International Nuclear Information System (INIS)

    Hanks, Gerald; Hanlon, Alexandra; Pinover, Wayne; Hunt, Margie; Movsas, Benjamin; Schultheiss, Timothy

    1997-01-01

    Purpose: To report 5 yr dose responses in prostate cancer patients treated with 3D-CRT and describe optimal treatment based on dose response. Methods: Dose escalation was studied in 233 consecutive patients treated with 3D-CRT between 3/89 and 10/92. All surviving patients have >32 mo follow-up, the median follow-up is 55 mo. Estimated logistic cumulative distribution functions (logit response models) fit to 5 yr actuarial bNED outcome are reported for 3 dose groups in each of 3 pretreatment PSA groupings (10-19.9 ng/ml and 20+ ng/ml); no dose response is observed for patients with pretreatment PSA <10 ng/ml. Logit response models fit to 5 yr actuarial late morbidity rates (grade 2 GI, grade 2 GU, grade 3,4 GI) are also reported for 4 dose groups. Patients are treated with CT planned 4-field conformal technique where the PTV encompasses the CTV by 1.0 cm in all directions including the anterior rectal wall margin. Patients are followed at 6 mo intervals with PSA and DRE, and bNED failure is defined as PSA ≥1.5 ng/ml and rising on two consecutive measures. The Fox Chase modification of the LENT morbidity scale is used for GI morbidity including any blood transfusion and/or more than 2 coagulations as a grade 3 event. GU morbidity follows the RTOG scale. Results: The logit response models based on 5 yr bNED results have slopes of 27% and 18% for pretreatment PSA grouping 10-19.9 ng/ml and 20+ ng/ml, respectively. The 50% bNED response is observed at 71 Gy and 80 Gy respectively, while the 80% bNED response is observed at 76 Gy for the 10-19.9 ng/ml group and estimated at 88 Gy for the 20+ ng/ml group. Logit dose response models for grade 2 GI and grade 2 GU morbidity show markedly different slopes, 23% versus 4%, respectively. The slope for grade 3,4 GI is 12%. The dose response model indicates grade 3,4 GI complication rates at 5 yrs are 8% at 76 Gy and 12% at 80 Gy. Conclusion: Based on 5 yr results, we can draw some conclusions about appropriate dose from these

  6. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer

    International Nuclear Information System (INIS)

    Oliveira, Jetro Pereira de; Batista, Delano Valdivino Santos; Bardella, Lucia Helena; Carvalho, Arnaldo Rangel

    2009-01-01

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  7. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  8. Practical low dose limits for passive personal dosemeters and the implications for uncertainties close to the limit of detection

    International Nuclear Information System (INIS)

    Gilvin, P. J.; Perks, C. A.

    2011-01-01

    Recent years have seen the increasing use of passive dosemeters that have high sensitivities and, in laboratory conditions, detection limits of <10 μSv. However, in real operational use the detection limits will be markedly higher, because a large fraction of the accrued dose will be due to natural background, and this must be subtracted in order to obtain the desired occupational dose. No matter how well known the natural background is, the measurement uncertainty on doses of a few tens of microsieverts will be large. Individual monitoring services need to recognise this and manage the expectations of their clients by providing sufficient information. (authors)

  9. High-Dose Atomoxetine Treatment of ADHD in Youths with Limited Response to Standard Doses

    Science.gov (United States)

    Kratochvil, Christopher J.; Michelson, David; Newcorn, Jeffrey H.; Weiss, Margaret D.; Busner, Joan; Moore, Rodney J.; Ruff, Dustin D.; Ramsey, Janet; Dickson, Ruth; Turgay, Atilla; Saylor, Keith E.; Luber, Stephen; Vaughan, Brigette; Allen, Albert J.

    2007-01-01

    Objective: To assess the utility and tolerability of higher than standard atomoxetine doses to treat attention-deficit/hyperactivity disorder (ADHD). Method: Two randomized, double-blind trials of atomoxetine nonresponders ages 6 to 16 years were conducted comparing continued treatment with same-dose atomoxetine to treatment using greater than…

  10. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  11. Present dose limits and their relation to radiosensitivity of different organs and tissues

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dose equivalent limits in relation to dose thresholds are considered for injury of various tissues and organs to evaluate the protection agains non-stochastic irradiation effects by the existing system of dose limitation for radiotherapeutic personnel. Data on tissue radiosensitivity in relation to non-stochastic effects, obtained from radiotherapeutic experience, are presented. Dose threshold values, derived for patients, with a correction in the direction of increase, may be applied to conditions of occupational exposure except for bone marrow, gonads and eye lens, where threshold doses are lower

  12. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  13. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  14. Radiation therapy and concurrent fixed dose amifostine with escalating doses of twice-weekly gemcitabine in advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Yavuz, A. Aydin; Aydin, Fazil; Yavuz, Melek N.; Ilis, Esra; Ozdemir, Feyyaz

    2001-01-01

    Purpose: To determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of twice-weekly gemcitabine (TW-G) when administered in conjunction with fixed dose amifostine (A) during external radiotherapy (RT) in patients with advanced pancreatic cancer. Methods and Materials: Ten patients with previously untreated, locally advanced, or asymptomatic-metastatic pancreatic adenocarcinoma were enrolled in this study. RT was delivered by using the standard four-field technique (1.8 Gy daily fractions, 45 Gy followed by a boost of 5.4 Gy, in 5-1/2 weeks). The starting dose of TW-G was 60 mg/m 2 (i.v., 30-min infusion), which is equal to the upper limit of previously reported MTD of TW-G when given without A during RT. A was given just before the TW-G, at a fixed dose of 340 mg/m 2 (i.v., rapid infusion). TW-G doses were escalated by 30-mg/m 2 increments in successive cohorts of 3 to 6 additional patients until DLT was observed. Toxicities were graded using the Radiation Therapy Oncology Group and National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In general, therapy was well tolerated in patients treated at the first two dose levels of 60 mg/m 2 and 90 mg/m 2 . The DLT of TW-G given in conjunction with A during RT were neutropenia, thrombocytopenia, and nausea/vomiting at the dose level of 120 mg/m 2 . Of the 10 patients eligible for a median follow-up of 10 months, 5 remain alive; 1 complete responder, 3 partial responders, and 1 with stable disease. Conclusion: A dose of TW-G at a level of 90 mg/m 2 produced tolerable toxicity and it may possess significant activity when delivered in conjunction with 340 mg/m 2 dose of A during RT of the upper abdomen. Due to the higher MTD of TW-G seen in our study, we consider that the A supplementation may optimize the therapeutic index of TW-G-based chemoradiotherapy protocols in patients with pancreatic carcinoma

  15. Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer

    International Nuclear Information System (INIS)

    Cohen, A.F.; Cohen, B.L.

    1980-01-01

    The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, smoking habits, sex, age group, geographic area and/or time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners implies that the majority of all lung cancers among non-smokers are due to radon; since lung cancers in miners are mostly small-cell undifferentiated (SCU), a rather rare type in general, linearity over predicts the frequency of SCU lung cancers among non smokers by a factor of 10, and among non-smoking females age 25-44 by a factor of 24. Similarly, linearity predicts that the majority of all lung cancers early in this century were due to radon even after due consideration is given to cases missed by poor diagnostic efficiency (this matter is considered in some detail). For the 30-40 age range, linearity over predicts the total lung cancer rate at that time by a factor of 3-6; for SCU lung cancer, the over-prediction is by at least a factor of 10. Other causes of lung cancer are considered which further enhance the degree to which the linearity assumption over-estimates the effects of low level radiation. A similar analysis is applied to leukemia induced by natural radiation. It is concluded that the upper limit for this is not higher than estimates from the linearity hypothesis. (author)

  16. Epistemological problems in assessing cancer risks at low radiation doses

    International Nuclear Information System (INIS)

    Walinder, G.

    1987-01-01

    Historically, biology has not been subjected to any epistemological analysis as has been the case with mathematics and physics. Our knowledge of the effects in biological systems of various stimuli proves to be dualistic in a complementary (although not mutually exclusive) way, which bears resemblance to the knowledge of phenomena in quantum physics. The dualistic limbs of biological knowledge are the action of stimuli and the response of the exposed, biological system. With regard to radiogenic cancer, this corresponds to the action of the ionizations and the response of the exposed mammal to that action, respectively. The following conclusions can be drawn from the present analysis: Predictions as to radiogenic cancer seem often if not always to have neglected the response variability (variations in radiosensitivity) in individuals or among individuals in populations, i.e. the predictions have been based exclusively on radiation doses and exposure conditions. The exposed individual or population, however, must be considered an open statistical system, i.e. a system in which predictions as to the effect of an agent are only conditionally possible. The knowledge is inverse to the size of the dose or concentration of the active agent. On epistemological grounds, we can not gain knowledge about the carcinogenic capacity of very low (non-dominant) radiation doses. Based on the same principle, we can not predict cancer risks at very low (non-dominant) radiation doses merely on the basis of models, or otherwise interpolated or extrapolated high-dose effects, observed under special exposure conditions

  17. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident.

    Science.gov (United States)

    Brenner, Alina V; Tronko, Mykola D; Hatch, Maureen; Bogdanova, Tetyana I; Oliynik, Valery A; Lubin, Jay H; Zablotska, Lydia B; Tereschenko, Valery P; McConnell, Robert J; Zamotaeva, Galina A; O'Kane, Patrick; Bouville, Andre C; Chaykovskaya, Ludmila V; Greenebaum, Ellen; Paster, Ihor P; Shpak, Victor M; Ron, Elaine

    2011-07-01

    Current knowledge about Chornobyl-related thyroid cancer risks comes from ecological studies based on grouped doses, case-control studies, and studies of prevalent cancers. To address this limitation, we evaluated the dose-response relationship for incident thyroid cancers using measurement-based individual iodine-131 (I-131) thyroid dose estimates in a prospective analytic cohort study. The cohort consists of individuals radioactivity measurements taken within 2 months after the accident, environmental transport models, and interview data. Excess radiation risks were estimated using Poisson regression models. Sixty-five incident thyroid cancers were diagnosed during the second through fourth screenings and 73,004 person-years (PY) of observation. The dose-response relationship was consistent with linearity on relative and absolute scales, although the excess relative risk (ERR) model described data better than did the excess absolute risk (EAR) model. The ERR per gray was 1.91 [95% confidence interval (CI), 0.43-6.34], and the EAR per 10⁴ PY/Gy was 2.21 (95% CI, 0.04-5.78). The ERR per gray varied significantly by oblast of residence but not by time since exposure, use of iodine prophylaxis, iodine status, sex, age, or tumor size. I-131-related thyroid cancer risks persisted for two decades after exposure, with no evidence of decrease during the observation period. The radiation risks, although smaller, are compatible with those of retrospective and ecological post-Chornobyl studies.

  18. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior–inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT–contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  19. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  20. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  1. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Picano, Eugenio; Vano, Eliseo; Domenici, Luciano; Bottai, Matteo; Thierry-Chef, Isabelle

    2012-01-01

    According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed

  2. Gastrectomy with limited surgery for elderly patients with gastric cancer

    Directory of Open Access Journals (Sweden)

    Koji Mikami

    2018-01-01

    Conclusion: Gastrectomy according to the gastric treatment guidelines for elderly patients with gastric cancer is recommended. Elderly male patients with poor nutrition have poor prognosis; prognostic nutrition index <40. Limited surgery is a treatment option for such patients.

  3. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  4. Low-dose CT: new tool for screening lung cancer?

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2001-01-01

    Lung cancer is the leading cause of death from malignant tumours as it is very common and has a poor prognosis at advanced tumour stages. Prognosis could be improved by treatment at early stages. As these stages are usually asymptomatic, a diagnostic test that would allow detection of early tumour stages in a population at risk could potentially reduce mortality from lung cancer. Previous approaches using chest radiography and sputum cytology in smokers have been disappointing. Fluorescent bronchoscopy and molecular markers are not yet applicable in clinical routine. Because of its high sensitivity for small pulmonary nodules, which are the most common manifestation of early lung cancer, CT appears suitable as a screening test. Low-dose examination parameters can and should be used for this purpose. From clinical practice it is well known that chest CT often demonstrates small pulmonary nodules, which do not represent lung cancer. Therefore, non-invasive diagnostic algorithms are required to avoid unnecessary biopsies in benign lesions. In preliminary studies of low-dose CT using algorithms based on size and density of detected nodules a large proportion of asymptomatic lung cancers and a large proportion of early, resectable tumour stages were found with a small proportion of invasive procedures for benign nodules. Before this technology can be recommended for broad application, however, further information is required regarding appropriate inclusion criteria (smoking habits, age groups) and screening intervals. Most importantly, further data are required to clarify whether lung cancer screening using low-dose CT can actually reduce mortality from lung cancer. (orig.)

  5. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Roberts, Kenneth B.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-04-01

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes, liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.

  6. Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel L.; Debeb, Bisrat G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thames, Howard D. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-09-01

    Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. An independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.

  7. Single high dose intraoperative electrons for advanced stage pancreatic cancer: Phase I pilot study

    International Nuclear Information System (INIS)

    Goldson, A.L.; Ashaveri, E.; Espinoza, M.C.

    1981-01-01

    Phase I toxicity studies with intraoperative radiotherapy proved to be a feasible adjunct to surgery for unresectable malignancies of the pancreas at Howard University Hospital. There have been minimal side effects or complications related to the combination of limited surgical decompression and intraoperative radiotherapy alone. The toxic effects of intraoperative radiotherapy on normal tissues is being assessed on a dose volume basis. Doses of 2000 to 2500 rad in a single exposure to include the pancreas, regional nodes and duodenum are acceptable if the total treatment volume is less than or equal to 100 cm. The tumoricidal effects on the cancer are demonstratable when one reviews the pathological specimens that illustrate massive tumor necrosis and fibros replacement, but in all cases reviewed, viable cancer was noted. Intraoperative radiotherapy, therefore, represents a significant boost dose for resectable, partially resectable or non-resectable tumors when added to conventional external beam irradiation and/or chemotherapy. Preliminary clinical data and minimal toxicity justifies further investigation

  8. Age-dependent dose factors and dose limits of annual radioactivity uptake with unsealed radioactive substances by occupationally exposed persons

    International Nuclear Information System (INIS)

    Kaul, A.; Nosske, D; Elsasser, U; Roedler, H.D.; Henrichs, K.

    1986-01-01

    The dose factors have been calculated on the basis of the ICRP models for dosimetric and metabolistic assessment, and are laid open in accordance with Annex XI ( to sec. 45 sub-section (2)) of the amended version of the Radiation Protection Ordinance. The contribution in hand explains the scientific fundamentals and results of the calculations of dose factors relating to inhalation and ingestion of unsealed radioactive substances by adult reference man, and age-dependent factors calculated for children and adolescents. Further, annual limits of uptake by occupationally exposed persons, as calculated on the basis of primary dose limits pursunant to the draft amendment presented by the Federal Interior Minister, are compared with relevant data given by the ICRP and EC institutions. (orig./DG) [de

  9. Patterns of dose variability in radiation prescription of breast cancer

    International Nuclear Information System (INIS)

    Das, Indra J.; Chee-Wai, Cheng; Fein, Douglas A.; Fowble, Barbara

    1995-01-01

    Objective: Radiation dose distribution varies with breast size, beam energy, beam modifiers (wedge, bolus), and beam weights. A dose variation as low as ± 5% has been observed to change outcome of the radiation treatment. Various reports suggest that radiation dose >50 Gy and dose inhomogeneity >10% have unfavorable cosmesis. It is difficult to estimate treatment outcome and compare data in various protocols due to the variability of dose prescriptions. A retrospective analysis of the pattern of dose prescription and intercomparison of various protocols is presented for the treatment of breast cancer. Materials and Methods: In this study, five prescription points were chosen to represent the commonly used protocols for breast irradiation. All these points lie on a line of height, h, of the breast apex from the posterior non-divergent beam edge at half the chest-wall separation,s . The points are located at a distance 1.5 cm, chest wall-lung interface (2-3 cm), (h(3)), (h(2)), and at isocenter. One hundred consecutive patients treated with intact breast irradiation following excisional biopsy were selected. For analysis, treatment planning was carried out without lung correction with a 6 MV beam for all patients, even though some of the patients were treated with high energy beams. Dose distributions were optimized with proper wedges and beam weights to provide a symmetrical dose distribution on the central axis plane. A multivariate analysis of the different parameters, s,h , dose at the hot spot, and doses at various prescription points were carried out. The patients were divided into three groups based on the chest-wall separations: small ( 22.0 cm). The dose distributions related to various prescription points used in different protocols were analyzed for three groups of the patients. Results: The magnitudes of the hot spots varied from +5% to +27% among the patient population, were directly related to s, and appeared to be independent of h. The hot spots

  10. Identifying the most successful dose (MSD) in dose-finding studies in cancer.

    Science.gov (United States)

    Zohar, Sarah; O'Quigley, John

    2006-01-01

    For a dose finding study in cancer, the most successful dose (MSD), among a group of available doses, is that dose at which the overall success rate is the highest. This rate is the product of the rate of seeing non-toxicities together with the rate of tumor response. A successful dose finding trial in this context is one where we manage to identify the MSD in an efficient manner. In practice we may also need to consider algorithms for identifying the MSD which can incorporate certain restrictions, the most common restriction maintaining the estimated toxicity rate alone below some maximum rate. In this case the MSD may correspond to a different level than that for the unconstrained MSD and, in providing a final recommendation, it is important to underline that it is subject to the given constraint. We work with the approach described in O'Quigley et al. [Biometrics 2001; 57(4):1018-1029]. The focus of that work was dose finding in HIV where both information on toxicity and efficacy were almost immediately available. Recent cancer studies are beginning to fall under this same heading where, as before, toxicity can be quickly evaluated and, in addition, we can rely on biological markers or other measures of tumor response. Mindful of the particular context of cancer, our purpose here is to consider the methodology developed by O'Quigley et al. and its practical implementation. We also carry out a study on the doubly under-parameterized model, developed by O'Quigley et al. but not

  11. Comments on ICRP-60 rationale for dose limits for the pregnant worker

    International Nuclear Information System (INIS)

    Myers, D.K.

    1992-06-01

    ICRP Publication 60 has recently recommended new dose limits for the radiation exposure of pregnant workers. These new dose limits for pregnant workers are more restrictive than the current limits in force in Canada. Recent presentations by Dr. R.H. Mole have faulted the arguments provided by ICRP as justification for reducing the previously recommended limits for pregnant radiation workers. The present paper provides a brief review of the development of the human conceptus, of the biological effects of low doses of radiation on the foetus, and discusses R.H. Mole's comments on ICRP-60. On the critical issues concerning the presence or absence of threshold doses for induction of specific biological endpoints, Dr. Mole and ICRP-60 appear to be in agreement. The basic disagreement between Dr. Mole and ICRP-60 seems to revolve around the philosophical question of whether dose limits should be based on quantitative risks to the foetus or whether dose limits to the pregnant worker should provide a standard of protection to the foetus which is broadly comparable with that provided for members of the general public. Further research is recommended on one of the topics raised by Dr. Mole, namely, foetal doses from radionuclides inhaled or ingested by the mother

  12. Patient dose rate: An ultimate limit for spatial and density resolution of scanning systems

    International Nuclear Information System (INIS)

    Kowalski, G.; Wagner, W.

    1979-01-01

    In X-ray scanning systems, picture quality of the reconstructed slices is limited to a maximum spatial as well as density resolution by the applied radiation dose. Density resolution can be improved in proportion to the root of the patient dose, whereas a doubled spatial resolving power requires an eight times higher patient dose, assuming a fixed slice thickness. Only a careful trade-off between the applied patient dose, density resolution and spatial resolution yields a maximal diagnostic value for the physician. Specifications of a scanning system have to take into account these ultimate restrictions, so that picture quality really is limited by the patient's dose rather than by technical constraints. In addition a method is given by which the applied dose can be reduced by focusing the main intensity onto the region of interest, in case that region is known a priori. (orig.) [de

  13. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    International Nuclear Information System (INIS)

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  14. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  15. Lung cancer screening with low-dose CT

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2003-01-01

    Screening for lung cancer is hoped to reduce mortality from this common tumour, which is characterised by a dismal overall survival, relatively well defined risk groups (mainly heavy cigarette smokers and workers exposed to asbestos) and a lack of early symptoms. In the past studies using sputum cytology and chest radiography have failed to demonstrate any reduction in lung cancer mortality through screening. One of the reasons is probably the relatively poor sensitivity of both these tests in early tumours. Low radiation dose computed tomography (CT) has been shown to have a much higher sensitivity for small pulmonary nodules, which are believed to be the most common presentation of early lung cancer. As, however, small pulmonary nodules are common and most are not malignant, non-invasive diagnostic algorithms are required to correctly classify the detected lesions and avoid invasive procedures in benign nodules. Nodule density, size and the demonstration of growth at follow-up have been shown to be useful in this respect and may in the future be supplemented by contrast-enhanced CT and positron emission tomography. Based on these diagnostic algorithms preliminary studies of low-dose CT in heavy smokers have demonstrated a high proportion of asymptomatic, early, resectable cancers with good survival. As, however, several biases could explain these findings in the absence of the ultimate goal of cancer screening, i.e. mortality reduction, most researchers believe that randomised controlled trials including several 10000 subjects are required to demonstrate a possible mortality reduction. Only then general recommendations to screen individuals at risk of lung cancer with low-dose CT should be made. It can be hoped that international cooperation will succeed in providing results as early as possible

  16. Medium-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Isohashi, Fumiaki; Oh, Ryoong-Jin

    2003-01-01

    The purpose of this study was to evaluate the results of medium-dose-rate (MDR) intracavitary brachytherapy (ICRT) for cervical cancer. Between May 1991 and March 2001, 80 patients with cervical cancer were treated with external radiotherapy combined with MDR-ICRT. Two patients were excluded from this study. The median age of patients was 61 years (range: 30-87 years). Seventy-five patients had pathologically proved squamous cell carcinoma, and 3 had adenocarcinoma. The patients were staged by Union Internationale Contre le Cancer (UICC) classification as follows: Stage IA (2), Stage IB (4), Stage IIA (5), Stage IIB (22), Stage IIIA (1), Stage IIIB (32), Stage IVA (5), Stage IVB (7). Median follow-up for survivor was 68 months (range: 12-131 months). The radiation therapy was based on a combination of ICRT and external pelvic irradiation. Patients with stages II, III and IVA were treated with whole-pelvic irradiation with respective total doses of 20, 30, and 40 Gy. Doses of 40, 30, 20, and 20 Gy parametrial irradiation were added with central shield pelvic irradiation for stages IB, II, III and IVA lesions respectively. For MDR-ICRT, from May 1991 to December 1995, point A dose were 40 Gy/4 fractions for stages I and II, 38 Gy/4 fractions for stage III, and 28.5 Gy/3 fractions for stage IVA. And from January 1996 to March 2001, point A dose of 36 Gy/4 fractions for stages I and II, 34 Gy/4 fractions for stage III, and 25.5 Gy/3 fractions for stage IVA. The median dose rate at point A was 1.7 Gy/hour (range: 1.3-2.2 Gy/hour). The 5-year cause-specific survival rates were 100%, 76%, 51% and 40% for stages I, II, III and IVA respectively. All patients with stage IVB died from the tumor with a median survival time of 12 months. The 5-year pelvic control rates were 100%, 88%, 69% and 40% for stages I, II, III and IVA respectively. Major late complications occurred in 2 patients (3%). One patient developed vesico- and recto-vaginal fistulae, and died of pelvic infection

  17. Dermatologic radiotherapy and thyroid cancer. Dose measurements and risk quantification

    International Nuclear Information System (INIS)

    Goldschmidt, H.; Gorson, R.O.; Lassen, M.

    1983-01-01

    Thyroid doses for various dermatologic radiation techniques were measured with thermoluminescent dosimeters and ionization rate meters in an Alderson-Rando anthropomorphic phantom. The effects of changes in radiation quality and of the use or nonuse of treatment cones and thyroid shields were evaluated in detail. The results indicate that the potential risk of radiogenic thyroid cancer is very small when proper radiation protection measures are used. The probability of radiogenic thyroid cancer developing and the potential mortality risk were assessed quantitatively for each measurement. The quantification of radiation risks allows comparisons with risks of other therapeutic modalities and the common hazards of daily life

  18. Contribution of maternal radionuclide burdens to prenatal radiation doses: Relationships between annual limits on intake and prenatal doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1993-10-01

    This addendum describes approaches for calculating and expressing radiation doses to the embryo/fetus from maternal intakes of radionuclides at levels corresponding to fractions or multiples of the Annual Limits on Intake (ALI). Information, concerning metabolic or dosimetric characteristics and the placental transfer of selected, occupationally significant radionuclides was presented in NUREG/CR-5631, Revision 1. That information was used to estimate levels of radioactivity in the embryo/fetus as a function of stage of pregnancy and time after entry. Extension of MIRD methodology to accommodate gestational-stage-dependent characteristics allowed dose calculations for the simplified situation based on introduction of 1 μCi into the woman's transfer compartment (blood). The expanded scenarios in this addendum include repeated or chronic ingestion or inhalation intakes by a woman during pregnancy and body burdens at the beginning of pregnancy. Tables present dose equivalent to the embryo/fetus relative to intakes of these radionuclides in various chemical or physical forms and from preexisting maternal burdens corresponding to ALI; complementary intake values (fraction of an ALI and μCi) that yield a dose equivalent of 0.05 rem are included. Similar tables give these measures of dose equivalency to the uterus from intakes of radionuclides for use as surrogates for embryo/fetus dose when biokinetic information is not available

  19. Dose-stress synergism in cancer risk assessment

    International Nuclear Information System (INIS)

    Pop-Jordanova, N.; Pop-Jordanov, J.

    2001-01-01

    Our hypothesis is that the relatively low risk of cancer or leukaemia from depleted uranium, as predicted by the World Health Organization and the International Atomic Energy Agency, is a result of neglecting the synergism between physico-chemical agents and psychological stress agents (here shortly denoted as dose-stress synergism). We use the modified risk assessment model that comprises a psycho-somatic extension, originally developed by us for assessing the risks of energy sources. Our preliminary meta-analysis of animal and human studies on cancers confirmed the existence of stress effects, including the amplifying synergism. Consequently, the psychological stress can increase the probability of even small toxic chemical or ionizing radiation exposure to produce malignancy. Such dose-stress synergism might influence the health risks among military personnel and the residents in the highly stressful environment in the Balkans. Further investigation is needed to estimate the order of magnitude of these combined effects in particular circumstances. (Original)

  20. Low dose CT in early lung cancer diagnosis: prevalence data

    International Nuclear Information System (INIS)

    Cardinale, Luciano; Cortese, Giancarlo; Ferraris, Fabrizio; Perotto, Fabio; Fava, Cesare; Borasio, Piero; Dogliotti, Luigi; Novello, Silvia; Scagliotti, Giorgio

    2005-01-01

    Purpose. Lung cancer has a high mortality rate and its prognosis largely depends on early detection. We report the prevalence data of the study on early detection of lung cancer with low-dose spiral CT underway at our hospital. Materials and methods. Since the beginning of 2001, 519 asymptomatic volunteers have undergone annual blood tests, sputum tests, urinalyses and low-dose spiral CT. The inclusion criteria were age (55 years old), a history of cigarette smoking and a negative history for previous neoplastic disease. The diagnostic workup varied depending on the size and CT features of the nodules detected. Results. At baseline, the CT scan detected nodules> 5 mm in 22% of subjects; the nodules were single in 42 and multiple in 71. In 53% of cases the findings were completely negative, while in 122 (23.4%) nodules with a diameter [it

  1. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  2. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  3. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, A; Bostani, M [University of California, Los Angeles, Los Angeles, CA (United States); McMillan, K [Mayo Clinic, Rochester, MN (United States); Zankl, M [Helmholtz Zentrum Munchen, Neuherberg (Germany); Cagnon, C [UCLA Medical Center, Los Angeles, CA (United States); McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  4. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    International Nuclear Information System (INIS)

    Hardy, A; Bostani, M; McMillan, K; Zankl, M; Cagnon, C; McNitt-Gray, M

    2016-01-01

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  5. Take with Food: Study Tests Lowering Dose of Prostate Cancer Drug

    Science.gov (United States)

    ... Cancer Currents Blog Cancer Currents Blog Take with Food: Study Tests Lowering Dose of Prostate Cancer Drug Subscribe April ... to this page included, e.g., “Take with Food: Study Tests Lowering Dose of Prostate Cancer Drug was originally ...

  6. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  7. Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models

    Energy Technology Data Exchange (ETDEWEB)

    David G. Hoel, PhD

    2012-04-19

    The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival function and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact

  8. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection Technique; Pineau, J.F. [ALGADE, Bessines (France); Chameaud, J. [Compagnie Generale des Matieres Nucleaires (COGEMA), 87 - Razes (France)

    1994-12-31

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10{sup 6} J.m{sup -3} (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author).

  9. Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate

    International Nuclear Information System (INIS)

    Morlier, J.P.; Morin, M.; Monchaux, G.; Fritsch, P.; Lafuma, J.; Masse, R.; Chameaud, J.

    1994-01-01

    To study the effect on lung cancer incidence of a long exposure to low levels of radon, 500 male 3-months-old Sprague-Dawley rats, were exposed to a cumulative dose of 25 WLM of radon and its daughters, 6 hours a day, 5 days a week, during 18 months. Exposure conditions were controlled in order to maintain a defined PAEC: 42 x 10 6 J.m -3 (2 WL), in the range of domestic and environmental exposures. Animals were kept until they died or given euthanasia when moribund. Mean survival times were similar in both irradiated and control groups: 828 days (SD = 169) and 830 days (SD = 137), as well as lung cancer incidence, 0.60% at 25 WLM and 0.63% for controls. The incidence of lung lesions was compared statistically with controls and those previously obtained at cumulative exposures of 25 and 50 WLM delivered over a 4-6 month period, inducing a significant increase of lung cancer, 2.2% and 3.8% respectively. Such a comparison showed a decreased lung cancer incidence related to a decrease in the dose rate for low levels of radon exposure. (author)

  10. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Smith, Susan A. [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Holowaty, Eric [Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario (Canada); Hall, Per [Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm (Sweden); Pukkala, Eero [Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki (Finland); Vaalavirta, Leila [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Stovall, Marilyn; Weathers, Rita [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Gilbert, Ethel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Aleman, Berthe M.P. [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kaijser, Magnus [Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Andersson, Michael [Department of Oncology, Copenhagen University Hospital, Copenhagen (Denmark); Storm, Hans [Cancer Prevention and Documentation, Danish Cancer Society, Copenhagen (Denmark); Joensuu, Heikki [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Lynch, Charles F. [Department of Epidemiology, University of Iowa, Iowa City, Iowa (United States); and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  11. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    International Nuclear Information System (INIS)

    Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.

    2013-01-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P trend =.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P trend =.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P trend =.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer

  12. Lung cancer risk at low doses of alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Katz, R.; Zhang, C.X.

    1986-01-01

    A survey of inhabitant exposures arising from the inhalation of 222 Rn and 220 Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the high background and the control area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 2 ]2'' 2 Rn and 220 Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli

  13. The system of radiological protection revisited. Are dose limits for the population really necessary?

    International Nuclear Information System (INIS)

    Hedemann Jensen, Per

    1999-01-01

    The distinction between practices and interventions in the System of Radiation Protection has created a lot of confusion in the population and amongst decision-makers, especially with regards to the concepts of dose limits and intervention levels. The experience gained after the Chernobyl accident indicated that many actions taken led to an unnecessarily large expenditure of national resources, and many instances occurred of contradictory national responses. A major reason was the mixture of dose limits for the population, which apply only to exposures from practices, and intervention levels, which apply only to protective measures in de-facto exposure situations. The existing System of Radiation Protection is revisited and it is suggested that the System can be revised with no dose limits for the public without causing a lower degree of protection of the population. With the widespread use of source-related dose constraints and practical restrictions on the sources of public exposure from practices, generally applicable dose limits are rarely limiting in any practical situation, even if dose constraints might, at least in principle, fail to take adequate account of the exposures from other practices. Constraints can be expressed as operational protection quantities, e.g. nuclide-specific release rates, dose rate at the fence of a facility or nuclide-specific surface contamination density in the environment. A revised System of Radiation Protection without public dose limits would not cause any reduced protection of the public compared to the existing System, and it has a potential for removing much of the confusion with regards to application of intervention/action levels. It would also have the potential for improving public perception of radiation protection and radiation risks as well as for saving vast resources in intervention situations for better application in general health care of the public. (au)

  14. Limits of radiobiology in conventional postirradiation of breast cancer

    International Nuclear Information System (INIS)

    Wall, H. van der

    1982-01-01

    The conventional postirradiation of breast cancer including radiation pneumonitis in relation to age and irradiation method, are discussed. The risk of radiation pneumonitis is with a single surface dose of 65 mC/kg higher than with 52 mC/kg. The dose at the chest wall is for the development of a radiation pneumonitis of lower importance than the dose at the supra- and intraclavicular field. At both these fields intersections of the cones of radiation in the lungs, which could cause dose peaks not possible to evaluate, must be taken into consideration. At the reported and wanted tumor dose of 1032 mC/kg at the deferent axillary lymph tracts a more indulgent method with a single dose of 65 mC/kg and with a prolongation by 3 series a pneumonitis could not be avoided in 30% of the irradiated women. Because of the harmless process one could answer for the risk of a radiation pneumonitis, if other therapeutic possibilities are not available. The age of the patients is not a special risk as to radiation pneumonitis. (author)

  15. Limits of radiobiology in conventional postirradiation of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    van der Wall, H [Bezirkskrankenhaus Schwerin (German Democratic Republic)

    1982-08-01

    The conventional postirradiation of breast cancer including radiation pneumonitis in relation to age and irradiation method, are discussed. The risk of radiation pneumonitis is with a single surface dose of 65 mC/kg higher than with 52 mC/kg. The dose at the chest wall is for the development of a radiation pneumonitis of lower importance than the dose at the supra- and intraclavicular field. At both these fields intersections of the cones of radiation in the lungs, which could cause dose peaks not possible to evaluate, must be taken into consideration. At the reported and wanted tumor dose of 1032 mC/kg at the deferent axillary lymph tracts a more indulgent method with a single dose of 65 mC/kg and with a prolongation by 3 series a pneumonitis could not be avoided in 30% of the irradiated women. Because of the harmless process one could answer for the risk of a radiation pneumonitis, if other therapeutic possibilities are not available. The age of the patients is not a special risk as to radiation pneumonitis.

  16. Estimation of breast doses and breast cancer risk associated with repeated fluoroscopic chest examinations of women with tuberculosis

    International Nuclear Information System (INIS)

    Boice, J.D. Jr.; Rosenstein, M.; Trout, E.D.

    1978-01-01

    A methodology is presented to estimate cumulative breast dose and breast cancer risk for women exposed to repeated fluoroscopic chest examinations during air collapse therapy for pulmonary tuberculosis. Medical record abstraction, physician interview, patient contact, machine exposure measurements, and absorbed dose computations were combined to estimate average breast doses for 1047 Massachusetts women who were treated between 1930 and 1954. The methodology presented considers breast size and composition, patient orientation, x-ray field size and location, beam quality, type of examination, machine exposure rate, and exposure time during fluoroscopic examinations. The best estimate for the risk of radiation-induced cancer for the women living longer than 10 years after initial fluoroscopic exposure is 6.2 excess breast cancers per million woman-year-rad with 90% confidence limits of 2.8 and 10.7 cancers/10 6 WY-rad. When breast cancer risk is considered as a function of absorbed dose in the breast, instead of as a function of the number of fluoroscopic examinations, a linear dose--response relationship over the range of estimated doses is consistent with the data. However, because of the uncertainty due to small-sample variability and because of the wide range of assumptions regarding certain fluoroscopy conditions, other dose--response relationships are compatible with the data

  17. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  18. Testicular dose and hormonal changes after radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Hermann, Robert M.; Henkel, Karsten; Christiansen, Hans; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens F.; Schmidberger, Heinz

    2005-01-01

    Background and purpose: To measure the dose received by the testicles during radiotherapy for rectal cancer and to determine the contribution of each field of the pelvic box and the relevance for hormonal status. Materials and methods: In 11 patients (mean age 55.2 years) testicular doses were measured with an ionisation chamber between 7 and 10 times during the course of pelvic radiotherapy (50 Gy) for rectal carcinoma. Before and several months after radiotherapy luteinizing hormone, follicle stimulating hormone and total testosterone serum levels were determined. Results: The mean cumulative radiation exposure to the testicles was 3.56 Gy (0.7-8.4 Gy; 7.1% of the prescribed dose). Seventy-three percent received more than 2 Gy to the testicles. Fifty-eight percent of the measured dose was contributed by the p.a. field, 30% by the a.p. field and 12% by the lateral fields. Mean LH and FSH levels were significantly increased after therapy (350%/185% of the pre-treatment values), testosterone levels decreased to 78%. No correlation could be found between changes of hormones and doses to the testis, probably due to the low number of evaluated patients. Conclusions: Radiotherapy of rectal carcinoma causes significant damage to the testis, as shown by increased levels of gonadotropins after radiotherapy. Most of the gonadal dose is delivered by the p.a. field, due to the divergence of the p.a. beam towards the testicles. The reduction in testosterone level may be of clinical concern. Patients who will receive radiotherapy for rectal carcinoma must be instructed about a high risk of permanent infertility, and the risk of endocrine failure (hypogonadism). Larger studies are needed to establish the correlation between testicular radiation dose and hormonal changes in this group of patients

  19. Radiation dose and late failures in prostate cancer

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Hanlon, Alexandra L.; Horwitz, Eric M.; Buyyounouski, Mark K.; Uzzo, Robert G.; Pollack, Alan

    2007-01-01

    Purpose: To quantify the impact of radiation dose escalation on the timing of biochemical failure (BF) and distant metastasis (DM) for prostate cancer treated with radiotherapy (RT) alone. Methods: The data from 667 men with clinically localized intermediate- and high-risk prostate cancer treated with three-dimensional conformal RT alone were retrospectively analyzed. The interval hazard rates of DM and BF, using the American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2) definitions, were determined. The median follow-up was 77 months. Results: Multivariate analysis showed that increasing radiation dose was independently associated with decreased ASTRO BF (p < 0.0001), nadir + 2 BF (p = 0.001), and DM (p = 0.006). The preponderance (85%) of ASTRO BF occurred at ≤4 years after RT, and nadir + 2 BF was more evenly spread throughout Years 1-10, with 55% of BF in ≤4 years. Radiation dose escalation caused a shift in the BF from earlier to later years. The interval hazard function for DM appeared to be biphasic (early and late peaks) overall and for the <74-Gy group. In patients receiving ≥74 Gy, a reduction occurred in the risk of DM in the early and late waves, although the late wave appeared reduced to a greater degree. Conclusion: The ASTRO definition of BF systematically underestimated late BF because of backdating. Radiation dose escalation diminished and delayed BF; the delay suggested that local persistence may still be present in some patients. For DM, a greater radiation dose reduced the early and late waves, suggesting that persistence of local disease contributed to both

  20. Negotiating NORM cleanup and land use limits: Practical use of dose assessment and cost benefit analysis

    International Nuclear Information System (INIS)

    Blanchard, A.D.H.

    1997-01-01

    Oil companies are presently faced with complex and costly environmental decisions, especially concerning NORM cleanup and disposal. Strict cleanup limits and disposal restrictions are established, in theory, to protect public health and environment. While public health is directly measured in terms of dose (mrem/yr), most NORM regulations adopt soil concentration limits to ensure future public health is maintained. These derived soil limits create the potential for unnecessary burden to operators without additional health benefit to society. Operators may use a dose assessment to show direct compliance with dose limits, negotiating less restrictive cleanup levels and land use limits. This paper discusses why a dose assessment is useful to Oilfield operators, NORM exposure scenarios and pathways, assessment advantages, variables and recommendations and one recent dose assessment application. Finally, a cost benefit analysis tool for regulatory negotiations will be presented allowing comparison of Oilfield NORM health benefit costs to that of other industries. One use for this tool--resulting in the savings of approximately $100,000--will be discussed

  1. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of dose reporting modes in Acuros XB for prostate, lung and breast cancer

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-12-01

    Full Text Available Purpose: Acuros XB (AXB dose calculation algorithm is available for external beam photon dose calculations in Eclipse treatment planning system (TPS. The AXB can report the absorbed dose in two modes: dose-to-water (Dw and dose-to-medium (Dm. The main purpose of this study was to compare the dosimetric results of the AXB_Dm with that of AXB_Dw on real patient treatment plans. Methods: Four groups of patients (prostate cancer, stereotactic body radiation therapy (SBRT lung cancer, left breast cancer, and right breast cancer were selected for this study, and each group consisted of 5 cases. The treatment plans of all cases were generated in the Eclipse TPS. For each case, treatment plans were computed using AXB_Dw and AXB_Dm for identical beam arrangements. Dosimetric evaluation was done by comparing various dosimetric parameters in the AXB_Dw plans with that of AXB_Dm plans for the corresponding patient case. Results: For the prostate cancer, the mean planning target volume (PTV dose in the AXB_Dw plans was higher by up to 1.0%, but the mean PTV dose was within ±0.3% for the SBRT lung cancer. The analysis of organs at risk (OAR results in the prostate cancer showed that AXB_Dw plans consistently produced higher values for the bladder and femoral heads but not for the rectum. In the case of SBRT lung cancer, a clear trend was seen for the heart mean dose and spinal cord maximum dose, with AXB_Dw plans producing higher values than the AXB_Dm plans. However, the difference in the lung doses between the AXB_Dm and AXB_Dw plans did not always produce a clear trend, with difference ranged from -1.4% to 2.9%. For both the left and right breast cancer, the AXB_Dm plans produced higher maximum dose to the PTV for all cases. The evaluation of the maximum dose to the skin showed higher values in the AXB_Dm plans for all 5 left breast cancer cases, whereas only 2 cases had higher maximum dose to the skin in the AXB_Dm plans for the right breast cancer

  2. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics.

    Science.gov (United States)

    Hahnfeldt, Philip; Hlatky, Lynn; Klement, Giannoula Lakka

    2013-05-15

    Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized. ©2013 AACR.

  3. Early termination of prostate cancer hyperfractionated dose escalation study

    International Nuclear Information System (INIS)

    Forman, Jeffrey D; Porter, Arthur T; Kocheril, Paul; Grignon, David; Orton, Colin

    1996-01-01

    Purpose: This study was initiated to determine the maximum tolerable dose of hyperfractionated radiation in patients with locally advanced prostate cancer. Materials and Methods: Forty-nine patients with locally advanced prostate cancer (T3-T4 Nx, 0, 1 M0 and/or Gleason Score ≥ 8) were treated on the first two steps of a prospective dose-escalation study using hyperfractionated conformal radiotherapy. The first 25 patients received a minimum dose of 78Gy to the clinical tumor volume (CTV) including the prostate, seminal vesicle and a 5mm margin at 1.3Gy b.i.d. The second group (24 patients) received a minimum dose to the CTV of 82.8Gy at 1.15Gy b.i.d. Twenty eight patients received neo-adjuvant hormonal therapy in conjunction with their radiation (8 of 25 patients at 78Gy and 20 of 24 patients at 82.8Gy). Toxicity was scored according to the RTOG grading scale. Efficacy was evaluated by PSA levels and ultrasound guided biopsies. Median follow up was 36 and 18 months for the 78Gy and 82.8Gy dose levels, respectively. Results: No grade 3 or 4 gastrointestinal (GI) or genitourinary (GU) toxicity was noted. At 36 months, the actuarial probability of Grade 2 GI and GU toxicity were 16 and 20%, respectively. Twelve to 18 months following radiation, 41 patients (86%) underwent ultrasound guided biopsy. At 78Gy, 60% of 20 patients had a biopsy which was negative or showed a marked therapeutic effect. At 82.8Gy, these combined rates were 95% in the 21 patients who had biopsies. Nine patients (50%) who did not receive neo-adjuvant hormones had positive biopsies. No patient who received neo-adjuvant hormones plus 78Gy (5 patients) or 82.8Gy (18 patients) had a positive biopsy. Conclusion: Proceeding to the next dose level (87.4Gy) was justified by the lack of severe chronic toxicity. However, in view of the high rate of histologic sterilization when hyperfractionated irradiation was given in conjunction with neo-adjuvant hormonal therapy, it was felt to be unethical to

  4. The possibility of the dose limitation system application non-ionizing radiation protection

    International Nuclear Information System (INIS)

    Ranisavljevic, M., Markovic, S.

    1997-01-01

    Modern conception of the ionizing radiation protection is based on Dose Limitation System. In the base of every human decision lies compromise. Balance between positive and negative factors, benefit and detriment, profit and expense includes the decision about possibilities for realization any defined radiation practice. The optimal option for the given value of the varying parameter gives the maximum benefit and the minimum detriment. In radiation protection field, detriment is related with human health or expenses, and varying parameter is level of radiation protection (for example dimensions of the installed shielding). The problem lies in fact that for the given value of the varying shielding parameter the maximum benefit and the minimum detriment are not achievable simultaneously because the greater benefit includes the greater expense. The problems which have to be solved because of introducing Dose Limitation System, in regard to create Modified Dose Limitation System, are presented. (author)

  5. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  6. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  7. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer.

    Science.gov (United States)

    Trip, Anouk Kirsten; Nijkamp, Jasper; van Tinteren, Harm; Cats, Annemieke; Boot, Henk; Jansen, Edwin Petrus Marianus; Verheij, Marcel

    2014-08-01

    This observational study compares the effect of different radiotherapy techniques on late nephrotoxicity after postoperative chemoradiotherapy for gastric cancer. Dosimetric parameters were compared between AP-PA, 3D-conformal and IMRT techniques. Renal function was measured by (99m)Tc-MAG-3 renography, glomerular filtration rate (GFR) and the development of hypertension. Mixed effects models were used to compare renal function over time. Eighty-seven patients treated between 2002 and 2010 were included, AP-PA (n=31), 3D-conformal (n=25) and IMRT (n=31), all 45 Gy in 25 fractions. Concurrent chemotherapy: 5FU/leucovorin (n=4), capecitabine (n=37), and capecitabine/cisplatin (n=46). Median follow-up time was 4.7 years (range 0.2-8). With IMRT, the mean dose to the left kidney was significantly lower. Left kidney function decreased progressively in the total study population, however with IMRT this occurred at a lower rate. A dose-effect relationship was present between mean dose to the left kidney and the left kidney function. GFR decreased only moderately in time, which was not different between techniques. Six patients developed hypertension, of whom none in the IMRT group. This study confirms progressive late nephrotoxicity in patients treated with postoperative chemoradiotherapy by different techniques for gastric cancer. Nephrotoxicity was less severe with IMRT and should be considered the preferred technique. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  9. Dose Constraints to Prevent Radiation-Induced Brachial Plexopathy in Patients Treated for Lung Cancer

    International Nuclear Information System (INIS)

    Amini, Arya; Yang Jinzhong; Williamson, Ryan; McBurney, Michelle L.; Erasmus, Jeremy; Allen, Pamela K.; Karhade, Mandar; Komaki, Ritsuko; Liao, Zhongxing; Gomez, Daniel; Cox, James; Dong, Lei; Welsh, James

    2012-01-01

    Purpose: As the recommended radiation dose for non-small-cell lung cancer (NSCLC) increases, meeting dose constraints for critical structures like the brachial plexus becomes increasingly challenging, particularly for tumors in the superior sulcus. In this retrospective analysis, we compared dose-volume histogram information with the incidence of plexopathy to establish the maximum dose tolerated by the brachial plexus. Methods and Materials: We identified 90 patients with NSCLC treated with definitive chemoradiation from March 2007 through September 2010, who had received >55 Gy to the brachial plexus. We used a multiatlas segmentation method combined with deformable image registration to delineate the brachial plexus on the original planning CT scans and scored plexopathy according to Common Terminology Criteria for Adverse Events version 4.03. Results: Median radiation dose to the brachial plexus was 70 Gy (range, 56–87.5 Gy; 1.5–2.5 Gy/fraction). At a median follow-up time of 14.0 months, 14 patients (16%) had brachial plexopathy (8 patients [9%] had Grade 1, and 6 patients [7%] had Grade ≥2); median time to symptom onset was 6.5 months (range, 1.4–37.4 months). On multivariate analysis, receipt of a median brachial plexus dose of >69 Gy (odds ratio [OR] 10.091; 95% confidence interval [CI], 1.512–67.331; p = 0.005), a maximum dose of >75 Gy to 2 cm 3 of the brachial plexus (OR, 4.909; 95% CI, 0.966–24.952; p = 0.038), and the presence of plexopathy before irradiation (OR, 4.722; 95% CI, 1.267–17.606; p = 0.021) were independent predictors of brachial plexopathy. Conclusions: For lung cancers near the apical region, brachial plexopathy is a major concern for high-dose radiation therapy. We developed a computer-assisted image segmentation method that allows us to rapidly and consistently contour the brachial plexus and establish the dose limits to minimize the risk of brachial plexopathy. Our results could be used as a guideline in future

  10. Radiation protection recommendations on dose limits: the role of the NCRP and the ICRP and future developments

    International Nuclear Information System (INIS)

    Sinclair, Warren K.

    1995-01-01

    The purpose of this paper is to review the role of the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP) in making recommendations on dose limits for ionizing radiation exposure for workers and for the public. The text describes the new limits for workers and public recommended by ICRP in 1991 and NCRP in 1993 and the composition of the radiation health detriment on which they are based. The main component of this detriment is the risk of radiation induced cancer which is now estimated to be about three times greater than a decade or so earlier. Uncertainties in these risk estimates are discussed. Some special radiation protection problems, such as those for the embryo or fetus are described. The article also addresses future progress in radiation protection particularly with regard to future improvements in the scientific basis for radiation protection recommendations

  11. External dose measurements for patients receiving therapeutic I-131 for thyroid cancer

    International Nuclear Information System (INIS)

    Molfetas, M.; Kottou, S.

    2002-01-01

    Iodine-131 is a well established and effective treatment, supplementing surgery, in differentiated thyroid carcinoma. Iodine-131 except from its β-emission, that generates a cell-killing effect in a small area, has also a γ-emission irradiating distant tissues and even people who are close enough with the treated patient. The International Commission on Radiation Protection, ICRP has estimated the probability of a radiation-induced fatal cancer for the whole population at 5.0 % per sievert for low doses and at low dose rates and at 1.3 % for serious genetic diseases. For elderly people the probability seems to be 3 to 10 times lower, whereas for children up to the age of 10 years, 2-3 times higher. These findings led the ICRP to recommend new dose limits, lower than the previous ones. The European Union has endorsed the ICRP recommendations and the Council issued two directives, with which the Greek legislation complied recently. The current annual public dose limit is 1 mSv, while in the new Greek legislation the concept of dose constrains (0.5 m Sv in Greece) has also been proposed as a goal to reach whenever possible

  12. Measures associated with the dose limitation system at the TVO Power Company

    International Nuclear Information System (INIS)

    Ruuskanen, A.T.; Sundell, R.O.

    1982-01-01

    The paper discusses radiation protection practices at the TVO Power Company, which owns and operates two BWR units of Asea-Atom design at Olkiluoto, Finland. The installed electric power of each unit is 660MW. The full power operation of TVO I and TVO II began in 1979 and 1980, respectively. The dose limitation system calls for an organization which is responsible for radiation protection. This organization at the plant site is described. To limit doses a good knowledge of the work activities which cause doses is needed. There is a very up-to-date microprocessor-based work dosimetry system at the TVO power plant. The system provides a practicable means of measuring personal doses from various work activities. It also makes the allocation of radiation protection measures possible. The system and experience in applying it are discussed. The dose limitation system presupposes the realization of the optimization principle. The practice applied at TVO in order to limit internal contamination is presented. Owing to this practice, workers' internal doses have remained at a considerably low level. The paper discusses the ALARA values of different kinds of respiratory equipment. These values, which vary from 2x10 4 to 1x10 6 FIM/man.Sv (1 FIM=approx. US$ 0.22), can be used in the evaluation of different measures in avoiding internal doses. The operating policy of movable lead shields is presented. The ALARA value of this activity is evaluated to be about 5x10 4 FIM/man.Sv and on that basis it can be concluded that the use of movable lead shields is very efficient. The dose statistics for TVO's plant are presented. The doses have been less than 0.001 man.Sv/MW.a. Although the dose statistics for TVO are very good it is not realistic to consider solely the optimization aspect of radiation protection. The costs must also be kept in mind; these are presented in the paper. Problems in assessing the level of radiation protection practices on an annual basis are briefly discussed

  13. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  14. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  15. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  16. Review of NCRP radiation dose limit for embryo and fetus in occupationally-exposed women

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    On the basis of the current review, the NCRP has decided to make no change in the current recommendation of its radiation dose limit to the unborn. The NCRP recommendation is restated here as follows: During the entire gestation period, the maximum permissible dose equivalent to the embryo-fetus from occupational exposure of the expectant mother should be 0.5 rem. Since the preparation of the 1971 report there has been no new evidence concerning teratogenic or carcinogenic effects of irradiation of the embryo-fetus that would justify a change in the limit in either direction. It is implicit in this position and recommendation that women who can reasonably be expected to be pregnant should not, in certain instances, be exposed to the same radiation environment as women who are not considered fertile or as men. This applies particularly to conditions where radiation workers can receive dose equivalents of 0.5 rem or more in short periods

  17. Implications of the new dose limit crystalline in operational radiation protection in interventional medicine

    International Nuclear Information System (INIS)

    Roch Gonzalez, M.; Garcia Castanon, P.; Giner Sala, M.; Rodriguez Martin, G.; Espana Lopez, M. L.

    2013-01-01

    The objective of this study is to evaluate the implications of this new limit of equivalent dose in the lens can be assumed in the radiation protection of cardiologists, radiologists, nursing professionals, etc. that perform their work in units of intervention, both in terms of additional protective measures and the classification of them as workers exposed. (Author)

  18. Implications of dose limit modification for radioactive installations dedicated to research

    International Nuclear Information System (INIS)

    Lumbreras, J.M.; Fernandez, G.M.; Marana, D.

    1992-01-01

    The reduced dose limits proposed in the ICRP recommendations affect the Spanish Regulations on Sanitary Protection against Ionizing Radiation. Some implications of this for radioactive installations dedicated to research are pointed out. A very simple statistical study shows that dosimetric data might be used to adopt new criteria for classification of personnel, and even of working areas. (author)

  19. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  20. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    Science.gov (United States)

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  1. Time-dose considerations in the treatment of anal cancer

    International Nuclear Information System (INIS)

    Constantinou, Eugene C.; Daly, William; Fung, Claire Y.; Willett, Christopher G.; Kaufman, Donald S.; DeLaney, Thomas F.

    1997-01-01

    Purpose: To analyze the impact of patient and treatment parameters in concurrent chemoradiation treatment for anal carcinoma. Methods and Materials: Retrospective review of 50 MO anal cancer patients treated from 1984-1994. Most patients received concurrent 5-FU, mitomycin, and radiation. Local control and disease-free/overall survival were determined and analyzed according to patient and treatment parameters. Results: With 43 month median follow-up, projected overall survival is 66% at 5 and 8 years. Disease-free survival is 67% at 5 years and 59% at 8 years. Local control is 70% at 5 and 8 years. Doses of ≥54 Gy are associated with improved 5-year survival (84 vs. 47%, p = 0.02), disease-free survival (74 v. 56%, p = 0.09), and local control (77 vs. 61%, p = 0.04). Although local control, disease-free survival, and overall survival were improved in patients whose overall treatment time was <40 days, this was not statistically significant. Outcome in the four patients with pretreatment hemoglobin (Hgb) <10 appeared worse with 3-year overall survival 50 vs. 68% (p = 0.07), disease-free survival 0 vs. 67% (p = 0.11), and local control 0 vs. 74% (p = 0.05). Projected 5-year overall survival, relapse-free survival, and local control in 4 HIV (+) patients is 0, 75, and 75%. Multivariate analysis reveals that dose (p 0.02) and Hgb (p = 0.05) independently affect local control, dose (p = 0.02) affects disease-free survival, and dose (p = 0.01), Hgb (p = 0.03), T-stage (p = 0.03), and HIV-status (0.07) independently influence overall survival. Conclusion: Radiation doses of ≥54 Gy are associated with significantly improved survival and local control in anal cancer patients treated with chemoradiation. Overall treatment times of less than 40 days are associated with a trend towards improved outcome, but this is not significant. Pretreatment hemoglobin <10 is associated with worse treatment outcome. Survival of HIV (+) patient is poor, but the majority of such patients

  2. Individualized Dose Prescription for Hypofractionation in Advanced Non-Small-Cell Lung Cancer Radiotherapy: An in silico Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Aswin L.; Troost, Esther G.C.; Huizenga, Henk; Kaanders, Johannes H.A.M. [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Bussink, Johan, E-mail: j.bussink@rther.umcn.nl [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands)

    2012-08-01

    Purpose: Local tumor control and outcome remain poor in patients with advanced non-small-cell lung cancer (NSCLC) treated by external beam radiotherapy. We investigated the therapeutic gain of individualized dose prescription with dose escalation based on normal tissue dose constraints for various hypofractionation schemes delivered with intensity-modulated radiation therapy. Methods and Materials: For 38 Stage III NSCLC patients, the dose level of an existing curative treatment plan with standard fractionation (66 Gy) was rescaled based on dose constraints for the lung, spinal cord, esophagus, brachial plexus, and heart. The effect on tumor total dose (TTD) and biologic tumor effective dose in 2-Gy fractions (TED) corrected for overall treatment time (OTT) was compared for isotoxic and maximally tolerable schemes given in 15, 20, and 33 fractions. Rescaling was accomplished by altering the dose per fraction and/or the number of fractions while keeping the relative dose distribution of the original treatment plan. Results: For 30 of the 38 patients, dose escalation by individualized hypofractionation yielded therapeutic gain. For the maximally tolerable dose scheme in 33 fractions (MTD{sub 33}), individualized dose escalation resulted in a 2.5-21% gain in TTD. In the isotoxic schemes, the number of fractions could be reduced with a marginal increase in TED. For the maximally tolerable dose schemes, the TED could be escalated up to 36.6%, and for all patients beyond the level of the isotoxic and the MTD{sub 33} schemes (range, 3.3-36.6%). Reduction of the OTT contributed to the therapeutic gain of the shortened schemes. For the maximally tolerable schemes, the maximum esophageal dose was the dominant dose-limiting constraint in most patients. Conclusions: This modeling study showed that individualized dose prescription for hypofractionation in NSCLC radiotherapy, based on scaling of existing treatment plans up to normal tissue dose constraints, enables dose

  3. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  4. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients

    OpenAIRE

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-01-01

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with posit...

  5. Reducing dose to the lungs through loosing target dose homogeneity requirement for radiotherapy of non small cell lung cancer.

    Science.gov (United States)

    Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong

    2017-11-01

    It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer

    International Nuclear Information System (INIS)

    Trip, Anouk Kirsten; Nijkamp, Jasper; Tinteren, Harm van; Cats, Annemieke; Boot, Henk; Jansen, Edwin Petrus Marianus; Verheij, Marcel

    2014-01-01

    Objective: This observational study compares the effect of different radiotherapy techniques on late nephrotoxicity after postoperative chemoradiotherapy for gastric cancer. Patients and methods: Dosimetric parameters were compared between AP–PA, 3D-conformal and IMRT techniques. Renal function was measured by 99m Tc-MAG-3 renography, glomerular filtration rate (GFR) and the development of hypertension. Mixed effects models were used to compare renal function over time. Results: Eighty-seven patients treated between 2002 and 2010 were included, AP–PA (n = 31), 3D-conformal (n = 25) and IMRT (n = 31), all 45 Gy in 25 fractions. Concurrent chemotherapy: 5FU/leucovorin (n = 4), capecitabine (n = 37), and capecitabine/cisplatin (n = 46). Median follow-up time was 4.7 years (range 0.2–8). With IMRT, the mean dose to the left kidney was significantly lower. Left kidney function decreased progressively in the total study population, however with IMRT this occurred at a lower rate. A dose–effect relationship was present between mean dose to the left kidney and the left kidney function. GFR decreased only moderately in time, which was not different between techniques. Six patients developed hypertension, of whom none in the IMRT group. Conclusions: This study confirms progressive late nephrotoxicity in patients treated with postoperative chemoradiotherapy by different techniques for gastric cancer. Nephrotoxicity was less severe with IMRT and should be considered the preferred technique

  7. Synergistic cancer growth-inhibitory effect of emodin and low-dose ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-cancer activity of emodin and its combination with low-dose cisplatin against human gastric cancer (SNU-5), including their effects on cell cycle phase distribution, apoptosis and cancer cell morphology. Methods: The anti-cancer activity of emodin, cisplatin and their combination against ...

  8. Dose limits, constraints, reference levels. What does it mean for radiation protection?

    International Nuclear Information System (INIS)

    Breckow, J.

    2016-01-01

    The established concept of radiation protection with its basic principles justification, optimization, and limitation has proved its value and is going to be continued. In its deeper meaning, however, the concept is rather subtle and complex. Furthermore, in some aspects there remain some breaches or inconsistencies. This is just true for the terms dose limit, reference lever, and constraint that are tightly associated with the radiation protection principles. In order to guarantee the ability of radiation protection in whole extent, the subtle differences of meaning have to be communicated. There is a permanent need to defend the conceptual function of these terms against deliberate or undeliberate misinterpretations. Reference levels are definitely not the same as dose limits and they may not be misused as such. Any attempt to misinterpret fundamental radiation protection principles for selfish purposes should discouraged vigorously.

  9. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Implementation of a safety action plan: reduction of the dose limits in a research centre

    International Nuclear Information System (INIS)

    Deworm, J.P.

    1992-01-01

    The Belgian Regulations require an annual Action Plan to improve the Safety and health conditions of works. Taking into consideration the preliminary versions of the new ICRP-recommendations, the 1990 Action Plan of the Belgian research Centre aimed to reduce the personal dose limit to 20 mSv/year and the annual collective dose by 10%. Major means used in the campaign were sensibility through information, consultation between hierarchy and executors and the application of a policy of discouragement at certain limits. As a result, the maximum level reaches was 16.5 mSv, while only 7 people received a dose above 10 mSv (of 219 who received a measurable dose, mean value 3,4 mSv). This success is due to the commitment at all levels of responsibilities. In 1991, the 20 mSv-limit is imposed as an obligation by the management, and a feasibility study to impose 10 mSv in near future is being undertaken. (author)

  11. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer

    International Nuclear Information System (INIS)

    Madani, Indira; Duprez, Fréderic; Boterberg, Tom; Van de Wiele, Christophe; Bonte, Katrien; Deron, Philippe; De Gersem, Werner; Coghe, Marc; De Neve, Wilfried

    2011-01-01

    Purpose: To determine the maximum tolerated dose (MTD) in a phase I trial on adaptive dose-painting-by-numbers (DPBN) for non-metastatic head and neck cancer. Materials and methods: Adaptive intensity-modulated radiotherapy was based on voxel intensity of pre-treatment and per-treatment [ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG-PET) scans. Dose was escalated to a median total dose of 80.9 Gy in the high-dose clinical target volume (dose level I) and 85.9 Gy in the gross tumor volume (dose level II). The MTD would be reached, if ⩾33% of patients developed any grade ⩾4 toxicity (DLT) up to 3 months follow-up. Results: Between February 2007 and August 2009, seven patients at dose level I and 14 at dose level II were treated. All patients completed treatment without interruption. At a median follow-up for surviving patients of 38 (dose level I) and 22 months (dose level II) there was no grade ⩾4 toxicity during treatment and follow-up but six cases of mucosal ulcers at latency of 4–10 months, of which five (36%) were observed at dose level II. Mucosal ulcers healed spontaneously in four patients. Conclusions: Considering late mucosal ulcers as DLT, the MTD of a median dose of 80.9 Gy has been reached in our trial.

  12. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer.

    Science.gov (United States)

    González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E

    2017-10-03

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed

  13. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer

    Science.gov (United States)

    González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.

    2017-10-01

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed

  14. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer; Avaliacao da dose no reto em pacientes submetidas a braquiterapia de alta taxa de dose para o tratamento do cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jetro Pereira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina; Rosa, Luiz Antonio Ribeiro da [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: lrosa@ird.gov.br; Batista, Delano Valdivino Santos; Bardella, Lucia Helena [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil). Unit of Medical Physics; Carvalho, Arnaldo Rangel [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. of Thermoluminescent Dosimetry

    2009-03-15

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  15. Urethral stricture following high dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Sullivan, Lisa; Williams, Scott G.; Tai, Keen Hun; Foroudi, Farshad; Cleeve, L.; Duchesne, Gillian M.

    2009-01-01

    Purpose: To evaluate the incidence, timing, nature and outcome of urethral strictures following high dose rate brachytherapy (HDRB) for prostate carcinoma. Methods and materials: Data from 474 patients with clinically localised prostate cancer treated with HDRB were analysed. Ninety percent received HDRB as a boost to external beam radiotherapy (HDRBB) and the remainder as monotherapy (HDRBM). Urethral strictures were graded according to the Common Terminology Criteria for Adverse Events v3.0. Results: At a median follow-up of 41 months, 38 patients (8%) were diagnosed with a urethral stricture (6-year actuarial risk 12%). Stricture location was bulbo-membranous (BM) urethra in 92.1%. The overall actuarial rate of grade 2 or more BM urethral stricture was estimated at 10.8% (95% CI 7.0-14.9%), with a median time to diagnosis of 22 months (range 10-68 months). All strictures were initially managed with either dilatation (n = 15) or optical urethrotomy (n = 20). Second line therapy was required in 17 cases (49%), third line in three cases (9%) and 1 patient open urethroplasty (grade 3 toxicity). Predictive factors on multivariate analysis were prior trans-urethral resection of prostate (hazard ratio (HR) 2.81, 95% CI 1.15-6.85, p = 0.023); hypertension (HR 2.83, 95% CI 1.37-5.85, p = 0.005); and dose per fraction used in HDR (HR for 1 Gy increase per fraction 1.33, 95% CI 1.08-1.64, p = 0.008). Conclusions: BM urethral strictures are the most common late grade 2 or more urinary toxicity following HDR brachytherapy for prostate cancer. Most are manageable with minimally invasive procedures. Both clinical and dosimetric factors appear to influence the risk of stricture formation.

  16. Determination of carcinogenic threshold limit values using the tumorigenic dose rate 50% (TD50)

    International Nuclear Information System (INIS)

    Bonvalot, Y.; Oudiz, A.; Hubert, P.; Abenhaim, L.

    1989-01-01

    The objective of the present study is to propose a simple procedure for the determination of Occupational Limit Values (OLVs) based on the TD 50 concept (Tumorigenic Dose Rate 50%). The TD 50 concept was introduced by Peto R. and al. to help classify chemical substances according to their carcinogenic potency. The TD 50 is that dose rate (in mg/KXg body weight/day) which, if administered chronically for the standard lifespan of the species will halve the probability of remaining tumorless throughout that period. Using TD 50 values available for 776 substances, the procedure presented here allows one to determine OLVs corresponding to a fixed excess risk. It is based on a mathematical high-to-low doses extrapolation of the TD 50 . OLVs obtained with this procedure are compared with currently available TLVs and other occupational guidelines. (author)

  17. Uncertainties in Assesment of the Vaginal Dose for Intracavitary Brachytherapy of Cervical Cancer using a Tandem-ring Applicator

    International Nuclear Information System (INIS)

    Berger, Daniel; Dimopoulos, Johannes; Georg, Petra; Georg, Dietmar; Poetter, Richard; Kirisits, Christian

    2007-01-01

    Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm 3 , 1 cm 3 , 2 cm 3 , and at defined points on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated

  18. Aquatic toxicity testing of liquid hydrophobic chemicals – Passive dosing exactly at the saturation limit

    DEFF Research Database (Denmark)

    Stibany, Felix; Nørgaard Schmidt, Stine; Schäffer, Andreas

    2017-01-01

    The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing...... format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth...... at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group...

  19. Phase I Study of Conformal Radiotherapy and Concurrent Full-Dose Gemcitabine With Erlotinib for Unresected Pancreatic Cancer

    International Nuclear Information System (INIS)

    Robertson, John M.; Margolis, Jeffrey; Jury, Robert P.; Balaraman, Savitha; Cotant, Matthew B.; Ballouz, Samer; Boxwala, Iqbal G.; Jaiyesimi, Ishmael A.; Nadeau, Laura; Hardy-Carlson, Maria; Marvin, Kimberly S.; Wallace, Michelle; Ye Hong

    2012-01-01

    Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0–2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m 2 ) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additional 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.

  20. Phase I Study of Conformal Radiotherapy and Concurrent Full-Dose Gemcitabine With Erlotinib for Unresected Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, John M., E-mail: jrobertson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Margolis, Jeffrey [Division of Medical Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Jury, Robert P. [Department of Surgery, William Beaumont Hospital, Royal Oak, MI (United States); Balaraman, Savitha; Cotant, Matthew B.; Ballouz, Samer; Boxwala, Iqbal G.; Jaiyesimi, Ishmael A.; Nadeau, Laura [Division of Medical Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Hardy-Carlson, Maria [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX (United States); Marvin, Kimberly S.; Wallace, Michelle; Ye Hong [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2012-02-01

    Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0-2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m{sup 2}) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additional 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.

  1. Reanalysis of cancer mortality in Japanese A-bomb survivors exposed to low doses of radiation: bootstrap and simulation methods

    Directory of Open Access Journals (Sweden)

    Dropkin Greg

    2009-12-01

    Full Text Available Abstract Background The International Commission on Radiological Protection (ICRP recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model. Methods Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR and tests against the linear model. Results The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years, liver (36.9, lung (13.6, leukaemia (23.66, and pancreas (11.86 and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range. Conclusion Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of

  2. Reanalysis of cancer mortality in Japanese A-bomb survivors exposed to low doses of radiation: bootstrap and simulation methods

    Science.gov (United States)

    2009-01-01

    Background The International Commission on Radiological Protection (ICRP) recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model. Methods Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa) methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR) and tests against the linear model. Results The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years), liver (36.9), lung (13.6), leukaemia (23.66), and pancreas (11.86) and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose) are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range. Conclusion Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of latency and risk from 10

  3. Practical application of the dose limitation system in a uranium fuel fabrication plant

    International Nuclear Information System (INIS)

    Auricchio, S.; Cantoro, N.

    1982-01-01

    ICRP Publication 26 was published when the nuclear operators and the different national regulatory bodies were already in a position to understand the proposed dose limitation system and to apply it to nuclear activities. In Italy the basic principle of limiting individual risks and the search for increased protection were already applied in the radiation analysis of nuclear plants. These principles were applied during design (1972-74) and operation (1974-80) of the industrial fuel-element fabrication plant of the company Fabbricazioni Nucleari (F.N.) in Bosco Marengo. The paper reports on the criteria followed in the design stage, the organization and methods adopted for reducing the doses during operation, and the results achieved after a few years of plant activity. In view of the purely technical nature of this paper, the first principle of the dose limitation system (justification), which is more a political issue, is not taken into consideration; however, an assessment of the Italian context as at the end of the 1960s shows that the principle of justification of a practice was adequately taken into account when the construction of the F.N. plant was decided on. (author)

  4. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients.

    Science.gov (United States)

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-10-03

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with positive axillary lymph nodes. Prospectively, 40 women with stage IIIA to IIIC breast cancer received ddEC-P ± trastuzumab as adjuvant treatment. PEG-G-CSF was injected subcutaneously in a dose of 6 mg or 3 mg on the 2 th day of each treatment cycle. With administration of PEG-G-CSF, all of the 40 patients completed 8 cycles of ddEC-P ± trastuzumab regimen without dose reductions or treatment delays. Moreover, no FN cases were observed. Further analysis showed that the proper dosage of PEG-G-CSF was 6 mg for ddEC treatment, and 3 mg for ddP treatment. PEG-G-CSF exhibits advantages compared with G-CSF in convenient of administration and tolerance for high risk Chinese breast cancer patients. More importantly, the proper dose of PEG-G-CSF for high risk Chinese breast cancer patients during ddEC-P chemotherapy may be 6 mg for ddEC treatment and 3 mg for ddP treatment.

  5. Mortality from diseases other than cancer following low doses of ionizing radiation

    DEFF Research Database (Denmark)

    Vrijheid, M; Cardis, E; Ashmore, P

    2007-01-01

    BACKGROUND: Ionizing radiation at very high (radio-therapeutic) dose levels can cause diseases other than cancer, particularly heart diseases. There is increasing evidence that doses of the order of a few sievert (Sv) may also increase the risk of non-cancer diseases. It is not known, however......, whether such effects also occur following the lower doses and dose rates of public health concern. METHODS: We used data from an international (15-country) nuclear workers cohort study to evaluate whether mortality from diseases other than cancer is related to low doses of external ionizing radiation....... Analyses included 275 312 workers with adequate information on socioeconomic status, over 4 million person-years of follow-up and an average cumulative radiation dose of 20.7 mSv; 11 255 workers had died of non-cancer diseases. RESULTS: The excess relative risk (ERR) per Sv was 0.24 [95% CI (confidence...

  6. Multicentre evaluation of a novel vaginal dose reporting method in 153 cervical cancer patients

    DEFF Research Database (Denmark)

    Westerveld, Henrike; de Leeuw, Astrid; Kirchheiner, Kathrin

    2016-01-01

    Background and purpose Recently, a vaginal dose reporting method for combined EBRT and BT in cervical cancer patients was proposed. The current study was to evaluate vaginal doses with this method in a multicentre setting, wherein different applicators, dose rates and protocols were used. Materia...

  7. Dose-Effect Relationship in Chemoradiotherapy for Locally Advanced Rectal Cancer

    DEFF Research Database (Denmark)

    Jakobsen, Anders; Ploen, John; Vuong, Té

    2012-01-01

    PURPOSE: Locally advanced rectal cancer represents a major therapeutic challenge. Preoperative chemoradiation therapy is considered standard, but little is known about the dose-effect relationship. The present study represents a dose-escalation phase III trial comparing 2 doses of radiation...

  8. ROLES OF RADIATION DOSE AND CHEMOTHERAPY IN THE ETIOLOGY OF STOMACH CANCER AS A SECOND MALIGNANCY

    NARCIS (Netherlands)

    van den Belt-Dusebout, Alexandra W.; Aleman, Berthe M. P.; Besseling, Gijs; de Bruin, Marie L.; Hauptmann, Michael; van 't Veer, Mars B.; de Wit, Ronald; Ribot, Jacques G.; Noordijk, Evert M.; Kerst, J. Martijn; Gietema, Jourik A.; van Leeuwen, Flora E.

    2009-01-01

    Purpose: To evaluate the roles of radiation dose, chemotherapy, and other factors in the etiology of stomach cancer in long-term survivors of testicular cancer or Hodgkin lymphoma. Methods and Materials: We conducted a cohort study in 5,142 survivors of testicular cancer or Hodgkin lymphoma treated

  9. Method for calculation of upper limit internal alpha dose rates to aquatic organisms with application of plutonium-239 in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.

    1977-01-01

    A method for the calculation of upper limit internal alpha dose rates to aquatic organisms is presented. The mean alpha energies per disintegration of radionuclides of interest are listed to be used in standard methodologies to calculate dose to aquatic biota. As an application, the upper limits for the alpha dose rates from 239 Pu to the total body of plankton are estimated based on data available in open literature [pt

  10. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade

  11. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  12. Incidental renal tumours on low-dose CT lung cancer screening exams.

    Science.gov (United States)

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  13. Safety of dose escalation by simultaneous integrated boosting radiation dose within the primary tumor guided by 18FDG-PET/CT for esophageal cancer

    International Nuclear Information System (INIS)

    Yu, Wen; Cai, Xu-Wei; Liu, Qi; Zhu, Zheng-Fei; Feng, Wen; Zhang, Qin; Zhang, Ying-Jian; Yao, Zhi-Feng; Fu, Xiao-Long

    2015-01-01

    Purpose: To observe the safety of selective dose boost to the pre-treatment high 18 F-deoxyglucose (FDG) uptake areas of the esophageal GTV. Methods: Patients with esophageal squamous cell carcinoma were treated with escalating radiation dose of 4 levels, with a simultaneous integrated boost (SIB) to the pre-treatment 50% SUVmax area of the primary tumor. Patients received 4 monthly cycles of cisplatin and fluorouracil. Dose-limiting toxicity (DLT) was defined as any Grade 3 or higher acute toxicities causing continuous interruption of radiation for over 1 week. Results: From April 2012 to February 2014, dose has been escalated up to LEVEL 4 (70 Gy). All of the 25 patients finished the prescribed dose without DLT, and 10 of them developed Grade 3 acute esophagitis. One patient of LEVEL 2 died of esophageal hemorrhage within 1 month after completion of radiotherapy, which was not definitely correlated with treatment yet. Late toxicities remained under observation. With median follow up of 8.9 months, one-year overall survival and local control was 69.2% and 77.4%, respectively. Conclusions: Dose escalation in esophageal cancer based on 18 FDG-PET/CT has been safely achieved up to 70 Gy using the SIB technique. Acute toxicities were well tolerated, whereas late toxicities and long-term outcomes deserved further observation

  14. High-dose rate intra-operative radiation therapy for local advanced and recurrent colorectal cancer

    International Nuclear Information System (INIS)

    Harrison, L.B.; Mychalczak, B.; Enker, W.; Anderson, L.; Cohen, A.E.; Minsky, B.

    1996-01-01

    In an effort to improve the local control for advanced and recurrent cancers of the rectum, we have integrated high-dose rate intra-operative radiation therapy (HDR-IORT) into the treatment program. Between 11/92 and 10/95, 47 patients (pts) were treated. There were 26 males and 21 females whose ages ranged from 30-80 (median = 62) years. There were 19 pts with primary unresectable rectal cancer, and 28 pts who were treated for recurrent rectal cancer. Histology was adenocarcinoma - 45 pts, squamous cancer - 2 pts. The range of follow-up is 1-34 months (median = 14 months). The majority of primary unresectable pts received pre-operative radiation therapy (4500-5040 cGy) with chemotherapy (5-FU with Leucovorin) 4-6 weeks later, they underwent resection + HDR-IORT (1200 cGy). For the 28 pts with recurrent cancer, the majority received surgery and HDR-IORT alone because they had received prior RT. For the pts with primary unresectable disease, actuarial 2-year local control was 77%, actuarial distant metastasis-free survival was 71%, disease free survival was 66%, and overall survival was 84%. For those pts with recurrent disease, actuarial 2-year local control rate was 65%, distant metastasis-free survival was 65%, disease free survival was 47%, and overall survival was 61%. Complications occurred in 36%. There were no cases where the anatomical distribution of disease, or technical limitations prevented the adequate delivery of HDR-IORT. We conclude that this technique was most versatile, and enabled all appropriate pts to receive IORT. The preliminary data in terms of local control are encouraging, even for the poor prognostic sub-group of pts with recurrent cancer

  15. Implementation of ICRP-60 recommendations on dose limits to radiation workers in India

    International Nuclear Information System (INIS)

    Parthasarathy, K.S.

    2000-01-01

    The handling of radioactive material and radiation generating plants in India is regulated by the Atomic Energy Act, 1962 and rules issued under the Act. The Atomic Energy Regulatory Board enforces the rules. Currently, there are about 40,000 radiation workers in the country. Nearly half of them are employed in nuclear installations. During 1989, the Board considered the impact of restricting the maximum individual exposure to different values of dose limits. Through this analysis, the Board alerted all radiation users including persons responsible for radiation safety in nuclear facilities. When ICRP published ICRP-60, the Board issued directives to all radiation installations reducing the dose limit to occupational workers in a phased manner (40 mSv for 1991, 35 mSv for 1992 and 30 mSv for 1993). To meet the recommendations of ICRP-60, AERB issued a directive for the five year block 1994-1998, restricting the cumulative effective dose constraint to one hundred milliSievert (100 mSv) for individual radiation workers. Also, the annual effective dose to individual workers in any calendar year during the five-year block was restricted to thirty milliSievert (30 mSv). The stipulations of AERB are thus more conservative than those of ICRP. There was near total compliance with the dose limits by radiation installations in the country. For instance, in 1989, the number of radiation workers in nuclear power plants, who exceeded the dose level of 20 mSv/year was 9% of the total. This declined gradually to 2.2% in 1993 and 0.3% in 1997. During 1998, only 9 out of 10,145 exceeded 20 mSv/year. This has been achieved by the concerted efforts of the management, health physics staff and radiation workers. The health physicists regulated the radiation doses to workers by issuing work permits when the workers are assigned any job in high radiation areas. Appropriate training programmes are also in place. The broad guidelines to regulate radiation exposures in nuclear facilities

  16. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  17. Dose and Duration of Opioid Use in Patients with Cancer and Noncancer Pain at an Outpatient Hospital Setting in Malaysia.

    Science.gov (United States)

    Zin, Che S; Rahman, Norny A; Ismail, Che R; Choy, Leong W

    2017-07-01

    There are currently limited data available on the patterns of opioid prescribing in Malaysia. This study investigated the patterns of opioid prescribing and characterized the dosing and duration of opioid use in patients with noncancer and cancer pain. This retrospective, cross-sectional study was conducted at an outpatient hospital setting in Malaysia. All prescriptions for opioids (dihydrocodeine, fentanyl, morphine, and oxycodone) issued between January 2013 and December 2014 were examined. The number of prescriptions and patients, the distribution of mean daily dose, annual total days covered with opioids, and annual total opioid dose at the individual level were calculated and stratified by noncancer and cancer groups. A total of 1015 opioid prescriptions were prescribed for 347 patients from 2013 to 2014. Approximately 41.5% of patients (N = 144/347) and 58.5% (N = 203/347) were associated with noncancer and cancer diagnosis, respectively. Oxycodone (38.0%) was the highest prescribed primarily for the noncancer group. The majority of patients in both noncancer (74.3%) and cancer (60.4%) groups were receiving mean daily doses of 90 days per year) was associated with 21.8% of patients in the noncancer group and 17.5% in the cancer group. The finding from this study showed that 41.5% of opioid users at an outpatient hospital setting in Malaysia received opioids for noncancer pain and 21.8% of these users were using opioids for longer than 90 days. The average daily dose in the majority of patients in both groups of noncancer and cancer was modest. © 2016 World Institute of Pain.

  18. Early quality of life outcomes in patients with prostate cancer managed by high-dose-rate brachytherapy as monotherapy

    International Nuclear Information System (INIS)

    Komiya, Akira; Fujiuchi, Yasuyoshi; Ito, Takatoshi

    2013-01-01

    The purpose of this study was to evaluate the early quality of life outcomes in prostate cancer patients managed by high-dose-rate brachytherapy as monotherapy. A total of 51 patients with cT1c-T3aN0M0 prostate cancer treated between July 2007 and January 2010 were included in this study. The average age was 69?years, and the average initial serum prostate-specific antigen was 10.98?ng/mL. A total of 25, 18 and eight patients were considered to be low, intermediate and high risk, respectively. All patients received one implant of Ir-192 and seven fractions of 6.5?Gy within 3.5?days for a total prescribed dose of 45.5?Gy. For high-risk prostate cancer, neoadjuvant androgen deprivation therapy was carried out for at least 6?months, and continued after high-dose-rate brachytherapy. Quality of life outcomes were measured by using the International Prostate Symptom Score, the Functional Assessment of Cancer Therapy-Prostate and the International Index of Erectile Function Questionnaire. The oncological outcome was assessed by serum prostate-specific antigen and diagnostic imaging. Adverse events were also recorded. The Functional Assessment of Cancer Therapy-Prostate scores decreased for a few months after high-dose-rate brachytherapy, and recovered to pretreatment condition thereafter. The International Prostate Symptom Score significantly increased 2?weeks after treatment for each of its items and their sum, and it returned to baseline after 12?weeks. Sexual function decreased at 2 and 4?weeks, and recovered after 12?weeks. Severe complications were rare. Within a median follow up of 17.2?months, two patients showed a prostate-specific antigen recurrence. High-dose-rate brachytherapy for prostate cancer is a feasible treatment modality with acceptable toxicity and only a limited impact on the quality of life. (author)

  19. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    Science.gov (United States)

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  20. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning

    International Nuclear Information System (INIS)

    McGarry, Conor K.; Bokrantz, Rasmus; O’Sullivan, Joe M.; Hounsell, Alan R.

    2014-01-01

    Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managed through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to

  1. Dose limits and licensing requirements for the limitation of the emission of radioactive materials from nuclear power stations in the FRG and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Schwibach, J; Huber, O

    1975-08-01

    In licensing the operation of nuclear power plants in the FRG and USA, particular limitations of the release of radioactive materials in the air and water are layed down to correspond to the protective laws of radiation and environmental protection. The first limiting recommendations for the removal of radioactive waste waters were worked out in 1965 in the FRG and in 1968/69 for the removal of radioactive exhaust air of nuclear power plants. Based on this, in 1975 these relevant regulations were included in the draft of the new radiation protection specification. In 1971, these type of guidelines were put to discussion in the USA and were dismissed in 1975 in a licensing regulation of the NRC. These regulations or guidelines differ in their various dose limits. For example, the German dose limits of 30 mrem/a whole body dose for radioactive materials in the exhaust air of nuclear power plants and of 90 mrem/a for the thyroid dose through radioiodine via the exposure exhaust air-pasture-cow-milk-infant are often compared to the American dose limits of 5 mrem/a whole body dose and 15 mrem/a skin dose as well as 15 mrem/a thyroid dose. Such a numerical comparison is, howewer, wrong. The dose limits used in the FRG are, e.g., not to be exceeded. Furthermore, in the FRG, all contributions to be calculated on one site are to be considered. In the USA, the corresponding values are only valid for actual exposure paths due to the emission of a power reactor. They can be multiply exceeded. Thus the German licensing practise is clearly more restrictive.

  2. Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer.

    Science.gov (United States)

    Rwigema, Jean-Claude M; Verma, Vivek; Lin, Liyong; Berman, Abigail T; Levin, William P; Evans, Tracey L; Aggarwal, Charu; Rengan, Ramesh; Langer, Corey; Cohen, Roger B; Simone, Charles B

    2017-11-01

    Existing data supporting the use of proton-beam therapy (PBT) for limited-stage small cell lung cancer (LS-SCLC) are limited to a single 6-patient case series. This is the first prospective study to evaluate clinical outcomes and toxicities of PBT for LS-SCLC. This study prospectively analyzed patients with primary, nonrecurrent LS-SCLC definitively treated with PBT and concurrent chemotherapy from 2011 to 2016. Clinical backup intensity-modulated radiotherapy (IMRT) plans were generated for each patient and were compared with PBT plans. Outcome measures included local control (LC), recurrence-free survival (RFS), and overall survival (OS) rates and toxicities. Thirty consecutive patients were enrolled and evaluated. The median dose was 63.9 cobalt gray equivalents (range, 45-66.6 cobalt gray equivalents) in 33 to 37 fractions delivered daily (n = 18 [60.0%]) or twice daily (n = 12 [40.0%]). The concurrent chemotherapy was cisplatin/etoposide (n = 21 [70.0%]) or carboplatin/etoposide (n = 9 [30.0%]). In comparison with the backup IMRT plans, PBT allowed statistically significant reductions in the cord, heart, and lung mean doses and the volume receiving at least 5 Gy but not in the esophagus mean dose or the lung volume receiving at least 20 Gy. At a median follow-up of 14 months, the 1-/2-year LC and RFS rates were 85%/69% and 63%/42%, respectively. The median OS was 28.2 months, and the 1-/2-year OS rates were 72%/58%. There was 1 case each (3.3%) of grade 3 or higher esophagitis, pneumonitis, anorexia, and pericardial effusion. Grade 2 pneumonitis and esophagitis were seen in 10.0% and 43.3% of patients, respectively. In the first prospective registry study and largest analysis to date of PBT for LS-SCLC, PBT was found to be safe with a limited incidence of high-grade toxicities. Cancer 2017;123:4244-4251. © 2017 American Cancer Society. © 2017 American Cancer Society.

  3. Sustained platelet-sparing effect of weekly low dose paclitaxel allows effective, tolerable delivery of extended dose dense weekly carboplatin in platinum resistant/refractory epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Blagden Sarah

    2011-07-01

    Full Text Available Abstract Background Platinum agents have shown demonstrable activity in the treatment of patients with platinum resistant, recurrent ovarian cancer when delivered in a "dose-dense" fashion. However, the development of thrombocytopenia limits the weekly administration of carboplatin to no greater than AUC 2. Paclitaxel has a well-described platelet sparing effect however its use to explicitly provide thromboprotection in the context of dose dense carboplatin has not been explored. Methods We treated seven patients with platinum resistant ovarian cancer who had previously received paclitaxel or who had developed significant peripheral neuropathy precluding the use of further full dose weekly paclitaxel. Results We were able to deliver carboplatin AUC 3 and paclitaxel 20 mg/m2 with no thrombocytopenia or worsening of neuropathic side-effects, and with good activity. Conclusions We conclude that this regimen may be feasible and active, and could be formally developed as a "platinum-focussed dose-dense scaffold" into which targeted therapies that reverse platinum resistance can be incorporated, and merits further evaluation.

  4. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    Science.gov (United States)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness

  5. Dose Distribution over Different Parts of Cancer Patients During Radiotherapy Treatment in Bangladesh

    International Nuclear Information System (INIS)

    Miah, F.K.; Ahmed, M.F.; Begum, Z.; Alam, B.; Chowdhury, Q.

    1998-01-01

    Measurements have been carried out to determine the dose distribution over different parts of the body of 12 cancer patients during radiotherapy treatment. Patients with breast cancer, lung cancer, cervix and larynx cancer treated with either X ray therapy or 60 Co therapy were particularly considered. The doses to the organs and tissues outside the primary beam of the patients under treatment were found to vary with a maximum value of 9096 ± 25 mSv at the neck of a lung cancer patient to a minimum value of 2 ± 0.5 mSv at the right leg of a breast cancer patient. The variation of doses was well explained by the exposure and patient data given for each patient. The measured data in each part of the body have been found to be consistent indicating confidence in the measurements. (author)

  6. Low-dose aspirin use and the risk of ovarian cancer in Denmark

    DEFF Research Database (Denmark)

    Baandrup, Lone; Kjaer, S K; Olsen, J H

    2015-01-01

    BACKGROUND: A comprehensive body of evidence has shown that aspirin has cancer-preventive effects, particularly against gastrointestinal cancer, but its effects on the risk of ovarian cancer are less well established. This nationwide case-control study examined the association between low......-dose aspirin and the risk of ovarian cancer. PATIENTS AND METHODS: We identified all patients in the Danish Cancer Registry aged 30-84 years old with a histologically verified first diagnosis of epithelial ovarian cancer during 2000-2011. Each patient was sex- and age-matched to 15 population controls using...... risk-set sampling. Prescription use, comorbidity, reproductive history, and demographic characteristics data were obtained from nationwide registries. The use of low-dose (75-150 mg) aspirin was defined according to the dose as well as the duration and consistency of use. Conditional logistic...

  7. The issue concerning the use of an annual as opposed to a committed dose limit for internal radiation protection

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Alexander, E.L.; French, C.S.

    1985-01-01

    The scientific, technical, practical, and ethical considerations that relate to the use of an annual as opposed to a committed dose limitation system for internal radiation protection are evaluated and presented. The concerns about problems associated with the more recent ICRP committed dose recommendations that have been expressed by persons who are currently operating under an annual dose limitation system are reviewed and discussed in terms of the radiation protection programme elements that are required for an effective ALARA programme. We include in this and a follow-up article a comparison of how these alternative dose limitation systems affect the economic and professional livelihood of radiation workers and the requirements that they impose upon employers. Finally, we recommend the use of an ICRP based committed dose limitation system that provides protection of workers over an entire occupational lifetime without undue impact on their livelihood and without undue requirements for employers. (author)

  8. Differentiated thyroid cancer treatment with therapeutic doses of 131I calculated by dosimetry: our experience

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.M.; Valdivieso, C.M.; Degrossi, Osvaldo J.; Cabrejas, R.; Cabrejas, M.L.

    2006-01-01

    The optimum dose for the differentiated thyroid cancer treatment is a motive of controversy. There exist two ways of deciding the dose to administer: the empirical method (fixed doses) and dosimetric calculation method. The use of fixed doses has demonstrated safety and effectiveness. Nevertheless there are cases in which the use of several small doses not resolves the metastases illness of the patients. Using the Benua-Leeper method for dosimetric calculation we have evaluated the maximum dose treatment that could be administered to 20 patients who showed persistent disease after several treatments with 131 I. (author) [es

  9. Increasing Use of Dose-Escalated External Beam Radiation Therapy for Men With Nonmetastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Swisher-McClure, Samuel; Mitra, Nandita; Woo, Kaitlin; Smaldone, Marc; Uzzo, Robert; Bekelman, Justin E.

    2014-01-01

    Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Using multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment

  10. Lateral rectal shielding reduces late rectal morbidity after high dose three-dimensional conformal radiation therapy for clinically localized prostate cancer: further evidence for a dose effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W Robert; Hanks, Gerald E; Hanlon, Alexandra; Schultheiss, Timothy E

    1995-07-01

    Purpose: Using conventional treatment methods for the treatment of clinically localized prostate cancer central axis doses must be limited to 65-70 Gy to prevent significant damage to nearby normal tissues. A fundamental hypothesis of three-dimensional conformal radiation therapy (3DCRT) is that, by defining the target organ(s) accurately in three dimensions, it is possible to deliver higher doses to the target without a significant increase in normal tissue complications. This study examines whether this hypothesis holds true and whether a simple modification of treatment technique can reduce the incidence of late rectal morbidity in patients with prostate cancer treated with 3DCRT to minimum planning target volume (PTV) doses of 71-75 Gy. Materials and Methods: 257 patients with clinically localized prostate cancer completed 3DCRT by December 31, 1993 and received a minimum PTV dose of 71-75 Gy. The median follow-up time was 22 months (range 4-67 months) and 98% of patients had followup of longer than 12 months. The calculated dose at the center of the prostate was <74 Gy in 19 patients, 74-76 Gy in 206 patients and >76 Gy in 32 patients. Late rectal morbidity was graded according to the LENT scoring system. Eighty-eight consecutive patients were treated with a rectal block added to the lateral fields. In these patients the posterior margin from the prostate to the block edge was reduced from the standard 15 mm to 7.5 mm for the final 10 Gy which reduced the dose to portions of the anterior rectal wall by approximately 4-5 Gy. Estimates of rates for rectal morbidity were determined by Kaplan-Meier actuarial analyses. Differences in morbidity percentages were evaluated by the Pearson chi square test. Results: Grade 2-3 rectal morbidity developed in 46 of 257 patients (18%) and in the majority of cases consisted of rectal bleeding. No patient has developed grade 4 or 5 rectal morbidity. The actuarial rate of grade 2-3 morbidity is 22% at 24 months and the median

  11. Comments about the application of the dose limitation system in Spain

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.; Gil Lopez, E.

    1982-01-01

    The problems arising from the application of the Dose Limitation System (DLS) established by ICRP and recommended by I.A.E.A. are presented. The Spanish Nuclear Regulatory Body has tried to set numerical guides to develop the criteria included in the DLS concept during the licensing process of nuclear instalations and isotopes uses in order to guarantee to the population not only the respect of the authorised limits but also that the instalations and practices are justified and optimised. All efforts have been useless. The cost quantification of the protection systems present marketing and maintenance problems that lead to meaningless estimations. Besides the evaluation of the radiological detriment as function of the collective dose by means of the price of the sievert-person adds two more difficulties: the first one is intrinsic to the hypothesis made and the second one is the discrimination over different population groups resulting from monetary fluctuations in inflation ist economies. The authors have developped a method spanding the detriment concept to the whole environment (not only the man) arriving to an easy way to make an effective optimization. The method is based in the quantification of the degradation energy released to the surroundings by means of a price assigned to the kw-hr. This price can dissuade the licensee and oblige him for economical reasons to select a more effective retention systems and/or a better operation.(author)

  12. Principles of the International Commission on Radiological Protection system of dose limitation

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1987-01-01

    The formulation of a quantitative system of dose limitation based on ICRP principles of 'stochastic' and 'non-stochastic' effects requires that judgements be made on several factors including: relationships between radiation dose and the induction of deleterious effects for a variety of endpoints and radiation types; acceptable levels of risk for radiation workers and members of the public; and methods of assessing whether the cost of introducing protective measures is justified by the reduction in radiation detriment which they will provide. In the case of patients deliberately exposed to ionising radiations, the objectives of radiation protection differ somewhat from those applying to radiation workers and members of the public. For patients, risks and benefits relate to the same person and upper limits on acceptable risks may differ grossly from those appropriate to normal individuals. For these reasons, and because of its historical relationship with the International Congress of Radiology, the ICRP has given special consideration to radiation protection in medicine and has published reports on protection of the patient in diagnostic radiology and in radiation therapy. (author)

  13. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  14. Evaluation of doses received by personnel occupationally exposed based on the dose limits established in European Directive 96/26. Reclassification of personnel

    International Nuclear Information System (INIS)

    Prieto, C.; Espana, M.L.; Perez, L.; Tomasi, L.; Lopez Franco, P.

    1997-01-01

    The recommendations of ICRP-60 of 1990 provide the basis of the European Directive 96/26/Euratom in which new dose limits of radiation for workers have been established. These new dose limits assume important reductions compared to the previous limits, which are still in force in Spain, and might entail the reclassification of some of these workers. In the present work it is shown that the majority of the workers exposed to areas under our responsibility could be classified under Category B

  15. A dose escalation study of concurrent chemoradiation therapy with nedaplatin for cervical cancer

    International Nuclear Information System (INIS)

    Hatae, Masayuki; Takahashi, Takeshi; Kodama, Shoji

    2005-01-01

    Doses of nedaplatin (CDGP) were established for concurrent chemoradiation therapy (CCRT) for cervical cancer, and a collaborative dose escalation study involving 8 hospitals was conducted to investigate the safety and efficacy of this therapy. Radiotherapy was performed according to the standard treatment described in the Regulations of Cervical Carcinoma Treatment. CDGP at 80 mg/m 2 as Level 1 or at 90 mg/m 2 as Level 2 was administered on Days 1 and 29 of treatment. Dose-limiting toxicity (DLT) was observed in 1 of 6 patients receiving 80 mg/m 2 of CDGP and in all 2 patients receiving 90 mg/m 2 of CDGP; therefore, Level 2 was regarded as the maximum tolerated dose (MTD), and Level 1 as the recommended dose. DLT signs consisted of delayed improvement in the leukocyte count in 2 patients and anorexia in 1 patient, suggesting that delayed improvement in the leukocyte count is the main DLT of this combination therapy. The main side effects were digestive disorders such as nausea and anorexia and bone marrow suppression, such as leukopenia, neutropenia, and thrombopenia. Side effects in the Level 1 group were more mild than in the Level 2 group. The efficacy was partial response (PR) or better in all patients. The complete response (CR) rates were 60% (6/10) in the Level 1 group and 50% (1/2) in the Level 2 group; there was no marked difference between the two groups. These results suggest that CCRT involving administration CDGP at 80 mg/m 2 on Days 1 and 29 is safe and effective. (author)

  16. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  17. Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Lutkenhaus, Lotte J.; Visser, Jorrit; Jong, Rianne de; Hulshof, Maarten C.C.M.; Bel, Arjan

    2015-01-01

    Purpose: To account for variable bladder size during bladder cancer radiotherapy, a daily plan selection strategy was implemented. The aim of this study was to calculate the actually delivered dose using an adaptive strategy, compared to a non-adaptive approach. Material and methods: Ten patients were treated to the bladder and lymph nodes with an adaptive full bladder strategy. Interpolated delineations of bladder and tumor on a full and empty bladder CT scan resulted in five PTVs for which VMAT plans were created. Daily cone beam CT (CBCT) scans were used for plan selection. Bowel, rectum and target volumes were delineated on these CBCTs, and delivered dose for these was calculated using both the adaptive plan, and a non-adaptive plan. Results: Target coverage for lymph nodes improved using an adaptive strategy. The full bladder strategy spared the healthy part of the bladder from a high dose. Average bowel cavity V30Gy and V40Gy significantly reduced with 60 and 69 ml, respectively (p < 0.01). Other parameters for bowel and rectum remained unchanged. Conclusions: Daily plan selection compared to a non-adaptive strategy yielded similar bladder coverage and improved coverage for lymph nodes, with a significant reduction in bowel cavity V30Gy and V40Gy only, while other sparing was limited

  18. Biological dose estimation of partial body exposures in cervix cancer patients

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Nasazzi, Nora B.; Taja, Maria R.; Roth, B.; Sardi, M.; Menendez, P.

    2000-01-01

    fraction. Cells containing aberrations will have been in the irradiated part of the body. Normal undamaged cells will comprise two subpopulations; those from the unexposed fraction and irradiated cells representing the first term (e -γ ) of the Poisson series. From the degree of the deviation from Poisson, the fraction of irradiated lymphocytes of the body and its mean dose can be obtained. The alternative Qdr method considers the yield of dicentrics and rings only from those cells that contain unstable aberrations and assumes that these cells were irradiated in situ. The Qdr value represents the expected frequency of dicentrics and rings among first division damaged cells (containing dicentrics, rings and excess acentric fragments). It is dose dependent, but independent of dose homogeneity and of a dilution of damaged cells by undamaged cells. Qdr assumes that the excess acentric fragments follow the Poisson distribution, but this is not borne out by data from in vitro experiments. It also assumes that cells containing excess acentric fragments will have been in the irradiated fraction of the body. However, their induction is not radiation specific, showing a variable spontaneous frequency, As these limitations are thought to be important, they were avoided by considering the yield of dicentrics + rings in those damaged cells which contain just dicentrics + rings (Qdr reduced equations). This simplified equation produces a dose estimate identical to that obtained by Dolphin method. Therefore, we apply Qdr reduced equation for data analysis. After inhomogeneous exposures, information on the absorbed dose and its distribution in the body is of great importance for an early assessment of irradiation consequences in the exposed individuals. As cancer patients undergoing partial-body fractionated radiotherapy may provide a model for in vivo irradiation, the objective of this work has been to assess the possibilities and limitations of Qdr method to determine reliable dose

  19. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  20. Low-dose aspirin or other nonsteroidal anti-inflammatory drug use and prostate cancer risk

    DEFF Research Database (Denmark)

    Skriver, Charlotte; Dehlendorff, Christian; Borre, Michael

    2016-01-01

    PURPOSE: Increasing evidence suggests that aspirin use may protect against prostate cancer. In a nationwide case-control study, using Danish high-quality registry data, we evaluated the association between the use of low-dose aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs......) and the risk of prostate cancer. METHODS: We identified 35,600 patients (cases) with histologically verified prostate cancer during 2000-2012. Cases were matched to 177,992 population controls on age and residence by risk-set sampling. Aspirin and nonaspirin NSAID exposure was defined by type, estimated dose......, duration, and consistency of use. We used conditional logistic regression to estimate odds ratios (ORs), with 95 % confidence intervals (CIs), for prostate cancer associated with low-dose aspirin (75-150 mg) or nonaspirin NSAID use, adjusted for potential confounders. RESULTS: Use of low-dose aspirin...

  1. Assessing doses of radiotherapy with the risk of developing cancer in the head and neck

    International Nuclear Information System (INIS)

    Yu, Cheng-Ching; Hsu, Fang-Yuh; Yu, Wan-Hsuan; Liu, Mu-Tai; Huang, Sheng-Shien

    2011-01-01

    Radiation is known to be a major cause of cancer in normal tissue. After treatment with radiotherapy, for young patients or the patients can survive for a long time, the radiation-induced cancer risk is noteworthy. This research investigated the dose delivered by the treatment of intensity modulated radiation therapy (IMRT) for head and neck cancer, such as NPC and oral cancer, and assessed the risk of developing radiation-induced secondary cancer in non-targeted normal tissues. A Rando phantom was used to simulate a patient with NPC or oral cancer, and thermoluminescent dosimeter (TLD) chips were placed inside the phantom to estimate the doses delivered by IMRT. In summary, the risks to patients with NPC was somewhat higher than for those with oral cancer, because the region of the PTV was lower, requiring larger field sizes be used for cases of NPC. The smaller the field size used, the less the risk was of developing secondary cancer. In addition, the higher the value of MU used, the higher the dose delivered to normal tissues was. The risk of radiation-induced secondary cancer was proportional to the delivered dose.

  2. Dose-time considerations in the treatment of anal cancer

    International Nuclear Information System (INIS)

    Constantinou, Eugene C.; Daly, William; Fung, Claire Y.; Willett, Christopher G.; De Laney, Thomas F.

    1996-01-01

    Purpose: Concurrent chemoradiation has become the standard initial treatment of primary anal carcinomas. The objective of this study was to analyze the impact on treatment outcome of a variety of patient and treatment variables including radiation dose and overall treatment time in patients treated with concurrent chemoradiation for anal carcinomas. Materials and Methods: Retrospective chart review on 50 patients with MO anal cancer treated with concurrent chemoradiation during the years 1984-1993. Patients were identified from the hospital tumor registries. The majority of patients received treatment with 5-FU 1000 mg/m 2 days 1-4, 29-33 and Mitomycin 10-15 mg/m 2 days 1 ± 29. Radiation was given at 180-200 cGy daily starting at day 1 to total doses of 23.6-67.2 Gy (median 54 Gy) usually by shrinking field technique. Local control, disease-free survival, and overall survival of the group was determined and then analyzed with respect to a variety of patient characteristics including T and N stage, histology, radiation dose, overall treatment time, hemoglobin at the start of treatment, age, HIV status, and sex. Local control, disease-free and overall survival were calculated using the Kaplan-Meier method. Tests for significance were done using the log-rank method. Results: Patient characteristics were: (1) histology-squamous 78 %, cloacogenic/basaloid 20%, and adenosquamous 2%; (2) age- range 30-82 years (median 58.5), (3) sex- female 58%, male 42%; (4) T stage- T1 16%, T2 46%, T3 24%, T4 8%, TX 6%; (5) N stage- NO 69%, N+ 23 %, NX 8%; (6) HIV (+) 8%, HIV(-/?) 92%. Follow-up ranged from 2-132 months (median 43 months). Overall survival was 66% and 44% at 5 and 10 years. Disease-free survival was 67% at 5 years and 59% at 10 years. Local control was 70% at 5 and 10 years. Five year local control by T stage: T stage- T1 87.5 %, T2 63%, T3 83%, T4 67%, TX 50%. Doses of ≥ 54 Gy are associated with improved 5-year survival (84 % vs. 47%, p=0.02), disease-free survival

  3. Radiation dose, reproductive history, and breast cancer risk among Japanese A-bomb survivors

    International Nuclear Information System (INIS)

    Land, C.E.

    1992-01-01

    Excess risk of female breast cancer is among the most comprehensively documented late effects of exposure to substantial doses of ionizing radiation, based on studies of medically irradiated populations and the survivors of the A-bombings of Hiroshima and Nagasaki. This study looks at the interaction of dose with epidemiological factors like age at first full-term pregnancy and family history of breast cancer, most closely associated with risk in epidemiological studies of non-irradiatied populations. 1 fig., 2 tabs

  4. Estimates of radiation doses in tissue and organs and risk of excess cancer in the single-course radiotherapy patients treated for ankylosing spondylitis in England and Wales

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Lyman, J.T.

    1982-02-01

    The estimates of absorbed doses of x rays and excess risk of cancer in bone marrow and heavily irradiated sites are extremely crude and are based on very limited data and on a number of assumptions. Some of these assumptions may later prove to be incorrect, but it is probable that they are correct to within a factor of 2. The excess cancer risk estimates calculated compare well with the most reliable epidemiological surveys thus far studied. This is particularly important for cancers of heavily irradiated sites with long latent periods. The mean followup period for the patients was 16.2 y, and an increase in cancers of heavily irradiated sites may appear in these patients in the 1970s in tissues and organs with long latent periods for the induction of cancer. The accuracy of these estimates is severely limited by the inadequacy of information on doses absorbed by the tissues at risk in the irradiated patients. The information on absorbed dose is essential for an accurate assessment of dose-cancer incidence analysis. Furthermore, in this valuable series of irradiated patients, the information on radiation dosimetry on the radiotherapy charts is central to any reliable determination of somatic risks of radiation with regard to carcinogenesis in man. The work necessary to obtain these data is under way; only when they are available can more precise estimates of risk of cancer induction by radiation in man be obtained

  5. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, R.L.; Schmitt, J.F. [Nuclear Energy Institute, Washington, DC (United States)

    1995-03-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission`s 10 CFR Part 20, {open_quotes}Standards for Protection Against Radiation{close_quotes}. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided.

  6. Assessment of the benefits and impacts in the U.S. Nuclear Power Industry of hypothesized lower occupational dose limits

    International Nuclear Information System (INIS)

    Andersen, R.L.; Schmitt, J.F.

    1995-01-01

    The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission's 10 CFR Part 20, open-quotes Standards for Protection Against Radiationclose quotes. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that are significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided

  7. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  8. In vivo measurement of radiation dose during radiotherapy in breast cancer patients using MOSFET dosimeter

    International Nuclear Information System (INIS)

    Wang Lili; Tu Yu; Zhou Juying; Lu Ye; Xu Xiaoting; Li Li; Qin Songbing

    2011-01-01

    Objective: The purpose of the study was to observe and analysis the actual dosage of patients with breast cancer using metal oxide semiconductor field effect transistor (MOSFET) detector. Methods: First, Phantom measurements were performed to investigate dose distribution in the area of the junction in a half-field matching method and the influence of factors related to the accelerator. In vivo dose measurements were performed for patients with breast cancer to investigate the skin dose and the junction of supraclavicular-axillary field and tangential field in 6 MV X-ray beams. Results: Phantom measurements showed that the relative deviation in the junction were within ±3%, and the dose distributions in the junction area depended on the matching field direction (x or y). In vivo measurement of tangential region for patients showed that, the maximum dose deviation between measurement and calculation was -30.39%,the minimum deviation was -18.85%, the average dose deviation was -24.76%. The dose deviation of tangential fields for patients with breast-conserving surgery was larger than that patients with radical surgery (t =2.40, P<0.05), while dose deviation of supraclavicular-axillary fields was not significantly different. The average values of 15 fraction in the junction area showed more stable than one individual measurement. Conclusions: It is important to real-time, in vivo measurement of radiation dose during radiotherapy in patients with breast cancer, and change treatment plan in time, to ensure the accuracy of target dose. (authors)

  9. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  10. Risk ratios for use in establishing dose limits for occupational exposure to radiation

    International Nuclear Information System (INIS)

    Metcalf, P.E.; Winkler, B.C.

    1980-01-01

    Dose limits for occupational exposure to radiation may be established by comparing the associated mortality risk with apparently accepted levels of industrial mortality risk due to conventional hazards. Average levels of industrial mortality risk rates are frequently quoted and used in such comparisons. However, within particular occupations or industries certain groups of workers will be exposed to higher levels of risk than the average, again an apparently accepted situation. A study has been made of the ratios of maximum to average industrial mortality risk currently experienced in some South African industries. Such a ratio may be used to assess the acceptability of maximum individual-to-average exposures in particular groups of exposed individuals. (author)

  11. The system of dose limitation and its optimization requirement: Present status and future outlook

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1984-01-01

    Optimization of radiation protection is a relevant and controversial requirement of the system of dose limitation currently recommended by the International Commission on Radiological Protection (ICRP). Since the first European Scientific Seminar on Experience and Methods on Optimization - held by the Commission of the European Communities in 1979 - and several related seminars and symposia organized by the IAEA, many international efforts have been made to promote the practical implementation of the requirement. Recently, the ICRP published a report of ICRP Committee 4 on cost-benefit analysis in the optimization of radiation protection (ICRP Publication 37); it provides guidance on the principles and methods of application of the requirement. Ultimately, this seminar demonstrates the continuous interest of the international community in the proper use of optimization. This paper is intended to contribute to the seminar's objective, discussing the current issues concerning the implementation of the requirement and exploring perspectives for future applications of the principles involved in optimization

  12. Dose Escalation Methods in Phase I Cancer Clinical Trials

    OpenAIRE

    Le Tourneau, Christophe; Lee, J. Jack; Siu, Lillian L.

    2009-01-01

    Phase I clinical trials are an essential step in the development of anticancer drugs. The main goal of these studies is to establish the recommended dose and/or schedule of new drugs or drug combinations for phase II trials. The guiding principle for dose escalation in phase I trials is to avoid exposing too many patients to subtherapeutic doses while preserving safety and maintaining rapid accrual. Here we review dose escalation methods for phase I trials, including the rule-based and model-...

  13. Dose Escalation for Prostate Cancer Using the Three-Dimensional Conformal Dynamic Arc Technique: Analysis of 542 Consecutive Patients

    International Nuclear Information System (INIS)

    Jereczek-Fossa, Barbara A.; Vavassori, Andrea; Fodor, Cristiana; Santoro, Luigi; Zerini, Dario; Cattani, Federica; Garibaldi, Cristina; Cambria, Raffaella; Fodor, Andrei; Boboc, Genoveva Ionela; Vitolo, Viviana; Ivaldi, Giovanni Battista; Musi, Gennaro; De Cobelli, Ottavio; Orecchia, Roberto

    2008-01-01

    Purpose: To present the results of dose escalation using three-dimensional conformal dynamic arc radiotherapy (3D-ART) for prostate cancer. Methods and Materials: Five hundred and forty two T1-T3N0M0 prostate cancer patients were treated with 3D-ART. Dose escalation (from 76 Gy/38 fractions to 80 Gy/40 fractions) was introduced in September 2003; 32% of patients received 80 Gy. In 366 patients, androgen deprivation was added to 3D-ART. Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria and Houston definition (nadir + 2) were used for toxicity and biochemical failure evaluation, respectively. Median follow-up was 25 months. Results: Acute toxicity included rectal (G1-2 28.9%; G3 0.5%) and urinary events (G1-2 57.9%; G3-4 2.4%). Late toxicity included rectal (G1-2 15.8%; G3-4 3.1%) and urinary events (G1-2 26.9%; G3-4 1.6%). Two-year failure-free survival and overall survival rates were 94.1% and 97.9%, respectively. Poor prognostic group (GS, iPSA, T), transurethral prostate resection, and dose >76 Gy showed significant association to high risk of progression in multivariate analysis (p = 0.014, p = 0.045, and p 0.04, respectively). The negative effect of dose >76 Gy was not observed (p 0.10), when the analysis was limited to 353 patients treated after September 2003 (when dose escalation was introduced). Higher dose was not associated with higher late toxicity. Conclusions: Three-dimensional-ART is a feasible modality allowing for dose escalation (no increase in toxicity has been observed with higher doses). However, the dose increase from 76 to 80 Gy was not associated with better tumor outcome. Further investigation is warranted for better understanding of the dose effect for prostate cancer

  14. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    International Nuclear Information System (INIS)

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-01-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  15. Prostate cancer: variables to keep in mind at the moment to decide the external radiotherapy dose

    International Nuclear Information System (INIS)

    Donato, H.; Barros, J.M.; Fernandez Bibiloni, C.; Barrios, E.; Martinez, A.; Broda, E.; Cardiello, C.; Alva, R.; Chiozza, J.; Filomia, M.L.; Rafailovici, L.; Dosoretz, B.

    2007-01-01

    The objective of this work is to evaluate forecast factors and other variables in the decision of the final dose for prostate cancer treatment with 3D conformal radiotherapy techniques of modulated intensity. To determine the optimal dose, direct and indirect variables related to the disease should be considered. Also the equipment and the radiotherapy technique will impact on this decision [es

  16. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  17. Efficacy of high-dose alkylating chemotherapy in HER2/neu-negative breast cancer

    NARCIS (Netherlands)

    Rodenhuis, S.; Bontenbal, M.; Hoesel, Q.G.C.M. van; Smit, W.M.; Nooij, M.A.; Voest, E.E.; Wall, E. van der; Hupperets, P.; Tinteren, H. van; Peterse, J.L.; Vijver, M.J. van de; Vries, E.G.E. de

    2006-01-01

    Background: High-dose chemotherapy in the adjuvant treatment of breast cancer has been abandoned by many. Patients and methods: 885 patients with stage III primary breast cancer and four or more axillary lymph node metastases were randomised to receive either five courses of FEC (fluorouracil,

  18. Efficacy of high-dose alkylating chemotherapy in HER2/neu-negative breast cancer

    NARCIS (Netherlands)

    Rodenhuis, S; Bontenbal, M; van Hoesel, QGCM; Smit, WM; Nooij, MA; Voest, EE; van der Wall, E; Hupperets, P; van Tinteren, H; Peterse, JL; van de Vijver, MJ; de Vries, EGE

    Background: High-dose chemotherapy in the adjuvant treatment of breast cancer has been abandoned by many. Patients and methods: 885 patients with stage III primary breast cancer and four or more axillary lymph node metastases were randomised to receive either five courses of FEC (fluorouracil,

  19. Radiation dose to laterally transposed ovaries during external beam radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Varveris, Haris; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the radiation dose to laterally transposed ovaries from external beam radiotherapy for cervical cancer. Dose measurements were performed in a modified humanoid phantom using a 6 MV photon beam. The dependence of the ovarian dose upon the field size, the distance from the primary irradiation field and the presence of wedges or gonadal shielding was determined. For a tumor dose of 45 Gy, ovarian dose was 0.88-8.51 Gy depending on the field size employed and the location of the transposed ovary in respect to the treatment field. Positioning of 7 cm thick shielding reduced the dose to ovary by less than 19%. The use of wedges increased the ovarian dose by a factor up to 1.5. Accurate radiographic localization of the ovaries allows the use of the presented dosimetric results to obtain a reasonable prediction of the ovarian dose

  20. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  1. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  2. Cancer Control Related to Stimulation of Immunity by Low-Dose Radiation

    OpenAIRE

    Liu, Shu-Zheng

    2006-01-01

    Previous studies showed that low dose radiation (LDR) could stimulate the immune system in both animal and human populations. This paper reviews the present status of relevant research as support to the use of LDR in clinical practice for cancer prevention and treatment. It has been demonstrated that radiation-induced changes in immune activity follows an inverse J-shaped curve, i.e., low dose stimulation and high dose suppression. The stimulation of immunity by LDR concerns most anticancer p...

  3. Peripheral blood stem cell harvest in patients with limited stage small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Katakami, Nobuyuki; Takakura, Shunji; Fujii, Hiroshi; Nishimura, Takashi; Umeda, Bunichi [Kobe City General Hospital (Japan)

    2000-06-01

    Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) induced mobilization of peripheral blood stem cells (PBSC) was performed in patients with limited stage small-cell lung cancer. Chemotherapy consisted of cisplatin/etoposide or cisplatin/adriamycin/etoposide. The amounts of CD34 positive cells and granulocyte-macrophage colony forming units (CFU-GM) collected during 2-3 courses of apheresis were 3.1{+-}2.9 x 10{sup 6}/kg (n=10) and 3.1{+-}1.5 x 10{sup 5}/kg (n=8) , respectively. Adequate amounts of PBSC were also harvested even in patients treated with concurrent chemoradiotherapy. Eight patients were successfully treated with high-dose chemotherapy consisting of ifosfamide, carboplatin and etoposide with PBSC transfusion. The patients'-bone marrow reconstruction was rapid and no treatment-related death was observed. (author)

  4. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  5. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  6. Obstructive urination problems after high-dose-rate brachytherapy boost treatment for prostate cancer are avoidable

    International Nuclear Information System (INIS)

    Kragelj, Borut

    2016-01-01

    Aiming at improving treatment individualization in patients with prostate cancer treated with combination of external beam radiotherapy and high-dose-rate brachytherapy to boost the dose to prostate (HDRB-B), the objective was to evaluate factors that have potential impact on obstructive urination problems (OUP) after HDRB-B. In the follow-up study 88 patients consecutively treated with HDRB-B at the Institute of Oncology Ljubljana in the period 2006-2011 were included. The observed outcome was deterioration of OUP (DOUP) during the follow-up period longer than 1 year. Univariate and multivariate relationship analysis between DOUP and potential risk factors (treatment factors, patients’ characteristics) was carried out by using binary logistic regression. ROC curve was constructed on predicted values and the area under the curve (AUC) calculated to assess the performance of the multivariate model. Analysis was carried out on 71 patients who completed 3 years of follow-up. DOUP was noted in 13/71 (18.3%) of them. The results of multivariate analysis showed statistically significant relationship between DOUP and anti-coagulation treatment (OR 4.86, 95% C.I. limits: 1.21-19.61, p = 0.026). Also minimal dose received by 90% of the urethra volume was close to statistical significance (OR = 1.23; 95% C.I. limits: 0.98-1.07, p = 0.099). The value of AUC was 0.755. The study emphasized the relationship between DOUP and anticoagulation treatment, and suggested the multivariate model with fair predictive performance. This model potentially enables a reduction of DOUP after HDRB-B. It supports the belief that further research should be focused on urethral sphincter as a critical structure for OUP

  7. Obstructive urination problems after high-dose-rate brachytherapy boost treatment for prostate cancer are avoidable.

    Science.gov (United States)

    Kragelj, Borut

    2016-03-01

    Aiming at improving treatment individualization in patients with prostate cancer treated with combination of external beam radiotherapy and high-dose-rate brachytherapy to boost the dose to prostate (HDRB-B), the objective was to evaluate factors that have potential impact on obstructive urination problems (OUP) after HDRB-B. In the follow-up study 88 patients consecutively treated with HDRB-B at the Institute of Oncology Ljubljana in the period 2006-2011 were included. The observed outcome was deterioration of OUP (DOUP) during the follow-up period longer than 1 year. Univariate and multivariate relationship analysis between DOUP and potential risk factors (treatment factors, patients' characteristics) was carried out by using binary logistic regression. ROC curve was constructed on predicted values and the area under the curve (AUC) calculated to assess the performance of the multivariate model. Analysis was carried out on 71 patients who completed 3 years of follow-up. DOUP was noted in 13/71 (18.3%) of them. The results of multivariate analysis showed statistically significant relationship between DOUP and anti-coagulation treatment (OR 4.86, 95% C.I. limits: 1.21-19.61, p = 0.026). Also minimal dose received by 90% of the urethra volume was close to statistical significance (OR = 1.23; 95% C.I. limits: 0.98-1.07, p = 0.099). The value of AUC was 0.755. The study emphasized the relationship between DOUP and anticoagulation treatment, and suggested the multivariate model with fair predictive performance. This model potentially enables a reduction of DOUP after HDRB-B. It supports the belief that further research should be focused on urethral sphincter as a critical structure for OUP.

  8. Dose dependence of complication rates in cervix cancer radiotherapy

    International Nuclear Information System (INIS)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder

  9. Dose dependence of complication rates in cervix cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder.

  10. Cancer incidence after retinoblastoma - Radiation dose and sarcoma risk

    NARCIS (Netherlands)

    Wong, FL; Boice, JD; Abramson, DH; Tarone, RE; Kleinerman, RA; Stovall, M; Goldman, MB; Seddon, JM; Tarbell, N; Fraumeni, JF; Li, FP

    1997-01-01

    Context.-There is a substantial risk of a second cancer for persons with hereditary retinoblastoma, which is enhanced by radiotherapy. Objective.-To examine long-term risk of new primary cancers in survivors of childhood retinoblastoma and quantify the role of radiotherapy in sarcoma development.

  11. Thyroid Radiation Dose and Other Risk Factors of Thyroid Carcinoma Following Childhood Cancer.

    Science.gov (United States)

    de Vathaire, Florent; Haddy, Nadia; Allodji, Rodrigue S; Hawkins, Mike; Guibout, Catherine; El-Fayech, Chiraz; Teinturier, Cécile; Oberlin, Odile; Pacquement, Hélène; Diop, Fara; Kalhouche, Amar; Benadjaoud, Mohamedamine; Winter, David; Jackson, Angela; Bezin Mai-Quynh, Giao; Benabdennebi, Aymen; Llanas, Damien; Veres, Cristina; Munzer, Martine; Nguyen, Tan Dat; Bondiau, Pierre-Yves; Berchery, Delphine; Laprie, Anne; Deutsch, Eric; Lefkopoulos, Dimitri; Schlumberger, Martin; Diallo, Ibrahima; Rubino, Carole

    2015-11-01

    Thyroid carcinoma is a frequent complication of childhood cancer radiotherapy. The dose response to thyroid radiation dose is now well established, but the potential modifier effect of other factors requires additional investigation. This study aimed to investigate the role of potential modifiers of the dose response. We followed a cohort of 4338 5-year survivors of solid childhood cancer treated before 1986 over an average of 27 years. The dose received by the thyroid gland and some other anatomical sites during radiotherapy was estimated after reconstruction of the actual conditions in which irradiation was delivered. Fifty-five patients developed thyroid carcinoma. The risk of thyroid carcinoma increased with a radiation dose to the thyroid of up to two tenths of Gy, then leveled off for higher doses. When taking into account the thyroid radiation dose, a surgical or radiological splenectomy (>20 Gy to the spleen) increased thyroid cancer risk (relative risk [RR] = 2.3; 95% confidence interval [CI], 1.3-4.0), high radiation doses (>5 Gy) to pituitary gland lowered this risk (RR = 0.2; 95% CI, 0.1-0.6). Patients who received nitrosourea chemotherapy had a 6.6-fold (95% CI, 2.5-15.7) higher risk than those who did not. The excess RR per Gy of radiation to the thyroid was 4.7 (95% CI, 1.7-22.6). It was 7.6 (95% CI, 1.6-33.3) if body mass index at time of interview was equal or higher than 25 kg/m(2), and 4.1 (95% CI, 0.9-17.7) if not (P for interaction = .1). Predicting thyroid cancer risk following childhood cancer radiation therapy probably requires the assessment of more than just the radiation dose to the thyroid. Chemotherapy, splenectomy, radiation dose to pituitary gland, and obesity also play a role.

  12. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    Science.gov (United States)

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p appendicitis and reduces the dose by approximately 46%.

  13. Pulsed Dose Rate (PDR - BT) brachytherapy in treatment of breast cancer

    International Nuclear Information System (INIS)

    Skowronek, J.

    2007-01-01

    Breast conserving surgery (BCS) and radiotherapy (EBRT) of the conserved breast became widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of RT after breast conservation is to treat the whole breast up to a total dose of 45 to 50 Gy. Initially brachytherapy for breast cancer was used in addition of external radiation to boost a portion of the breast to higher doses. However, over the past 10 years, the application of brachytherapy in breast cancer has changed. In early stage breast cancer, research has shown that the area that requires radiation treatment to prevent the cancer from returning is the breast tissue that surrounds the area where the initial cancer was removed. Because this typically includes only a part of the breast, brachytherapy is now being used to treat the targeted portion of the breast and as a result allows accelerated delivery of the radiation dose so that treatment is completed in four to five days. Another indications for PDR - BT as a part of treatment in locally advanced breast cancer or as a palliative treatment are discussed in the paper, too. Preliminary results with PDR - BT boost technique are promising. However, more experience and longer follow-up are required to define whether these methods might improve local tumor control for breast cancer patients. In this article the current status, indications, technical aspects and published results of PDR brachytherapy (PDR - BT) in breast cancer treatment are reviewed. (author)

  14. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer.A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies.Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest.Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42.This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  15. Application of the dose limitation system to the control of carbon-14 releases from heavy-water-moderated reactors

    International Nuclear Information System (INIS)

    Beninson, D.; Gonzalez, A.J.

    1982-01-01

    Heavy-water-moderated reactors produce substantially more carbon-14 than light-water reactors. Applying the principles of the systems of dose limitation, the paper presents the rationale used for establishing the release limit for effluents containing this nuclide and for the decisions made regarding the effluent treatment in the third nuclear power station in Argentina. Production of carbon-14 in PHWR and the release routes are analysed in the light of the different effluent treatment possibilities. An optimization assessment is presented, taking into account effluent treatment and waste management costs, and the collective effective dose commitment due to the releases. The contribution of present carbon-14 releases to future individual doses is also analysed in the light of an upper bound for the contribution, representing a fraction of the individual dose limits. The paper presents the resulting requirements for the effluent treatment regarding carbon-14 and the corresponding regulatory aspects used in Argentina. (author)

  16. T3 glottic cancer: an analysis of dose time-volume factors

    International Nuclear Information System (INIS)

    Harwood, A.R.; Beale, F.A.; Cummings, B.J.; Hawkins, N.V.; Keane, T.J.; Rider, W.D.

    1980-01-01

    This report analyzes dose-time-volume factors in 112 patients with T3N0M0 glottic cancer who were treated with radical radiotherapy with surgery for salvage between 1963 and 1977. 55% of the patients are alive and well 5 years following treatment; 26% died of glottic cancer and 19% died of intercurrent disease. In the 1965 to 1969 time period, 31% died of tumor as compared to 16% in the 1975 to 1977 time period. Overall local control by radiotherapy was 51%; 2/3 of the failures were surgically salvaged. 44% were locally controlled by radiotherapy in the 1965 to 1969 time period and 57% in the 1975 to 1977 time period. Analysis of dose-time-volume factors reveals that the optimal dose is greater than 1700 ret and a minimal volume of 6 x 8 cm should be used. A dose-cure curve for T3 glottic cancer is constructed and compared with the dose complication curve for the larynx and the dose-cure curve for T1N0M0 glottic cancer. A comparison of cure rates between 112 patients treated with radical radiotherapy and surgery for salvage versus 28 patients treated with combined pre-operative irradiation and surgery reveals no difference in the proportion of patients who died of glottic cancer or in the number of patients alive at 5 years following treatment

  17. Estimates of radiation doses and cancer risk from food intake in Korea

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Wi Ho; Seo, Song Won; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil; Choi, Hoon

    2016-01-01

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  18. Estimates of radiation doses and cancer risk from food intake in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Wi Ho; Seo, Song Won; Jin, Young Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Kyu Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Choi, Hoon [Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  19. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy

    DEFF Research Database (Denmark)

    Laugaard Lorenzen, Ebbe; Brink, Carsten; Taylor, Carolyn W.

    2016-01-01

    BACKGROUND AND PURPOSE: We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. MATERIAL AND METHODS: Three tangential radiotherapy regimens were reconstructed using CT......-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. RESULTS: For left-sided breast cancer, mean...... to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always

  20. Limitations of tissue micro array in Duke's B colon cancer

    DEFF Research Database (Denmark)

    Kjær-Frifeldt, Sanne; Lindebjerg, Jan; Brunner, Nils

    2012-01-01

    Tissue micro array (TMA) is widely used in cancer research in search of new predictive and prognostic markers. Colon cancer is known to be heterogeneous and the present study addresses some methodological aspects using cores of different size and analysing markers with different cellular distribu......Tissue micro array (TMA) is widely used in cancer research in search of new predictive and prognostic markers. Colon cancer is known to be heterogeneous and the present study addresses some methodological aspects using cores of different size and analysing markers with different cellular...

  1. A phase I dose-escalation study of lenalidomide in combination with gemcitabine in patients with advanced pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Gustav J Ullenhag

    Full Text Available Lenalidomide have both immunomodulatory and anti-angiogenic properties which could confer anti-cancer effects. The aim of this study was to assess the feasibility of combining lenalidomide with the standard treatment gemcitabine in pancreatic cancer patients with advanced disease.Eligible patients had locally advanced or metastatic adenocarcinoma of the pancreas. Patients received lenalidomide days 1-21 orally and gemcitabine 1000 mg/m2 intravenously (days 1, 8 and 15, each 28 day cycle. Three cohorts of lenalidomide were examined (Cohort I = 15 mg, Cohort II = 20 mg and Cohort III = 25 mg daily. The maximum tolerated dose (MTD of lenalidomide given in combination with gemcitabine was defined as the highest dose level at which no more than one out of four (25% subjects experiences a dose-limiting toxicity (DLT. Patients should also be able to receive daily low molecular weight heparin (LMWH (e.g. dalteparin 5000 IU s.c. daily as a prophylactic anticoagulant for venous thromboembolic events (VTEs. Twelve patients (n = 4, n = 3 and n = 5 in cohort I, II and III, respectively were enrolled in this study.Median duration of treatment was 11 weeks (range 1-66, and median number of treatment cycles were three (range 1-14. The only DLT was a cardiac failure grade 3 in cohort III. Frequent treatment-related adverse events (AEs (all grades included neutropenia, leucopenia and fatigue (83% each, but there was no febrile neutropenia; thrombocytopenia (75%; dermatological toxicity (75%; diarrhea and nausea (42% each; and neuropathy (42%.This phase I study demonstrates the feasibility of the combination of lenalidomide and gemcitabine as first-line treatment in patients with advanced pancreatic cancer. The tolerability profile demonstrated in the dose escalation schedule of lenalidomide suggests the dosing of lenalidomide to be 25 mg daily on days 1-21 with standard dosing of gemcitabine and merits further evaluation in a phase II trial.ClinicalTrials.gov NCT

  2. Radiation dose to testes and risk of infertility from radiotherapy for rectal cancer.

    Science.gov (United States)

    Mazonakis, Michalis; Damilakis, John; Varveris, Haris; Gourtsouiannis, Nicholas

    2006-03-01

    This study aims to provide the means for testicular dose estimation from radiotherapy for rectal cancer. Rectal irradiation was simulated on a humanoid phantom using a 6 MV photon beam. The effect of field size, distance from irradiated area, wedge introduction into lateral beams, tissue thickness along the beam axis and use of gonad shields on the testicular dose was examined. Testicular dose was measured in five patients undergoing radiotherapy for rectal carcinoma. For a 4500 cGy tumour dose, testicular dose was 32-216 cGy depending upon the field dimensions and the distance from the field isocenter. The presence of wedges increased the testicular dose by a factor up to 2.2. The increase of irradiated tissue thickness increased the gonadal dose up to 40% whereas the use of the appropriate gonad shield reduced the dose by >66%. A simple method was developed to estimate testicular dose. The mean difference between the in vivo gonadal doses and the doses calculated using the proposed method was 5.8%. Testicular dose can exceed the value of 100 cGy, which permits a complete recovery of spermatogenesis. The presented data can be used to estimate the gonadal dose and the associated risk of infertility attributable to rectal irradiation.

  3. High dose and low dose radiation exposure in the induction of breast cancer

    International Nuclear Information System (INIS)

    Fernandez-Vicioso, E.; Ruiz-Cruces, R.; Pastor Vega, Jose M.

    2001-01-01

    In today's modern practice of Radiation Oncology it is becoming increasingly common to follow many patients with breast cancer. There is a proven association between prior radiation and the development of breast cancer, although in many instances the available sources of data are confusing. Characteristic features of radiation induced breast cancer are the importance of age at first exposure to radiation and the long latency period. The risk of breast cancer is highest in women exposed in the first decade of life and lessens progressively with increased age at exposure. The latency period is typically 10 years or more; a time in which other age dependent factors may influence the expression of the malignant phenotype. Genetic factors may also (in theory) increase a particular patient's susceptibility. (author)

  4. Screening for early lung cancer with low-dose spiral computed tomography: results of annual follow-up examinations in asymptomatic smokers

    International Nuclear Information System (INIS)

    Diederich, Stefan; Thomas, Michael; Semik, Michael; Lenzen, Horst; Roos, Nikolaus; Weber, Anushe; Heindel, Walter; Wormanns, Dag

    2004-01-01

    The aim of this study was analysis of incidence results in a prospective one-arm feasibility study of lung cancer screening with low-radiation-dose spiral computed tomography in heavy smokers. Eight hundred seventeen smokers (≥40 years, ≥20 pack years of smoking history) underwent baseline low-dose CT. Biopsy was recommended in nodules >10 mm with CT morphology suggesting malignancy. In all other lesions follow-up with low-dose CT was recommended. Annual repeat CT was offered to all study participants. Six hundred sixty-eight (81.8%) of the 817 subjects underwent annual repeat CT with a total of 1735 follow-up years. Follow-up of non-calcified nodules present at baseline CT demonstrated growth in 11 of 792 subjects. Biopsy was performed in 8 of 11 growing nodules 7 of which represented lung cancer. Of 174 new nodules, 3 represented lung cancer. The 10 screen-detected lung cancers were all non-small cell cancer (6 stage IA, 1 stage IB, 1 stage IIIA, 2 stage IV). Five symptom-diagnosed cancers (2 small cell lung cancer: 1 limited disease, 1 extensive disease, 3 central/endobronchial non-small cell lung cancer, 2 stage IIIA, 1 stage IIIB) were diagnosed because of symptoms in the 12-month interval between two annual CT scans. Incidence of lung cancer was lower than prevalence, screen-detected cancers were smaller, and stage I was found in 70% (7 of 10) of screen-detected tumors. Only 27% (4 of 15) of invasive procedures was performed for benign lesions; however, 33% (5 of 15) of all cancers diagnosed in the population were symptom-diagnosed cancers (3 central NSCLC, all stage III, 2 SCLC) demonstrating the limitations of CT screening. (orig.)

  5. Dose-Time Relations for Induction of Lung Cancer in Uranium Miners

    Energy Technology Data Exchange (ETDEWEB)

    Blair, H. A. [University of Rochester School of Medicine and Dentistry, Rochester, NY (United States)

    1969-11-15

    Lack of data on the concentration of radon and daughters in the air inhaled by uranium miners has made it difficult in the past to establish radiation dose and time factors for induction of lung cancer. Recent determinations by others of {sup 210}Pb in the bones of miners who died of cancer provide, however, a new approach. Because {sup 210}Pb, a decay product of radon, accumulates in bone but is also excreted, its concentration, after prolonged exposure, will approach an equilibrium which is a measure of the rate of exposure. It is shown that the {sup 210}Pb. levels in bone at the end of mining are as closely proportional to existing measured and estimated exposure rates to radon as can be expected. It is reasonable, therefore, to use {sup 210}Pb levels in bone as measures of prior exposure rates. When this is done a graph of survival times from beginning of exposures against reciprocal of {sup 210}Pb shows that lung cancer in man exhibits the two types, early and late, previously revealed in bone cancer in dogs and skin cancer in rats. When the dose is high, death follows initiation of cancer in about 7 years. When the dose is low, the usual case, there is an additional latency of 16 years so the time from attainment of initiating dose to death is 23 years. The initiating dose for the high dose type is about 65 pCi {sup 210}Pb per gram years and for the low dose type about 10 pCi per gram years which, in terms of exposure, is about 400 working level months, WLM, as working level, WL, is currently defined. Of the derived parameters the total low dose development time of 23 years is fairly accurate. The high dose development time of 7 years is less certain. The initiating low dose of 10 pCi per gram years is probably moderately accurate, but its counterpart of 400 WLM less certain. The high initiating dose is poorly determined. Twenty three lung cancer cases were involved in this study. Additional cases along with additional environmental and other measurements

  6. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    International Nuclear Information System (INIS)

    Thierry-Chef, Isabelle; Simon, Steven L.; Miller, Donald L.

    2006-01-01

    During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain radiation. Our goals were to estimate radiation doses to the brain in 50 pediatric patients who had undergone cerebral embolization and to assess their lifetime risks of developing radiation-related brain cancer. Entrance-peak skin dose and various assumptions on conditions of exposure were used as input for dosimetric calculations to estimate the spatial pattern of dose within the brain and the average dose to the whole brain for each child. The average dose and the age of the child at time of exposure were used to estimate the lifetime risk of developing radiation-related brain cancer. Among the 50 patients, average radiation doses to the brain were estimated to vary from 100 mGy to 1,300 mGy if exposed to non-collimated fields and from 20 mGy to 160 mGy for collimated, moving fields. The lifetime risk of developing brain cancer was estimated to be increased by 2% to 80% as a result of the exposure. Given the very small lifetime background risk of brain tumor, the excess number of cases will be small even though the relative increase might be as high as 80%. ALARA principles of collimation and dose optimization are the most effective means to minimize the risk of future radiation-related cancer. (orig.)

  7. Dose escalation methods in phase I cancer clinical trials.

    Science.gov (United States)

    Le Tourneau, Christophe; Lee, J Jack; Siu, Lillian L

    2009-05-20

    Phase I clinical trials are an essential step in the development of anticancer drugs. The main goal of these studies is to establish the recommended dose and/or schedule of new drugs or drug combinations for phase II trials. The guiding principle for dose escalation in phase I trials is to avoid exposing too many patients to subtherapeutic doses while preserving safety and maintaining rapid accrual. Here we review dose escalation methods for phase I trials, including the rule-based and model-based dose escalation methods that have been developed to evaluate new anticancer agents. Toxicity has traditionally been the primary endpoint for phase I trials involving cytotoxic agents. However, with the emergence of molecularly targeted anticancer agents, potential alternative endpoints to delineate optimal biological activity, such as plasma drug concentration and target inhibition in tumor or surrogate tissues, have been proposed along with new trial designs. We also describe specific methods for drug combinations as well as methods that use a time-to-event endpoint or both toxicity and efficacy as endpoints. Finally, we present the advantages and drawbacks of the various dose escalation methods and discuss specific applications of the methods in developmental oncotherapeutics.

  8. Modern dose-finding designs for cancer phase I trials drug combinations and molecularly targeted agents

    CERN Document Server

    Hirakawa, Akihiro; Daimon, Takashi; Matsui, Shigeyuki

    2018-01-01

    This book deals with advanced methods for adaptive phase I dose-finding clinical trials for combination of two agents and molecularly targeted agents (MTAs) in oncology. It provides not only methodological aspects of the dose-finding methods, but also software implementations and practical considerations in applying these complex methods to real cancer clinical trials. Thus, the book aims to furnish researchers in biostatistics and statistical science with a good summary of recent developments of adaptive dose-finding methods as well as providing practitioners in biostatistics and clinical investigators with advanced materials for designing, conducting, monitoring, and analyzing adaptive dose-finding trials. The topics in the book are mainly related to cancer clinical trials, but many of those topics are potentially applicable or can be extended to trials for other diseases. The focus is mainly on model-based dose-finding methods for two kinds of phase I trials. One is clinical trials with combinations of tw...

  9. Dose-response of acute urinary toxicity of long-course preoperative chemoradiotherapy for rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L.; Bentzen, Søren M.; Jakobsen, Anders

    2015-01-01

    BACKGROUND: Long-course preoperative chemoradiotherapy (chemo-RT) improves outcomes for rectal cancer patients, but acute side effects during treatment may cause considerable patient discomfort and may compromise treatment compliance. We developed a dose-response model for acute urinary toxicity...... based on a large, single-institution series. MATERIAL AND METHODS: In total 345 patients were treated with (chemo-)RT for primary rectal cancer from January 2007 to May 2012. Urinary toxicity during RT was scored prospectively using the CTCAE v 3.0 cystitis score (grade 0-5). Clinical variables...... and radiation dose to the bladder were related to graded toxicity using multivariate ordinal logistic regression. Three models were optimized, each containing all available clinical variables and one of three dose metrics: Mean dose (Dmean), equivalent uniform dose (EUD), or relative volume given x Gy or above...

  10. The impact of increasing dose on overall survival in prostate cancer

    International Nuclear Information System (INIS)

    Hall, Matthew D.; Schultheiss, Timothy E.; Smith, David D.; Tseng, Bertrand P.; Wong, Jeffrey Y. C.

    2015-01-01

    To assess the impact of increasing dose on overall survival (OS) for prostate cancer patients. Treatment data were obtained on more than 20,000 patients in the National Oncology Data Alliance®, a proprietary database of merged tumor registries, who were treated for prostate cancer with definitive radiotherapy between 1995 and 2006. Eligible patients had complete data on total dose, T stage, use and timing of androgen deprivation therapy (ADT), and treatment start date (n = 20,028). Patients with prior malignancies were excluded. On multivariate analysis, dose, T stage, grade, marital status, age, and neoadjuvant ADT were significant predictors of OS. Hazard ratios for OS declined monotonically with increasing dose, reaching 0.63 (95 % Confidence Interval 0.53–0.76) at ≥80 Gy. On subset analysis, neoadjuvant ADT significantly improved OS in high risk patients but was not significant in lower risk patients. The dose response was maintained across all risk groups. Medical comorbidities were balanced across all dose strata and sensitivity analysis demonstrated that other prognostic factors were unlikely to explain the observed dose response. This study suggests that increasing dose significantly improves OS in prostate cancer patients treated with radiotherapy. The online version of this article (doi:10.1186/s13014-015-0419-3) contains supplementary material, which is available to authorized users

  11. Symptom Clusters and Work Limitations in Employed Breast Cancer Survivors

    Science.gov (United States)

    2011-11-16

    gliomas (Fox, Lyon, & Farace , 2007). Across studies of breast cancer patients, similar symptom clusters have emerged: researchers have identified...Symptom clusters and quality of life in survivors of lung cancer. Oncology Nursing Forum, 33(5), 931-936. Fox, S., Lyon, D., & Farace , E. (2007

  12. Calcium and Cancer Prevention: Strengths and Limits of the Evidence

    Science.gov (United States)

    ... 30 percent lower risk of colorectal cancer among women ( 13 ). Findings from two large randomized , placebo-controlled clinical trials , the Calcium Polyp Prevention Study ( 14 , 15 ) and the European Cancer Prevention Organisation Intervention Study ( 16 ) showed that daily supplementation with ...

  13. Conformal technique dose escalation in prostate cancer: improved cancer control with higher doses in patients with pretreatment PSA {>=} 10 ngm/ml

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, G E; Lee, W R; Hanlon, A L; Kaplan, E; Epstein, B; Schultheiss, T

    1995-07-01

    Purpose: Single institutions and an NCI supported group of institutions have been investigating the value of dose escalation in patients with prostate cancer treated by conformal treatment techniques. Improvement in morbidity has been previously established, while this report identifies the pretreatment PSA level subgroups of patients who benefitted in cancer control from higher dose. Materials and Methods: We report actuarial bNED survival rates for 375 consecutive patients with known pretreatment PSA levels treated with conformal technique between 5/89 and 12/93. The whole pelvis was treated to 45 Gy in 25 fractions in all T2C,3, all Gleason 8, 9, 10 and all patients with pretreatment PSA {>=}20. The prostate {+-} seminal vesicles was boosted at 2.1 Gy/day to the center of the prostate to 65-79 Gy (65-69 N=50), 70-72.49 N=94, 72.5-74.9 N=82, 75-77.49 N=129 and {>=}77.5 N=20). The median followup is 21 mos with a range of 3 to 67 mos. The highest dose patients have the least followup, reducing the impact of the highest dose levels at this time. Patients are analyzed for the entire group divided at 71 Gy and at 73 Gy calculated at the center of the prostate. Each dose group is then subdivided by pretreatment PSA levels <10, 10-19.9, and {>=}20 ngm/ml and dose levels are compared within pretreatment PSA level group. bNED failure is defined as PSA {>=}1.5 ngm/ml and rising on two consecutive values. Results: Table 1 shows the bNED survival rates at 24 and 36 mos for all patients and the three pretreatment PSA level groups. For all patients pooled, there is an overall advantage to using doses {>=}71 Gy (64% vs 85% at 36 mo, p=.006) and {>=}73 Gy (71% vs 86% at 36 mo, p=.07). The subgroup of PSA <10 ngm/ml, however, shows no benefit in bNED survival when using doses over 71 Gy (90% vs 93% at 36 mo) or 73 Gy (91 vs 94% at 36 mo). The subgroup PSA 10 ngm/ml to 19.9 ngm/ml shows improved cancer control when using doses over 71 Gy (61% vs 88% at 36 mo, p=.03) and over 73

  14. Phase 1 Dose Escalation Study of Accelerated Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Chris R., E-mail: christopher.kelsey@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Das, Shiva [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (United States); Gu, Lin [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Dunphy, Frank R.; Ready, Neal E. [Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (United States)

    2015-12-01

    Purpose: To determine the maximum tolerated dose of radiation therapy (RT) given in an accelerated fashion with concurrent chemotherapy using intensity modulated RT. Methods and Materials: Patients with locally advanced lung cancer (non-small cell and small cell) with good performance status and minimal weight loss received concurrent cisplatin and etoposide with RT. Intensity modulated RT with daily image guidance was used to facilitate esophageal avoidance and delivered using 6 fractions per week (twice daily on Fridays with a 6-hour interval). The dose was escalated from 58 Gy to a planned maximum dose of 74 Gy in 4 Gy increments in a standard 3 + 3 trial design. Dose-limiting toxicity (DLT) was defined as acute grade 3-5 nonhematologic toxicity attributed to RT. Results: A total of 24 patients were enrolled, filling all dose cohorts, all completing RT and chemotherapy as prescribed. Dose-limiting toxicity occurred in 1 patient at 58 Gy (grade 3 esophagitis) and 1 patient at 70 Gy (grade 3 esophageal fistula). Both patients with DLTs had large tumors (12 cm and 10 cm, respectively) adjacent to the esophagus. Three additional patients were enrolled at both dose cohorts without further DLT. In the final 74-Gy cohort, no DLTs were observed (0 of 6). Conclusions: Dose escalation and acceleration to 74 Gy with intensity modulated RT and concurrent chemotherapy was tolerable, with a low rate of grade ≥3 acute esophageal reactions.

  15. Time-dependent, low-dose reporting limit for dosimeters that are taken home at the end of the workday

    International Nuclear Information System (INIS)

    Sonder, E.

    1994-01-01

    In routine personnel dosimetry, it is usual to report doses only where th occupational dose (measured dose with background subtracted) is greater than previously determined reporting limit. The reporting limit, although se administratively, should be justified by an assessment of the errors inherent in th personnel and background dose measurements, and estimates of the probability that a zero exposure will yield a dosimeter response equal to the reporting limit. For background subtraction and reporting limits, it was realized that the source of low-dose uncertainty is very much dependent on whether dosimeters are held in racks at the work site or remain with the employee. The External dosimetry Program for the DOE facilities at Oak Ridge, Tennessee, is operated such that dosimeters are taken home by the employee at the end of each workday. This report is a summary measurements of background radiation in a variety of home locations, and calculations of the effect of the variation of this background on the uncertainty low-level occupational dose and on the reporting level. When dosimeters are stored at a given location (e.g., the facility gate), it theoretically possible to determine the background there to any desired accuracy; the errors in occupational dose are then those due to measurement noise and dosimeter calibration. However, when different dosimeters are stored in different homes, th difference in background between a particular location and the average for a locations appears as an added uncertainty in the occupational dose. Since this difference is not random, but fixed for a given location, the error due to this difference increases linearly with assignment time. From the background measurements, time-dependent values of the standard deviation of occupational do and critical levels are derived and used to define an expression for the reporting limit

  16. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    Science.gov (United States)

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  17. Autoblocking dose-limiting normal structures within a radiation treatment field: 3-D computer optimization of 'unconventional' field arrangements

    International Nuclear Information System (INIS)

    Bates, Brian A.; Cullip, Timothy J.; Rosenman, Julian G.

    1995-01-01

    Purpose/Objective: To demonstrate that one can obtain a homogeneous dose distribution within a specified gross tumor volume (GTV) while severely limiting the dose to a structure surrounded by that tumor volume. We present three clinical examples below. Materials and Methods: Using planning CT scans from previously treated patients, we designed variety of radiation treatment plans in which the dose-critical normal structure was blocked, even if it meant blocking some of the tumor. To deal with the resulting dose inhomogeneities within the tumor, we introduced 3D compensation. Examples presented here include (1) blocking the spinal cord segment while treating an entire vertebral body, (2) blocking both kidneys while treating the entire peritoneal cavity, and (3) blocking one parotid gland while treating the oropharynx in its entirety along with regional nodes. A series of multiple planar and non-coplanar beam templates with automatic anatomic blocking and field shaping were designed for each scenario. Three-dimensional compensators were designed that gave the most homogeneous dose-distribution for the GTV. For each beam, rays were cast from the beam source through a 2D compensator grid and out through the tumor. The average tumor dose along each ray was then used to adjust the compensator thickness over successive iterations to achieve a uniform average dose. DVH calculations for the GTV, normal structures, and the 'auto-blocked' structure were made and used for inter-plan comparisons. Results: These optimized treatment plans successfully decreased dose to the dose-limiting structure while at the same time preserving or even improving the dose distribution to the tumor volume as compared to traditional treatment plans. Conclusion: The use of 3D compensation allows one to obtain dose distributions that are, theoretically, at least, far superior to those in common clinical use. Sensible beam templates, auto-blocking, auto-field shaping, and 3D compensators form a

  18. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  19. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  20. SU-E-I-34: Evaluating Use of AEC to Lower Dose for Lung Cancer Screening CT Protocols

    International Nuclear Information System (INIS)

    Arbique, G; Anderson, J; Guild, J; Duan, X; Malguria, N; Omar, H; Brewington, C; Zhang, D

    2015-01-01

    Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD) image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems

  1. Quantification of dose uncertainties for the bladder in prostate cancer radiotherapy based on dominant eigenmodes

    Science.gov (United States)

    Rios, Richard; Acosta, Oscar; Lafond, Caroline; Espinosa, Jairo; de Crevoisier, Renaud

    2017-11-01

    In radiotherapy for prostate cancer the dose at the treatment planning for the bladder may be a bad surrogate of the actual delivered dose as the bladder presents the largest inter-fraction shape variations during treatment. This paper presents PCA models as a virtual tool to estimate dosimetric uncertainties for the bladder produced by motion and deformation between fractions. Our goal is to propose a methodology to determine the minimum number of modes required to quantify dose uncertainties of the bladder for motion/deformation models based on PCA. We trained individual PCA models using the bladder contours available from three patients with a planning computed tomography (CT) and on-treatment cone-beam CTs (CBCTs). Based on the above models and via deformable image registration (DIR), we estimated two accumulated doses: firstly, an accumulated dose obtained by integrating the planning dose over the Gaussian probability distribution of the PCA model; and secondly, an accumulated dose obtained by simulating treatment courses via a Monte Carlo approach. We also computed a reference accumulated dose for each patient using his available images via DIR. Finally, we compared the planning dose with the three accumulated doses, and we calculated local dose variability and dose-volume histogram uncertainties.

  2. A Contralateral Esophagus-Sparing Technique to Limit Severe Esophagitis Associated With Concurrent High-Dose Radiation and Chemotherapy in Patients With Thoracic Malignancies

    International Nuclear Information System (INIS)

    Al-Halabi, Hani; Paetzold, Peter; Sharp, Gregory C.; Olsen, Christine; Willers, Henning

    2015-01-01

    Purpose: Severe (Radiation Therapy Oncology Group [RTOG] grade 3 or greater) esophagitis generally occurs in 15% to 25% of non–small cell lung cancer (NSCLC) patients undergoing concurrent chemotherapy and radiation therapy (CCRT), which may result in treatment breaks that compromise local tumor control and pose a barrier to dose escalation. Here, we report a novel contralateral esophagus-sparing technique (CEST) that uses intensity modulated radiation therapy (IMRT) to reduce the incidence of severe esophagitis. Methods and Materials: We reviewed consecutive patients with thoracic malignancies undergoing curative CCRT in whom CEST was used. The esophageal wall contralateral (CE) to the tumor was contoured as an avoidance structure, and IMRT was used to guide a rapid dose falloff gradient beyond the target volume in close proximity to the esophagus. Esophagitis was recorded based on the RTOG acute toxicity grading system. Results: We identified 20 consecutive patients treated with CCRT of at least 63 Gy in whom there was gross tumor within 1 cm of the esophagus. The median radiation dose was 70.2 Gy (range, 63-72.15 Gy). In all patients, ≥99% of the planning and internal target volumes was covered by ≥90% and 100% of prescription dose, respectively. Strikingly, no patient experienced grade ≥3 esophagitis (95% confidence limits, 0%-16%) despite the high total doses delivered. The median maximum dose, V45, and V55 of the CE were 60.7 Gy, 2.1 cc, and 0.4 cc, respectively, indicating effective esophagus cross-section sparing by CEST. Conclusion: We report a simple yet effective method to avoid exposing the entire esophagus cross-section to high doses. By using proposed CE dose constraints of V45 <2.5 cc and V55 <0.5 cc, CEST may improve the esophagus toxicity profile in thoracic cancer patients receiving CCRT even at doses above the standard 60- to 63-Gy levels. Prospective testing of CEST is warranted

  3. A limited, low-dose computed tomography protocol to examine the sacroiliac joints

    International Nuclear Information System (INIS)

    Friedman, L.; Silberberg, P.J.; Rainbow, A.; Butler, R.

    1993-01-01

    Limited, low-dose, three-scan computed tomography (CT) was shown to be as accurate as a complete CT series in examining the sacroiliac joints and is suggested as an effective alternative to plain radiography as the primary means to detect sacroiliitis. The advantages include the brevity of the examination, a 2-fold to 4-fold reduction in radiation exposure relative to conventional radiography and a 20-fold to 30-fold reduction relative to a full CT series. The technique was developed from studies of anatomic specimens in which the articular surfaces were covered with a film of barium to show clearly the synovial surfaces and allow the choice of the most appropriate levels of section. From the anteroposterior scout view the following levels were defined: at the first sacral foramen, between the first and second sacral foramina and at the third sacral foramen. In the superior section a quarter of the sacroiliac joint is synovial, whereas in the inferior section the entire joint is synovial. The three representative cuts and the anteroposterior scout view are displayed on a single 14 x 17 in. (36 x 43 cm) film. Comparative images at various current strengths showed that at lower currents than conventionally used no diagnostic information was lost, despite a slight increase in noise. The referring physicians at the authors' institution prefer this protocol to the imaging routine previously used. (author). 21 refs., 1 tab., 4 figs

  4. Motivation for Different Types and Doses of Exercise During Breast Cancer Chemotherapy: a Randomized Controlled Trial.

    Science.gov (United States)

    Courneya, Kerry S; Segal, Roanne J; Vallerand, James R; Forbes, Cynthia C; Crawford, Jennifer J; Dolan, Lianne B; Friedenreich, Christine M; Reid, Robert D; Gelmon, Karen; Mackey, John R; McKenzie, Donald C

    2016-08-01

    Exercise is beneficial for breast cancer patients during chemotherapy, but their motivation to perform different types and doses of exercise is unknown. The purpose of this study was to examine the anticipated and experienced motivation of breast cancer patients before and after three different exercise programs during chemotherapy. Breast cancer patients initiating chemotherapy (N = 301) were randomized to a standard dose of 25-30 min of aerobic exercise, a higher dose of 50-60 min of aerobic exercise, or a combined dose of 50-60 min of aerobic and resistance exercise. Patient preference and motivational outcomes from the theory of planned behavior (i.e., perceived benefit, enjoyment, support, difficulty, and motivation) were assessed before and after the interventions. At pre-randomization, breast cancer patients were significantly (p types and doses of exercise during chemotherapy varied considerably at pre-randomization, but the motivational outcomes experienced after the three interventions were similar. Clinicians can recommend any of the three exercise interventions to breast cancer patients knowing that positive motivational outcomes will result. Clinicaltrials.gov identifier: NCT00249015 .

  5. Measurement of Thyroid Dose by TLD arising from Radiotherapy of Breast Cancer Patients from Supraclavicular Field

    Directory of Open Access Journals (Sweden)

    Farhood B.

    2016-06-01

    Full Text Available Background: Breast cancer is the most frequently diagnosed cancer and the leading global cause of cancer death among women worldwide. Radiotherapy plays a significant role in treatment of breast cancer and reduces locoregional recurrence and eventually improves survival. The treatment fields applied for breast cancer treatment include: tangential, axillary, supraclavicular and internal mammary fields. Objective: In the present study, due to the presence of sensitive organ such as thyroid inside the supraclavicular field, thyroid dose and its effective factors were investigated. Materials and Methods: Thyroid dose of 31 female patients of breast cancer with involved supraclavicular lymph nodes which had undergone radiotherapy were measured. For each patient, three TLD-100 chips were placed on their thyroid gland surface, and thyroid doses of patients were measured. The variables of the study include shield shape, the time of patient’s setup, the technologists’ experience and qualification. Finally, the results were analyzed by ANOVA test using SPSS 11.5 software. Results: The average age of the patients was 46±10 years. The average of thyroid dose of the patients was 140±45 mGy (ranged 288.2 and 80.8 in single fraction. There was a significant relationship between the thyroid dose and shield shape. There was also a significant relationship between the thyroid dose and the patient’s setup time. Conclusion: Beside organ at risk such as thyroid which is in the supraclavicular field, thyroid dose possibility should be reduced. For solving this problem, an appropriate shield shape, the appropriate time of the patient’s setup, etc. could be considered.

  6. Bone cancer from radium: canine dose response explains data for mice and humans

    International Nuclear Information System (INIS)

    Raabe, O.G.; Book, S.A.; Parks, N.J.

    1980-01-01

    Analysis of lifetime studies of 243 beagles with skeletal burdens of radium-226 shows that the distribution of bone cancers clusters about a linear function of the logarithms of radiation dose rate to the skeleton and time from exposure until death. Similar relations displaced by species-dependent response ratios also provide satisfactory descriptions of the reported data on deaths from primary bone cancers in people and mice exposed to radium-226. The median cumulative doses (or times) leading to death from bone tumors are 2.9 times larger for dogs than for mice and 3.6 times larger for people than for dogs. These response ratios are well correlated with the normal life expectancies. The cumulative radiation dose required to give significant risk of bone cancer is found to be much less at lower dose rates than at higher rates, but the time required for the tumors to be manifested is longer. At low dose rates, this time exceeds the normal life-span and appears as a practical threshold, which for bone cancer is estimated to occur at an average cumulative radiation dose to the skeleton of about 50 to 110 rads for the three species

  7. Search for the lowest irradiation dose from literatures on radiation-induced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1975-12-01

    A survey of past case reports concerning radiation-induced breast cancer was carried out in order to find the lowest irradiation dose. The search of literature published since 1951 revealed 10 cases of radiation-induced breast cancer. Only 5 cases had precise descriptions of the irradiation dose. The lowest irradiation dose was estimated at 1470 rads in the case of external X-ray irradiation for tuberous angioma. All of cases of radiation-induced breast cancer had received radiation for the treatment of nonmalignant tumors, such as pulmonary tuberculosis, mastitis, and tuberous angioma. There also were three statistical studies. The first concerned atomic bomb survivors, the second, pulmoanry tuberculous patients subjected to frequent fluoroscopies, and the third, patients of acute post partum mastitis. These statistical studies had revealed a significant increase in the incidence of breast cancer in the irradiated group, but there was little information about the lowest irradiation dose. It was noticed that radiation-induced breast cancer was more numerous in the upper inner quadrant of the breast. Most histopathological findings of radiation-induced breast cancer involved duct cell carcinoma. The latent period was about 15 years.

  8. A unified dose response relationship to predict high dose fractionation response in the lung cancer stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Than S Kehwar

    2017-01-01

    Full Text Available Aim: This study is designed to investigate the superiority and applicability of the model among the linear-quadratic (LQ, linear-quadratic-linear (LQ-L and universal-survival-curve (USC models by fitting published radiation cell survival data of lung cancer cell lines. Materials and Method: The radiation cell survival data for small cell (SC and non-small cell (NSC lung cancer cell lines were obtained from published reports, and were used to determine the LQ and cell survival curve parameters, which ultimately were used in the curve fitting of the LQ, LQ-L and USC models. Results: The results of this study demonstrate that the LQ-L(Dt-mt model, compared with the LQ and USC models, provides best fit with smooth and gradual transition to the linear portion of the curve at transition dose Dt-mt, where the LQ model loses its validity, and the LQ-L(Dt-2α/β and USC(Dt-mt models do not transition smoothly to the linear portion of the survival curve. Conclusion: The LQ-L(Dt-mt model is able to fit wide variety of cell survival data over a very wide dose range, and retains the strength of the LQ model in the low-dose range.

  9. Cost minimization analysis of high-dose-rate versus low-dose-rate brachytherapy in endometrial cancer

    International Nuclear Information System (INIS)

    Pinilla, James

    1998-01-01

    Purpose: Endometrial cancer is a common, usually curable malignancy whose treatment frequently involves low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. These treatments involve substantial resource commitments and this is increasingly important. This paper presents a cost minimization analysis of HDR versus LDR brachytherapy in the treatment of endometrial cancer. Methods and Materials: The perspective of the analysis is that of the payor, in this case the Ministry of Health. One course of LDR treatment is compared to two courses of HDR treatment. The two alternatives are considered to be comparable with respect to local control, survival, and toxicities. Labor, overhead, and capital costs are accounted for and carefully measured. A 5% inflation rate is used where applicable. A univariate sensitivity analysis is performed. Results: The HDR regime is 22% less expensive compared to the LDR regime. This is $991.66 per patient or, based on the current workload of this department (30 patients per year) over the useful lifetime of the after loader, $297,498 over 10 years in 1997 dollars. Conclusion: HDR brachytherapy minimizes costs in the treatment of endometrial cancer relative to LDR brachytherapy. These results may be used by other centers to make rational decisions regarding brachytherapy equipment replacement or acquisition

  10. Radiation Dose Escalation in Esophageal Cancer Revisited: A Contemporary Analysis of the National Cancer Data Base, 2004 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey V. [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Chen, Shuai [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Bassetti, Michael F. [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Yu, Menggang [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Harari, Paul M.; Ritter, Mark A. [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Baschnagel, Andrew M., E-mail: baschnagel@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States)

    2016-12-01

    Purpose: To evaluate the effect of radiation dose escalation on overall survival (OS) for patients with nonmetastatic esophageal cancer treated with concurrent radiation and chemotherapy. Methods and Materials: Patients diagnosed with stage I to III esophageal cancer treated from 2004 to 2012 were identified from the National Cancer Data Base. Patients who received concurrent radiation and chemotherapy with radiation doses of ≥50 Gy and did not undergo surgery were included. OS was compared using Cox proportional hazards regression and propensity score matching. Results: A total of 6854 patients were included; 3821 (55.7%) received 50 to 50.4 Gy and 3033 (44.3%) received doses >50.4 Gy. Univariate analysis revealed no significant difference in OS between patients receiving 50 to 50.4 Gy and those receiving >50.4 Gy (P=.53). The dose analysis, binned as 50 to 50.4, 51 to 54, 55 to 60, and >60 Gy, revealed no appreciable difference in OS within any group compared with 50 to 50.4 Gy. Subgroup analyses investigating the effect of dose escalation by histologic type and in the setting of intensity modulated radiation therapy also failed to reveal a benefit. Propensity score matching confirmed the absence of a statistically significant difference in OS among the dose levels. The factors associated with improved OS on multivariable analysis included female sex, lower Charlson-Deyo comorbidity score, private insurance, cervical/upper esophagus location, squamous cell histologic type, lower T stage, and node-negative status (P<.01 for all analyses). Conclusions: In this large national cohort, dose escalation >50.4 Gy did not result in improved OS among patients with stage I to III esophageal cancer treated with definitive concurrent radiation and chemotherapy. These data suggest that despite advanced contemporary treatment techniques, OS for patients with esophageal cancer remains unaltered by escalation of radiation dose >50.4 Gy, consistent with the results of

  11. Defining a dose-response relationship with radiotherapy for prostate cancer: is more really better?

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Abner, Anthony; Baglan, Kathy L.; Kestin, Larry L.; Martinez, Alvaro A.

    2001-01-01

    Purpose: Data were reviewed addressing the association between radiation therapy (RT) dose and treatment outcome for localized prostate cancer to help clarify the existence of a potential dose-response relationship. Methods and Materials: Articles were identified through the MEDLINE database, CancerLit database, and reference lists of relevant articles. Studies were categorized into four groups based upon the endpoint analyzed, including biochemical control (BC), local control (LC), pathologic control (PC), and cause-specific survival (CSS). The impact of increasing RT dose with each endpoint was recorded. Results: Twenty-two trials involving a total of 11,297 patients were identified. Of the 11 trials addressing the association of RT dose with LC, 9 showed statistically significant improvements. Of the 12 trials that reported BC with RT dose, all showed statistically significant improvements. Two out of 4 studies analyzing PC with increasing dose showed a positive correlation. Finally, 3 out of 9 studies addressing RT dose with CSS showed statistically significant improvements. Despite inconclusive results, patients with poor risk features (e.g., prostate-specific antigen [PSA] ≥10, Gleason score [GS] ≥7, or tumor stage ≥T2b) were most likely to benefit from increasing dose with respect to each endpoint. However, the optimal RT dose and the magnitude of benefit of dose escalation could not be identified. Conclusions: Although RT dose appears to correlate with various measures of treatment outcome, objective, high-quality data addressing this critical issue are still lacking. At the present time, the absolute improvement in outcome due to dose escalation, the subset of patients benefiting most, and the optimal dose remain to be defined

  12. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    Science.gov (United States)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  13. Tea and Cancer Prevention: Strengths and Limits of the Evidence

    Science.gov (United States)

    ... the Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. Journal of Agricultural and Food Chemistry 2000; ... prostate cancer: An evaluation of the complementary/alternative therapy approach. Urologic Oncology: Seminars and Original Investigations 2005; ...

  14. Limited-stage small cell lung cancer: current chemoradiotherapy treatment paradigms.

    Science.gov (United States)

    Stinchcombe, Thomas E; Gore, Elizabeth M

    2010-01-01

    In the U.S., the prevalence of small cell lung cancer (SCLC) is declining, probably reflecting the decreasing prevalence of tobacco use. However, a significant number of patients will receive a diagnosis of SCLC, and approximately 40% of patients with SCLC will have limited-stage (LS) disease, which is potentially curable with the combination of chemotherapy and radiation therapy. The standard therapy for LS-SCLC is concurrent chemoradiotherapy, and the 5-year survival rate observed in clinical trials is approximately 25%. The standard chemotherapy remains cisplatin and etoposide, but carboplatin is frequently used in patients who cannot tolerate or have a contraindication to cisplatin. Substantial improvements in survival have been made through improvements in radiation therapy. Concurrent chemoradiotherapy is the preferred therapy for patients who are appropriate candidates. The optimal timing of concurrent chemoradiotherapy is during the first or second cycle, based on data from meta-analyses. The optimal radiation schedule and dose remain topics of debate, but 1.5 Gy twice daily to a total of 45 Gy and 1.8-2.0 Gy daily to a total dose of 60-70 Gy are commonly used treatments. For patients who obtain a near complete or complete response, prophylactic cranial radiation reduces the incidence of brain metastases and improves overall survival. The ongoing Radiation Therapy Oncology Group and Cancer and Leukemia Group B and the European and Canadian phase III trials will investigate different radiation treatment paradigms for patients with LS-SCLC, and completion of these trials is critical.

  15. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  16. Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy

    International Nuclear Information System (INIS)

    Han Chunhui; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm 3 by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications

  17. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    International Nuclear Information System (INIS)

    Lee, Deuk Hee; Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik

    2016-01-01

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm 3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way

  18. Testicular dose in prostate cancer radiotherapy. Impact on impairment of fertility and hormonal function

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, D.; Badakhshi, H.; Budach, V. [Dept. of Radiation Oncology, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany); Kuschke, W.; Bohsung, J. [Dept. of Medical Physics, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany)

    2005-03-01

    Purpose: to determine the dose received by the unshielded testicles during a course of 20-MV conventional external-beam radiotherapy for patients with localized prostate cancer. Critical evaluation of the potential impact on fertility and hormonal impairment in these patients according to the literature. Patients and methods: the absolute dose received by the testicles of 20 randomly selected patients undergoing radiotherapy of prostate cancer was measured by on-line thermoluminescence dosimetry. Patients were treated in supine position with an immobilization cushion under their knees. A flexible tube, containing three calibrated thermoluminescence dosimeters (TLDs) was placed on top or underneath the testicle closest to the perineal region with a day-to-day alternation. The single dose to the planning target volume was 1.8 Gy. Ten subsequent testicle measurements were performed on each patient. The individual TLDs were then read out and the total absorbed dose was calculated. Results: the mean total dose ({+-} standard deviation) measured in a series of 10 subsequent treatment days in all patients was 49 cGy ({+-} 36 cGy). The calculated projected doses made on a standard series of 40 fractions of external-beam radiotherapy were 196 cGy ({+-} 145 cGy). The results of this study are appraised with the available data in the literature. Conclusion: the dose received by the unshielded testes can be assessed as a risk for permanent infertility and impairment of hormonal function in prostate cancer patients treated with external-beam radiotherapy. (orig.)

  19. Low-dose pressurized intraperitoneal aerosol chemotherapy (PIPAC) as an alternative therapy for ovarian cancer in an octogenarian patient.

    Science.gov (United States)

    Giger-Pabst, Urs; Solass, Wiebke; Buerkle, Bernd; Reymond, Marc-André; Tempfer, Clemens B

    2015-04-01

    Octogenarians with ovarian cancer limited to the abdomen may not be willing or able to undergo systemic chemotherapy. Low-dose pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin is a form of intra-abdominal chemotherapy which can be applied repeatedly and potentially prevents from the systemic side-effects of chemotherapy. We present the case of an 84-year-old woman with laparoscopically and histologically confirmed ovarian cancer who refused to undergo systemic chemotherapy. She was treated with eight courses q 28-104 days of low-dose PIPAC with cisplatin at 7.5 mg/m(2) and doxorubicin at 1.5 mg/m(2) at 12 mmHg and 37 °C for 30 min. Objective tumor response was noted, defined as tumor regression on histology, and stable disease noted by peritoneal carcinomatosis index on repeated video-laparoscopy and abdominal computed tomographic scan. The treatment was well-tolerated with no Common Terminology Criteria for Adverse Events (CTCAE) CTCAE >2. With a follow-up of 15 months, the patient is alive and clinically stable. The quality of life measured by the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 demonstrated improvement over 5-6 months (global physical score, global health score, global quality of live) without cumulative increase of gastrointestinal toxicity. Low-dose PIPAC is a new form of intraperitoneal chemotherapy which may be applied repeatedly in octogenarian patients. PIPAC may be an alternative and well-tolerated treatment for selected octogenarian patients with ovarian cancer limited to the abdomen who cannot be treated with systemic chemotherapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  1. Limiting values for the RBE of fission neutrons at low doses for life shortening in mice

    International Nuclear Information System (INIS)

    Storer, J.B.; Mitchell, T.J.

    1984-01-01

    The authors have analyzed recently published data on the effects of low doses of fission neutrons on the mean survival times of mice. The analysis for single-dose exposures was confined to doses of 20 rad or less, while for fractionated exposures only total doses of 80 rad or less were considered. They fitted the data to the frequently used power function model: life shortening = βD/sup γ/, where D is the radiation dose. They show that, at low doses per fraction, either the effects are not additive or the dose-effect curve for single exposures cannot show a greater negative curvature than about the 0.9 power of dose. Analysis of the data for γ rays showed that an exponent of 1.0 gave an acceptable fit. They conclude that at neutron doses of 20 rad or less the RBE for life shortening is constant and ranges from 13 to 22 depending on mouse strain and sex

  2. Measurement system for depth dose distribution in cancer therapy

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Fujiwara, Hirotsugu; Tsutaka, Yoshikazu; Ikeda, Ikuo

    1999-01-01

    An accurate estimation of an absorbed dose distribution in human tissue is indispensable to efficiently perform radiotherapy in humans. Previously, various methods for such estimation have been developed, however, there is some problem in those methods, it takes too long times (3-4 hours) to determine the absorbed dose distribution through scanning by ionization chamber in water phantom. So, a determination system of depth dose was developed with an aim to determine the absorbed dose of X-ray or electron beam in materials similar to human body. This system was composed of a detector including scintillation fibers which allows emission due to radio-interaction, CCD camera for determination of light distribution of the emission and personal computer for data processing. Though the accuracy of this system was ±2% similar to that of the conventional measuring method, measuring time was reduced to almost 5 min, markedly shorter than that of the conventional water phantom (3-4 hours). The efficacy of works including the adjustment of irradiation system, planning, etc. would be improved by application of this system. (M.N.)

  3. High-dose-rate brachytherapy in the treatment of uterine cervix cancer. Analysis of dose effectiveness and late complications

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Novaes, Paulo Eduardo Ribeiro dos Santos; Pellizzon, Antonio Cassio Assis; Maia, Maria Aparecida Conte; Fogarolli, Ricardo Cesar; Gentil, Andre Cavalcanti; Salvajoli, Joao Victor

    2001-01-01

    Purpose: This retrospective analysis aims to report results of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy. Methods and Materials: From September 1992 to December 1996, 138 patients with FIGO Stages II and III and mean age of 56 years were treated. Median EBR to the whole pelvis was 45 Gy in 25 fractions. Parametrial boost was performed in 93% of patients, with a median dose of 14.4 Gy. Brachytherapy with HDR was performed during EBR or following its completion with a dose of 24 Gy in four weekly fractions of 6 Gy to point A. Median overall treatment time was of 60 days. Patient age, tumor stage, and overall treatment time were variables analyzed for survival and local control. Cumulative biologic effective dose (BED) at rectal and bladder reference points were correlated with late complications in these organs and dose of EBR at parametrium was correlated with small bowel complications. Results: Median follow-up time was 38 months. Overall survival, disease-free survival, and local control at 5 years was 53.7%, 52.7%, and 62%, respectively. By multivariate and univariate analysis, overall treatment time up to 50 days was the only statistically significant adverse variable for overall survival (p=0.003) and actuarial local control (p=0.008). The 5-year actuarial incidence of rectal, bladder, and small bowel late complications was 16%, 11%, and 14%, respectively. Patients treated with cumulative BED at rectum points above 110 Gy 3 and at bladder point above 125 Gy 3 had a higher but not statistically significant 5-year actuarial rate of complications at these organs (18% vs. 12%, p=0.49 and 17% vs. 9%, p=0.20, respectively). Patients who received parametrial doses larger than 59 Gy had a higher 5-year actuarial rate of complications in the small bowel; however, this was not statistically significant (19% vs. 10%, p=0.260). Conclusion: This series suggests that 45 Gy to the whole pelvis combined with

  4. SU-E-J-10: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    International Nuclear Information System (INIS)

    Zhou, L; Bai, S; Zhang, Y; Deng, J

    2015-01-01

    Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or more doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship

  5. Radiation Dose Escalation in Esophageal Cancer Revisited: A Contemporary Analysis of the National Cancer Data Base, 2004 to 2012

    International Nuclear Information System (INIS)

    Brower, Jeffrey V.; Chen, Shuai; Bassetti, Michael F.; Yu, Menggang; Harari, Paul M.; Ritter, Mark A.; Baschnagel, Andrew M.

    2016-01-01

    Purpose: To evaluate the effect of radiation dose escalation on overall survival (OS) for patients with nonmetastatic esophageal cancer treated with concurrent radiation and chemotherapy. Methods and Materials: Patients diagnosed with stage I to III esophageal cancer treated from 2004 to 2012 were identified from the National Cancer Data Base. Patients who received concurrent radiation and chemotherapy with radiation doses of ≥50 Gy and did not undergo surgery were included. OS was compared using Cox proportional hazards regression and propensity score matching. Results: A total of 6854 patients were included; 3821 (55.7%) received 50 to 50.4 Gy and 3033 (44.3%) received doses >50.4 Gy. Univariate analysis revealed no significant difference in OS between patients receiving 50 to 50.4 Gy and those receiving >50.4 Gy (P=.53). The dose analysis, binned as 50 to 50.4, 51 to 54, 55 to 60, and >60 Gy, revealed no appreciable difference in OS within any group compared with 50 to 50.4 Gy. Subgroup analyses investigating the effect of dose escalation by histologic type and in the setting of intensity modulated radiation therapy also failed to reveal a benefit. Propensity score matching confirmed the absence of a statistically significant difference in OS among the dose levels. The factors associated with improved OS on multivariable analysis included female sex, lower Charlson-Deyo comorbidity score, private insurance, cervical/upper esophagus location, squamous cell histologic type, lower T stage, and node-negative status (P 50.4 Gy did not result in improved OS among patients with stage I to III esophageal cancer treated with definitive concurrent radiation and chemotherapy. These data suggest that despite advanced contemporary treatment techniques, OS for patients with esophageal cancer remains unaltered by escalation of radiation dose >50.4 Gy, consistent with the results of the INT-0123 trial. Furthermore, these data highlight that many radiation

  6. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  7. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    International Nuclear Information System (INIS)

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  8. Radiation doses in mammography as planning parameters for premature breast cancer tracking programs

    International Nuclear Information System (INIS)

    Souza Ferreira, Rubemar de.

    1994-01-01

    Radiation doses are the main parameters applied to the evaluation of mammographic radiological impact. This study, for a sample of 407 women, were analyzed, through the thermoluminescent dosimetry, radiation doses in the surface of skin and glandular absorbed doses for cranio-caudal view. The results show the presence of a large dose range to the same mammographic procedure, which, analyzed enclosed with 585 facilities, suggest be necessary the standardization of the mammographic technique. From that results, with the additive model, the excess of breast cancer (radioinduced) and lifetime loss risk, for age groups between 30 and 70 years were estimated. Is demonstrated that the benefits from dedicated mammography, overcome the relationship among the epidemiological aspects of breast cancer and ionizing radiation as an harmful agent, which may show an important correlation for large exposed populations, point out the importance of the continuous risk and benefit evaluation to the new technologies introduced. (author). 86 refs., 40 figs., 14 tabs

  9. Application of the Dose Limitation System to the Mining and Milling of Radioactive Ores

    International Nuclear Information System (INIS)

    1987-01-01

    This publication is one of the Safety Guides to the Code of Practice on Radiation Protection of Workers in the Mining and Milling of Radioactive Ores, 1983 Edition, which was published as a joint IAEA/ILO/WHO publication (IAEA Safety Series No.26). This Safety Guide is intended to demonstrate as well as facilitate the application of the principles of optimization in the control of risk among the workers engaged in the mining and milling of radioactive ores and to give some guidance on suitable technology. The International Atomic Energy Agency, jointly with the World Health Organization, the International Labour Organisation and the OECD Nuclear Energy Agency, published the Basic Safety Standards for Radiation Protection, 1982 Edition (IAEA Safety Series No. 9). The Basic Safety Standards outline the principles of radiation protection and also the basic requirements to be followed in the implementation of radiation protection control. These principles are further developed in the case of mining and milling of radioactive ores in the joint IAEA/ILO/WHO Code of Practice on Radiation Protection of Workers in the Mining and Milling of Radioactive Ores (IAEA Safety Series No. 26). This Safety Guide on the Application of the Dose Limitation System to the Mining and Milling of Radioactive Ores was prepared by an Advisory Group which met for the first time in Portoroz, Yugoslavia, from 22 to 26 August 1983, and then again from 6 to 10 August 1984, in Vienna. Following the second Advisory Group meeting the draft was further reviewed by A. Dory from Canada who also was a participant of the two Advisory Group meetings held earlier. After the consultant's review the draft was circulated among the members of the Advisory Group for a further check. The final version of the draft was prepared by the Secretariat with the help of a consultant

  10. Dose Sparing of Brainstem and Spinal Cord for Re-Irradiating Recurrent Head and Neck Cancer with Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Chen, Chin-Cheng; Lee, Chen-Chiao; Mah, Dennis; Sharma, Rajiv; Landau, Evan; Garg, Madhur; Wu, Andrew

    2011-01-01

    Because of the dose limit for critical structures such as brainstem and spinal cord, administering a dose of 60 Gy to patients with recurrent head and neck cancer is challenging for those who received a previous dose of 60-70 Gy. Specifically, previously irradiated head and neck patients may have received doses close to the tolerance limit to their brainstem and spinal cord. In this study, a reproducible intensity-modulated radiation therapy (IMRT) treatment design is presented to spare the doses to brainstem and spinal cord, with no compromise of prescribed dose delivery. Between July and November 2008, 7 patients with previously irradiated, recurrent head and neck cancers were treated with IMRT. The jaws of each field were set fixed with the goal of shielding the brainstem and spinal cord at the sacrifice of partial coverage of the planning target volume (PTV) from any particular beam orientation. Beam geometry was arranged to have sufficient coverage of the PTV and ensure that the constraints of spinal cord o , patients could be treated by 18 fields. Six patients met these criteria and were treated in 25 minutes per fraction. One patient exceeded a 30 o Cobb's angle and was treated by 31 fields in 45 minutes per fraction. We have demonstrated a new technique for retreatment of head and neck cancers. The angle of cervical spine curvature plays an important role in the efficiency and effectiveness of our approach.

  11. Metformin decreases lung cancer risk in diabetic patients in a dose-dependent manner.

    Science.gov (United States)

    Tsai, Ming-Ju; Yang, Chih-Jen; Kung, Ya-Ting; Sheu, Chau-Chyun; Shen, Yu-Ting; Chang, Pi-Yu; Huang, Ming-Shyan; Chiu, Herng-Chia

    2014-11-01

    Higher risk of lung cancer has been noted in patients with type 2 diabetes mellitus (DM). Some observational studies have shown a reduced risk of lung cancer in DM patients taking metformin, but a dose-response relationship has never been reported. The aim of this study is to exam the association between the dose of metformin and the incidence of lung cancer in a Chinese population. The dataset used for this nationwide population-based study is a cohort of 1 million subjects randomly sampled from individuals enrolled in the Taiwan National Health Insurance system. We enrolled all subjects with newly diagnosed type 2 DM between 1997 and 2007. Subjects with a diagnosis of neoplasm before DM diagnosis, those using metformin before DM diagnosis, those with polycystic ovary syndrome, and those with a DM diagnosis before their 15 years of age were excluded. The demographic data and duration, cumulative dose and intensity of metformin use were compared between patients developing lung cancer and those without lung cancer. Totally, 47,356 subjects were identified. After adjusting for age, gender, and modified Charlson Comorbidity Index score, the utilization of metformin was an independent protecting factor, and the risk of developing lung cancer decreased progressively with either the higher cumulative dose or the higher intensity of metformin use. This study revealed that the use of metformin decreased the risk of lung cancer in a dose-dependent manner in patients with type 2 DM. The chemo-preventive effect of metformin deserves further study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Focal low-dose rate brachytherapy for the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Tong WY

    2013-09-01

    Full Text Available William Y Tong, Gilad Cohen, Yoshiya Yamada Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY, USA Abstract: Whole-gland low-dose rate (LDR brachytherapy has been a well-established modality of treating low-risk prostate cancer. Treatment in a focal manner has the advantages of reduced toxicity to surrounding organs. Focal treatment using LDR brachytherapy has been relatively unexplored, but it may offer advantages over other modalities that have established experiences with a focal approach. This is particularly true as prostate cancer is being detected at an earlier and more localized stage with the advent of better detection methods and newer imaging modalities. Keywords: prostate cancer, focal, low dose rate, brachytherapy

  13. The shape of the cancer mortality dose-response curve for atomic bomb survivors

    International Nuclear Information System (INIS)

    Pierce, D.A.; Vaeth, M.

    1989-10-01

    The shape of the cancer mortality dose-response in the atomic bomb survivor data is analyzed in the context of linear-quadratic (LQ) models. Results are given for all cancers except leukemia as a group, for leukemia, and for combined inferences assuming common curvature. Since there is substantial information aside from these data suggesting a dose-response concave from above, the emphasis here is not on estimating the best-fitting dose-response curve, but rather on assessing the maximal extent of curvature under LQ models which is consistent with the data. Such inferences are substantially affected by imprecision in the dose estimates, and methods are applied which make explicit allowances for biases due to this. The primary means used here to express the extent of curvature is the factor by which linear risk estimates should be divided to arrive at appropriate low-dose risk estimates. In the past, influential committees have recommended ranges of 2-10 and of 1.5-3 for such a factor. Results here suggest that values greater than about 2 are at least moderately inconsistent with these data, within the context of LQ models. It is emphasized, however, that there is little direct information in these data regarding low-dose risks; the inferences here depend strongly on the link between low-dose and high-dose risks provided by the assumption of an LQ model. (author)

  14. China National Lung Cancer Screening Guideline with Low-dose Computed 
Tomography (2018 version

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2018-02-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related death in China. The results from a randomized controlled trial using annual low-dose computed tomography (LDCT in specific high-risk groups demonstrated a 20% reduction in lung cancer mortality. The aim of tihs study is to establish the China National lung cancer screening guidelines for clinical practice. Methods The China lung cancer early detection and treatment expert group (CLCEDTEG established the China National Lung Cancer Screening Guideline with multidisciplinary representation including 4 thoracic surgeons, 4 thoracic radiologists, 2 medical oncologists, 2 pulmonologists, 2 pathologist, and 2 epidemiologist. Members have engaged in interdisciplinary collaborations regarding lung cancer screening and clinical care of patients with at risk for lung cancer. The expert group reviewed the literature, including screening trials in the United States and Europe and China, and discussed local best clinical practices in the China. A consensus-based guidelines, China National Lung Cancer Screening Guideline (CNLCSG, was recommended by CLCEDTEG appointed by the National Health and Family Planning Commission, based on results of the National Lung Screening Trial, systematic review of evidence related to LDCT screening, and protocol of lung cancer screening program conducted in rural China. Results Annual lung cancer screening with LDCT is recommended for high risk individuals aged 50-74 years who have at least a 20 pack-year smoking history and who currently smoke or have quit within the past five years. Individualized decision making should be conducted before LDCT screening. LDCT screening also represents an opportunity to educate patients as to the health risks of smoking; thus, education should be integrated into the screening process in order to assist smoking cessation. Conclusion A lung cancer screening guideline is recommended for the high-risk population in China

  15. [China National Lung Cancer Screening Guideline with Low-dose Computed 
Tomography (2018 version)].

    Science.gov (United States)

    Zhou, Qinghua; Fan, Yaguang; Wang, Ying; Qiao, Youlin; Wang, Guiqi; Huang, Yunchao; Wang, Xinyun; Wu, Ning; Zhang, Guozheng; Zheng, Xiangpeng; Bu, Hong; Li, Yin; Wei, Sen; Chen, Liang'an; Hu, Chengping; Shi, Yuankai; Sun, Yan

    2018-02-20

    Lung cancer is the leading cause of cancer-related death in China. The results from a randomized controlled trial using annual low-dose computed tomography (LDCT) in specific high-risk groups demonstrated a 20% reduction in lung cancer mortality. The aim of tihs study is to establish the China National lung cancer screening guidelines for clinical practice. The China lung cancer early detection and treatment expert group (CLCEDTEG) established the China National Lung Cancer Screening Guideline with multidisciplinary representation including 4 thoracic surgeons, 4 thoracic radiologists, 2 medical oncologists, 2 pulmonologists, 2 pathologist, and 2 epidemiologist. Members have engaged in interdisciplinary collaborations regarding lung cancer screening and clinical care of patients with at risk for lung cancer. The expert group reviewed the literature, including screening trials in the United States and Europe and China, and discussed local best clinical practices in the China. A consensus-based guidelines, China National Lung Cancer Screening Guideline (CNLCSG), was recommended by CLCEDTEG appointed by the National Health and Family Planning Commission, based on results of the National Lung Screening Trial, systematic review of evidence related to LDCT screening, and protocol of lung cancer screening program conducted in rural China. Annual lung cancer screening with LDCT is recommended for high risk individuals aged 50-74 years who have at least a 20 pack-year smoking history and who currently smoke or have quit within the past five years. Individualized decision making should be conducted before LDCT screening. LDCT screening also represents an opportunity to educate patients as to the health risks of smoking; thus, education should be integrated into the screening process in order to assist smoking cessation. A lung cancer screening guideline is recommended for the high-risk population in China. Additional research , including LDCT combined with biomarkers, is

  16. Evaluation of skin surface dose for head and neck cancer patients treated with intensity-modulated radiation therapy using in vivo dosimetry

    International Nuclear Information System (INIS)

    Kim, Yeon Sil; Lee, Dong Soo; Yoo, Mi Na; Hong, Joo Young; Yoon, Se Chul; Jang, Hong Suk

    2011-01-01

    Use of intensity-modulated radiation therapy (IMRT) for head and neck cancer is gradually increasing, because it could facilitate more sophsticated treatment of target volumes and reduction of acute and late sequelae. However, theoretically, there is a potential risk of increased skin surface dose resulting from multiple obliquity effects caused by multiple tangential beams. Moreover, we sometimes confronted with more skin reactions in the patients treated with IMRT than conventional techniques. In this study, we evaluated skin surface dose adjacent to the target volumes to verify whether the use of IMRT would increase the skin dose more than we predicted. This study had shown that the use of IMRT did not increase the skin surface hot point dose. The measured skin surface dose was 20 to 40 percent of the adjacent target prescription dose, and was within acceptable dose range. Our study had some limitations with small number of experimental patients and methodological problems. Potential risk of increasing skin dose with bolus effect of aquaplaster should be examined in the future trials. In addition, the accurate set-up verification should be maintained because of steep dose gradient between skin surface and target volumes within a short distance in the head and neck cancer patients.

  17. Mechanism of suppressive effect of low dose radiation on cancer cell dissemination in mice

    International Nuclear Information System (INIS)

    Fu Haiqing; Li Xiuyi; Chen Yubing; Zhang Yingchun; Liu Shuzheng

    1997-01-01

    Influence of low dose radiation on immunity in C57 BL/6 mice injected with cancer cells was studied. In mice given 75 mGy WBI 24 h before injection of Lewis lung carcinoma cells or B 16 melanoma cells, the percentage of S-phase thymocytes and CD 3+ thymocytes, the splenic NK cell activity, IL-2 secretion and γIFN secretion were found to be potentiated 2∼8 day after irradiation in comparison with the sham-irradiation mice. The results suggest that low dose radiation might suppress cancer cell dissemination via the enhancement of immune reactivity

  18. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  19. Dose-Escalated Robotic SBRT for Stage I-II Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Robert eMeier

    2015-04-01

    Full Text Available Abstract: Stereotactic body radiotherapy (SBRT is the precise external delivery of very high-dose radiotherapy to targets in the body, with treatment completed in one to five fractions. SBRT should be an ideal approach for organ-confined prostate cancer because (I dose escalation should yield improved rates of cancer control; (II the unique radiobiology of prostate cancer favors hypofractionation and (III the conformal nature of SBRT minimizes high-dose radiation delivery to immediately adjacent organs, potentially reducing complications. This approach is also more convenient for patients, and is cheaper than intensity modulated radiotherapy (IMRT. Several external beam platforms are capable of delivering SBRT for early-stage prostate cancer, although most of the mature reported series have employed a robotic non-coplanar platform (i.e., CyberKnife. Several large studies report 5-year biochemical relapse rates which compare favorably to IMRT. Rates of late GU toxicity are similar to those seen with IMRT, and rates of late rectal toxicity may be less than with IMRT and low dose rate (LDR brachytherapy. Patient-reported quality of life (QOL outcomes appear similar to IMRT in the urinary domain. Bowel QOL may be less adversely affected by SBRT than with other radiation modalities. After five years of follow-up, SBRT delivered on a robotic platform is yielding outcomes at least as favorable as IMRT, and may be considered appropriate therapy for stage I-II prostate cancer.

  20. Evaluation of functioning of high dose rate brachytherapy at the Instituto Nacional do Cancer

    International Nuclear Information System (INIS)

    Guedes, Laura M.A.; Barreto, Rodrigo V.; Silva, Penha M.; Macedo, Afranio A.; Borges, Solange C.; Martinez, Valeria P.O.

    2001-01-01

    Quality control tests are very useful tools to assure the quality of patient's treatment. A daily control of the high dose rate micro selectron was performed based on the security parameters of the equipment and on the quickness of performance. The purpose of this report is to evaluate and to discuss the errors found during the first three years with the high dose rate brachytherapy, at the Instituto Nacional de Cancer. (author)

  1. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, Antonio Cassio Assis, E-mail: acapellizzon@hcancer.org.br [A.C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Departamento de Radioterapia

    2016-05-15

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. (author)

  2. Search for the lowest irradiation dose from literatures on radiation-induced cancer in gastrointestinal tract

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1976-01-01

    A survey of past case reports about radiation-induced cancer in the gastrointestinal tract was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1923 revealed 80 cases of radiation-induced large intestine cancer and one case of stomach cancer. The cases of radiation-induced cancer in the large intestine had received radiation for the treatment of non-malignant conditions, fibroma, ovarial cyste, myoma, endometritis and duodenal ulcer. The lowest irradiation dose was estimated at 460 rads. Adenocarcinoma was the histopathological finding in all cases of radiation-induced cancer in the caecum, colon and rectum, and squamous cell carcinoma in the cases of anal cancer. The latent period ranged from 1 to 31 years, with the average of 13.6 years. There were some reports of statistical studies of radiation-induced stomach cancer. Three groups were the subjects of these studies. The first group was composed of atomic bomb survivors, the second of patients who had undergone radiation treatment for ankylosing spondilitis, and the third of duodenal ulcer patients subjected to radiation treatment for the purpose of suppressing gastric acid secretion. These statistical studies showed no significant increase of the incidence of stomach cancer in the irradiated groups. (auth.)

  3. Search for the lowest irradiation dose from literatures on radiation-induced cancer in gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1976-05-01

    A survey of past case reports about radiation-induced cancer in the gastrointestinal tract was carried out with the main object of finding the lowest irradiation dose. Search of the literature published since 1923 revealed 80 cases of radiation-induced large intestine cancer and one case of stomach cancer. The cases of radiation-induced cancer in the large intestine had received radiation for the treatment of non-malignant conditions, fibroma, ovarial cyste, myoma, endometritis and duodenal ulcer. The lowest irradiation dose was estimated at 460 rads. Adenocarcinoma was the histopathological finding in all cases of radiation-induced cancer in the caecum, colon and rectum, and squamous cell carcinoma in the cases of anal cancer. The latent period ranged from 1 to 31 years, with the average of 13.6 years. There were some reports of statistical studies of radiation-induced stomach cancer. Three groups were the subjects of these studies. The first group was composed of atomic bomb survivors, the second of patients who had undergone radiation treatment for ankylosing spondilitis, and the third of duodenal ulcer patients subjected to radiation treatment for the purpose of suppressing gastric acid secretion. These statistical studies showed no significant increase of the incidence of stomach cancer in the irradiated groups.

  4. A study on the variation of bladder and rectal doses with respiration in intracavitary brachytherapy for cervix cancer

    Directory of Open Access Journals (Sweden)

    Singh Karuna

    2010-04-01

    Full Text Available Purpose: In cervical intracavitary brachytherapy, it is mandatory to evaluate if the doses to bladder and rectum are within tolerance limits. In this study, an effort has been made to evaluate the effect of respiration on the doses to bladder and rectum in patients undergoing brachytherapy.Material and methods: Fifteen patients with cervix cancer treated with concurrent chemoradiation followed by intracavitary brachytherapy were included in this study. At the time of brachytherapy, all patients underwent 4D computed tomography (CT imaging. Five out of fifteen patients were scanned with empty bladder while the rest had full bladder during sectional imaging. Four sets of pelvic CT image datasets with applicators in place were acquired at equal interval in a complete respiratory cycle. Treatment plans were generated for all the CT datasets on a PlatoTM Sunrise planning system. A dose of 7 Gy was prescribed to Point A. Doses to ICRU (Report No.38 bladder (IBRP and rectal (IRRP reference points were calculated in all the CT datasets.Results: The mean of maximum dose to IBRP at four different respiratory phases for full and empty bladder were 53.38 ± 19.20%, 55.75 ± 16.71%, 56.13 ± 17.70%, 57.50 ± 17.48% and 60.93 ± 15.18%, 60.29 ± 16.28%, 60.86 ± 15.90%, 60.82 ± 15.42% of the prescribed dose respectively. Similarly, maximum dose to IRRP for full and empty bladder were 55.50 ± 18.66%, 57.38 ± 14.81%, 58.00 ± 14.97%, 58.38 ± 17.28% and 71.96 ± 6.90%, 71.58 ± 7.52%, 68.92 ± 6.21%, 71.45 ± 7.16% respectively.Conclusions: Our study shows that respiration affects the dose distribution to the bladder and rectum in intracavitary brachytherapy of cervix cancer. It is advisable to reduce the critical organ dose to account for the dose variation introduced by respiratory motion.

  5. A design and construction of wire drive mechanical barrier system on the medium dose brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Nur Khasan; Tri Harjanto; Ari Satmoko

    2012-01-01

    A design and construction of wire drive mechanical barrier system on the medium dose brachytherapy for cervical cancer has been done as a complete system for security of both mechanically and electrically during the operation of the device as a whole. The design and construction were carried out by paying attention to the length of wire dimensions, the diameter of the roller drum for wire, the process of wire rolling and delivery path length of the radioactive source or also the checker. The length dimension of wire or delivery path length with a diameter of drum rollers which is converted into 2 pieces of limiting the size of the circular line on the gear system is integrated with the limit switch/divider electrically. By using this barrier the security and certainty of the wire rolling and delivery process are assured, either wire of radioactive sources or also wire of checker. The materials or components used are aluminum for gear system and limit switches for electrical systems. The result of the construction is a set of equipment that is used to complete a safety facility operating on the wire drive module of medium dose brachytherapy for cervical cancer. (author)

  6. Radiation therapy for elderly patients with limited non-small cell lung cancer

    International Nuclear Information System (INIS)

    Hayakawa, Kazushige; Mitsuhashi, Norio; Katano, Susumu

    1998-01-01

    The treatment results for 93 patients aged 75 years or older (elderly group) with limited non-small cell lung cancer (NSCLC) were retrospectively analyzed and compared with those for 193 patients younger than 75-years old (younger group). The elderly patients were classified into two groups: 64 patients aged 75-79 years (the elderly A) and 29 patients aged 80 years or older (the elderly B). All patients were treated with 10 MV X-rays using 2 Gy daily standard fractionation between 1976 and 1994. The total dose ranged from 60 Gy to 80 Gy. The overall two and five year survival rates were 31% and 12% for the elderly A group, and 28% and 6% for the elderly B group, respectively, compared with 34% and 12% for the younger group. In stage I-II NSCLC patients, the 2-year and 5-year disease-specific survival rates were 61% and 43% for the elderly A group, and 55% and 17% for the elderly B group, respectively, while the corresponding rates for younger group were 56% and 22%, respectively. In patients with stage III disease, however, the survival curves of the elderly B were inferior to those of the younger group and the elderly A group, although the difference was not statistically significant. Only two elderly patients died of late pulmonary insufficiency associated with high-dose irradiation of 80 Gy to the proximal bronchus. No other treatment-related event was observed except for mild acceptable acute complications in the elderly groups. The condition of two patients aged more than 80 years, however, deteriorated in mentality during hospitalization. Definitive radiation therapy is recommended to the elderly aged 75 years or older with limited NSCLC, especially early stage disease, as an acceptable choice or treatment. (K.H.)

  7. Post-operative high dose rate brachytherapy in patients with low to intermediate risk endometrial cancer

    International Nuclear Information System (INIS)

    Pearcey, R.G.; Petereit, D.G.

    2000-01-01

    This paper investigates the outcome using different dose/fractionation schedules in high dose rate (HDR) post-operative vaginal vault radiotherapy in patients with low to intermediate risk endometrial cancer. The world literature was reviewed and thirteen series were analyzed representing 1800 cases. A total of 12 vaginal vault recurrences were identified representing an overall vaginal control rate of 99.3%. A wide range of dose fractionation schedules and techniques have been reported. In order to analyze a dose response relationship for tumor control and complications, the biologically effective doses to the tumor and late responding tissues were calculated using the linear quadratic model. A threshold was identified for complications, but not vaginal control. While dose fractionation schedules that delivered a biologically effective dose to the late responding tissues in excess of 100 Gy 3 (LQED = 60 Gy) predicted for late complications, dose fractionation schedules that delivered a modest dose to the vaginal surface (50 Gy 10 or LQED = 30 Gy) appeared tumoricidal with vaginal control rates of at least 98%. By using convenient, modest dose fractionation schedules, HDR vaginal vault - brachytherapy yields very high local control and extremely low morbidity rates. (author)

  8. Report of task group on the biological basis for dose limitation in the skin

    International Nuclear Information System (INIS)

    1989-08-01

    Researchers have drawn attention to what they consider inconsistencies in the manner in which ICRP have considered skin in relation to the effective dose equivalent. They urge that the dose to the skin should be considered routinely for inclusion in the effective dose equivalent in the context of protection of individuals and population groups. They note that even with a weighting factor of only 0.01 that the dose to the skin can be a significant contributor to the effective dose equivalent including skin for practical exposure conditions. In the case of many exposures the risk to the skin can be ignored but exposure in an uniformly contaminated cloud that might occur with 85 Kr the dose to the skin could contribute 60% of the stochastic risk if included in the effective dose equivalent with a W T of 0.01. Through the years and even today the same questions about radiation effects in the skin and dosimetry keep being asked. This report collates the available data and current understanding of radiation effects on the skin, and may make it possible to estimate risks more accurately and to improve the approach to characterizing skin irradiations. 294 refs., 29 figs

  9. Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway.

    Science.gov (United States)

    Ismail, Ismail Ahmed; El-Sokkary, Gamal H; Saber, Saber H

    2018-04-27

    Paclitaxel (taxol) is an important agent against many tumours, including breast cancer. Ample data documents that paclitaxel inhibits breast cancer metastasis while others prove that paclitaxel enhances breast cancer metastasis. The mechanisms by which paclitaxel exerts its action are not well established. This study focuses on the effect of paclitaxel, particularly the low doses on breast cancer metastasis and the mechanisms that regulate it. Current results show that, paclitaxel exerts significant cytotoxicity even at low doses in both MCF-7 and MDA-MB-231 cells. Interestingly, paclitaxel significantly inhibits cell invasion and migration, decreases Snail and increases E-cadherin mRNA expression levels at the indicated low doses. Furthermore, paclitaxel-inhibiting breast cancer metastasis is associated with down-regulation of DJ-1 and ID-1 mRNA expression level with a concurrent increase in KLF17 expression. Under the same experimental conditions, paclitaxel induces KLF17 and concurrently represses ID-1 protein levels. Our results show for the first time that paclitaxel inhibits breast cancer metastasis through regulating DJ-1/KLF17/ID-1 signalling pathway; repressed DJ-1 and ID-1 and enhanced KLF17 expression. © 2018 John Wiley & Sons Australia, Ltd.

  10. Cardiac Dose From Tangential Breast Cancer Radiotherapy in the Year 2006

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Povall, Julie M.; McGale, Paul; Nisbet, Andrew; Dodwell, David; Smith, Jonathan T.; Darby, Sarah C.

    2008-01-01

    Purpose: To quantify the radiation doses received by the heart and coronary arteries from contemporary tangential breast or chest wall radiotherapy. Methods and Materials: Fifty consecutive patients with left-sided breast cancer and 5 consecutive patients with right-sided breast cancer treated at a large United Kingdom radiotherapy center during the year 2006 were selected. All patients were irradiated with 6- or 8-MV tangential beams to the breast or chest wall. For each dose plan, dose-volume histograms for the heart and left anterior descending (LAD) coronary artery were calculated. For 5 of the left-sided and all 5 right-sided patients, dose-volume histograms for the right and circumflex coronary arteries were also calculated. Detailed spatial assessment of dose to the LAD coronary artery was performed for 3 left-sided patients. Results: For the 50 patients given left-sided irradiation, the average mean (SD) dose was 2.3 (0.7) Gy to the heart and 7.6 (4.5) Gy to the LAD coronary artery, with the distal LAD receiving the highest doses. The right and circumflex coronary arteries received approximately 2 Gy mean dose. Part of the heart received >20 Gy in 22 left-sided patients (44%). For the 5 patients given right-sided irradiation, average mean doses to all cardiac structures were in the range 1.2 to 2 Gy. Conclusions: Heart dose from left-tangential radiotherapy has decreased considerably over the past 40 years, but part of the heart still receives >20 Gy for approximately half of left-sided patients. Cardiac dose for right-sided patients was generally from scattered irradiation alone

  11. Assessment of leakage dose in vivo in patients undergoing radiotherapy for breast cancer

    Directory of Open Access Journals (Sweden)

    Peta Lonski

    2018-01-01

    Full Text Available Background and purpose: Accurate quantification of the relatively small radiation doses delivered to untargeted regions during breast irradiation in patients with breast cancer is of increasing clinical interest for the purpose of estimating long-term radiation-related risks. Out-of-field dose calculations from commercial planning systems however may be inaccurate which can impact estimates for long-term risks associated with treatment. This work compares calculated and measured dose out-of-field and explores the application of a correction for leakage radiation. Materials and methods: Dose calculations of a Boltzmann transport equation solver, pencil beam-type, and superposition-type algorithms from a commercial treatment planning system (TPS were compared with in vivo thermoluminescent dosimetry (TLD measurements conducted out-of-field on the contralateral chest at points corresponding to the thyroid, axilla and contralateral breast of eleven patients undergoing tangential beam radiotherapy for breast cancer. Results: Overall, the TPS was found to under-estimate doses at points distal to the radiation field edge with a modern linear Boltzmann transport equation solver providing the best estimates. Application of an additive correction for leakage (0.04% of central axis dose improved correlation between the measured and calculated doses at points greater than 15 cm from the field edge. Conclusions: Application of a correction for leakage doses within peripheral regions is feasible and could improve accuracy of TPS in estimating out-of-field doses in breast radiotherapy. Keywords: Breast radiotherapy, TLD, Leakage dose, Dose calculation algorithm

  12. Comparison of doses according to change of bladder volume in treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongnam Health University, Suwon (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of)

    2017-09-15

    In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose R2= -0.94. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose R2= 0.04. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

  13. Focal therapy for prostate cancer: possibilities and limitations

    NARCIS (Netherlands)

    Eggener, Scott; Salomon, Georg; Scardino, Peter T.; de la Rosette, Jean; Polascik, Thomas J.; Brewster, Simon

    2010-01-01

    CONTEXT: A significant proportion of patients diagnosed with prostate cancer have well-differentiated, low-volume tumors at minimal risk of impacting their quality of life or longevity. The selection of a treatment strategy, among the multitude of options, has enormous implications for individuals

  14. Surgery in limited stage small cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Hansen, H H

    1999-01-01

    The role of surgery in small cell lung cancer (SCLC) is controversial. Surgery has several potential advantages because it may reduce the frequency of local relapses, it does not impede the intensity of chemotherapy, it does not affect the bone marrow, and surgical staging may be of prognostic...

  15. Rethinking breast cancer screening strategies in resource-limited ...

    African Journals Online (AJOL)

    The incidence of breast cancer in sub-Saharan nations is increasing. There is a worsening scarcity of Human Resource for Health in Uganda in particular and Sub Saharan Africa in general. Resources available for health care are predominantly spent on infectious disease care such as (HIV/AIDS, Tuberculosis and ...

  16. Combined chemotherapy and radiation therapy in limited disease small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Kyung; Ahn, Yong Chan; Park, Keun Chil; Lim Do Hoon; Huh, Seung Jae; Kim, Dae Yong; Shin, Kyung Hwan; Lee, Kyu Chan; Kwon, O Jung [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1999-03-01

    This is a retrospective study to evaluate the response rate, acute toxicity, and survival rate of a combined chemotherapy and radiation therapy in limited disease small cell lung cancer. Forty six patients with limited disease small-cell lung cancer who underwent combined chemotherapy and radiation therapy between October 1994 and April 1998 were evaluated. Six cycles of chemotherapy were planned either using a VIP regimen (etoposide, ifosfamide, and cis-platin) or a EP regimen (etoposide and cis-platin). Thoracic radiation therapy was planned to deliver 44 Gy using 10MV X-ray, starting concurrently with chemotherapy. Response was evaluated 4 weeks after the completion of the planned chemotherapy and radiation therapy, and the prophylactic cranial irradiation was planned only for the patients with complete responses. Acute toxicity was evaluated using the SWOG toxicity criteria, and the overall survival and disease-free survival were calculated using the Kaplan-Meier Method. The median follow-up period was 16 months (range:2 to 41 months). Complete response was achieved in 30 (65%) patients, of which 22 patients received prophylactic cranial irradiations. Acute toxicities over grade III were granulocytopenia in 23 (50%), anemia in 17 (37%), thrombo-cytopenia in nine (20%), alopecia in nine (20%), nausea/vomiting in five (11%), and peripheral neuropathy in one (2%). Chemotherapy was delayed in one patient, and the chemotherapy doses were reduced in 58 (24%) out of the total 246 cycles. No radiation esophagitis over grade III was observed, while interruption during radiation therapy for a mean of 8.3 days occurred in 21 patients. The local recurrences were observed in 8 patients and local progressions were in 6 patients, and the distant metastases in 17 patients. Among these, four patients had both the local relapse and the distant metastasis. Brain was the most common metastatic site (10 patients), followed by the liver as the next common site (4 patients). The

  17. Combined chemotherapy and radiation therapy in limited disease small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Moon Kyung; Ahn, Yong Chan; Park, Keun Chil; Lim Do Hoon; Huh, Seung Jae; Kim, Dae Yong; Shin, Kyung Hwan; Lee, Kyu Chan; Kwon, O Jung

    1999-01-01

    This is a retrospective study to evaluate the response rate, acute toxicity, and survival rate of a combined chemotherapy and radiation therapy in limited disease small cell lung cancer. Forty six patients with limited disease small-cell lung cancer who underwent combined chemotherapy and radiation therapy between October 1994 and April 1998 were evaluated. Six cycles of chemotherapy were planned either using a VIP regimen (etoposide, ifosfamide, and cis-platin) or a EP regimen (etoposide and cis-platin). Thoracic radiation therapy was planned to deliver 44 Gy using 10MV X-ray, starting concurrently with chemotherapy. Response was evaluated 4 weeks after the completion of the planned chemotherapy and radiation therapy, and the prophylactic cranial irradiation was planned only for the patients with complete responses. Acute toxicity was evaluated using the SWOG toxicity criteria, and the overall survival and disease-free survival were calculated using the Kaplan-Meier Method. The median follow-up period was 16 months (range:2 to 41 months). Complete response was achieved in 30 (65%) patients, of which 22 patients received prophylactic cranial irradiations. Acute toxicities over grade III were granulocytopenia in 23 (50%), anemia in 17 (37%), thrombo-cytopenia in nine (20%), alopecia in nine (20%), nausea/vomiting in five (11%), and peripheral neuropathy in one (2%). Chemotherapy was delayed in one patient, and the chemotherapy doses were reduced in 58 (24%) out of the total 246 cycles. No radiation esophagitis over grade III was observed, while interruption during radiation therapy for a mean of 8.3 days occurred in 21 patients. The local recurrences were observed in 8 patients and local progressions were in 6 patients, and the distant metastases in 17 patients. Among these, four patients had both the local relapse and the distant metastasis. Brain was the most common metastatic site (10 patients), followed by the liver as the next common site (4 patients). The

  18. Limitations of CT and ultrasound diagnoses in the evaluation of uterine cancer involvement

    International Nuclear Information System (INIS)

    Sato, Yasumi; Maki, Masahiro; Seki, Haruo; Saito, Yoshiharu.

    1988-01-01

    The concordance rates between preoperative diagnostic imagings and postoperative pathologic findings were examined in a total of 36 patients with resectable uterine cancer (19 with cervical cancer and 27 with endometrial cancer). The accuracy of CT was 47 % in the evaluation of cervical cancer involvement to the parametrium; and was 83 % in the evaluation of wall involvement of endometrial cancer. The concordance rate was 74 % in the evaluation of stage-grouping in endometrial cancer. Out of 8 patients with resectable stage II cervical cancer, four (50 %) were found to have had involvement to the parametrium by transrectal echography. The results indicate that CT scanning and transrectal echography have limitations in the diagnosis of cervical cancer involvement to the parametrium. (Namekawa, K.)

  19. Digitoxin medication and cancer; case control and internal dose-response studies

    International Nuclear Information System (INIS)

    Haux, Johan; Klepp, Olbjørn; Spigset, Olav; Tretli, Steinar

    2001-01-01

    Digitoxin induces apoptosis in different human malignant cell lines in vitro. In this paper we investigated if patients taking digitoxin for cardiac disease have a different cancer incidence compared to the general population. Computer stored data on digitoxin concentrations in plasma from 9271 patients with cardiac disease were used to define a user population. Age and sex matched controls from the Norwegian Cancer Registry were used to calculate the number of expected cancer cases. The population on digitoxin showed a higher incidence of cancer compared to the control population. However, an additional analysis showed that the population on digitoxin had a general increased risk of cancer already, before the start on digitoxin. Leukemia/lymphoma were the cancer types which stood out with the highest risk in the digitoxin population before starting on digitoxin. This indicates that yet unknown risk factors exist for cardiovascular disease and lymphoproliferative cancer. An internal dose-response analysis revealed a relationship between high plasma concentration of digitoxin and a lower risk for leukemia/lymphoma and for cancer of the kidney/urinary tract. Morbidity and mortality are high in the population on digitoxin, due to high age and cardiac disease.These factors disturb efforts to isolate an eventual anticancer effect of digitoxin in this setting. Still, the results may indicate an anticancer effect of digitoxin for leukemia/lymphoma and kidney/urinary tract cancers. Prospective clinical cancer trials have to be done to find out if digitoxin and other cardiac glycosides are useful as anticancer agents

  20. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  1. Treatment of stage III non-small cell lung cancer and limited-disease small-cell lung cancer

    NARCIS (Netherlands)

    El Sharouni, S.Y.

    2009-01-01

    This thesis concerns the treatment of stage III non-small cell lung cancer (NSCLC) and limited disease small-cell lung cancer (SCLC). We described a systematic review on the clinical results of radiotherapy, combined or not with chemotherapy, for inoperable NSCLC stage III with the aim to define the

  2. Learning From Trials on Radiation Dose in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Jeffrey, E-mail: jbradley@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Hu, Chen [Division of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2016-11-15

    In this issue of the International Journal of Radiation Oncology • Biology • Physics, Taylor et al present a meta-analysis of published data supporting 2 findings: (1) radiation dose escalation seems to benefit patients who receive radiation alone for non-small cell lung cancer; and (2) radiation dose escalation has a detrimental effect on overall survival in the setting of concurrent chemotherapy. The latter finding is supported by data but has perplexed the oncology community. Perhaps these findings are not perplexing at all. Perhaps it is simply another lesson in the major principle in radiation oncology, to minimize radiation dose to normal tissues.

  3. Review of NCRP radiation dose limit for embryo and fetus in occupationally-exposed women - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    On the basis of the current review, the NCRP has decided to make no change in the current recommendation of its radiation dose limit to the unborn. The NCRP recommendation is restated here as follows: During the entire gestation period, the maximum permissible dose equivalent to the embryo-fetus from occupational exposure of the expectant mother should be 0.5 rem. Since the preparation of the 1971 report there has been no new evidence concerning teratogenic or carcinogenic effects of irradiation of the embryo-fetus that would justify a change in the limit in either direction. It is implicit in this position and recommendation that women who can reasonably be expected to be pregnant should not, in certain instances, be exposed to the same radiation environment as women who are not considered fertile or as men. This applies particularly to conditions where radiation workers can receive dose equivalents of 0.5 rem or more in short periods

  4. Using generalized equivalent uniform dose atlases to combine and analyze prospective dosimetric and radiation pneumonitis data from 2 non-small cell lung cancer dose escalation protocols.

    Science.gov (United States)

    Liu, Fan; Yorke, Ellen D; Belderbos, José S A; Borst, Gerben R; Rosenzweig, Kenneth E; Lebesque, Joos V; Jackson, Andrew

    2013-01-01

    To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD was calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate≥20% were plotted. The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study

    International Nuclear Information System (INIS)

    Howe, G.R.

    1995-01-01

    Current lung cancer risk estimates after exposure to low-linear energy transfer radiation such as X rays are based on studies of people exposed to such radiation at high dose rates, for example the atomic bomb survivors. Radiobiology and animal experiments suggest that risks from exposure at low to moderate dose rates, for example medical diagnostic procedures, may be overestimated by such risk models, but data for humans to examine this issue are limited. In this paper we report on lung cancer mortality between 1950 and 1987 in a cohort of 64,172 Canadian tuberculosis patients, of whom 39% were exposed to highly fractionated multiple chest fluoroscopies leading to a mean lung radiation dose of 1.02 Sv received at moderate dose rates. These data have been used to estimate the excess relative risk per sievert of lung cancer mortality, and this is compared directly to estimates derived from 75,991 atomic bomb survivors. Based on 1,178 lung cancer deaths in the fluoroscopy study, there was no evidence of any positive association between risk and dose, with the relative risk at 1 Sv being 1.00 (95% confidence interval 0.94, 1.07), which contrasts with that based on the atomic bomb survivors, 1.60 (1.27, 1.99). The difference in effect between the two studies almost certainly did not arise by chance (P = 0.0001). This study provides strong support from data for humans for a substantial fractionation/dose-rate effect for low-linear energy transfer radiation and lung cancer risk. This implies that lung cancer risk from exposures to such radiation at present-day dose rates is likely to be lower than would be predicted by current radiation risk models based on studies of high-dose-rate exposures. 25 refs., 8 tabs

  6. Effect of high-dose intravenous vitamin C on inflammation in cancer patients

    Directory of Open Access Journals (Sweden)

    Mikirova Nina

    2012-09-01

    Full Text Available Abstract Background An inflammatory component is present in the microenvironment of most neoplastic tissues. Inflammation and elevated C-reactive protein (CRP are associated with poor prognosis and decreased survival in many types of cancer. Vitamin C has been suggested as having both a preventative and therapeutic role in a number of pathologies when administered at much higher-than-recommended dietary allowance levels. Since in vitro studies demonstrated inhibition of pro-inflammatory pathways by millimolar concentrations of vitamin C, we decided to analyze the effects of high dose IVC therapy in suppression of inflammation in cancer patients. Methods 45 patients with prostate cancer, breast cancer, bladder cancer, pancreatic cancer, lung cancer, thyroid cancer, skin cancer and B-cell lymphoma were treated at the Riordan Clinic by high doses of vitamin C (7.5 g -50 g after standard treatments by conventional methods. CRP and tumor markers were measured in serum or heparin-plasma as a routine analysis. In addition, serum samples were collected before and after the IVCs for the cytokine kit tests. Results According to our data positive response to treatment, which was demonstrated by measurements of C- reactive protein, was found in 75% of patients and progression of the inflammation in 25% of patients. IVC treatments on all aggressive stage cancer patients showed the poor response of treatment. There was correlation between tumor markers (PSA, CEA, CA27.29 and CA15-3 and changes in the levels of C-reactive protein. Our test of the effect of IVC on pro-inflammatory cytokines demonstrated that inflammation cytokines IL-1α, IL-2, IL-8, TNF-α, chemokine eotaxin and CRP were reduced significantly after treatments. Conclusions The high dose intravenous ascorbic acid therapy affects C-reactive protein levels and pro-inflammation cytokines in cancer patients. In our study, we found that modulation of inflammation by IVC correlated with decreases

  7. Rectal dose estimation for cervical cancer patients at the radiotherapy department of Komfo Anokye teaching hospital, using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ahadzie, C.

    2012-12-01

    The research was aimed at evaluating the rectal dose of cervical cancer patients undergoing radiation therapy at Komfo Anokye Teaching Hospital, Kumasi. This was done by using TLD, anthropomorphic phantom and a cohort of patients selected on consent. TLD chips of dimension 0.125x0.125x0.35mm were placed on each patient and external treatment was planned to deliver 200 cGy of radiation to each patient as prescribed by the Radiation Oncologist. The result shows a 3.39 percentage difference between the predicted dose by the TPS and that measured by the TLD. This percentage difference is below the limit of 5 percent set by Hanson et al. Rectal dose was evaluated using anthromorphic phantom and a cohort of patients. The pelvic section of the phantom was located; TLD chips inserted into the plugs at the positions of the rectal volume for each of the 8 sections of the anthropomorphic phantom and exposure of 200 cGy of radiation for 25 fractions of external beam. The dose was measured as 213.28 cGy and was used to calculate the biological effective dose (BED). The BED was added to the rectal dose from intracavitary brachytherapy to get the total rectal dose (TRD) for each patient. The least rectal dose from the patient studied is 22.123Gy which is far below the TD 5/5 and TD 5 0 /5 for the volumes of 1/3, 2/3 and 3/3. Emami et al. gave a threshold doses of 85Gy for 1/3 volume, 70 Gy for 2/3 and 60 Gy for 3/3 volume. The highest rectal dose was 63.76 Gy comparing to the TD 5/5 (Gy) values shows as that the measured rectal dose is on the high size. Emami et al. gave for 1/3 volume 61.38 Gy, 2/3 volume 60.50 Gy and 60 Gy for 3/3. Exceeding TD5/5 means that there is 5 percent probability of having complication such as severe proctitis, necrosis or fistula. For TD50/5, Emami et al. gave 81.38 Gy for partial volume of 1/3, 80.50 Gy for 2/3 volume and 80 Gy for 3/3 volume. The highest rectal dose recorded is 63.78 Gy which is far below threshold by Emami et al. (1991). (au)

  8. Interdisciplinary perspectives on dose limits in radioactive waste management : A research paper developed within the ENTRIA project

    NARCIS (Netherlands)

    Kalmbach, K.; Röhlig, K.-J.

    2016-01-01

    Within the ENTRIA project, an interdisciplinary group of scientists developed a research paper aiming at a synthesis of the technical, sociology of knowledge, legal, societal, and political aspects of dose limits within the field of radioactive waste management. In this paper, the ENTRIA project is

  9. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  10. Dose distribution of chest wall electron beam radiotherapy for patients with breast cancer after radical mastectomy

    International Nuclear Information System (INIS)

    Cong Yetong; Chen Dawei; Bai Lan; Zhou Yinhang; Piao Yongfeng; Wang Xi; Qu Yaqin

    2006-01-01

    Objective: To study the dose distribution of different bolus after different energy electron beam irradiation to different chest wall radiotherapy for the patients with breast cancer. Methods: The paper simulated the dose distribution of women's left breast cancer after radical mastectomy by 6 and 9 MeV electron beam irradiation, and TLD was used to measure. Results: The dose of skin became higher and the dose of lung was less when 0.5 and 1.0 cm bolus were used on the body; with the increasing of the energy of electron beam, the high dose field became larger; and with the same energy of electron beam, the high dose field moved to surface of the body when the bolus was thicker. Conclusion: When different energy electron ray irradiates different thickness bolus, the dosage of skin surface increases and the dosage of anterior margin of lung reduces. With electron ray energy increasing, the high dosage field is widen, when the electron ray energy is identity, the high dosage field migrates to the surface after adding bolus. Using certain depth bolus may attain the therapeutical dose of target area. (authors)

  11. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    contrast to the 0.1 mSv yr-! air pathway effective public dose limit regulated by the Environmental Protection Agency for radioactive air emissions.

  12. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Mcnaughton, Michael W.

    2009-01-01

    effective public dose limit regulated by the Environmental Protection Agency for radioactive air emissions.

  13. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    International Nuclear Information System (INIS)

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-01-01

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account

  14. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Gestaut, Matthew M.; Cai, Wendi; Vyas, Shilpa; Patel, Belur J.; Hasan, Salman A.; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-01-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  15. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer.

    Science.gov (United States)

    Gestaut, Matthew M; Cai, Wendi; Vyas, Shilpa; Patel, Belur J; Hasan, Salman A; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-05-01

    Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression-free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (Pcryotherapy for low- and intermediate-risk groups (Pcryotherapy patients was -35°C (range, -96°C to -6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with low- to intermediate-risk prostate cancer. Patient selection criteria for consideration of cryotherapy and brachytherapy are similar in terms of anesthesia candidacy. Therefore, cryotherapy would not be recommended as a first-line local therapy for this particular

  16. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gestaut, Matthew M., E-mail: Matthew.Gestaut@BSWHealth.org [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Cai, Wendi [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Vyas, Shilpa [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington (United States); Patel, Belur J. [Department of Urology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Hasan, Salman A. [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); MunozMaldonado, Yolanda [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Deb, Niloyjyoti; Swanson, Gregory [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States)

    2017-05-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  17. Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Hall, William H.; Li, Judy; Beckett, Laurel; Farwell, D. Gregory; Lau, Derick H.; Purdy, James A.

    2012-01-01

    Purpose: To identify clinical and treatment-related predictors of brachial plexus–associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6–135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median, 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus–associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose–response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.

  18. Plumbagin Nanoparticles Induce Dose and pH Dependent Toxicity on Prostate Cancer Cells.

    Science.gov (United States)

    Nair, Harikrishnan A; Snima, K S; Kamath, Ravindranath C; Nair, Shantikumar V; Lakshmanan, Vinoth-Kumar

    2015-01-01

    Stable nano-formulation of Plumbagin nanoparticles from Plumbago zeylanica root extract was explored as a potential natural drug against prostate cancer. Size and morphology analysis by DLS, SEM and AFM revealed the average size of nanoparticles prepared was 100±50nm. In vitro cytotoxicity showed concentration and time dependent toxicity on prostate cancer cells. However, plumbagin crude extract found to be highly toxic to normal cells when compared to plumbagin nanoformulation, thus confirming nano plumbagin cytocompatibility with normal cells and dose dependent toxicity to prostate cells. In vitro hemolysis assay confirmed the blood biocompatibility of the plumbagin nanoparticles. In wound healing assay, plumbagin nanoparticles provided clues that it might play an important role in the anti-migration of prostate cancer cells. DNA fragmentation revealed that partial apoptosis induction by plumbagin nanoparticles could be expected as a potent anti-cancer effect towards prostate cancer.

  19. Cytogenetic biodosimetry and dose-rate effect after radioiodine therapy for thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khvostunov, Igor K. [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation); Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Saenko, Vladimir A.; Yamashita, Shunichi [Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Krylov, Valeri; Rodichev, Andrei [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation)

    2017-08-15

    This study set out to investigate chromosomal damage in peripheral blood lymphocytes of thyroid cancer patients receiving {sup 131}I for thyroid remnant ablation or treatment of metastatic disease. The observed chromosomal damage was further converted to the estimates of whole-body dose to project the adverse side effects. Chromosomal aberration analysis was performed in 24 patients treated for the first time or after multiple courses. Blood samples were collected before treatment and 3 or 4 days after administration of 2-4 GBq of {sup 131}I. Both conventional cytogenetic and chromosome 2, 4 and 12 painting assays were used. To account for dose-rate effect, a dose-protraction factor was applied to calculate the whole-body dose. The mean dose was 0.62 Gy (95% CI: 0.44-0.77 Gy) in the subgroup of patients treated one time and 0.67 Gy (95% CI: 0.03-1.00 Gy) in re-treated patients. These dose estimates are about 1.7-fold higher than those disregarding the effect of exposure duration. In re-treated patients, the neglected dose-rate effect can result in underestimation of the cumulative whole-body dose by the factor ranging from 2.6 to 6.8. Elevated frequency of chromosomal aberrations observed in re-treated patients before radioiodine therapy allows estimation of a cumulative dose received from all previous treatments. (orig.)

  20. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  1. Stereotactic body radiation therapy for low- and low-intermediate risk prostate cancer: Is there a dose effect?

    Directory of Open Access Journals (Sweden)

    Alan Jay Katz

    2011-12-01

    Full Text Available This study examines the efficacy and toxicity of two stereotactic body radiation therapy (SBRT dose regimens for treatment of early prostate cancer. Forty-one patients treated with 35 Gy were matched with 41 patients treated with 36.25 Gy. Both patient groups received SBRT in 5 fractions over 5 consecutive days using the CyberKnife. Each group had 37 low-risk patients and 4 intermediate-risk patients. No statistically significant differences were present for age, prostate volume, PSA, Gleason score, stage, or risk between the groups. The dose was prescribed to the 83-87% isodose line to cover the prostate and a 5-mm margin all around, except 3 mm posteriorly. The overall median follow-up is 51 months (range, 45-58 months with a median 54 months and 48 months follow-up for the 35-Gy and 36.25-Gy dose groups, respectively. One biochemical failure occurred in each group yielding a 97.5% freedom from biochemical failure. The PSA response has been favorable for all patients with a mean PSA of 0.1 ng/ml at 4-years. Overall toxicity has been mild with 5% late grade 2 rectal toxicity in both dose groups. Late grade 1 urinary toxicity was equivalent between groups; grade 2 urinary toxicity was 5% (2/41 patients and 10% (4/41 patients in the 35-Gy and 36.25-Gy dose groups (p = 0.6969, respectively. Overall, the highly favorable PSA response, limited biochemical failures, limited toxicity, and limited impact on quality of life in these low- to low-intermediate-risk patients are supportive of excellent long-term results for CyberKnife delivered SBRT.

  2. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Directory of Open Access Journals (Sweden)

    Adeleye Bamise

    2017-12-01

    Full Text Available The preference for computed tomography (CT for the clinical assessment of pulmonary tuberculosis (PTB infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05 between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05 and female patients (r2 = 0.989, P < 0.05. The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively. These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  3. Cosmetic results in early stage breast cancer patients with high-dose brachytherapy after conservative surgery

    International Nuclear Information System (INIS)

    Torres, Felipe; Pineda, Beatriz E

    2004-01-01

    Purpose: to reveal cosmetic results in patients at early stages of low risk breast cancer treated with partial accelerated radiotherapy using high dose rate brachytherapy. Methods and materials: from March 2001 to July 2003,14 stages l and ll breast cancer patients were treated at the Colombian national cancer institute in Bogota with conservative surgery and radiotherapy upon the tumor bed (partial accelerated radiotherapy), using interstitial implants with iridium 192 (high dose rate brachytherapy) with a dose of 32 Gys, over 4 days, at 8 fractions twice a day. Results: with an average follow up of 17.7 months, good cosmetic results were found among 71.4 % of patients and excellent results among 14.3% of patients, furthermore none of the patients neither local nor regional or distant relapses. Conclusion: among patients who suffer from breast cancer at early stages, it showed is possible to apply partial accelerated radiotherapy upon the tumor bed with high doses over 4 days with good to excellent cosmetic results

  4. Surface membrane based bladder registration for evaluation of accumulated dose during brachytherapy in cervical cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Sørensen, Thomas Sangild

    2011-01-01

    of the fixed surface. Optional landmark based matches can be included in the suggested iterative solver. The technique is demonstrated for bladder registration in brachytherapy treatment evaluation of cervical cancer. It holds promise to better estimate the accumulated but unintentional dose delivered...

  5. Side effects of radiotherapy in regime of dynamic dose multifractioning for local larynx cancer forms

    International Nuclear Information System (INIS)

    Slobina, E.L.

    2000-01-01

    A regime for dynamic multifractioning of radiotherapy dose used for treating larynx cancer was developed. The method favored reducing the side effects frequency as compared with the conventional fractioning in larynx mucosa from 70% to 46%, in neck skin being irradiated - from 60% to 48%

  6. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer

    Directory of Open Access Journals (Sweden)

    Mustafa Akın

    2014-01-01

    Conclusions: In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  7. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer

    DEFF Research Database (Denmark)

    Appelt, Ane L; Pløen, John; Harling, Henrik

    2015-01-01

    -dose radiotherapy with concomitant chemotherapy followed by observation (watchful waiting) was successful for non-surgical management of low rectal cancer. METHODS: Patients with primary, resectable, T2 or T3, N0-N1 adenocarcinoma in the lower 6 cm of the rectum were given chemoradiotherapy (60 Gy in 30 fractions...

  8. Low dose intravesical heparin as prophylaxis against recurrent noninvasive (stage Ta) bladder cancer

    DEFF Research Database (Denmark)

    Bitsch, M; Hermann, G G; Andersen, J P

    1990-01-01

    A controlled randomized clinical trial was conducted to examine the efficacy of topical low dose heparin (0.125 gm./l., 25,000 units per l.) as prophylaxis against recurrent noninvasive (stage Ta) transitional cell bladder cancer. Transurethral tumor resection was done with irrigation fluid conta...

  9. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Science.gov (United States)

    Adeleye, Bamise; Chetty, Naven

    2017-12-01

    The preference for computed tomography (CT) for the clinical assessment of pulmonary tuberculosis (PTB) infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05) between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05) and female patients (r2 = 0.989, P < 0.05). The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively). These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  10. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    Science.gov (United States)

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  11. More than lung cancer: Automated analysis of low-dose screening CT scans

    NARCIS (Netherlands)

    Mets, O.M.

    2012-01-01

    Smoking is a major health care problem and is projected to cause over 8 million deaths per year worldwide in the coming decades. To reduce lung cancer mortality in heavy smokers, several randomized screening trials were initiated in the past years using screening with low-dose Computed Tomography

  12. Radiation dose, driving performance, and cognitive function in patients with head and neck cancer

    International Nuclear Information System (INIS)

    Yuen, Hon K.; Sharma, Anand K.; Logan, William C.; Gillespie, M. Boyd; Day, Terry A.; Brooks, Johnell O.

    2008-01-01

    Seven head and neck cancer patients participated in a driving evaluation in a driving simulator. Radiation dose on the temporal lobes was moderately associated with time to complete a cognitive test and with driving performance. Results indicated that incidental irradiation may contribute to a decrease in cognition and in unsafe driving performance, which seems to be time-dependent

  13. Concomitant Imaging Dose and Cancer Risk in Image Guided Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yibao; Wu, Hao [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Feng, Zhongsu [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Bao, Shanglian [Beijing Key Laboratory of Medical Physics and Engineering, Peking University, Beijing (China); Deng, Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2015-11-01

    Purpose: Kilovoltage cone beam computed tomography (CT) (kVCBCT) imaging guidance improves the accuracy of radiation therapy but imposes an extra radiation dose to cancer patients. This study aimed to investigate concomitant imaging dose and associated cancer risk in image guided thoracic radiation therapy. Methods and Materials: The planning CT images and structure sets of 72 patients were converted to CT phantoms whose chest circumferences (C{sub chest}) were calculated retrospectively. A low-dose thorax protocol on a Varian kVCBCT scanner was simulated by a validated Monte Carlo code. Computed doses to organs and cardiac substructures (for 5 selected patients of various dimensions) were regressed as empirical functions of C{sub chest}, and associated cancer risk was calculated using the published models. The exposures to nonthoracic organs in children were also investigated. Results: The structural mean doses decreased monotonically with increasing C{sub chest}. For all 72 patients, the median doses to the heart, spinal cord, breasts, lungs, and involved chest were 1.68, 1.33, 1.64, 1.62, and 1.58 cGy/scan, respectively. Nonthoracic organs in children received 0.6 to 2.8 cGy/scan if they were directly irradiated. The mean doses to the descending aorta (1.43 ± 0.68 cGy), left atrium (1.55 ± 0.75 cGy), left ventricle (1.68 ± 0.81 cGy), and right ventricle (1.85 ± 0.84 cGy) were significantly different (P<.05) from the heart mean dose (1.73 ± 0.82 cGy). The blade shielding alleviated the exposure to nonthoracic organs in children by an order of magnitude. Conclusions: As functions of patient size, a series of models for personalized estimation of kVCBCT doses to thoracic organs and cardiac substructures have been proposed. Pediatric patients received much higher doses than did the adults, and some nonthoracic organs could be irradiated unexpectedly by the default scanning protocol. Increased cancer risks and disease adverse events in the

  14. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  15. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Lin, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Li, J [Cyber Medical Inc, Xian, Shaanxi (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number was used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.

  16. A new method for synthesizing radiation dose-response data from multiple trials applied to prostate cancer

    DEFF Research Database (Denmark)

    Diez, Patricia; Vogelius, Ivan S; Bentzen, Søren M

    2010-01-01

    A new method is presented for synthesizing dose-response data for biochemical control of prostate cancer according to study design (randomized vs. nonrandomized) and risk group (low vs. intermediate-high).......A new method is presented for synthesizing dose-response data for biochemical control of prostate cancer according to study design (randomized vs. nonrandomized) and risk group (low vs. intermediate-high)....

  17. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mucha-Malecka, A. [Maria Sklodowska-Curie Memorial Institute, Krakow (Poland). Dept. of Radiation Oncology; Skladowski, K. [Maria Sklodowska-Curie Memorial Institute, Gliwice (Poland). Dept. of Radiation Oncology

    2013-08-15

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  18. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    International Nuclear Information System (INIS)

    Mucha-Malecka, A.; Skladowski, K.

    2013-01-01

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  19. DoReMi workshop on multidisciplinary approaches to evaluating cancer risks associated with low-dose internal contamination

    International Nuclear Information System (INIS)

    Laurier, D.; Guseva Canu, I.; Bertho, J.M.; Blanchardon, E.; Rage, E.; Baatout, S.; Bouffler, S.; Cardis, E.; Gomolka, M.; Kreuzer, M.; Hall, J.; Kesminiene, A.

    2012-01-01

    A workshop dedicated to cancer risks associated with low-dose internal contamination was organised in March 2011, in Paris, in the framework of the DoReMi (Low Dose Research towards Multidisciplinary Integration) European Network of Excellence. The aim was to identify the best epidemiological studies that provide an opportunity to develop a multidisciplinary approach to improve the evaluation of the cancer risk associated with internal contamination. This workshop provided an opportunity for in-depth discussions between researchers working in different fields including (but not limited to) epidemiology, dosimetry, biology and toxicology. Discussions confirmed the importance of research on the health effects of internal contamination. Several existing epidemiological studies provide a real possibility to improve the quantification of cancer risk associated with internal emitters. Areas for future multidisciplinary collaborations were identified, that should allow feasibility studies to be carried out in the near future. The goal of this paper is to present an overview of the presentations and discussions that took place during this workshop. (authors)

  20. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    International Nuclear Information System (INIS)

    Schlesinger, T.; Silverman, I.; Shapira, M.

    1996-01-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. In order to prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations that are engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26 . Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30 . This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set by the

  1. Revised dose limits and new respiratory tract model and their implications for annual limits of intake of radioactive materials - A review of recent ICRP publications

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T; Silverman, I; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    Ionizing radiation may cause immediate and/or delayed biological damages to the body of the exposed person and/or his/her progeny. The exposure may be caused by an external source or may arise due to internal contamination by a radioactive material. To prevent such exposure, or to reduce the probability that it will occur, national authorities and international organizations engaged in radiation safety and protection have set limits for the exposure to ionizing radiation from either source. The sensitivity of the body to ionizing radiation usually decreases with age. For this reason and due to the limited possibilities to control the exposure of the general public, different limits have been set for for occupational exposure and for the exposure of members of the public of different age groups. The general principles of these limits and guidelines for their calculations are set by the International Commission on Radiological Protection (ICRP) and published in the Annals of the ICRP. The basic philosophy of the Commission, which includes the principles of justification, optimization and dose limits, the basic radiobiological models, and the distinction between stochastic and non-stochastic effects has been presented in its publication no. 26. Based on this philosophy, the Commission issued between 1979 and 1988 a series of publications followed by annexes and addenda known as publication no. 30. This series presented models describing the metabolism of radioactive materials which enter the body by inhalation and ingestion, the transfer of such materials from the respiratory tract and the gastrointestinal tract to the blood, and from there to the body organs and the excretion of the material from the body. This series presented also values for biokinetic parameters of these systems and transfer paths, and methods for calculating limits on intake which ensure that the exposure from internal contamination will not exceed the dose limits set.

  2. A methodology to establish the appearance of cancer cases due to radiation dose in compressed breast

    International Nuclear Information System (INIS)

    Feital, Joao Carlos Da Silva; Delgado, Jose Ubiratan; Peixoto, Jose Guilherme P.; Fonseca, Hugo Geraldo Da

    2013-01-01

    It is known that more than 20% of the world's population will contract some type of cancer. In Brazil, with the exception of skin cancer (non melanoma) the breast cancer ranks first among the higher frequency of tumours among women and in general, although the methods of detection are advancing in the year 2010 took place about 13 thousand deaths in about 50,000 cases, probably due to late detection of these neoplasm. New cases of breast cancer in a given population can be proven from absorbed dose quantity, calculated for the compressed breast, due to the risk by means of exposure to x rays in this radiodiagnostic practices. Methodology: Exposures were held in an ionization chamber and the other quantities required were obtained to the screen-film equipment of mammography. Results: Also experimental results were of compressed breast an equivalent dose of ( 1.82 mSv ± 0.2%) or (3.64 mSv ± 0.2%) for both projections, i.e. medium lateral oblique and cranio caudal. The experimental value obtained here is consistent with the calculated results and published in the literature for analog and CR equipment. Conclusion: From the result of dose equivalent in the breast, one can say that there will be effectively attesting as to the appearance of new cases of cancer if approximately 80 million women are exposed to radiation emitted by mammographers. (author)

  3. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses

    International Nuclear Information System (INIS)

    Ding, Wei; Petibone, Dayton M.; Latendresse, John R.; Pearce, Mason G.; Muskhelishvili, Levan; White, Gene A.; Chang, Ching-Wei; Mittelstaedt, Roberta A.; Shaddock, Joseph G.; McDaniel, Lea P.; Doerge, Daniel R.; Morris, Suzanne M.; Bishop, Michelle E.; Manjanatha, Mugimane G.; Aidoo, Anane; Heflich, Robert H.

    2012-01-01

    Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 and 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of

  4. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  5. Results in patients treated with high-dose-rate interstitial brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Shirane, Makoto; Ueda, Tsutomu; Miyahara, Nobuyuki

    2006-01-01

    Eight patients were treated with high-dose-rate interstitial brachytherapy for oral tongue cancer between September 2000 and August 2004. The patient distribution was 1 T1, 5 T2, 1 T3, and 1 T4a. Patients received 50-60 Gy in 10 fractions over seven days with high-dose-rate brachytherapy. Six of the eight patients were treated with a combination of external beam radiotherapy (20-30 Gy) and interstitial brachytherapy. The two-year primary local control rate was 83% for initial case. High-dose-rate brachytherapy was performed safely even for an aged person, and was a useful treatment modality for oral tongue cancer. (author)

  6. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004

    Science.gov (United States)

    Ostroumova, E; Preston, D L; Ron, E; Krestinina, L; Davis, F G; Kossenko, M; Akleyev, A

    2008-01-01

    In the 1950s, the Mayak nuclear weapons facility in Russia discharged liquid radioactive wastes into the Techa River causing exposure of riverside residents to protracted low-to-moderate doses of radiation. Almost 10 000 women received estimated doses to the stomach of up to 0.47 Gray (Gy) (mean dose=0.04 Gy) from external γ-exposure and 137Cs incorporation. We have been following this population for cancer incidence and mortality and as in the general Russian population, we found a significant temporal trend of breast cancer incidence. A significant linear radiation dose–response relationship was observed (P=0.01) with an estimated excess relative risk per Gray (ERR/Gy) of 5.00 (95% confidence interval (CI), 0.80, 12.76). We estimated that approximately 12% of the 109 observed cases could be attributed to radiation. PMID:19002173

  7. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Lübeck Christiansen, Rasmus; Jensen, Henrik R.; Brink, Carsten

    2017-01-01

    Background: Current state of the art radiotherapy planning of prostate cancer utilises magnetic resonance (MR) for soft tissue delineation and computed tomography (CT) to provide an electron density map for dose calculation. This dual scan workflow is prone to setup and registration error....... This study evaluates the feasibility of an MR-only workflow and the validity of dose calculation from an MR derived pseudo CT. Material and methods: Thirty prostate cancer patients were CT and MR scanned. Clinical treatment plans were generated on CT using a single 18 MV arc volumetric modulated arc therapy...... was successfully delivered to one patient, including manually performed daily IGRT. Conclusions: Median gamma pass rates were high for pseudo CT and proved superior to uniform density. Local differences in dose calculations were concluded not to have clinical relevance. Feasibility of the MR-only workflow...

  8. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy; Lindegaard, Jacob Christian; de Leeuw, Astrid A C

    2016-01-01

    Purpose Vaginal stenosis is a major problem following radiotherapy in cervical cancer. We investigated a new dose planning strategy for vaginal dose de-escalation (VDD). Materials and methods Fifty consecutive locally advanced cervical cancer patients without lower or middle vaginal involvement...... at diagnosis from 3 institutions were analysed. External beam radiotherapy was combined with MRI-guided brachytherapy. VDD was obtained by decreasing dwell times in ovoid/ring and increasing dwell times in tandem/needles. The aim was to maintain the target dose (D90 of HR-CTV ⩾ 85 Gy EQD2) while reducing...... bladder and rectum (D2cm3) were reduced by 2 ± 2 Gy and 3 ± 2 Gy, respectively (p

  9. Cancer and low dose responses In Vivo: implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2006-12-15

    This paper discusses the linear no-threshold (LNT) hypothesis, risk prediction and radiation protection. The summary implications for the radiation protection system are that at low doses the conceptual basis of the present system appears to be incorrect. The belief that the current system embodies the precautionary principle and that the LNT assumption is cautious appears incorrect. The concept of dose additivity appears incorrect. Effective dose (Sievert) and the weighting factors on which it is based appear to be invalid. There may be no constant and appropriate value of DDREF for radiological protection dosimetry. The use of dose as a predictor of risk needs to be re-examined. The use of dose limits as a means of limiting risk need to be re-evaluated.

  10. 3D conformal radiation therapy and hormonal therapy for localized prostate cancer: Is age a limiting factor?

    International Nuclear Information System (INIS)

    Faure, A.; Negrea, T.; Lechevallier, E.; Coulange, C.; Murraciole, X.; Jouvea, E.; Sambuca, R.; Cowen, D.

    2011-01-01

    No study on side effects had showed that conformal radiation therapy for prostate cancer is more harmful in patients older than 70 years to patients younger. The aim of this study was to evaluate acute and late toxicities of conformal radiotherapy, with high dose for localized prostate cancer in patients older than 70 years and compared to patients younger than 70 years. Between 1996 and 2009, 104 patients were treated with radiation therapy and hormonal therapy for localized cancer prostate. Median follow-up was 105 months (9 300). Acute (occurred at ≤ three months) and late side effects of 55 patients older than 70 years (median age: 75 [71 92]) were graded according to the CTCAE 3.0 criteria and compared to the younger population. Median dose to the prostate was 75.6 Gy (67 80) in both groups. There were no significant differences in acute and late side effects between age groups. For patients above 70 years, the incidence of grade II or higher acute and late side effects were respectively 27 and 22% for urologic symptoms and 13 and 16% for rectal symptoms. The frequency of grade III late symptoms was low and ranged between 0 and 6% for the evaluated symptoms, irrespective of age group. Older patients had a better biochemical recurrence-free survival than younger patients (86 versus 77% at four years, P ≡ ns). High dose 3D conformal radiotherapy for localized prostate cancer was well tolerated in patients older than 70 years. Age is not a limiting factor for conformal radiation therapy and hormonotherapy for older patients. (authors)

  11. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil

  12. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    International Nuclear Information System (INIS)

    Boerner, A. J.

    2012-01-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil

  13. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-01-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography–defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis–free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  14. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study.

    Science.gov (United States)

    Sankaranarayanan, Rengaswamy; Joshi, Smita; Muwonge, Richard; Esmy, Pulikottil Okkuru; Basu, Partha; Prabhu, Priya; Bhatla, Neerja; Nene, Bhagwan M; Shaw, Janmesh; Poli, Usha Rani Reddy; Verma, Yogesh; Zomawia, Eric; Pimple, Sharmila; Tommasino, Massimo; Pawlita, Michael; Gheit, Tarik; Waterboer, Tim; Sehr, Peter; Pillai, Madhavan Radhakrishna

    2018-03-15

    vaccine is immunogenic and provides lasting protection against HPV 16 and 18 infections similar to the three- and two-dose vaccine schedules, although the study suffer from some limitations. Data on long term protection beyond 7 years against HPV infection and cervical precancerous lesions are needed before policy guidelines regarding a single dose can be formulated and implemented. Significant and long-lasting protective effect of a single dose can be a strong argument to introduce one dose of the HPV vaccine in many low income countries where the current standard of care for cervical cancer prevention is 'no intervention'. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Cerebrovascular Diseases in Childhood Cancer Survivors: Role of the Radiation Dose to Willis Circle Arteries

    Energy Technology Data Exchange (ETDEWEB)

    El-Fayech, Chiraz; Haddy, Nadia; Allodji, Rodrigue Sètchéou; Veres, Cristina; Diop, Fara; Kahlouche, Amar; Llanas, Damien; Jackson, Angela; Rubino, Carole; Guibout, Catherine [Inserm U1018, Villejuif (France); Gustave Roussy, Villejuif (France); University of Paris XI, Villejuif (France); Pacquement, Hélène [Institut Curie, Paris (France); Oberlin, Odile [Gustave Roussy, Villejuif (France); Thomas-Teinturier, Cécile [Inserm U1018, Villejuif (France); Hôpital Bicêtre, Le Kremlin Bicêtre (France); Scarabin, Pierre-Yves [Inserm U1018, Villejuif (France); Chavaudra, Jean; Lefkopoulos, Dimitry [Gustave Roussy, Villejuif (France); Giroud, Maurice; Bejot, Yannick [Registre Dijonnais des accidents vasculaires cérébraux, Dijon (France); Bernier, Valérie [Centre Alexis Vautrin, Vandoeuvre-lès-Nancy (France); Carrie, Christian [Centre Léon Bérard, Lyon (France); and others

    2017-02-01

    Background and Purpose: The aim of this study was to investigate the role of radiation dose received to the circle of Willis (WC) during radiation therapy (RT) and of potential dose-response modifiers on the risk of stroke after treatment of childhood cancer. Methods: We evaluated the risk factors for stroke in a cohort of 3172 5-year survivors of childhood cancer who were followed up for a median time of 26 years. Radiation doses to the WC and brain structures were estimated for each of the 2202 children who received RT. Results: Fifty-four patients experienced a confirmed stroke; 39 were ischemic. Patients not receiving RT had a stroke risk similar to that of the general population, whereas those who received RT had an 8.5-fold increased risk (95% confidence interval [CI]: 6.3-11.0). The excess of incidence of stroke increased yearly. The dose of radiation to the WC, rather than to other brain structures, was found to be the best predictor of stroke. The relative risk was 15.7 (95% CI: 4.9-50.2) for doses of 40 Gy or more. At 45 years of age, the cumulative stroke incidence was 11.3% (95% CI: 7.1%-17.7%) in patients who received 10 Gy or more to the WC, compared with 1% expected from general population data. Radiation doses received to the heart and neck also increased the risk. Surgery for childhood brain cancer was linked to hemorrhagic strokes in these patients. Conclusion: The WC should be considered as a major organ at risk during RT for childhood brain cancers. The incidence of radiation-induced ischemic stroke strongly increases with long-term follow-up.

  16. Cerebrovascular Diseases in Childhood Cancer Survivors: Role of the Radiation Dose to Willis Circle Arteries

    International Nuclear Information System (INIS)

    El-Fayech, Chiraz; Haddy, Nadia; Allodji, Rodrigue Sètchéou; Veres, Cristina; Diop, Fara; Kahlouche, Amar; Llanas, Damien; Jackson, Angela; Rubino, Carole; Guibout, Catherine; Pacquement, Hélène; Oberlin, Odile; Thomas-Teinturier, Cécile; Scarabin, Pierre-Yves; Chavaudra, Jean; Lefkopoulos, Dimitry; Giroud, Maurice; Bejot, Yannick; Bernier, Valérie; Carrie, Christian

    2017-01-01

    Background and Purpose: The aim of this study was to investigate the role of radiation dose received to the circle of Willis (WC) during radiation therapy (RT) and of potential dose-response modifiers on the risk of stroke after treatment of childhood cancer. Methods: We evaluated the risk factors for stroke in a cohort of 3172 5-year survivors of childhood cancer who were followed up for a median time of 26 years. Radiation doses to the WC and brain structures were estimated for each of the 2202 children who received RT. Results: Fifty-four patients experienced a confirmed stroke; 39 were ischemic. Patients not receiving RT had a stroke risk similar to that of the general population, whereas those who received RT had an 8.5-fold increased risk (95% confidence interval [CI]: 6.3-11.0). The excess of incidence of stroke increased yearly. The dose of radiation to the WC, rather than to other brain structures, was found to be the best predictor of stroke. The relative risk was 15.7 (95% CI: 4.9-50.2) for doses of 40 Gy or more. At 45 years of age, the cumulative stroke incidence was 11.3% (95% CI: 7.1%-17.7%) in patients who received 10 Gy or more to the WC, compared with 1% expected from general population data. Radiation doses received to the heart and neck also increased the risk. Surgery for childhood brain cancer was linked to hemorrhagic strokes in these patients. Conclusion: The WC should be considered as a major organ at risk during RT for childhood brain cancers. The incidence of radiation-induced ischemic stroke strongly increases with long-term follow-up.

  17. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study

    International Nuclear Information System (INIS)

    Feng Shiting; Law, Martin Wai-Ming; Huang Bingsheng; Ng, Sherry; Li Ziping; Meng Quanfei; Khong, Pek-Lan

    2010-01-01

    Objective: To measure the radiation dose from CT scans in an anthropomorphic phantom using a 64-slice MDCT, and to estimate the associated cancer risk. Materials and methods: Organ doses were measured with a 5-year-old phantom and thermoluminescent dosimeters. Four protocols; head CT, thorax CT, abdomen CT and pelvis CT were studied. Cancer risks, in the form of lifetime attributable risk (LAR) of cancer incidence, were estimated by linear extrapolation using the organ radiation doses and the LAR data. Results: The effective doses for head, thorax, abdomen and pelvis CT, were 0.7 mSv, 3.5 mSv, 3.0 mSv, 1.3 mSv respectively. The organs with the highest dose were; for head CT, salivary gland (22.33 mGy); for thorax CT, breast (7.89 mGy); for abdomen CT, colon (6.62 mGy); for pelvis CT, bladder (4.28 mGy). The corresponding LARs for boys and girls were 0.015-0.053% and 0.034-0.155% respectively. The organs with highest LARs were; for head CT, thyroid gland (0.003% for boys, 0.015% for girls); for thorax CT, lung for boys (0.014%) and breast for girls (0.069%); for abdomen CT, colon for boys (0.017%) and lung for girls (0.016%); for pelvis CT, bladder for both boys and girls (0.008%). Conclusion: The effective doses from these common pediatric CT examinations ranged from 0.7 mSv to 3.5 mSv and the associated lifetime cancer risks were found to be up to 0.16%, with some organs of higher radiosensitivity including breast, thyroid gland, colon and lungs.

  18. Interindividual registration and dose mapping for voxelwise population analysis of rectal toxicity in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine; Haigron, Pascal [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Lafond, Caroline; Crevoisier, Renaud de [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Département de Radiothérapie, Center Eugène Marquis, Rennes F-35000 (France)

    2016-06-15

    Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of the tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.

  19. Bolus effect to reduce skin dose of the caontralateral breast during breast cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of); Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiology, Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of)

    2017-06-15

    The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge 15 degrees were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

  20. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  1. Search for the lowest irradiation dose from literatures on radiation-induced cancer in uterus

    International Nuclear Information System (INIS)

    Yoshizawa, Yasuo; Kusama, Tomoko

    1975-01-01

    A survey of past case reports on radiation-induced cancer of the uterus was carried out with the main object of finding the lowest irradiation dose. Search of literature published since 1912 revealed 548 cases of radiation-induced cancer of the uterus. All of these cases of radiation-induced cancer had received radiation for the treatment of non-malignant disease. The primary gynecological conditions which were the object of radiation therapy were functional bleeding, endometrial hyperplasia, myoma, endometritis, and polyps. The lowest irradiation dose was estimated at 1000-1450 rad in the case of external X-ray irradiation, and 100 mg.hr for intrauterine radium therapy, which corresponds to 100-1000 rad. It was noted that were more cases of corpus cancer than cervical cancer. Histopathological findings of radiation-induced uterine cancer were carcinoma, sarcoma, and mixed mesodermal tumors. The latent period was distributed in the range of 1 to 40 years, with the average of 10.1 years. (auth.)

  2. Ethical issues, justification, referral criteria for budget limited and high-dose procedures

    International Nuclear Information System (INIS)

    Corbett, R.H.

    2008-01-01

    This paper reviews some of the issues connected with questions of ethics, health economics, radiation dose and referral criteria arising from a workshop held under the auspices of the Sentinel Research Program FP6-012909. An extensive bibliography of further reading is included. (authors)

  3. Radiation Dose-rate Reduction Pattern in Well-differentiated Thyroid Cancer Treated with I-131.

    Science.gov (United States)

    Khan, Shahbaz Ahmad; Khan, Muhammad Saqib; Arif, Muhammad; Durr-e-Sabih; Rahim, Muhammad Kashif; Ahmad, Israr

    2015-07-01

    To determine the patterns of dose rate reduction in single and multiple radioiodine (I-131) therapies in cases of well differentiated thyroid cancer patients. Analytical series. Department of Nuclear Medicine and Radiation Physics, Multan Institute of Nuclear Medicine and Radiotherapy (MINAR), Multan, Pakistan, from December 2006 to December 2013. Ninety three patients (167 therapies) with well differentiated thyroid cancer treated with different doses of I-131 as an in-patient were inducted. Fifty four patients were given only single I-131 therapy dose ranging from 70 mCi (2590 MBq) to 150 mCi (5550 MBq). Thirty nine patients were treated with multiple I-131 radioisotope therapy doses ranging from 80 mCi (2960 MBq) to 250 mCi (9250 MBq). T-test was applied on the sample data showed statistically significant difference between the two groups with p-value (p < 0.01) less than 0.05 taken as significant. There were 68 females and 25 males with an age range of 15 to 80 years. Mean age of the patients were 36 years. Among the 93 cases of first time Radio Active Iodine (RAI) therapy, 59 cases (63%) were discharged after 48 hours. Among 39 patients who received RAI therapy second time or more, most were discharged earlier after achieving acceptable discharge dose rate i.e 25 µSv/hour; 2 out of 39 (5%) were discharged after 48 hours. In 58% patients, given single I-131 therapy dose, majority of these were discharged after 48 hours without any major complications. For well differentiated thyroid cancer patients, rapid dose rate reduction is seen in patients receiving second or subsequent radioiodine (RAI) therapy, as compared to first time receiving RAI therapy.

  4. Brachytherapy guideline in prostate cancer (high and low dose rate)

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Samir Abdallah; Pimentel, Leonardo [Sociedade Brasileira de Radioterapia (SBR), Rio de Janeiro, RJ (Brazil)

    2017-04-15

    Through the elaboration of seven relevant clinical questions related to the proposed theme, we sought to present the main evidences regarding safety, toxicity and effectiveness of the presented radiotherapy (RT) techniques. The study population consisted of male patients of all ages with early primary prostate cancer and candidates for treatment with curative intent. For this, a systematic review of the literature was carried out in primary scientific databases (MEDLINE - PubMed; Embase - Elsevier; LILACS - BIREME; Cochrane Library -Record of Controlled Trials). All articles available through February 22, 2015 were considered. The search strategy used in MEDLINE searches is described in Appendix 1. The articles were selected based on critical evaluation, seeking the best evidence available. The recommendations were elaborated from discussions held with a drafting group composed of four members of the Brazilian Society of Radiotherapy. The guideline was reviewed by an independent group, which specializes in evidence-based clinical guidelines. After completion, the guideline was released for public consultation for 15 days; the suggestions obtained were forwarded to the authors for evaluation and possible insertion in the final text. (author)

  5. SU-G-201-11: Exploring the Upper Limits of Dose Sculpting Capacity of the Novel Direction Modulated Brachytherapy (DMBT) Tandem Applicator

    International Nuclear Information System (INIS)

    Han, D; Safigholi, H; Soliman, A; Song, W

    2016-01-01

    Purpose: To explore and quantify the upper limits in dose sculpting capacity of the novel direction modulated brachytherapy (DMBT) tandem applicator compared with conventional tandem design for "1"9"2Ir-based HDR planning. Methods: The proposed DMBT tandem applicator is designed for image-guided adaptive brachytherapy (IGABT), especially MRI, of cervical cancer. It has 6 peripheral holes of 1.3-mm width, grooved along a 5.4-mm diameter nonmagnetic tungsten alloy rod of density 18.0 g/cc, capable of generating directional dose profiles – leading to enhanced dose sculpting capacity through inverse planning. The external dimensions are identical to that of conventional tandem design to ensure clinical compatibility. To explore the expansive dose sculpting capacity, we constructed a hypothetical circular target with 20-mm radius and positioned the DMBT and conventional tandems at the center. We then incrementally shifted the positions laterally away from the center of up to 15 mm, at 1-mm steps. The in-house coded gradient projection-based inverse planning system was then used to generate inverse optimized plans ensuring identical V100=100% coverage. Conformity index (CI) was calculated for all plans. Results: Overall, the DMBT tandem generates more conformal dose distributions than conventional tandem for all lateral positional shifts of 0-15 mm (CI=0.91–0.52 and 0.99–0.34, respectively), with an exception at the central position due to the ideal circular dose distribution, generated by the "1"9"2Ir, fitting tightly around the circular target (CI = 0.91 and 0.99, respectively). The DMBT tandem is able to generate dose conformity of CI>0.8 at up to 6-mm positional shift while the conventional tandem violates this past 2-mm shift. Also, the CI ratio (=DMBT/conv.) increases rapidly until about 8 mm and then stabilizes beyond. Conclusion: A substantial enhancement in the dose sculpting capacity has been demonstrated for the novel DMBT tandem applicator. While

  6. SU-G-201-11: Exploring the Upper Limits of Dose Sculpting Capacity of the Novel Direction Modulated Brachytherapy (DMBT) Tandem Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [University of California San Francisco, San Francisco, CA (United States); Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Safigholi, H; Soliman, A [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Song, W [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: To explore and quantify the upper limits in dose sculpting capacity of the novel direction modulated brachytherapy (DMBT) tandem applicator compared with conventional tandem design for {sup 192}Ir-based HDR planning. Methods: The proposed DMBT tandem applicator is designed for image-guided adaptive brachytherapy (IGABT), especially MRI, of cervical cancer. It has 6 peripheral holes of 1.3-mm width, grooved along a 5.4-mm diameter nonmagnetic tungsten alloy rod of density 18.0 g/cc, capable of generating directional dose profiles – leading to enhanced dose sculpting capacity through inverse planning. The external dimensions are identical to that of conventional tandem design to ensure clinical compatibility. To explore the expansive dose sculpting capacity, we constructed a hypothetical circular target with 20-mm radius and positioned the DMBT and conventional tandems at the center. We then incrementally shifted the positions laterally away from the center of up to 15 mm, at 1-mm steps. The in-house coded gradient projection-based inverse planning system was then used to generate inverse optimized plans ensuring identical V100=100% coverage. Conformity index (CI) was calculated for all plans. Results: Overall, the DMBT tandem generates more conformal dose distributions than conventional tandem for all lateral positional shifts of 0-15 mm (CI=0.91–0.52 and 0.99–0.34, respectively), with an exception at the central position due to the ideal circular dose distribution, generated by the {sup 192}Ir, fitting tightly around the circular target (CI = 0.91 and 0.99, respectively). The DMBT tandem is able to generate dose conformity of CI>0.8 at up to 6-mm positional shift while the conventional tandem violates this past 2-mm shift. Also, the CI ratio (=DMBT/conv.) increases rapidly until about 8 mm and then stabilizes beyond. Conclusion: A substantial enhancement in the dose sculpting capacity has been demonstrated for the novel DMBT tandem applicator. While

  7. Influence of patient positioning on heart and coronary doses in the context of radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Stoltenberg, Solveigh Liza

    2013-01-01

    In this thesis the doses of heart and coronaries as well as the lung dose have been evaluated in the context of patient positioning (prone (pp) and supine position (sp)) in 3D-conformal radiotherapy for breast cancer within 46 patients (33 left-sided, 13 right-sided cancers). The protection of lung tissue reported in various publications has been confirmed. On the other hand, there was no increase of heart dose to be seen in pp. Despite the lack of increase of heart dose in pp, an increase of LAD (left anterior descending)-dose has been detected.

  8. Dose limit for emergency workers. Application of Fukushima-Daiichi NPP accident and problems for the future

    International Nuclear Information System (INIS)

    Sugai, Kenji

    2012-01-01

    Described are details of management for workers' personal exposure dose, of problems raised and of their solutions taken under various complicated conditions of Fukushima Daiichi Nuclear Power Plant (NPP) Accident (Mar. 2011). As the entrance/exit (en/ex) for the NPP site with regular control were impossible due to the hydrogen explosion which expanded the control area to 20 km distance from the site, Japan Football Village (J-Village) localizing at the border and Important Anti-seismic Building in the site were defined to be the bases of en/ex and of their control, respectively. Flooded 5,000 alarm pocket dosimeters (APD) by tsunami were not usable and only 320 APD remained available. At the quite early stage of working at the site, one representative worker in a group had only one APD. Management of internal exposure was also difficult essentially because the power source of the whole body counter was unavailable. At an early emergent stage alone, workers with higher dose than the limit (100 mSv for emergency) were observed, but >90% of workers were exposed to <50 mSv (the limit for the radiation worker). Six male Tokyo Electric Power Company (TEPCO) personnel were exposed to 250 mSv (specially defined dose limit) or more with the maximum 678.80 mSv, in whom the internal exposure due to radioiodine largely attributed. They were examined for their health by the expert doctors in National Institute of Radiological Sciences, were found free of abnormality and were to be followed up thereafter. Out of 19 female TEPCO personnel, two had exceeded the dose limit 5 mSv/3 mo and other 2, the annual limit 1 mSv. They received the examination by the industrial doctor, were found free of abnormality, but were decided not to work at the site. Recently, about 5,000 APD have been purchased for personal usage and dose management is conducted by bar-coding of individual workers, and internal exposure is managed with 11 whole body counters by once a month measurement in J

  9. Using the 60Co source to assess the dose received by risky organs during a cancer brain treatment

    International Nuclear Information System (INIS)

    Faik Ouahab, Z.; Jehouani, A.; Ghassoun, J.; Senhou, N.; Mouhssine, D.; Groetz, J.E.

    2010-01-01

    Summary of an investigation of exposures associated with brain cancer treatment for a child in order to determine the level of doses received by the different organs at risk during the treatment. Measurements have been performed at the vicinity of a cobalto therapy apparatus. Then, cumulative doses in each organ have been compared to admitted doses with respect to the organ

  10. DOSE-ESCALATED EXTERNAL BEAM RADIOTHERAPY DURING HORMONO-RADIOTHERAPY FOR PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2016-01-01

    Full Text Available Introduction. The introduction of modern technologies of conformal external beam radiotherapy (EBRT into clinical practice for the treatment of prostate cancer requires proper quality assurance measures as well as a careful analysis of both the efficacy and toxicity data of treatments. The purpose of this study was to inves- tigate tolerance and the immediate efficacy of conformal dose-escalated EBRT during hormono-radiotherapy for prostate cancer. material and methods. The study involved 156 prostate cancer patients treated with EBRT. Among them, 30 patients received a total dose of 70 Gy, and in 126 patients the total dose was esca- lated to 72-76 Gy (median total dose - 74.0 Gy. Fifty-nine patients received intensity modulated radiation therapy. Results. The prescribed course of treatment was completed in all the patients with prostate cancer. Acute radiation-induced bladder reactions (RTOG were observed in 50 (32.1 % patients, of whom 48 (30.8 % experienced grade I reactions, and 2 (1.3 % experienced grade II reactions. Eighteen (11.5 % patients had radiation-induced rectum reactions, not above grade I. The development of grade II dysuric phenomena necessitated treatment interruption only in two patients. Of 9 (5.8 % patients who had late bladder complica- tions (RTOG/EORTC, 8 (5.1 % patients developed grade I complications, and one (0.6 % patient developed grade II complications. Of 11 (7.1 % patients who had rectum complications, 8 (5.1 % patients developed grade I complications, and 3 (1.9 % patients developed grade II complications. No patients experienced the increase in toxicity of treatment during dose escalation up to a total dose exceeding 70 Gy. During the follow-up period, only one patient developed recurrent disease. Conclusion. The results of our study suggest acceptable levels of toxicity following a continuous course of dose-escalated EBRT given in conjunction with hormono-radiotherapy to prostate cancer patients. Further

  11. Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT

    International Nuclear Information System (INIS)

    Lohr, F.; Dobler, B.; Mai, S.; Hermann, B.; Tiefenbacher, U.; Wieland, P.; Steil, V.; Wenz, F.

    2003-01-01

    Background and Purpose: Locoregional relapse is a problem frequently encountered with advanced gastric cancer. Data from the randomized Intergroup trial 116 suggest effectiveness of adjuvant radiochemotherapy, albeit with significant toxicity. The potential of intensity-modulated radiotherapy (IMRT) to reduce toxicity by significantly reducing maximum and median doses to organs at risk while still applying sufficient dose to the target volume in the upper abdomen was studied. Patient and Methods: For a typical configuration of target volumes and organs, a step-and-shoot IMRT plan (eight beam orientations), developed as a class solution for treatment of tumors in the upper abdomen (Figures 1 to 3), a conventional plan, a combination of the conventional plan with a kidney-sparing boost plan, and a conventional plan with noncoplanar ap and pa fields for improved kidney sparing were compared with respect to coverage of target volume and dose to organs at risk with a dose of 45 Gy delivered as the median dose to the target volume. Results: When using the conventional three-dimensionally planned box techniques, the right kidney could be kept below tolerance, but median dose to the left kidney amounted to between 14.8 and 26.9 Gy, depending on the plan. IMRT reduced the median dose to the left kidney to 10.5 Gy, while still keeping the dose to the right kidney 90% of prescription dose were delivered to > 90% of target volume with IMRT (Table 1). Conclusion: IMRT has the potential to deliver efficient doses to target volumes in the upper abdomen, while delivering dose to organs at risk in a more advantageous fashion than a conventional technique. For clinical implementation, the possibility of extensive organ motion in the upper abdomen has to be taken into account for treatment planning and patient positioning. The multitude of potential risks related to its application has to be the subject of thorough follow-up and further studies. (orig.)

  12. Chest radiotherapy in limited-stage small cell lung cancer: facts, questions, prospects

    International Nuclear Information System (INIS)

    De Ruysscher, D.; Vansteenkiste, J.

    2000-01-01

    Limited-disease small cell lung cancer (LD-SCLC) is initially very sensitive to both radiotherapy and chemotherapy. However, the 5-year survival is generally only 10-15%, with most patients failing with therapy refractory relapses, both locally and in distant sites. The addition of chest irradiation to chemotherapy increases the absolute survival by approximately 5%. We reviewed the many controversies regarding optimal timing and irradiation technique. No strong data support total radiation doses over 50 Gy. According to one phase III trial and several retrospective studies, increasing the volume of the radiation fields to the pre-chemotherapy turnout volume instead of the post-chemotherapy volume does not improve local control. The total time in which the entire combined-modality treatment is delivered may be important. From seven randomized trials, it can be concluded that the timing of the radiotherapy as such is not very important. Some phase III trials support the use of accelerated chest radiation together with cisplatin-etoposide chemotherapy, delivered from the first day of treatment, although no firm conclusions can be drawn from the available data. The best results are reported in studies in which the time from the start of treatment to the end of the radiotherapy was less than 30 days. This has to be taken into consideration when treatment modalities incorporating new chemotherapeutic agents and radiotherapy are considered. (author)

  13. Radiation dose and long term risk of cardiac pathology following radiotherapy and anthracyclin for a childhood cancer

    International Nuclear Information System (INIS)

    Guldner, Laurence; Haddy, Nadia; Pein, Francois; Diallo, Ibrahima; Shamsaldin, Akthar; Dahan, Michel; Lebidois, Jerome; Merlet, Pascal; Villain, Elisabeth; Sidi, Daniel; Sakiroglu, Olivia; Hartmann, Olivier; Leftakopoulos, Dimitri; Vathaire, Florent de

    2006-01-01

    Purpose: To determine the cardiac status in children 15 years (yrs) or more after a solid tumour treatment. Patients and Methods: Of the 447 patients, 229 were fully studied and 218 were not. The following cardiac evaluation was proposed to all the 447 consecutive patients: (1) cardiac Doppler US by one of two expert cardiologists; (2) cardiac rhythm and conduction abnormalities including 24-h holter ECG; (3) 131 I-mIBG myocardial scintigraphy; (4) serum brain natriuretic peptide levels at rest; (5) an exercise test with VO 2 max measurement. The radiation dose delivered to 7 points in the heart was estimated for all patients who had received radiotherapy. Results: Cardiac disorder was diagnosed in 89 evaluated patients (39%) including 24 heart failures and 65 other asymptomatic cardiac diseases. When adjusting on potential confounders, cardiac disorder and cardiac failure risks were respectively linear (ERR at 1 Gy: 26%) and linear-quadratic (ERR at 1 Gy: 19%) functions of the average radiation dose received to the heart. No interaction between cumulative dose of adriamycin and average radiation dose was evidenced for cardiac disorders, but the ERR/Gy of cardiac failure was higher for patients receiving less than 350 mg/m 2 of Adriamycin. Conclusion: Long term heart pathologies are probably one of the major iatrogenic risks encored by patients who survived a childhood cancer. This study strongly emphasizes the need to limit the heart irradiation during radiotherapy, particularly, for patients who also received or were susceptible to later received adriamycin

  14. Average annual doses, lifetime doses and associated risk of cancer death for radiation workers in various fuel fabrication facilities in India

    International Nuclear Information System (INIS)

    Iyer, P.S.; Dhond, R.V.

    1980-01-01

    Lifetime doses based on average annual doses are estimated for radiation workers in various fuel fabrication facilities in India. For such cumulative doses, the risk of radiation-induced cancer death is computed. The methodology for arriving at these estimates and the assumptions made are discussed. Based on personnel monitoring records from 1966 to 1978, the average annual dose equivalent for radiation workers is estimated as 0.9 mSv (90 mrem), and the maximum risk of cancer death associated with this occupational dose as 1.35x10 -5 a -1 , as compared with the risk of death due to natural causes of 7x10 -4 a -1 and the risk of death due to background radiation alone of 1.5x10 -5 a -1 . (author)

  15. Unmet information needs and limited health literacy in newly diagnosed breast cancer patients over the course of cancer treatment.

    Science.gov (United States)

    Halbach, Sarah Maria; Ernstmann, Nicole; Kowalski, Christoph; Pfaff, Holger; Pförtner, Timo-Kolja; Wesselmann, Simone; Enders, Anna

    2016-09-01

    To investigate unmet information needs in newly diagnosed breast cancer patients over the course of cancer treatment and its association with health literacy. We present results from a prospective, multicenter cohort study (PIAT). Newly diagnosed breast cancer patients (N=1060) were surveyed directly after breast cancer surgery, 10 and 40 weeks later. Pooled linear regression modeling was employed analyzing changes in unmet information needs over time and its association with health literacy. Unmet information needs on side effects and medication and medical examination results and treatment options were high and increased during the first 10 weeks after breast cancer surgery. Considering health promotion and social issues, unmet information needs started high and decreased during post-treatment. Patients with limited health literacy had higher unmet information needs. Our results indicate a mismatch in information provision and breast cancer patients' information needs. Patients with limited health literacy may be at a distinct disadvantage in having their information needs met over the course of breast cancer treatment. Strategies are needed to reduce unmet information needs in breast cancer patients considering treatment-phase and health literacy and thereby enable them to better cope with their diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Inverse Planned High-Dose-Rate Brachytherapy for Locoregionally Advanced Cervical Cancer: 4-Year Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Tinkle, Christopher L.; Weinberg, Vivian [Department of Radiation Oncology, University of California, San Francisco, California (United States); Chen, Lee-May [Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California (United States); Littell, Ramey [Gynecologic Oncology, The Permanente Medical Group, San Francisco, California (United States); Cunha, J. Adam M.; Sethi, Rajni A. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Chan, John K. [Gynecologic Oncology, California Pacific Medical Center, San Francisco, California (United States); Hsu, I-Chow, E-mail: ichow.hsu@ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, California (United States)

    2015-08-01

    Purpose: Evaluate the efficacy and toxicity of image guided brachytherapy using inverse planning simulated annealing (IPSA) high-dose-rate brachytherapy (HDRB) boost for locoregionally advanced cervical cancer. Methods and Materials: From December 2003 through September 2009, 111 patients with primary cervical cancer were treated definitively with IPSA-planned HDRB boost (28 Gy in 4 fractions) after external radiation at our institution. We performed a retrospective review of our experience using image guided brachytherapy. Of the patients, 70% had a tumor size >4 cm, 38% had regional nodal disease, and 15% had clinically evident distant metastasis, including nonregional nodal disease, at the time of diagnosis. Surgical staging involving pelvic lymph node dissection was performed in 15% of patients, and 93% received concurrent cisplatin-based chemotherapy. Toxicities are reported according to the Common Terminology Criteria for Adverse Events version 4.0 guidelines. Results: With a median follow-up time of 42 months (range, 3-84 months), no acute or late toxicities of grade 4 or higher were observed, and grade 3 toxicities (both acute and late) developed in 8 patients (1 constitutional, 1 hematologic, 2 genitourinary, 4 gastrointestinal). The 4-year Kaplan-Meier estimate of late grade 3 toxicity was 8%. Local recurrence developed in 5 patients (4 to 9 months after HDRB), regional recurrence in 3 (6, 16, and 72 months after HDRB), and locoregional recurrence in 1 (4 months after HDR boost). The 4-year estimates of local, locoregional, and distant control of disease were 94.0%, 91.9%, and 69.1%, respectively. The overall and disease-free survival rates at 4 years were 64.3% (95% confidence interval [CI] of 54%-73%) and 61.0% (95% CI, 51%-70%), respectively. Conclusions: Definitive radiation by use of inverse planned HDRB boost for locoregionally advanced cervical cancer is well tolerated and achieves excellent local control of disease. However, overall

  17. Dose comparison using deformed image registration method on breast cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of); Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2017-03-15

    The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.

  18. Improvement of Dose Homogeneity in a 3-Dimensional Conformal Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Lee, Chang Geol; Chung, Kyeong Keun; Kim, Joo Young; Seong, Jin Sil

    2007-01-01

    When an electron field is abutted at the surface with a photon field for head-and-neck cancer (HNC) treatment, the traditional method using bilateral field gives rise to an extreme inhomogeneity of dose distribution with both very hot and very cold regions. When we consider clinically only tumor doses of primary concern regardless of dose to normal tissues, the hot spots can be accepted, depending on their magnitude, extent, and location. However, an extreme inhomogeneity inside the radiation field is generally undesirable. An overdose to normal tissues around a target region or an underdosage in the tumor may be problematic. This study intends to develop a novel approach to improve the dose distribution inside the photon-electron abutting fields for HNC treatment

  19. Evaluation of ovary dose for woman of childbearing age woman with breast cancer in tomotherapy

    International Nuclear Information System (INIS)

    Lee, Soo Hyeong; Park, Soo Yeon; Choi, Ji Min; Park, Ju Young; Kim, Jong Suk

    2014-01-01

    The aim of this study is to evaluate unwanted scattered dose to ovary by scattering and leakage generated from treatment fields of Tomotherapy for childbearing woman with breast cancer. The radiation treatments plans for left breast cancer were established using Tomotherapy planning system (Tomotherapy, Inc, USA). They were generated by using helical and direct Tomotherapy methods for comparison. The CT images for the planning were scanned with 2.5 mm slice thickness using anthropomorphic phantom (Alderson-Rando phantom, The Phantom Laboratory, USA). The measurement points for the ovary dose were determined at the points laterally 30 cm apart from mid-point of treatment field of the pelvis. The measurements were repeated five times and averaged using glass dosimeters (1.5 mm diameter and 12 mm of length) equipped with low-energy correction filter. The measures dose values were also converted to Organ Equivalent Dose (OED) by the linear exponential dose-response model. Scattered doses of ovary which were measured based on two methods of Tomo helical and Tomo direct showed average of 64.94±0.84 mGy and 37.64±1.20 mGy in left ovary part and average of 64.38±1.85 mGy and 32.96±1.11 mGy in right ovary part. This showed when executing Tomotherapy, measured scattered dose of Tomo Helical method which has relatively greater monitor units (MUs) and longer irradiation time are approximately 1.8 times higher than Tomo direct method. Scattered dose of left and right ovary of childbearing women is lower than ICRP recommended does which is not seriously worried level against the infertility and secondary cancer occurrence. However, as breast cancer occurrence ages become younger in the future and radiation therapy using high-precision image guidance equipment like Tomotherapy is developed, clinical follow-up studies about the ovary dose of childbearing women patients would be more required

  20. Evaluation of ovary dose for woman of childbearing age woman with breast cancer in tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hyeong; Park, Soo Yeon; Choi, Ji Min; Park, Ju Young; Kim, Jong Suk [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    The aim of this study is to evaluate unwanted scattered dose to ovary by scattering and leakage generated from treatment fields of Tomotherapy for childbearing woman with breast cancer. The radiation treatments plans for left breast cancer were established using Tomotherapy planning system (Tomotherapy, Inc, USA). They were generated by using helical and direct Tomotherapy methods for comparison. The CT images for the planning were scanned with 2.5 mm slice thickness using anthropomorphic phantom (Alderson-Rando phantom, The Phantom Laboratory, USA). The measurement points for the ovary dose were determined at the points laterally 30 cm apart from mid-point of treatment field of the pelvis. The measurements were repeated five times and averaged using glass dosimeters (1.5 mm diameter and 12 mm of length) equipped with low-energy correction filter. The measures dose values were also converted to Organ Equivalent Dose (OED) by the linear exponential dose-response model. Scattered doses of ovary which were measured based on two methods of Tomo helical and Tomo direct showed average of 64.94±0.84 mGy and 37.64±1.20 mGy in left ovary part and average of 64.38±1.85 mGy and 32.96±1.11 mGy in right ovary part. This showed when executing Tomotherapy, measured scattered dose of Tomo Helical method which has relatively greater monitor units (MUs) and longer irradiation time are approximately 1.8 times higher than Tomo direct method. Scattered dose of left and right ovary of childbearing women is lower than ICRP recommended does which is not seriously worried level against the infertility and secondary cancer occurrence. However, as breast cancer occurrence ages become younger in the future and radiation therapy using high-precision image guidance equipment like Tomotherapy is developed, clinical follow-up studies about the ovary dose of childbearing women patients would be more required.

  1. Use of radiobiological indices to guide dose escalation of the prostate cancer patients

    International Nuclear Information System (INIS)

    Burman, Chandra; Happersett, Laura; Kutcher, Gerald; Leibel, Steven; Zelefsky, Michael; Fuks, Zvi; Ling, C. Clifton

    1997-01-01

    Purpose: In the radiation treatment of localized prostate carcinoma, a portion of the anterior rectal wall is included in the planning target volume (PTV). Thus, in dose escalation studies, radiation induced rectal complication may limit the dose that can be delivered safely. In this study we investigate the potential of increasing tumor control without increasing rectal complication by limiting the rectal volume receiving the high prescription dose. The evaluation is with the aid of radiobiological indices. Methods and Materials: Two types of 3D conformal treatment plans were performed for a group of ten patients, for prescription doses of 75.6 to 95.0 Gy. Type I plan involved 6 fields (2 lateral, 2 anterior oblique and 2 posterior oblique), with the dose prescribed to the maximum isodose line encompassing the PTV. Type II plan comprised a primary treatment (using the 6 fields of the first plan) of 72 Gy to the PTV, and a boost with 6 posterior obliques to deliver the additional dose, except to the portion of the rectal wall included by the PTV. Based on the composite 3D dose distribution, TCP and rectal NTCP were calculated with the Goitein and Lyman models, respectively, using parameters derived from our clinical experience and from the 1991 NCI Collaborating Work Group publication. Results: In the figure, the calculated values of TCP, NTCP and TCP * [1-NTCP] (or uncomplicated control), averaged over the 10 patients, are plotted against the prescription dose. The dotted and solid lines are for type I (with uniform PTV dose) and type II (with reduction in rectal dose for the boost) plans, respectively, and the error bars represent the range of computed values for the 10 patients. For type I plans, the increase in TCP, from 75% at 75.6 Gy to 98% at 95 Gy, must be balanced against the rise in rectal NTCP to >20%. The TCP for type II plan is slightly less, but with little increase in NTCP with prescription dose. Thus, the uncomplicated control continues to increase

  2. Association of rectal toxicity with thermal dose parameters in treatment of locally advanced prostate cancer with radiation and hyperthermia

    International Nuclear Information System (INIS)

    Hurwitz, Mark D.; Kaplan, Irving D.; Hansen, Jorgen L.; Prokopios-Davos, Savina; Topulos, George P.; Wishnow, Kenneth; Manola, Judith; Bornstein, Bruce A.; Hynynen, Kullervo

    2002-01-01

    Purpose: Although hyperthermia has been used for more than two decades in the treatment of pelvic tumors, little is known about the potential impact of heat on rectal toxicity when combined with other treatment modalities. Because rectal toxicity is a concern with radiation and may be exacerbated by hyperthermia, definition of the association of thermal dose parameters with rectal toxicity is important. In this report, we correlate rectal toxicity with thermal dose parameters for patients treated with hyperthermia and radiation for prostate cancer. Methods and Materials: Thirty patients with T2b-T3b disease (1992 American Joint Committee On Cancer criteria) enrolled in a Phase II study of external beam radiation ± androgen-suppressive therapy with two transrectal ultrasound hyperthermia treatments were assessed for rectal toxicity. Prostatic and anterior rectal wall temperatures were monitored for all treatments. Rectal wall temperatures were limited to 40 deg. C in 19 patients, 41 deg. C in 3 patients, and 42 deg. C in 8 patients. Logistic regression was used to estimate the log hazard of developing National Cancer Institute Common Toxicity Criteria Grade 2 toxicity based on temperature parameters. The following were calculated: hazard ratios, 95% confidence intervals, p values for statistical significance of each parameter, and proportion of variability explained for each parameter. Results: Gastrointestinal toxicity was limited to Grade 2. The rate of acute Grade 2 proctitis was greater for patients with an allowable rectal wall temperature of >40 deg. C. In this group, 7 of 11 patients experienced acute Grade 2 proctitis, as opposed to 3 of 19 patients in the group with rectal wall temperatures limited to 40 deg. C (p=0.004). Preliminary assessment of long-term toxicity revealed no differences in toxicity. Hazard ratios for acute Grade 2 proctitis for allowable rectal wall temperature, average rectal wall Tmax, and average prostate Tmax were 9.33 (p=0.01), 3

  3. Radical radiotherapy for invasive bladder cancer: What dose and fractionation schedule to choose?

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hart, Guus; Schneider, Christoph; Sminia, Peter

    2006-01-01

    Purpose: To establish the α/β ratio of bladder cancer from different radiotherapy schedules reported in the literature and provide guidelines for the design of new treatment schemes. Methods and Materials: Ten external beam radiotherapy (EBRT) and five brachytherapy schedules were selected. The biologically effective dose (BED) of each schedule was calculated. Logistic modeling was used to describe the relationship between 3-year local control (LC3y) and BED. Results: The estimated α/β ratio was 13 Gy (95% confidence interval [CI], 2.5-69 Gy) for EBRT and 24 Gy (95% CI, 1.3-460 Gy) for EBRT and brachytherapy combined. There is evidence for an overall dose-response relationship. After an increase in total dose of 10 Gy, the odds of LC3y increase by a factor of 1.44 (95% CI, 1.23-1.70) for EBRT and 1.47 (95% CI, 1.25-1.72) for the data sets of EBRT and brachytherapy combined. Conclusion: With the clinical data currently available, a reliable estimation of the α/β ratio for bladder cancer is not feasible. It seems reasonable to use a conventional α/β ratio of 10-15 Gy. Dose escalation could significantly increase local control. There is no evidence to support short overall treatment times or large fraction sizes in radiotherapy for bladder cancer

  4. Effects of low dose irradiation on NK activity of normal individuals and patients with cancer

    International Nuclear Information System (INIS)

    Tian Hailin; Su Liaoyuan

    1994-10-01

    Effects of low dose irradiation on NK activity of lymphocytes and on K 562 cells were studied. The NK activity was determined by means of 3 H-TdR release assay. While 3 H-TdR incorporation was used to reflect functional changes of K 562 cells after low dose irradiation. 21 patients with cancer and 10 normal individuals were detected. The results indicated that the NK activity of lymphocytes in normal individuals increased significantly after 10 and 50 cGy γ-ray irradiation, while in patients with cancer the NK activity of lymphocytes increased only at the dose of 50 cGy irradiation. The increase of NK activity in normal individuals was higher than that in patients with cancer after same doses of irradiation. When K 562 cells were irradiated by 10 cGy γ-rays, the 3 H-TdR incorporation value increased. After exposed to over 50 cGy the stimulating effect disappeared

  5. Internal Mammary Lymph Node Irradiation Contributes to Heart Dose in Breast Cancer

    International Nuclear Information System (INIS)

    Chargari, Cyrus; Castadot, Pierre; MacDermed, Dhara; Vandekerkhove, Christophe; Bourgois, Nicolas; Van Houtte, Paul; Magne, Nicolas

    2010-01-01

    We assessed the impact of internal mammary chain radiotherapy (IMC RT) to the radiation dose received by the heart in terms of heart dose-volume histogram (DVH). Thirty-six consecutive breast cancer patients presenting with indications for IMC RT were enrolled in a prospective study. The IMC was treated by a standard conformal RT technique (50 Gy). For each patient, a cardiac DVH was generated by taking into account the sole contribution of IMC RT. Cardiac HDV were compared according to breast cancer laterality and the type of previous surgical procedure, simple mastectomy or breast conservative therapy (BCT). The contribution of IMC RT to the heart dose was significantly greater for patients with left-sided versus right-sided tumors (13.8% and 12.8% for left-sided tumors versus 3.9% and 4.2% for right-sided tumors in the BCT group and the mastectomy group, respectively; p < 0.0001). There was no statistically significant difference in IMC contribution depending on the initial surgical procedure. IMC RT contributes to cardiac dose for both left-sided and right-sided breast cancers, although the relative contribution is greater in patients with left-sided tumors.

  6. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity

    International Nuclear Information System (INIS)

    Geeraert, N.; Bosmans, H.; Klausz, R.; Muller, S.; Bloch, I.

    2015-01-01

    The radiation risk in mammography is traditionally evaluated using the average glandular dose. This quantity for the average breast has proven to be useful for population statistics and to compare exposure techniques and systems. However it is not indicating the individual radiation risk based on the individual glandular amount and distribution. Simulations of exposures were performed for six appropriate virtual phantoms with varying glandular amount and distribution. The individualised average glandular dose (iAGD), i.e. the individual glandular absorbed energy divided by the mass of the gland, and the glandular imparted energy (GIE), i.e. the glandular absorbed energy, were computed. Both quantities were evaluated for their capability to take into account the glandular amount and distribution. As expected, the results have demonstrated that iAGD reflects only the distribution, while GIE reflects both the glandular amount and distribution. Therefore GIE is a good candidate for individual radiation risk assessment. (authors)

  7. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer.

    Science.gov (United States)

    Akın, Mustafa; Ergen, Arzu; Unal, Aysegul; Bese, Nuran

    2014-01-01

    Thyroid gland is one of the radiosensitive endocrine organs in the body. It has been shown that direct irradiation of thyroid with total doses of 26 to 30 Gy can lead to functional abnormalities. In this study, irradiation doses on thyroid gland of the patients who received postoperative chest-wall/breast and regional nodal irradiation were assessed. Retrospective analyses of treatment plans from 122 breast cancer patients who were treated with 3D conformal radiotherapy (3D CRT) planning was performed. All patients received irradiation to supraclavicular/level III lymph nodes in addition to chest-wall/breast. A total dose of 46 Gy was delivered in 25 days to supraclavicular/level III lymph node region while a total dose of 50 Gy was delivered to whole breast/chest-wall. Thyroid gland was contoured on 2-5 mm thickness of computed tomography scans. Absolute thyroid volume, mean thyroid doses were calculated. The mean thyroid volume of all patients was 16.7 cc (min: 1.9 cc, max: 41.6 cc). The mean irradiation dose on was 22.5 Gy (0.32 Gy-46.5 Gy). The level of dose was higher than 26 Gy in 44% of the patients. In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  8. Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose

    Science.gov (United States)

    Aboelezz, E.; Hassan, G. M.

    2018-04-01

    The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.

  9. New-doses limits introduction analysis for the design and operation of teletherapy facilities established by IAEA

    International Nuclear Information System (INIS)

    Castaneda M, A.; Jimenez C, I.; Ramirez M, J.C.; Sanchez V, H.F.

    1996-01-01

    A design of a typical teletherapy facility was made considering a Co-60 rotating unit and using critical parameters