WorldWideScience

Sample records for cancer cells subsequent

  1. Columnar cell lesions and subsequent breast cancer risk: a nested case-control study

    OpenAIRE

    Aroner, Sarah A.; Collins, Laura Christine; Schnitt, Stuart Jay; Connolly, James Leo; Colditz, Graham A; Tamimi, Rulla May

    2010-01-01

    Introduction: Histologic and genetic evidence suggests that at least some columnar cell lesions (CCL) of the breast represent precursor lesions in the low-grade breast neoplasia pathway. However, the risk of subsequent breast cancer associated with the presence of CCL in a benign breast biopsy is poorly understood.Methods The authors examined the association between the presence of CCL and subsequent breast cancer risk in a nested case-control study of benign breast disease (BBD) and breast c...

  2. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation.

    Science.gov (United States)

    Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P; Whelan, Rebecca J; Patankar, Manish S

    2016-01-01

    The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors. PMID:27270209

  3. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression

    Science.gov (United States)

    Gou, Wen-feng; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-01-01

    Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways. PMID:25980581

  4. Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer

    DEFF Research Database (Denmark)

    Møller, Pål; Seppälä, Toni; Bernstein, Inge;

    2016-01-01

    OBJECTIVE: Today most patients with Lynch syndrome (LS) survive their first cancer. There is limited information on the incidences and outcome of subsequent cancers. The present study addresses three questions: (i) what is the cumulative incidence of a subsequent cancer; (ii) in which organs do s...

  5. DYZ-2-90, a novel neo-tanshinlactone ring-opened compound, induces ERK-mediated mitotic arrest and subsequent apoptosis by activating JNK in human colorectal cancer cells.

    Science.gov (United States)

    Wang, Li-Ting; Pan, Shiow-Lin; Chen, Tzu-Hsuan; Dong, Yizhou; Lee, Kuo-Hsiung; Teng, Che-Ming

    2012-07-23

    Over the past several decades, there has been a considerable and still growing interest in discovering natural products with anticancer potential from traditional Chinese medicine and increasing their anticancer selectivity by chemical modification. In addition, total synthesis of active compounds from natural products can overcome problems related to poor resource availability. DYZ-2-90 is a novel ring-opened compound modified from neo-tanshinlactone, which is isolated from Chinese medicinal herb tanshen. Both in vitro and in vivo tubulin polymerization assays showed that DYZ-2-90 directly bound to microtubules and rapidly induced tubulin depolymerization, inducing ERK-mediated mitotic arrest and subsequent apoptosis by JNK activation in cancer cells, respectively. These results suggest that the fate of cells that undergo mitotic arrest is dictated by two competing networks activated by DYZ-2-90: the cytoprotective ERK pathway and the stress-related JNK pathway. DYZ-2-90 is therefore a novel microtubule-destabilizing agent and a new drug candidate for cancer therapy. This paper provides a new insight into the model of mitotic cell death, which was proposed in order to elucidate how cancer cells respond to microtubule-interfering agents and prolonged cell cycle delay.

  6. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  7. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    Science.gov (United States)

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  8. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  9. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  10. Metabolic syndrome and risk of subsequent colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Raluca Pais; Horatiu Silaghi; Alina Cristina Silaghi; Mihai Lucian Rusu; Dan Lucian Dumitrascu

    2009-01-01

    The metabolic syndrome and visceral obesity have an increasing prevalence and incidence in the general population. The actual prevalence of the metabolic syndrome is 24% in US population and between 24.6% and 30.9% in Europe. As demonstrated by many clinical trials (NAHANES Ⅲ, INTERHART) the metabolic syndrome is associated with an increased risk of both diabetes and cardiovascular disease. In addition to cardiovascular disease, individual components of the metabolic syndrome have been linked to the development of cancer, particularly to colorectal cancer.Colorectal cancer is an important public health problem; in the year 2000 there was an estimated total of 944 717 incident cases of colorectal cancer diagnosed world-wide. This association is sustained by many epidemiological studies. Recent reports suggest that individuals with metabolic syndrome have a higher risk of colon or rectal cancer. Moreover, the clusters of metabolic syndrome components increase the risk of associated cancer. The physiopathological mechanism that links metabolic syndrome and colorectal cancer is mostly related to abdominal obesity and insulin resistance. Population and experimental studies demonstrated that hyperinsulinemia, elevated C-peptide, elevated body mass index, high levels of insulin growth factor-1, low levels of insulin growth factor binding protein-3, high leptin levels and low adiponectin levels are all involved in carcinogenesis. Understanding the pathological mechanism that links metabolic syndrome and its components to carcinogenesis has a major clinical significance and may have profound health benefits on a number of diseases including cancer, which represents a major cause of mortality and morbidity in our societies.

  11. Childhood indicators of susceptibility to subsequent cervical cancer

    OpenAIRE

    Montgomery, S M; Ehlin, A G C; Sparén, P.; Björkstén, B; Ekbom, A.

    2002-01-01

    Common warts could indicate cervical cancer susceptibility, as both are caused by human papillomavirus (HPV). Eczema was also investigated, as atopic eczema has been negatively associated with warts, but non-atopic eczema may be associated with compromised host defences, as observed in patients with HIV, suggesting increased susceptibility to HPV infection and cervical cancer. ‘Cervical cancer’ was self-reported during an interview by 87 of 7594 women members of two longitudinal British birth...

  12. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  13. Radiotherapy and subsequent thyroid cancer in German childhood cancer survivors: a nested case–control study

    International Nuclear Information System (INIS)

    Radiotherapy is associated with a risk of subsequent neoplasms (SN) in childhood cancer survivors. It has been shown that children’s thyroid glands are especially susceptible. The aim is to quantify the risk of a second neck neoplasm after primary cancer radiotherapy with emphasis on thyroid cancer. We performed a nested case–control study: 29 individuals, diagnosed with a solid SN in the neck region, including 17 with thyroid cancer, in 1980–2002 and 57 matched controls with single neoplasms were selected from the database of the German Childhood Cancer Registry. We investigated the risk associated with radiotherapy exposure given per body region, adjusted for chemotherapy. 16/17 (94.1 %) thyroid SN cases, 9/12 (75 %) other neck SN cases and 34/57 (59.6 %) controls received radiotherapy, with median doses of 27.8, 25 and 24 Gy, respectively. Radiotherapy exposure to the neck region increased the risk of the other neck SNs by 4.2 % (OR = 1.042/Gy (95 %-CI 0.980-1.109)) and of thyroid SN by 5.1 % (OR = 1.051/Gy (95 %-CI 0.984-1.123)), and radiotherapy to the neck or spine region increased the thyroid risk by 6.6 % (OR = 1.066/Gy (95 %-CI 1.010-1.125)). Chemotherapy was not a confounder. Exposure to other body regions was not associated with increased risk. Radiotherapy in the neck or spine region increases the risk of thyroid cancer, while neck exposure increases the risk of any other solid SN to a similar extent. Other studies showed a decreasing risk of subsequent thyroid cancer for very high doses; we cannot confirm this

  14. Diet and subsequent survival in women with breast cancer.

    OpenAIRE

    Ingram, D

    1994-01-01

    Our findings from a previous study, that increased consumption of beta-carotene and vitamin C is associated with favourable prognostic indices in patients with breast cancer, have been borne out by our current study of patient survival over a 6-year period. The results of the current study point to beta-carotene consumption as the dietary variable most significantly associated with improved survival. Only one death occurred in the group with the highest consumption of beta-carotene, while the...

  15. Subsequent neoplasms of the CNS among survivors of childhood cancer: a systematic review.

    Science.gov (United States)

    Bowers, Daniel C; Nathan, Paul C; Constine, Louis; Woodman, Catherine; Bhatia, Smita; Keller, Karen; Bashore, Lisa

    2013-07-01

    Childhood cancer survivors are at risk for development of subsequent neoplasms of the CNS. Better understanding of the rates, risk factors, and outcomes of subsequent neoplasms of the CNS among survivors of childhood cancer could lead to more informed screening guidelines. Two investigators independently did a systematic search of Medline and Embase (from January, 1966, through March, 2012) for studies examining subsequent neoplasms of the CNS among survivors of childhood cancer. Articles were selected to answer three questions: what is the risk of CNS tumours after radiation to the cranium for a paediatric cancer, compared with the risk in the general population; what are the outcomes in children with subsequent neoplasms of the CNS who received CNS-directed radiation for a paediatric cancer; and, are outcomes of subsequent neoplasms different from primary neoplasms of the same histology? Our search identified 72 reports, of which 18 were included in this Review. These studies reported that childhood cancer survivors have an 8·1-52·3-times higher incidence of subsequent CNS neoplasms compared with the general population. Nearly all cancer survivors who developed a CNS neoplasm had been exposed to cranial radiation, and some studies showed a correlation between radiation dose and risk of subsequent CNS tumours. 5-year survival ranged from 0-19·5% for subsequent high-grade gliomas and 57·3-100% for meningiomas, which are similar rates to those observed in patients with primary gliomas or meningiomas. The quality of evidence was limited by variation in study design, heterogeneity of details regarding treatment and outcomes, limited follow-up, and small sample sizes. We conclude that survivors of childhood cancer who received cranial radiation therapy have an increased risk for subsequent CNS neoplasms. The current literature is insufficient to comment about the potential harms and benefits of routine screening for subsequent CNS neoplasms.

  16. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil, E-mail: hyunil74@hotmail.com; Lee, Zang Hee, E-mail: zang1959@snu.ac.kr

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  17. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion.

    Science.gov (United States)

    Onyeche, T I; Schläfer, O; Bormann, H; Schröder, C; Sievers, M

    2002-05-01

    The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process

  18. Radiation dose and subsequent risk for stomach cancer in long-term survivors of cervical cancer

    DEFF Research Database (Denmark)

    Kleinerman, Ruth A; Smith, Susan A; Holowaty, Eric;

    2013-01-01

    To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer.......To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer....

  19. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  20. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  1. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  2. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  3. Is a cancer diagnosis associated with subsequent risk of transient global amnesia?

    Directory of Open Access Journals (Sweden)

    Jianwei Zhu

    Full Text Available Psychological stress has been associated with transient global amnesia (TGA. Whether a cancer diagnosis, a severely stressful life event, is associated with subsequent risk of TGA has not been studied.Based on the Swedish Cancer Register and Patient Register, we conducted a prospective cohort study including 5,365,608 Swedes at age 30 and above during 2001-2009 to examine the relative risk of TGA among cancer patients, as compared to cancer-free individuals. Incidence rate ratios (IRRs and their 95% confidence intervals (CIs derived from Poisson regression were used as estimates of the association between cancer diagnosis and the risk of TGA.During the study 322,558 individuals (6.01% received a first diagnosis of cancer. We identified 210 cases of TGA among the cancer patients (incidence rate, 0.22 per 1000 person-years and 4,887 TGA cases among the cancer-free individuals (incidence rate, 0.12 per 1000 person-years. Overall, after adjustment for age, sex, calendar year, socioeconomic status, education and civil status, cancer patients had no increased risk of TGA than the cancer-free individuals (IRR, 0.99; 95% CI, 0.86-1.13. The IRRs did not differ over time since cancer diagnosis or across individual cancer types. The null association was neither modified by sex, calendar period or age.Our study did not provide support for the hypothesis that patients with a new diagnosis of cancer display a higher risk of TGA than cancer-free individuals.

  4. Efficacy of a touchscreen computer based family cancer history questionnaire and subsequent cancer risk assessment

    OpenAIRE

    Westman, J; Hampel, H.; Bradley, T.

    2000-01-01

    OBJECTIVE—A computer based touchscreen family cancer history questionnaire was developed and implemented to facilitate the provision of cancer risk assessments for the ambulatory and outpatient populations of a free standing cancer hospital.
METHODS—A questionnaire consisting of a series of branched point decision making screens was developed which enables the participant to enter demographic data, personal cancer history, and cancer histories for first and second degree relatives. A freestan...

  5. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W.; Naylor, Matthew J.

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  6. Subsequent malignancies in patients treated with 131-iodine for thyroid cancer

    International Nuclear Information System (INIS)

    I-131 was administered to 298 patients with thyroid cancer, and there has been a follow-up of at least two years. Follow-up periods were: 2.5 to 30 years (median 14.5) in living patients, 2.5 to 15 years (median 5.5) in patients dead of tumour ≥ 2 years after first treatment and 2.5 to 23 years (median nine) in patients dead without tumour. Person-years at risk were (total applied activity of I-131): 1119 (3 to 21 GBq), 1477 (22 to 65 GBq), 521 (61 to 170 Gbq). 33 subsequent malignancies in 31 patients were observed, compared to an expected number of 17. The relative risk of subsequent malignancies is therefore 1.94 with a 95% confidence intervall of 1.15 to 3.05. This increase in the incidence of subsequent malignancies after I-131 treatments is largely due to the significantly increased incidence of leukemia and bladder cancer. Estimated radiation doses to the bone marrow in the patients with leukemia were 301 cGy to 792 cGy and the doses to the bladder in patients with bladder cancer were 2250 cGy to 10, 350 cGy. After a total activity of less than 37 GBq I-131, no cases of bladder cancer or leukemia were observed. The observed number of subsequent malignancies are compared with the expected number according to several dose-effect estimations. (orig.)

  7. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  8. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  9. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  10. TRICHOMONOSIS AND SUBSEQUENT RISK OF PROSTATE CANCER IN THE PROSTATE CANCER PREVENTION TRIAL

    OpenAIRE

    Sutcliffe, Siobhan; Alderete, John F.; Till, Cathee; Goodman, Phyllis J.; Hsing, Ann W.; Zenilman, Jonathan M; De Marzo, Angelo M.; Platz, Elizabeth A.

    2009-01-01

    We previously observed a positive association between a history of trichomonosis, a sexually transmitted infection caused by the protozoan, Trichomonas vaginalis, and prostate cancer risk in the Health Professionals Follow-up Study. To determine the reproducibility of this finding, we conducted a second, prospective investigation of trichomonosis and prostate cancer in the Prostate Cancer Prevention Trial. Participants were men ≥55 years of age with no evidence of prostate cancer at enrollmen...

  11. Risk factors for subsequent endocrine-related cancer in childhood cancer survivors.

    Science.gov (United States)

    Wijnen, M; van den Heuvel-Eibrink, M M; Medici, M; Peeters, R P; van der Lely, A J; Neggers, S J C M M

    2016-06-01

    Long-term adverse health conditions, including secondary malignant neoplasms, are common in childhood cancer survivors. Although mortality attributable to secondary malignancies declined over the past decades, the risk for developing a solid secondary malignant neoplasm did not. Endocrine-related malignancies are among the most common secondary malignant neoplasms observed in childhood cancer survivors. In this systematic review, we describe risk factors for secondary malignant neoplasms of the breast and thyroid, since these are the most common secondary endocrine-related malignancies in childhood cancer survivors. Radiotherapy is the most important risk factor for secondary breast and thyroid cancer in childhood cancer survivors. Breast cancer risk is especially increased in survivors of Hodgkin lymphoma who received moderate- to high-dosed mantle field irradiation. Recent studies also demonstrated an increased risk after lower-dose irradiation in other radiation fields for other childhood cancer subtypes. Premature ovarian insufficiency may protect against radiation-induced breast cancer. Although evidence is weak, estrogen-progestin replacement therapy does not seem to be associated with an increased breast cancer risk in premature ovarian-insufficient childhood cancer survivors. Radiotherapy involving the thyroid gland increases the risk for secondary differentiated thyroid carcinoma, as well as benign thyroid nodules. Currently available studies on secondary malignant neoplasms in childhood cancer survivors are limited by short follow-up durations and assessed before treatment regimens. In addition, studies on risk-modifying effects of environmental and lifestyle factors are lacking. Risk-modifying effects of premature ovarian insufficiency and estrogen-progestin replacement therapy on radiation-induced breast cancer require further study. PMID:27229933

  12. Serum beta-carotene and subsequent risk of cancer: results from the BUPA Study.

    OpenAIRE

    Wald, N J; Thompson, S G; Densem, J W; Boreham, J.; Bailey, A

    1988-01-01

    In the BUPA Study, a prospective study of 22,000 men attending a screening centre in London, serum samples were collected and stored. The concentration of beta-carotene was measured in the stored serum samples from 271 men who were subsequently notified as having cancer and from 533 unaffected controls, matched for age, smoking history and duration of storage of the serum samples. The mean beta-carotene level of the cancer subjects was significantly lower than that of their matched controls (...

  13. Clinical Stages in Patients with Primary and Subsequent Cancers Based on the Czech Cancer Registry 1976–2005

    Science.gov (United States)

    Štampach, Radim; Dítě, Petr; Kozel, Jiří; Horváth, Teodor; Kubíček, Petr

    2013-01-01

    Of 1,486,984 new cancers registered in the Czech Cancer Registry in 1976-2005, 290,312 (19.5%) were multiple malignant neoplasms (MMNs), of which there were 65,292 primary and 89,796 subsequent cases in men and 59,970 primary and 75,254 subsequent cases in women. The duplicities were higher in women, and the triplicities and others (3–6 MMNs) were higher in men. The most frequent diagnoses were the primary cancers of skin, gastrointestinal and urinary tract, male genital organs, respiratory tract in men, and cancers of skin, breast, female genital organs, and gastrointestinal tract in women. The analysis of the early and advanced clinical stages shows that the number of subsequent advanced stages increased after primary advanced stages. Their time-age-space distributions visualized maps of MMNs in 14 Czech regions. These results support the improvement of algorithms of dispensary care for the early detection of the subsequent neoplasms. PMID:23936674

  14. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Smith, Susan A. [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Holowaty, Eric [Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario (Canada); Hall, Per [Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm (Sweden); Pukkala, Eero [Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki (Finland); Vaalavirta, Leila [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Stovall, Marilyn; Weathers, Rita [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Gilbert, Ethel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Aleman, Berthe M.P. [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kaijser, Magnus [Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Andersson, Michael [Department of Oncology, Copenhagen University Hospital, Copenhagen (Denmark); Storm, Hans [Cancer Prevention and Documentation, Danish Cancer Society, Copenhagen (Denmark); Joensuu, Heikki [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Lynch, Charles F. [Department of Epidemiology, University of Iowa, Iowa City, Iowa (United States); and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  15. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    International Nuclear Information System (INIS)

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, Ptrend=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (Ptrend=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (Ptrend=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer

  16. The impact of induction chemotherapy on the dosimetric parameters of subsequent radiotherapy: an investigation of 30 consecutive patients with locally-advanced non-small cell lung cancer and modern radiation planning techniques

    International Nuclear Information System (INIS)

    To investigate the influence of induction chemotherapy (ICT) on dosimetric outcomes in patients with inoperable non-small cell lung cancer (NSCLC) treated with definitive chemoradiation (CRT). 30 patients with inoperable stage II-III NSCLC treated with 2–4 cycles of ICT followed by definitive CRT to ≥ 60 Gy were selected. Tumor response to chemotherapy was scored by RECIST criteria. Treatment plans based on tumor extent prior to chemotherapy were generated based on equivalent planning constraints and techniques as the original post-chemotherapy plans. Dosimetric parameters predictive of toxicity for lung, esophagus, heart, and spinal cord were compared amongst the pre- and post-ICT plans. The majority of patients (70%) experienced an overall reduction in GTV size between the pre-ICT imaging and the time of simulation. Comparing pre-and post-ICT diagnostic imaging, 5 patients met the RECIST criteria for response, 23 were classified as stable, and 2 experienced disease progression on diagnostic imaging. Despite a significantly reduced GTV size in the post-ICT group, no systematic improvements in normal tissue doses were seen amongst the entire cohort. This result persisted amongst the subgroup of patients with larger pre-ICT GTV tumor volumes (>100 cc3). Among patients with RECIST-defined response, a significant reduction in lung mean dose (1.9 Gy absolute, median 18.2 Gy to 16.4 Gy, p = 0.04) and V20, the percentage of lung receiving 20 Gy (3.1% absolute, median 29.3% to 26.3%, p = 0.04) was observed. In the non-responding group of patients, an increased esophageal V50 was found post-chemotherapy (median 28.9% vs 30.1%, p = 0.02). For patients classified as having a response by RECIST to ICT, modest improvements in V20 and mean lung dose were found. However, these benefits were not realized for the cohort as a whole or for patients with larger tumors upfront. Given the variability of tumor response to ICT, the a priori impact of induction chemotherapy to reduce

  17. Independent Association of Postdoctoral Training with Subsequent Careers in Cancer Prevention.

    Directory of Open Access Journals (Sweden)

    Jessica M Faupel-Badger

    Full Text Available The purpose of this study was to examine the career paths of alumni from the National Cancer Institute (NCI Cancer Prevention Fellowship Program (CPFP, a structured in-house postdoctoral training program of 3-4 years duration, and specifically what proportion of the alumni were currently performing cancer prevention-related activities. The analyses here included 119 CPFP alumni and 85 unsuccessful CPFP applicants, all of whom completed postdoctoral training between 1987-2011 and are currently employed. Postdoctoral training experiences and current career outcomes data were collected via online surveys. Differences between groups were assessed using chi-square and Fisher's exact test p-values and subsequent regression analyses adjusted for differences between the groups. Compared to 15.3% of unsuccessful CPFP applicants, 52.1% of CPFP alumni (odds ratio [OR] = 4.99, 95% confidence interval [95% CI: 1.91-13.0 were currently spending the majority of their time working in cancer prevention. Among those doing any cancer prevention-focused work, 54.3% of CPFP alumni spent the majority of their time performing cancer prevention research activities when compared to 25.5% of unsuccessful applicants (OR = 4.26, 95% CI: 1.38-13.2. In addition to the independent effect of the NCI CPFP, scientific discipline, and employment sector were also associated with currently working in cancer prevention and involvement in cancer prevention research-related activities. These results from a structured postdoctoral training program are relevant not only to the cancer prevention community but also to those interested in evaluating alignment of postdoctoral training programs with available and desired career paths more broadly.

  18. Independent Association of Postdoctoral Training with Subsequent Careers in Cancer Prevention.

    Science.gov (United States)

    Faupel-Badger, Jessica M; Nelson, David E; Izmirlian, Grant; Ross, Katherine H; Raue, Kimberley; Tsakraklides, Sophia; Miyaoka, Atsushi; Spiegelman, Maura

    2015-01-01

    The purpose of this study was to examine the career paths of alumni from the National Cancer Institute (NCI) Cancer Prevention Fellowship Program (CPFP), a structured in-house postdoctoral training program of 3-4 years duration, and specifically what proportion of the alumni were currently performing cancer prevention-related activities. The analyses here included 119 CPFP alumni and 85 unsuccessful CPFP applicants, all of whom completed postdoctoral training between 1987-2011 and are currently employed. Postdoctoral training experiences and current career outcomes data were collected via online surveys. Differences between groups were assessed using chi-square and Fisher's exact test p-values and subsequent regression analyses adjusted for differences between the groups. Compared to 15.3% of unsuccessful CPFP applicants, 52.1% of CPFP alumni (odds ratio [OR] = 4.99, 95% confidence interval [95% CI): 1.91-13.0) were currently spending the majority of their time working in cancer prevention. Among those doing any cancer prevention-focused work, 54.3% of CPFP alumni spent the majority of their time performing cancer prevention research activities when compared to 25.5% of unsuccessful applicants (OR = 4.26, 95% CI: 1.38-13.2). In addition to the independent effect of the NCI CPFP, scientific discipline, and employment sector were also associated with currently working in cancer prevention and involvement in cancer prevention research-related activities. These results from a structured postdoctoral training program are relevant not only to the cancer prevention community but also to those interested in evaluating alignment of postdoctoral training programs with available and desired career paths more broadly.

  19. Systemic therapy for breast cancer and risk of subsequent contralateral breast cancer in the WECARE Study

    OpenAIRE

    Langballe, Rikke; Mellemkjær, Lene; Malone, Kathleen E.; Lynch, Charles F.; John, Esther M.; Julia A. Knight; Bernstein, Leslie; Brooks, Jennifer; Andersson, Michael; Reiner, Anne S.; Liang, Xiaolin; Woods, Meghan; Concannon, Patrick J.; ,; Bernstein, Jonine L.

    2016-01-01

    Background Treatment with tamoxifen or chemotherapy reduces the risk of contralateral breast cancer (CBC). However, it is uncertain how long the protection lasts and whether the protective effect is modified by patient, tumor, or treatment characteristics. Methods The population-based WECARE Study included 1521 cases with CBC and 2212 age- and year of first diagnosis-matched controls with unilateral breast cancer recruited during two phases in the USA, Canada, and Denmark. Women were diagnose...

  20. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  1. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  2. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  3. First and subsequent asbestos exposures in relation to mesothelioma and lung cancer mortality.

    Science.gov (United States)

    Pira, E; Pelucchi, C; Piolatto, P G; Negri, E; Discalzi, G; La Vecchia, C

    2007-11-01

    We analysed data from a cohort of 1966 subjects (889 men and 1,077 women) employed by an Italian asbestos (mainly textile) company in the period 1946-1984, who were followed-up to 2004. A total of 62,025 person-years of observation were recorded. We computed standardised mortality ratios (SMR) for all causes and selected cancer sites using national death rates for each 5-year calendar period and age group. There were 68 deaths from mesothelioma (25 men and 43 women, 39 pleural and 29 peritoneal) vs 1.6 expected (SMR=4,159), and 109 from lung cancer vs 35.1 expected (SMR=310). The SMRs of pleural/peritoneal cancer were 6661 for subjects exposed only before 30 years of age, 8,019 for those first exposed before 30 and still employed at 30-39 years of age and 5,786 for those first exposed before 30 and still employed at 40 or more years of age. The corresponding SMRs for lung cancer were 227, 446 and 562. The SMR of mesothelioma was strongly related to time since first exposure. The SMR of lung cancer, but not of mesothelioma, appeared to be related to subsequent exposures. PMID:17895892

  4. Risk of pacemaker implantation subsequent to radiotherapy for early-stage breast cancer in Denmark, 1982-2005

    DEFF Research Database (Denmark)

    Rehammar, Jens Christian; Videbaek, L.; Brock Johansen, J.;

    2015-01-01

    . Objectives: The aim of this study was to examine the risk of severe conduction abnormalities evaluated by implantation of a pacemaker, subsequent to breast cancer radiotherapy. Methods: From the database of the Danish Breast Cancer Collaborative Group, we identified women treated with radiotherapy for early......-stage breast cancer in Denmark from 1982 to 2005. By record linkage to the Danish Pacemaker and ICD Registry information was retrieved on pacemaker implants subsequent to radiotherapy. Rate ratios (RR) of pacemaker implantation for left versus right sided breast cancer were calculated. Results: Among 18......,308 women treated with radiotherapy for early-stage breast cancer, 179 women had a pacemaker implanted subsequent to radiotherapy, 90 in 9,315 left sided and 89 in 8,993 right sided breast cancers. The unadjusted RR was 1.02 (0.76-1.36 95% CI, p=0.91) and the RR adjusted for year, age and time since...

  5. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  6. Cancer Stem Cells in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer

  7. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  8. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  9. Cancer Stem Cells in Breast Cancer

    OpenAIRE

    Fumitaka Takeshita; Tomohiro Fujiwara; Takahiro Ochiya; Makiko Ono; Ryou-u Takahashi

    2011-01-01

    The cancer stem cell (CSC) theory is generally acknowledged as an important field of cancer research, not only as an academic matter but also as a crucial aspect of clinical practice. CSCs share a variety of biological properties with normal somatic stem cells in self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cel...

  10. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  11. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  12. Cancer Stem Cells in Pancreatic Cancer

    OpenAIRE

    Karl-Walter Jauch; Hendrik Seeliger; Hanno Niess; Qi Bao; Andrea Renner; Yue Zhao; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC t...

  13. Cancer stem cells in prostate cancer

    OpenAIRE

    Moltzahn, Felix; Thalmann, George N

    2013-01-01

    Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitation...

  14. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    , vinculin and FAK synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Finally, the knowledge of the mechanical properties of invasive and non-invasive cells could provide a source for future drug developments to inhibit formation of metastases. This special section also includes two papers from the group of Martin Herrmann, a research paper and a review paper. The research paper by Janko et al deals with the cooperative binding of Annexin A5 to phosphatidylserines on apoptotic cell membranes [6]. This could not alone serve as an 'eat me' signal for macrophages as healthy cells also express Annexin A5 on their cell surface. The authors suggest that the cooperative binding is altered and subsequently the fluidity of Annexin A5 on the membrane. Together this may serve as a signal for phagocytic cells to eat apoptotic cells and leave healthy ones untouched. The paper by Biermann et al reviews the role of biophysical signals in the clearance of apoptotic cells [7]. In addition to the acto-myosin cytoskeleton, the keratin network seems to play a role in cancer research. The paper from the Beil and the Marti group demonstrates that microrheology is a valuable tool to determine the viscoelastic properties of polymer networks such as the keratin network in cells and an arbitrary in vitro network [8]. They describe how the topology of the keratin network affects the overall mechanical behavior of cells. It seems that the field of physical oncology will continue to grow in the future and more research will address the mechanical properties of cancer cells and whole tissues. Biophysical methods will need to be further improved and adapted to the needs of cancer research. References [1] Coughlin M F and Fredberg J J 2013 Phys. Biol. 10 065001 [2] Krause M, te Riet J and Wolf K 2013 Phys. Biol. 10 065002 [3] Munn L L 2013 Phys. Biol. 10 065003 [4] Bordeleau F, Tang L N and Reinhart-King C A 2013 Phys. Biol. 10 065004 [5

  15. Population Based Screening for Prostate Cancer: prognostic findings of two subsequent screening rounds

    OpenAIRE

    Postma, Renske

    2006-01-01

    textabstractProstate cancer is nowadays the most common non-cutaneous cancer in men in the Western world. Since the introduction of Prostate Specific Antigen (PSA) testing in the last decade, prostate cancer incidence increased dramatically. In addition, the population is aging, and prostate cancer incidence increases with higher age. The dilemma of prostate cancer is that more men die with prostate cancer than from prostate cancer, as reflected by the observation that in 70% of men who are 8...

  16. Bone mineral density and the subsequent risk of cancer in the NHANES I follow-up cohort

    Directory of Open Access Journals (Sweden)

    Kim Jane

    2002-09-01

    Full Text Available Abstract Backgroud Bone mineral density (BMD is a marker of long-term estrogen exposure. BMD measurement has been used in this context to investigate the association of estrogen with breast cancer risk in three cohorts. In order to assess further BMD as a predictor of estrogen related cancer risk, the association of BMD with colorectal and corpus uteri cancer was investigated in the NHANES I Epidemiologic Followup Study (NHEFS cohort along with breast cancer and prostate cancer. Methods Participants were members of the NHEFS cohort who had BMD measurement in 1974–1975. Age, race, and BMI adjusted rate ratios and 95% confidence intervals were calculated for incidence of cancers of the corpus uterus, breast, colorectum, prostate, and of osteoporosis and hip fracture related to baseline BMD. Results Data were available for 6046 individuals. One hundred cases of breast cancer, 94 prostate cancers, 115 colorectal cancers, 29 uterine cancers, 110 cases of hip fracture and 103 cases of osteoporosis were reported between 1974 and 1993. Hip fracture and osteoporosis were both significantly inversely associated with BMD. Uterine cancer was positively associated (p = 0.005, test for linear trend and colorectal cancer negatively associated (p = 0.03 with BMD. No association was found between elevated BMD and incidence of breast cancer (p = 0.74 or prostate cancer (p = 0.37 in the overall cohort, although a weak association was seen between BMD and subsequent breast cancer incidence when BMD was measured in post-menopausal women (p = 0.04. Conclusion The findings related to cancers of the uterus and colorectum as well as the weak association of BMD with breast cancer strengthen the use of BMD as a marker of estrogen exposure and cancer risk.

  17. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  18. Urothelial Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2010-01-01

    Full Text Available There is mounting evidence supporting the idea that tumors, similar to normal adult tissues, arise from a specific stem-like cell population, the cancer stem cells (CSCs, which are considered as the real driving force behind tumor growth, the ability to metastasize, as well as resistance to conventional antitumor therapy. The concept that cancer growth recapitulates normal proliferative and/or regenerative processes, even though in very dysfunctional ways, has tremendous implications for cancer therapy. The rapid development of the CSC field, shoulder to shoulder with powerful genome-wide screening techniques, has provided cause for optimism for the development of more reliable therapies in the future. However, several important issues still lie ahead. Recent identification of a highly tumorigenic stem-like compartment and existence of urothelial differentiation programs in urothelial cell carcinomas (UCCs raised important questions about UCC initiation and development. This review examines the present knowledge on CSCs in UCCs regarding the similarities between CSCs and the adult urothelial stem cells, potential origin of urothelial CSCs, main regulatory pathways, surface markers expression, and the current state of CSC-targeting therapeutic strategies.

  19. Population Based Screening for Prostate Cancer: prognostic findings of two subsequent screening rounds

    NARCIS (Netherlands)

    R. Postma (Renske)

    2006-01-01

    textabstractProstate cancer is nowadays the most common non-cutaneous cancer in men in the Western world. Since the introduction of Prostate Specific Antigen (PSA) testing in the last decade, prostate cancer incidence increased dramatically. In addition, the population is aging, and prostate cancer

  20. Expression changes in the stroma of prostate cancer predict subsequent relapse.

    Directory of Open Access Journals (Sweden)

    Zhenyu Jia

    Full Text Available Biomarkers are needed to address overtreatment that occurs for the majority of prostate cancer patients that would not die of the disease but receive radical treatment. A possible barrier to biomarker discovery may be the polyclonal/multifocal nature of prostate tumors as well as cell-type heterogeneity between patient samples. Tumor-adjacent stroma (tumor microenvironment is less affected by genetic alteration and might therefore yield more consistent biomarkers in response to tumor aggressiveness. To this end we compared Affymetrix gene expression profiles in stroma near tumor and identified a set of 115 probe sets for which the expression levels were significantly correlated with time-to-relapse. We also compared patients that chemically relapsed shortly after prostatectomy (<1 year, and patients that did not relapse in the first four years after prostatectomy. We identified 131 differentially expressed microarray probe sets between these two categories. 19 probe sets (15 genes overlapped between the two gene lists with p<0.0001. We developed a PAM-based classifier by training on samples containing stroma near tumor: 9 rapid relapse patient samples and 9 indolent patient samples. We then tested the classifier on 47 different samples, containing 90% or more stroma. The classifier predicted the risk status of patients with an average accuracy of 87%. This is the first general tumor microenvironment-based prognostic classifier. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for predicting outcomes for patients.

  1. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  2. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    OpenAIRE

    Yi-Min Zhu; Li-Hua Yuan; Ke-Feng Pu; Bing Dong; An-Xin Wang; Li-Sha Chen

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell resea...

  3. Mobilization of regulatory T cells in response to carotid injury does not influence subsequent neointima formation.

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    Full Text Available AIM: T cells have been attributed an important role in modulating repair responses following vascular injury. The aim of this study was to investigate the role of different T cell subsets in this context. METHODS AND RESULTS: A non-obstructive collar was introduced to inflict carotid artery injury in mice and subsequent activation of immune cells in draining lymph nodes and spleen were studied by flow cytometry. Carotid artery injury of wild type mice was associated with mobilization of both Th1 type CD4(+IFNγ(+ and regulatory CD4(+CD25(+FoxP3(+ T cells in draining lymph nodes. Studies using FoxP3-green fluorescent protein (GFP transgenic C57/Bl6 mice demonstrated scattered presence of regulatory T cells in the adventitial tissue of injured arteries as well as a massive emigration of regulatory T cells from the spleen in response to carotid injury. However, deletion of antigen presentation to CD4+ T cells (H2(0 mice, as well as deletion of regulatory T cells (through treatment with blocking anti-CD25 antibodies, did not affect neointima formation. Also deletion of antigen presentation to CD8(+ T cells (Tap1(0 mice was without effect on carotid collar-induced neointima formation. CONCLUSION: The results demonstrate that carotid artery injury is associated with mobilization of regulatory T cells. Depletion of regulatory T cells does not, however, influence the subsequent repair processes leading to the formation of a neointima. The results also demonstrate that lack of CD8(+ T cells does not influence neointima formation in presence of functional CD4(+ T cells and B cells.

  4. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  5. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  6. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  7. Optimization of tumor cell culture conditions in soft agar for subsequent immunohistochemical analysis

    Directory of Open Access Journals (Sweden)

    Khoruzhenko A. I.

    2012-07-01

    Full Text Available Aim. The aim of this work is to optimize conditions of malignant cells cultivation in soft agar for subsequent immunohistochemical analysis of formed three-dimensional colonies. Methods. Cultivation of breast carcinoma cell line MCF-7 in soft agar, immunohistochemical and im- munofluorescence detection of epithelial antigen and mTOR kinase in cultured cells. Results. We describe a methodical approach to the cultivation of cells in soft agar, which allows to carry out morphological, morphometric and immunochemical analysis of the studied cells. Conclusions. The proposed method provides an additional characteriza tion of cells growing in soft agar, which will be useful in basic research and in evaluation of the effectiveness of anticancer drugs.

  8. Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among premenopausal women

    OpenAIRE

    Eliassen, A. Heather; Spiegelman, Donna; Xu, Xia; Keefer, Larry K; Veenstra, Timothy D.; Barbieri, Robert L.; Willett, Walter C; Hankinson, Susan E.; Ziegler, Regina G.

    2011-01-01

    Endogenous estrogens and estrogen metabolism are hypothesized to be associated with premenopausal breast cancer risk but evidence is limited. We examined 15 urinary estrogens/estrogen metabolites (EM) and breast cancer risk among premenopausal women in a case-control study nested within the Nurses’ Health Study II (NHSII). In 1996–1999, urine was collected from 18,521 women during the mid-luteal menstrual phase. Breast cancer cases (N=247) diagnosed between collection and June 2005 were match...

  9. Hypertensive disorders of pregnancy and subsequent risk of solid cancer--A nationwide cohort study.

    Science.gov (United States)

    Behrens, Ida; Basit, Saima; Jensen, Allan; Lykke, Jacob Alexander; Nielsen, Lars Peter; Wohlfahrt, Jan; Kjær, Susanne K; Melbye, Mads; Boyd, Heather Allison

    2016-07-01

    Women with hypertensive disorders of pregnancy (HDP) have higher levels of antiangiogenic growth factors during pregnancy than women with normotensive pregnancies. Since angiogenesis is necessary for solid cancer growth and spread, we hypothesized that women with a history of HDP might have a reduced risk of solid cancers (cancers other than lymphomas, hematologic cancers and nonmelanoma skin cancers) later in life. In a register-based cohort study of 1.08 million women giving birth at least once between 1978 and 2011, we used Cox regression to estimate hazard ratios (HRs) comparing solid cancer rates for women with and without a history of HDP. In this cohort, 68,236 women (6.3%) had ≥1 pregnancy complicated by HDP and 42,236 women (3.9%) developed solid tumors during follow-up. A history of HDP was not associated with a clinically meaningful reduction in the overall rate of solid cancer (HR 0.96, 95% confidence interval 0.92-1.00), regardless of HDP severity or time since HDP, nor was there a general tendency toward reduced solid cancer rates across organ sites. A history of HDP was only significantly associated with decreased rates of breast and lung cancers and with increased rates of endometrial and urinary tract cancers. Overall, our results do not support the hypothesis that women with a history of HDP have a reduced overall risk of solid cancer due to a persistent post-HDP antiangiogenic state or an innate tendency toward antiangiogenesis. Observed associations with specific cancers may instead be due to other pregnancy-related mechanisms or to residual/unmeasured confounding.

  10. Ovarian cancer: emerging concept on cancer stem cells

    OpenAIRE

    Ponnusamy Moorthy P; Batra Surinder K

    2008-01-01

    Abstract Emerging evidence suggests that the capacity of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. In fact, cancer cells, like stem cells, can proliferate indefinitely through a dysregulated cellular self-renewal capacity. Cancer stem cells may originate due to the distribution into self-renewal and differentiation pathways occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells and cancer cell...

  11. Toenail selenium levels and the subsequent risk of prostate cancer: A prospective cohort study

    NARCIS (Netherlands)

    Brandt, P.A. van den; Zeegers, M.P.A.; Bode, P.; Goldbohm, R.A.

    2003-01-01

    Results of a randomized controlled trial have suggested a protective effect of selenium against prostate cancer. Few other prospective studies have been conducted to confirm or refute this. The association between prostate cancer and baseline toenail selenium level was evaluated in the Netherlands C

  12. A nationwide population-based cohort study: will anxiety disorders increase subsequent cancer risk?

    Directory of Open Access Journals (Sweden)

    Ji-An Liang

    Full Text Available BACKGROUND: The aim of this study was to evaluate a possible association between malignancy and anxiety disorders (AD in Taiwan. METHODS: We employed data from the National Health Insurance system of Taiwan. The AD cohort contained 24,066 patients with each patient randomly frequency matched according to age and sex with 4 individuals from the general population without AD. Cox's proportional hazard regression analysis was conducted to estimate the influence of AD on the risk of cancer. RESULTS: Among patients with AD, the overall risk of developing cancer was only 1% higher than among subjects without AD, and the difference was not significant (hazard ratio [HR] = 1.01, 95% confidence interval [95% CI] = 0.95-1.07. With regard to individual types of cancer, the risk of developing prostate cancer among male patients with AD was significantly higher (HR = 1.32, 95% CI = 1.02-1.71. On the other hand, the risk of cervical cancer among female patients with AD was marginally significantly lower than among female subjects without AD (HR = 0.72, 95% CI = 0.51-1.03. LIMITATIONS: One major limitation is the lack of information regarding the life style or behavior of patients in the NHI database, such as smoking and alcohol consumption. CONCLUSIONS: Despite the failure to identify a relationship between AD and the overall risk of cancer, we found that Taiwanese patients with AD had a higher risk of developing prostate cancer and a lower risk of developing cervical cancer.

  13. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  14. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  15. Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage

    DEFF Research Database (Denmark)

    Sørensen, T U; Gram, G J; Nielsen, S D;

    1999-01-01

    culture. RESULTS: The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from....... Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent...

  16. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    Science.gov (United States)

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  17. Small Cell Lung Cancer.

    Science.gov (United States)

    Bernhardt, Erica B; Jalal, Shadia I

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer of neuroendocrine origin, which is strongly associated with cigarette smoking. Patients typically present with a short duration of symptoms and frequently (60-65 %) with metastatic disease. SCLC is a heterogeneous disease including extremely chemosensitive and chemoresistant clones. For this reason, a high percentage of patients respond to first-line chemotherapy but rapidly succumb to the disease. SCLC is generally divided into two stages, limited and extensive. Standard treatment of limited stage disease includes combination chemotherapy with cisplatin and etoposide for four cycles, thoracic radiation initiated early with the first cycle of chemotherapy, and consideration of prophylactic cranial irradiation (PCI) in the subset of patients with good response. Surgery may play a role in TNM stages I and II. In extensive disease, platinum agents and etoposide, used in combination, are again the first-line standard of care in the USA. However, thoracic radiation therapy is used predominately in patients where local control is important and PCI is of uncertain benefit. Despite these treatments, prognosis remains poor and novel therapies are needed to improve survival in this disease. PMID:27535400

  18. Mouse models for cancer stem cell research

    OpenAIRE

    Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.

    2009-01-01

    Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...

  19. Venous thromboembolism and subsequent risk of cancer in patients with liver disease

    DEFF Research Database (Denmark)

    Montomoli, Jonathan; Erichsen, Rune; Søgaard, Kirstine Kobberøe;

    2015-01-01

    OBJECTIVE: Venous thromboembolism (VTE) may be a marker of occult cancer in the general population. While liver disease is known to increase the risk of VTE and cancer, it is unclear whether VTE in patients with liver disease is also a marker of occult cancer. DESIGN: A population-based cohort...... and patients with liver cirrhosis were followed as two separate cohorts from the date of their VTE. MEASURES: For each cohort, we computed the absolute and relative risk (standardised incidence ratio; SIR) of cancer after VTE. RESULTS: During the study period, 1867 patients with non-cirrhotic liver disease...... and 888 with liver cirrhosis were diagnosed with incident VTE. In the first year following VTE, the absolute risk of cancer was 2.7% among patients with non-cirrhotic liver disease and 4.3% among those with liver cirrhosis. The SIR for the first 90 days of follow-up was 9.96 (95% CI 6.85 to 13.99) among...

  20. A Cohort Study of p53 Mutations and Protein Accumulation in Benign Breast Tissue and Subsequent Breast Cancer Risk

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Kabat

    2011-01-01

    Full Text Available Mutations in the p53 tumor suppressor gene and accumulation of its protein in breast tissue are thought to play a role in breast carcinogenesis. However, few studies have prospectively investigated the association of p53 immunopositivity and/or p53 alterations in women with benign breast disease in relation to the subsequent risk of invasive breast cancer. We carried out a case-control study nested within a large cohort of women biopsied for benign breast disease in order to address this question. After exclusions, 491 breast cancer cases and 471 controls were available for analysis. Unconditional logistic regression was used to estimate odds ratios (OR and 95% confidence intervals (95% CI. Neither p53 immunopositivity nor genetic alterations in p53 (either missense mutations or polymorphisms was associated with altered risk of subsequent breast cancer. However, the combination of both p53 immunopositivity and any p53 nucleotide change was associated with an approximate 5-fold nonsignificant increase in risk (adjusted OR 4.79, 95% CI 0.28–82.31 but the confidence intervals were extremely wide. Our findings raise the possibility that the combination of p53 protein accumulation and the presence of genetic alterations may identify a group at increased risk of breast cancer.

  1. Acetaminophen Changes Intestinal Epithelial Cell Membrane Properties, Subsequently Affecting Absorption Processes

    Directory of Open Access Journals (Sweden)

    Christine Schäfer

    2013-08-01

    Full Text Available Background/Aims: Acetaminophen (APAP effects on intestinal barrier properties are less investigated. APAP may lead to a changed bioavailability of a subsequently administered drug or diet in the body. We investigated the influence of APAP on enterocytic cell membrane properties that are able to modify the net intestinal absorption of administered substances across the Caco-2 barrier model. Methods: The effect of APAP on cytotoxicity was measured by LDH assay, TER value and cell capacitance label-free using impedance monitoring, membrane permeability by FITC-dextrans, and efflux transporter MDR1 activity by Rh123. APAP levels were determined by HPLC analysis. Cell membrane topography and microvilli were investigated using SEM and intestinal alkaline phosphatase (Alpi and tight junction protein 1 (TJP1 expression by western blot analysis. Results: APAP changed the apical cell surface, reduced the number of microvilli and protein expression of Alpi as a brush border marker and TJP1, increased the membrane integrity and concurrently decreased cell capacitance over time. In addition, APAP decreased the permeability to small molecules and increased the efflux transporter activity, MDR1. Conclusion: APAP alters the Caco-2 cell membrane properties by different mechanisms and reduces the permeability to administered substances. These findings may help to optimize therapeutic implications.

  2. Head and Neck Cancer Stem Cells

    OpenAIRE

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signalin...

  3. Cell of origin of lung cancer

    OpenAIRE

    Hanna, Jennifer M.; Onaitis, Mark W.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s) of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell o...

  4. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    Science.gov (United States)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  5. The Chances of Subsequent Cancer Detection in Patients with a PSA > 20 ng/ml and an Initial Negative Biopsy

    Directory of Open Access Journals (Sweden)

    Nadeem Shaida

    2009-01-01

    Full Text Available Transrectal ultrasound (TRUS–guided prostate biopsy is known to carry a significant false-negative rate, leading some patients to have multiple biopsies. We investigated cancer detection rates in patients with a PSA >20 ng/ml and a negative initial biopsy. We reviewed our database of 2396 TRUS-guided biopsies done between 1997 and 2002 in order to give a follow-up of at least 6 years. PSA, PSA density (PSAD, PSA velocity (PSAV, prostate volume, and DRE findings were analysed in relation to cancer status. Of the patients, 388 (16% had a PSA >20 ng/ml, including 99 (26% with benign biopsies. Of those, 67 were rebiopsied, including 19 (28% with cancer on the first rebiopsy and four (6% on further biopsies. PSAD, DRE, and volume significantly differed between rebiopsied patients with and without cancer (p 20 ng/ml and have an initial negative biopsy have a high chance of malignancy being detected on a second biopsy. However, if a second biopsy is also negative, then the chances of subsequent biopsies showing signs of cancer are very low if the DRE is normal and particularly if the PSAD is >0.35 ng/ml/cm3.

  6. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  7. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Science.gov (United States)

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  8. The thioredoxin system in breast cancer cell invasion and migration

    OpenAIRE

    Maneet Bhatia; Kelly L. McGrath; Giovanna Di Trapani; Pornpimol Charoentong; Fenil Shah; Mallory M. King; Clarke, Frank M.; Tonissen, Kathryn F

    2016-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient ...

  9. A Population-Based Study of Subsequent Primary Malignancies After Endometrial Cancer: Genetic, Environmental, and Treatment-Related Associations

    International Nuclear Information System (INIS)

    Purpose: To examine the risk of subsequent primary malignancies (SPMs) in women diagnosed with endometrial cancer. Methods and Materials: The National Cancer Institute's Survival, Epidemiology, and End Results database was used to determine the risk of SPM after endometrial cancer in 69,739 women diagnosed between 1973 and 2005. Standardized incidence ratios were calculated (observed/expected [O/E]) for SPM sites. Results: Median follow-up was 11.2 years, representing 757,567 person-years of follow-up. The risk of SPM was significantly increased for small intestine (O/E = 1.48; 99% confidence interval [CI], 1.03-2.05), colon (O/E = 1.16; CI, 1.09-1.24), vagina (O/E = 2.71; CI, 1.86-3.8), and urinary bladder (O/E = 1.41; CI, 1.25-1.59) SPMs and decreased for oral cavity and pharynx (O/E = 0.75; CI, 0.6-0.93), lung and bronchus (O/E = 0.78; CI, 0.72-0.84), and esophagus (O/E = 0.58; CI, 0.37-0.86) SPMs. Patients receiving external-beam radiotherapy for endometrial cancer had an increased risk of colon (p < 0.001), bladder (p < 0.001), vagina (p = 0.04), and soft-tissue (p = 0.014) SPMs. Patients treated with brachytherapy had an increased risk of bladder SPM (p = 0.006). A positive bidirectional association with endometrial cancer was observed for colorectal cancer, with a negative bidirectional association for oropharyngeal and lung cancers. Conclusions: Genetic, environmental, and treatment-related factors influence SPM risk. Genetic factors may contribute to the increased risk of colorectal cancer. Smoking's negative effect on endometrial cancer risk factors might explain the decreased risk of lung and oropharyngeal cancer. Patients treated with radiotherapy likely have a small but significantly increased risk of bladder, vagina, colon, and soft-tissue SPM.

  10. Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among premenopausal women.

    Science.gov (United States)

    Eliassen, A Heather; Spiegelman, Donna; Xu, Xia; Keefer, Larry K; Veenstra, Timothy D; Barbieri, Robert L; Willett, Walter C; Hankinson, Susan E; Ziegler, Regina G

    2012-02-01

    Endogenous estrogens and estrogen metabolism are hypothesized to be associated with premenopausal breast cancer risk but evidence is limited. We examined 15 urinary estrogens/estrogen metabolites and breast cancer risk among premenopausal women in a case-control study nested within the Nurses' Health Study II (NHSII). From 1996 to 1999, urine was collected from 18,521 women during the mid-luteal menstrual phase. Breast cancer cases (N = 247) diagnosed between collection and June 2005 were matched to two controls each (N = 485). Urinary estrogen metabolites were measured by liquid chromatography-tandem mass spectrometry and adjusted for creatinine level. Relative risks (RR) and 95% confidence intervals (CI) were estimated by multivariate conditional logistic regression. Higher urinary estrone and estradiol levels were strongly significantly associated with lower risk (top vs. bottom quartile RR: estrone = 0.52; 95% CI, 0.30-0.88; estradiol = 0.51; 95% CI, 0.30-0.86). Generally inverse, although nonsignificant, patterns also were observed with 2- and 4-hydroxylation pathway estrogen metabolites. Inverse associations generally were not observed with 16-pathway estrogen metabolites and a significant positive association was observed with 17-epiestriol (top vs. bottom quartile RR = 1.74; 95% CI, 1.08-2.81; P(trend) = 0.01). In addition, there was a significant increased risk with higher 16-pathway/parent estrogen metabolite ratio (comparable RR = 1.61; 95% CI, 0.99-2.62; P(trend) = 0.04). Other pathway ratios were not significantly associated with risk except parent estrogen metabolites/non-parent estrogen metabolites (comparable RR = 0.58; 95% CI, 0.35-0.96; P(trend) = 0.03). These data suggest that most mid-luteal urinary estrogen metabolite concentrations are not positively associated with breast cancer risk among premenopausal women. The inverse associations with parent estrogen metabolites and the parent estrogen metabolite/non-parent estrogen metabolite ratio

  11. Prostate Cancer Stem Cells: Research Advances

    OpenAIRE

    Dagmara Jaworska; Wojciech Król; Ewelina Szliszka

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve th...

  12. Results of Breast Conserving Surgery and Subsequent Postoperative Radiotherapy for Cases of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chie, Eui Kyu; Kim, Kyu Bo; Choi, Jin Hwa [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2008-09-15

    We analyzed the treatment outcomes and prognostic factors of breast conserving surgery, followed by postoperative radiotherapy. Materials and Methods: A total of 424 breast cancer patients treated with breast conserving surgery and postoperative radiotherapy between February 1992 and January 2001 were retrospectively analyzed. A quadrantectomy and axillary lymph node dissection was performed in 396 patients. A total of 302 patients had T1 disease, and 122 patients had T2 disease. Lymph node involvement was confirmed in 107 patients. Whole breast irradiation was administered at up to 50.4 Gy in 28 fractions, followed by a 10 Gy boost in 5 fractions to the tumor bed. In addition, 57 patients underwent regional lymph node irradiation. Moreover, chemotherapy was administered in 231 patients. A regimen consisting of cyclophosphamide, methotrexate, and 5-fluorouracil was most frequently used with 170 patients. The median follow-up time was 64 months. Results: The 5-year local control rate was 95.6%. During the follow-up period, local tumor recurrence was observed in 15 patients. The 5-year overall and disease-free survival rates were 93.1% and 88.7%, respectively. The 5-year overall survival rates, by stage, were 94.8% for stage I, 95.0% for stage IIA, 91.1% for stage IIB, 75.9% for stage IIIA, and 57.1% for stage IIIC. As for disease-free survival, the corresponding figures, by stage (in the same order), were 93.1%, 89.4%, 82.8%, 62.0%, and 28.6%, respectively. The advanced N stage (p=0.0483) was found to be a significant prognostic factor in predicting poor overall survival, while the N stage (p=0.0284) and age at diagnosis (p=0.0001) were associated with disease-free survival. Conclusion: This study has shown that breast conserving surgery and postoperative radiotherapy for early breast cancer results was excellent for local control and survival.

  13. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  14. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  15. Stem cells in human breast cancer

    OpenAIRE

    Roberto Oliveira, Lucinei; Jeffrey, Stefanie S; Ribeiro Silva, Alfredo

    2010-01-01

    Increasing data support cancer as a stem cell-based disease. Cancer stem cells (CSCs) have beenfound in different human cancers, and recent evidenceindicates that breast cancer originates from and ismaintained by its own CSCs, as well as the normalmammary gland. Mammary stem cells and breast CSCshave been identified and purified in in vitroculturesystems, transplantation assays and/or by cell surfaceantigen identification. Cell surface markers enable thefunctional isolation of stem cells that...

  16. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  17. Cancer stem cells, metabolism, and therapeutic significance.

    Science.gov (United States)

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  18. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  19. Role of cancer stem cells in hepatocarcinogenesis

    OpenAIRE

    Wang, Bo; Jacob, Samson T.

    2011-01-01

    There has been considerable interest in cancer stem cells (CSCs) among cancer biologists and clinicians, most likely because of their role in the heterogeneity of cancer and their potential application in cancer therapeutics. Recent studies suggest that CSCs play a key role in liver carcinogenesis. A small subpopulation of cancer cells with CSC properties has been identified and characterized from hepatocellular carcinoma (HCC) cell lines, animal models and human primary HCCs. Considering the...

  20. Dexamethasone acutely regulates endocrine parameters in stallions and subsequently affects gene expression in testicular germ cells.

    Science.gov (United States)

    Ing, N H; Brinsko, S P; Curley, K O; Forrest, D W; Love, C C; Hinrichs, K; Vogelsang, M M; Varner, D D; Welsh, T H

    2015-01-01

    Testicular steroidogenesis and spermatogenesis are negatively impacted by stress-related hormones such as glucocorticoids. The effects of two injections of a therapeutic dose of dexamethasone (a synthetic glucocorticoid, 0.1mg/kg; i.v.) given 24h apart to each of three stallions were investigated and compared to three saline-injected control stallions. Dexamethasone decreased circulating concentrations of cortisol by 50% at 24h after the initial injection. Serum testosterone decreased by a maximum of 94% from 4 to 20h after the initial injection of dexamethasone. Semen parameters of the dexamethasone-treated stallions were unchanged in the subsequent two weeks. Two weeks after treatment, stallions were castrated. Functional genomic analyses of the testes revealed that, of eight gene products analyzed, dexamethasone depressed concentrations of heat shock protein DNAJC4 and sperm-specific calcium channel CATSPER1 mRNAs by more than 60%. Both genes are expressed in germ cells during spermiogenesis and have been related to male fertility in other species, including humans. This is the first report of decreased DNAJC4 and CATSPER1 mRNA concentrations in testes weeks after dexamethasone treatment. Concentrations of these mRNAs in sperm may be useful as novel markers of fertility in stallions. PMID:25487569

  1. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  2. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10

    OpenAIRE

    Wang, Yuzhou; Yi, Jun; CHEN, XINGGUI; Zhang, Ying; Xu, Meng; Yang, Zhixiong

    2015-01-01

    Tumorigenesis has been considered to be as a result of abnormal cell-cell communication. It has been proposed that exosomes act as communicators between tumors and their microenvironment and have been demonstrated to be involved in tumorigenesis and subsequent metastasis. However, the mechanisms underlying the role of exosomes in these processes remains elusive. The present study sought to determine the underlying mechanisms. Using two lung cancer cell lines, it was demonstrated that exosomes...

  3. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  4. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  5. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  6. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  7. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  8. Expression of Stem Cell and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells of Breast Cancer Patients

    OpenAIRE

    Natalia Krawczyk; Franziska Meier-Stiegen; Malgorzata Banys; Hans Neubauer; Eugen Ruckhaeberle; Tanja Fehm

    2014-01-01

    Evaluation and characterization of circulating tumor cells (CTCs) have become a major focus of translational cancer research. Presence of CTCs predicts worse clinical outcome in early and metastatic breast cancer. Whether all cells from the primary tumor have potential to disseminate and form subsequent metastasis remains unclear. As part of the metastatic cascade, tumor cells lose their cell-to-cell adhesion and undergo epithelial-mesenchymal transition (EMT) in order to enter blood circulat...

  9. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  10. Targeting the Checkpoint to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jan Benada

    2015-08-01

    Full Text Available Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.

  11. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  12. The relationship of cancer stem cells in urological cancers

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczyńska

    2013-08-01

    Full Text Available Numerous studies are ongoing to identify and isolate cancer stem cells from cancers of genito-urinary tracts. Better understanding of their role in prostate, urothelial and kidney cancer origin, growth and progression opens new pathways in development of more effective treatment methods. However there are still many issues before advances in this field can be introduced for clinical application. This review addresses current achievements in cancer stem cells research in uro-oncology.

  13. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  14. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  15. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  16. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  17. Understanding the cancer stem cell

    OpenAIRE

    Bomken, S; Fišer, K; Heidenreich, O; Vormoor, J

    2010-01-01

    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of fun...

  18. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  19. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  20. Cancer stem cells: the lessons from pre-cancerous stem cells

    OpenAIRE

    Gao, Jian-Xin

    2007-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not con...

  1. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  2. Extinction Models for Cancer Stem Cell Therapy

    OpenAIRE

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth

    2009-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...

  3. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  4. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  5. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  6. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    Science.gov (United States)

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  7. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary

    Directory of Open Access Journals (Sweden)

    Samardzija Chantel

    2012-11-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs and induced pluripotent stem cells (iPSC are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed ‘cancer initiating cells’ or ‘cancer stem cells (CSCs’ have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.

  8. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models......There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...

  9. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    OpenAIRE

    Kasai, T; Chen, L.; Mizutani, AZ; Kudoh, T.; Murakami, H; Fu, L.; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-...

  10. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  11. Cancer stem cells, tumor dormancy, and metastasis

    OpenAIRE

    EmilyChen

    2012-01-01

    Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs) in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignanc...

  12. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  13. Clinical outcomes of anti-androgen withdrawal and subsequent alternative anti-androgen therapy for advanced prostate cancer following failure of initial maximum androgen blockade

    OpenAIRE

    MOMOZONO, HIROYUKI; Miyake, Hideaki; TEI, HIROMOTO; Harada, Ken-ichi; Fujisawa, Masato

    2016-01-01

    The present study aimed to investigate the significance of anti-androgen withdrawal and/or subsequent alternative anti-androgen therapy in patients with advanced prostate cancer (PC) who relapsed after initial maximum androgen blockade (MAB). The present study evaluated the clinical outcomes of 272 consecutive advanced PC patients undergoing anti-androgen withdrawal and/or subsequent alternative anti-androgen therapy with flutamide following the failure of initial MAB using bicalutamide. With...

  14. Head and neck cancer stem cells.

    Science.gov (United States)

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  15. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  16. Gefitinib in Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Raffaele Costanzo

    2011-01-01

    Full Text Available Gefitinib is an oral, reversible, tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR that plays a key role in the biology of non small cell lung cancer (NSCLC. Phase I studies indicated that the recommended dose of gefitinib was 250 mg/day. Rash, diarrhea, and nausea were the most common adverse events. The positive results obtained in early phase 2 clinical trials with gefitinib were not confirmed in large phase 3 trials in unselected patients with advanced NSCLC. The subsequent discovery that the presence of somatic mutations in the kinase domain of EGFR strongly correlates with increased responsiveness to EGFR tyrosine kinase inhibitors prompted phase 2 and 3 trials with gefitinib in the first line-treatment of EGFR-mutated NSCLC. The results of these trials have demonstrated the efficacy of gefitinib that can be now considered as the standard first-line treatment of patients with advanced NSCLC harbouring activating EGFR mutations.

  17. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  18. Cell of origin of lung cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M Hanna

    2013-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell of origin, and cancer stem cells has been hampered by the heterogeneity of the disease, the lack of good in vivo transplantation models to assess stem cell behavior, and an overall incomplete understanding of the epithelial stem cell hierarchy. As such, a systematic computerized literature search of the MEDLINE database was used to identify articles discussing current knowledge about normal lung and lung cancer stem cells or progenitor cells. In this review, we discuss what is currently known about the role of cancer-initiating cells and normal stem cells in the development of lung tumors.

  19. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells

    OpenAIRE

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2015-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, che...

  20. Fluoropyrimidine sensitivity of human MCF-7 breast cancer cells stably transfected with human uridinehosphorylase

    OpenAIRE

    Cuq, P; Rouquet, C; Evrard, A.; Ciccolini, J; Vian, L; Cano, J-P

    2001-01-01

    The relationship between uridine phosphorylase (UP) expression level in cancer cells and the tumour sensitivity to fluoropyrimidines is unclear. In this study, we found that UP overexpression by gene transfer, and the subsequent efficient metabolic activation of 5-fluorouracil (5-FU) by the ribonucleotide pathway, does not increase the fluoropyrimidine sensitivity of MCF-7 human cancer cells. © 2001 Cancer Research Campaign http://www.bjcancer.com

  1. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  2. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Science.gov (United States)

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  3. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  4. The relationship between basal and squamous cell skin cancer and smoking related cancers

    Directory of Open Access Journals (Sweden)

    Sitas Freddy

    2011-12-01

    Full Text Available Abstract Background We compared the risk of being diagnosed with smoking-related cancers (lung, oral cavity, upper digestive and respiratory organs, bladder, kidney, anogenital cancers and myeloid leukaemia among people with squamous cell carcinoma (SCC or basal cell carcinoma of the skin (BCC, with risks found in the general population using data from an Australian population-based cancer registry. Methods People diagnosed with BCC or SCC in 1980-2003 reported to the Tasmanian Cancer Registry, Australia, were followed-up by linkage within the registry, until diagnosis of a subsequent smoking-related cancer, death, or until 31 December 2003. Risk of developing a future smoking-related cancer was assessed using age Standardised Incidence Ratios (SIR. Results People diagnosed with SCC had an increased risk of lung cancer (men: SIR = 1.89, 95% confidence interval: 1.61-2.21; women: SIR = 2.04, 1.42-2.83 and all other smoking-related cancers (men: SIR = 1.38, 1.19-1.60; women: SIR = 1.78, 1.34-2.33. Men with BCC had a significant increased risk of lung cancer (SIR = 1.26, 1.10-1.44 but not of any of the other smoking-related cancers (SIR = 1.09, 0.97-1.23. Conclusions Individuals with a history of SCC having an increased risk of developing smoking related cancers cancer suggests smoking as a common etiology. The relationship between BCC and smoking-related cancers is less certain.

  5. Small cell cervical cancer: an unusual finding at cholecystectomy.

    LENUS (Irish Health Repository)

    Boyle, Emily

    2012-02-01

    BACKGROUND: Small cell carcinoma of the cervix is a rare cancer, comprising less than 3% of all cervical neoplasms. It uniformly has a poor prognosis, and has a high mortality even with early stage disease. It can metastasise rapidly and metastatic sites include lung, liver, brain, bone, pancreas and lymph nodes. CASE: Here, we report the case of a 60-year-old woman with no symptoms of cervical pathology who developed post-renal failure following a laparoscopic cholecystectomy. The cause was bilateral ureteric obstruction from metastatic small cell cervical cancer and metastases were subsequently found on her gallbladder specimen. CONCLUSION: This is an unusual presentation of small cell cervical cancer and demonstrates the aggressive nature of this disease.

  6. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  7. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  8. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  9. Cancer Stem Cells in Lung Tumorigenesis

    OpenAIRE

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2010-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continue...

  10. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  11. Resveratrol Inhibits the Secretion of Vascular Endothelial Growth Factor and Subsequent Proliferation in Human Leukemia U937 Cells

    Institute of Scientific and Technical Information of China (English)

    TANG Zehai; LIU Xinyue; ZOU Ping

    2007-01-01

    This study examined the effect of resveratrol on the secretion of vascular endothelial growth factor (VEGF) and subsequent proliferation of human leukemia U937 cells, and explored the mechanisms involved. Human leukemia U937 cells were treated with resveratrol of different concen- trations (12.5-200 μmol/L) for different time lengths (12-48 h). The proliferation of the U937 leu- kemic cells was determined by MTT assay. Apoptosis was observed by Annexin-Ⅴ-FIFC/PI double staining and flow cytometry (FCM). Cells cycle was analyzed by PI staining and FCM. The content of VEGF was determined by ELISA. Human umbibical vein endothelial cells were examined for vasoformation in vitro after exposures to resveratrol of various concetrations. The results showed that resveratrol inhibited the proliferation of U937 leukemia cells in a dose- and time-dependent manner. Resveratrol induced apoptosis and S-phase cell cycle arrest in human leukemic U937 cells. Resvera-trol inhibited the secretion of VEGF in U937 cells. Resveratrol inhibited the vasoformation of human vein endothelial cells in a dose-dependent manner. It was concluded that resveratrol could down-regulate the secretion of VEGE induce apoptosis and suppress the proliferation of U937 cells.

  12. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Yoon, Kyung-Sik, E-mail: sky9999@khu.ac.kr [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A-T cells were not hypersensitive to low levels of DNA DSBs. Black-Right-Pointing-Pointer A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. Black-Right-Pointing-Pointer A-T cells underwent premature senescence after DNA damage accumulated. Black-Right-Pointing-Pointer Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-{beta}-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  13. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  14. Interleukin 1 beta initially sensitizes and subsequently protects murine intestinal stem cells exposed to photon radiation

    International Nuclear Information System (INIS)

    Interleukin 1 (IL-1) has been shown to prevent early bone marrow-related death following total-body irradiation, by protecting hematopoietic stem cells and speeding marrow repopulation. This study assesses the effect of IL-1 on the radiation response of the intestinal mucosal stem cell, a nonhematopoietic normal cell relevant to clinical radiation therapy. As observed with bone marrow, administration of human recombinant IL-1 beta (4 micrograms/kg) to C3H/Km mice 20 h prior to total-body irradiation modestly protected duodenal crypt cells. In contrast to bone marrow, IL-1 given 4 or 8 h before radiation sensitized intestinal crypt cells. IL-1 exposure did not substantially alter the slope of the crypt cell survival curve but did affect the shoulder: the X-ray survival curve was offset to the right by 1.01 +/- 0.06 Gy when IL-1 was given 20 h earlier and by 1.28 +/- 0.08 Gy to the left at the 4-h interval. Protection was greatest when IL-1 was administered 20 h before irradiation, but minimal effects persisted as long as 7 days after a single injection. The magnitude of radioprotection at 20 h or of radiosensitization at 4 h increased rapidly as IL-1 dose increased from 0 to 4 micrograms/kg. However, doses ranging from 10 to 100 micrograms/kg produced no further difference in radiation response. Animals treated with saline or IL-1 had similar core temperatures from 4 to 24 h after administration, suggesting that thermal changes were not responsible for either sensitization or protection. Mice irradiated 20 h after IL-1 had significantly greater crypt cell survival than saline-treated irradiated controls at all assay times, which ranged from 54 to 126 h following irradiation. The intervals to maximum crypt depopulation and initiation of repopulation were identical in both saline- and IL-1-treated groups

  15. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  16. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    Science.gov (United States)

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  17. Relationship between somatic cell count status and subsequent clinical mastitis in Dutch dairy cows

    NARCIS (Netherlands)

    Borne, van den B.H.P.; Vernooij, J.C.M.; Lupindu, A.M.; Schaik, van G.; Frankena, K.; Lam, T.J.G.M.; Nielen, M.

    2011-01-01

    High composite somatic cell counts (CSCC) in dairy cows may develop into clinical mastitis (CM), suggesting that prevention or intervention of high CSCC may prevent CM later in lactation. The objective of this study was to quantify the relationship between high CSCC in dairy cows and the first subse

  18. Markers of small cell lung cancer

    OpenAIRE

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  19. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  20. Reduced ultraviolet irradiation delays subsequent squamous cell carcinomas in hairless mice

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Lerche, Catharina M; Poulsen, Thomas;

    2009-01-01

    time of appearance of the first skin tumor. RESULTS: The development of new tumors was delayed, corresponding to the degree of reductions in UV dose in an inversely linear manner. Discontinuation of UV doses delayed the median times to the second tumor by 24 days (2 SED, P = 0.0549) and 33.5 days (4...... tumors. The objective was to evaluate the significance of discontinued or reduced UV exposure for the development of subsequent skin tumors. METHODS: Seven groups of mice (n = 175) were irradiated with UV doses of 2 and 4 standard erythema doses (SED) that were continued, reduced or discontinued at the...... SED, P < 0.0001), and when reduced to 1 SED, the median delays were 18 days (2 SED, P = 0.0469) and 33 days (4 SED, P < 0.0001). The median delay to the third tumor was after UV reduction 47 days (4 SED, P < 0.0001) and 35 days (2 SED, P = 0.151), and after UV discontinuation 49 days (4 SED, P < 0...

  1. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  2. Targeting prostate cancer stem cells for cancer therapy

    OpenAIRE

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, ...

  3. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  4. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  5. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells

    Science.gov (United States)

    Mozdziak, P. E.; Schultz, E.; Cassens, R. G.

    1996-01-01

    The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (PGy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.

  6. In one harness: the interplay of cellular responses and subsequent cell fate after quantum dot uptake.

    Science.gov (United States)

    Gladkovskaya, Olga; Gun'ko, Yuri K; O'Connor, Gerard M; Gogvadze, Vladimir; Rochev, Yury

    2016-10-01

    Rapid growth and expansion of engineered nanomaterials will occur when the technology can be used safely. Quantum dots have excellent prospects in clinical applications, but the issue of toxicity has not yet been resolved. To enable their medical implementation, the effect on, and mechanisms in, live cells should be clearly known and predicted. A massive amount of experimental data dedicated to nanotoxicity has been accumulated to-date, but it lacks a logical structure. The current challenge is to organize existing knowledge into lucid biological and mathematical models. In our review we aim to describe the interplay of various cell death mechanisms triggered by quantum dots as a consequence of particle parameters and experimental conditions. PMID:27618947

  7. Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells

    OpenAIRE

    Choi, Se-Young; Kim, Yong-Hyun; Lee, Yong-kyu; Kim, Kyong-Tai

    2001-01-01

    The effect of chlorpromazine on the store-operated Ca2+ entry activated via the phospholipase C signalling pathway was investigated in PC12 cells.Chlorpromazine inhibited the sustained increase after the initial peak in the intracellular Ca2+ concentration produced by bradykinin while having no effect on the initial transient response. The inhibition was lowered by the removal of extracellular free Ca2+. However, chlorpromazine did not inhibit bradykinin-induced inositol 1,4,5-trisphosphate p...

  8. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  9. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  10. Multiple skin cancers in a single patient: Multiple pigmented Bowen′s disease, giant basal cell carcinoma, squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ravi Saini

    2015-01-01

    Full Text Available Basal cell carcinoma (BCC and squamous cell carcinoma are the most common type of nonmelanoma skin cancers (NMSCs. Bowen′s disease (BD, a premalignant condition, has a marginal potential (3-5% to progress to invasive carcinoma. We report here a rarest of a rare case of multiple pigmented BD with overlying squamous cell cancer along with a giant neglected BCC on the scalp of a 76-year-old man. The occurrence of multiple BD and NMSC in a single patient compelled us to explore the following hypothesis: (1 The multiple precancerous and cancerous lesions can be due to common etiopathogenesis. Chronic ultraviolet exposure, immunosupresssion, human papillomavirus infection, dietary factors, and environmental factors including arsenic exposure were probed in to. (2 There is evolution of precancerous lesions into a different type of cancers in different time frame. (3 The new cancerous lesions are subsequent cancers that developed after neglected untreated primary cancer.

  11. Tracheal metastasis of small cell lung cancer

    OpenAIRE

    De, Sajal

    2009-01-01

    Endotracheal metastases of primary lung cancer are rare. Only one case of tracheal metastasis from small cell lung cancer has been reported in literature. Here, we report a rare case of a 45-year-old woman who was admitted for sudden-onset breathlessness with respiratory failure and required ventilatory support. Endotracheal growth was identified during bronchoscopy, and biopsy revealed endotracheal metastasis of small cell lung cancer.

  12. Repopulation of Ovarian Cancer Cells After Chemotherapy

    OpenAIRE

    Telleria, Carlos M.

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  13. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  14. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  15. Standardized measures of lobular involution and subsequent breast cancer risk among women with benign breast disease: a nested case-control study.

    Science.gov (United States)

    Figueroa, Jonine D; Pfeiffer, Ruth M; Brinton, Louise A; Palakal, Maya M; Degnim, Amy C; Radisky, Derek; Hartmann, Lynn C; Frost, Marlene H; Stallings Mann, Melody L; Papathomas, Daphne; Gierach, Gretchen L; Hewitt, Stephen M; Duggan, Maire A; Visscher, Daniel; Sherman, Mark E

    2016-08-01

    Lesser degrees of terminal duct-lobular unit (TDLU) involution predict higher breast cancer risk; however, standardized measures to quantitate levels of TDLU involution have only recently been developed. We assessed whether three standardized measures of TDLU involution, with high intra/inter pathologist reproducibility in normal breast tissue, predict subsequent breast cancer risk among women in the Mayo benign breast disease (BBD) cohort. We performed a masked evaluation of biopsies from 99 women with BBD who subsequently developed breast cancer (cases) after a median of 16.9 years and 145 age-matched controls. We assessed three metrics inversely related to TDLU involution: TDLU count/mm(2), median TDLU span (microns, which approximates acini content), and median category of acini counts/TDLU (0-10; 11-20; 21-30; 31-50; >50). Associations with subsequent breast cancer risk for quartiles (or categories of acini counts) of each of these measures were assessed with multivariable conditional logistic regression to estimate odds ratios (ORs) and 95 % confidence intervals (CI). In multivariable models, women in the highest quartile compared to the lowest quartiles of TDLU counts and TDLU span measures were significantly associated with subsequent breast cancer diagnoses; TDLU counts quartile4 versus quartile1, OR = 2.44, 95 %CI 0.96-6.19, p-trend = 0.02; and TDLU spans, quartile4 versus quartile1, OR = 2.83, 95 %CI = 1.13-7.06, p-trend = 0.03. Significant associations with categorical measures of acini counts/TDLU were also observed: compared to women with median category of 25 acini counts/TDLU were at significantly higher risk, OR = 3.40, 95 %CI 1.03-11.17, p-trend = 0.032. Women with TDLU spans and TDLU count measures above the median were at further increased risk, OR = 3.75 (95 %CI 1.40-10.00, p-trend = 0.008), compared with women below the median for both of these metrics. Similar results were observed for combinatorial metrics of TDLU

  16. H. pylori seropositivity before age 40 and subsequent risk of stomach cancer: a glimpse of the true relationship?

    Directory of Open Access Journals (Sweden)

    Christina Persson

    Full Text Available Stomach carcinogenesis involves mucosal and luminal changes that favor spontaneous disappearance of Helicobacter pylori. Therefore, the association between the infection and cancer risk might typically be underestimated. As acquisition of the infection almost invariably occurs before adulthood, the serostatus at age 16-40 should best reflect the lifetime occurrence of the infection. We therefore conducted a case-control study nested within a historic cohort of about 400,000 individuals who donated sera before age 40 to either of two large Swedish Biobanks between 1968 and 2006, and whose records were linked to complete nationwide registers. For each stomach adenocarcinoma case occurring at least 5 years after serum donation 2 controls were selected matched on age, sex and year of donation and biobank. Serum immunoglobulin G antibodies against H. pylori cell-surface antigens (Hp-CSAs were measured with an enzyme-linked immunosorbent assay and antibodies against CagA with an immunoblot assay. Conditional logistic regression models were used to estimate odds ratios (ORs for stomach adenocarcinoma among H. pylori infected relative to uninfected. We confirmed 59 incident cases of stomach adenocarcinoma (41 non-cardia tumors during follow-up. ORs for non-cardia stomach adenocarcinoma among subjects with Hp-CSA antibodies (regardless of CagA serostatus, antibodies against CagA (regardless of Hp-CSA serostatus, and antibodies to both, relative to those who were seronegative to both, were 17.1 (95% confidence interval [CI] 4.0-72.9, 10.9 (95% CI 3.2-36.9, and 48.5 (95% CI 5.8-407.4, respectively. H. pylori infection is a much stronger risk factor for non-cardia stomach adenocarcinoma than initially realized. However, further studies are needed to answer whether it is a necessary cause, as the possibility of misclassification of H. pylori status could not be ruled out in our study.

  17. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  18. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  19. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  20. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  1. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    International Nuclear Information System (INIS)

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis

  2. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  3. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  4. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  5. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  6. Cancer Stem Cells in the Thyroid

    Science.gov (United States)

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  7. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  8. Non-typeable Haemophilus influenzae protects human airway epithelial cells from a subsequent respiratory syncytial virus challenge.

    Science.gov (United States)

    Hartwig, Stacey M; Ketterer, Margaret; Apicella, Michael A; Varga, Steven M

    2016-11-01

    Respiratory syncytial virus (RSV) and the common commensal and opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) both serve as a frequent cause of respiratory infection in children. Although it is well established that some respiratory viruses can increase host susceptibility to secondary bacterial infections, few studies have examined how commensal bacteria could influence a secondary viral response. Here, we examined the impact of NTHi exposure on a subsequent RSV infection of human bronchial epithelial cells (16HBE14o-). Co-culture of 16HBE14o- cells with NTHi resulted in inhibition of viral gene expression following RSV infection. 16HBE14o- cells co-cultured with heat-killed NTHi failed to protect against an RSV infection, indicating that protection requires live bacteria. However, NTHi did not inhibit influenza A virus replication, indicating that NTHi-mediated protection was RSV-specific. Our data demonstrates that prior exposure to a commensal bacterium such as NTHi can elicit protection against a subsequent RSV infection.

  9. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    OpenAIRE

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is ...

  10. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.;

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  11. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  12. Cumulus Cell Role on Mouse Germinal Vesicle Oocyte Maturation, Fertilization, and Subsequent Embryo Development to Blastocyst Stage In Vitro

    Directory of Open Access Journals (Sweden)

    Reza Mahmodi

    2009-01-01

    Full Text Available Objective: The purpose of this study is to investigate the effect of cumulus cells on maturation,fertilization and subsequent development of mouse germinal vesicle oocytes.Materials and Methods: A total of 470 germinal vesicle (GV oocytes were obtained from26 ovaries of 3- 4 week old ICR female mice 48 hours after injection of 5 IU pregnant mareserum gonadotropin (PMSG. Collected oocytes were divided into two groups; group I: GVoocytes without cumulus cells (denuded oocyte, group II: GV oocytes with cumulus cells(cumulus-oocyte complex. The oocytes in both groups were cultured in TCM-199 mediumsupplemented with 10% fetal bovine serum (FBS for 22- 24 hours in a humidified atmosphereof 5% CO2 in air at 37°C. Oocyte maturation was scored under inverted microscope.To do in vitro fertilization, matured oocytes from each group were placed in T6 mediumand capacitated spermatozoa were added. Then the fertilized oocytes were cultured andassessed for cleavage to the 2-cell stage 24 hours and production of blastocyst 120 hoursafter fertilization. Data was analyzed by chi-square test and differences in the values wereconsiderable significant when p<0.05.Results: Maturation, fertilization, cleavage and blastocyst rates in denuded oocytes were:76.32%, 57.49%, 51.15% and 19.14% respectively. In the cumulus-oocyte complex rateswere: 89.41%, 80.76%, 75.58% and 45.62% respectively; all in the cumulus-oocyte complexwere significantly higher than those of denuded oocytes (p<0.05.Conclusion: The present study indicates that cumulus cells have important role duringmaturation, fertilization and subsequent embryo development to the blastocyst stage.

  13. Cancer stem cells in head and neck cancer.

    Science.gov (United States)

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  14. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe;

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-spec...

  15. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  16. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  17. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  18. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  19. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  20. Cancer stem cells: progress and challenges in lung cancer.

    Science.gov (United States)

    Templeton, Amanda K; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama; Ramesh, Rajagopal

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  1. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  2. Treatment Option Overview (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  3. Stages of Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  4. General Information about Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  5. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  6. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  7. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  8. Dietary fat intake and subsequent weight change in adults: results from the European Prospective Investigation into Cancer and Nutrition cohorts

    DEFF Research Database (Denmark)

    Forouhi, Nita G; Sharp, Stephen J; Du, Huaidong;

    2009-01-01

    weight divided by duration of follow-up). DESIGN: We analyzed data from 89,432 men and women from 6 cohorts of the EPIC (European Prospective Investigation into Cancer and Nutrition) study. Using country-specific food-frequency questionnaires, we examined the association between baseline fat intake...

  9. Maintenance of physical activity and body weight in relation to subsequent quality of life in postmenopausal breast cancer patients

    NARCIS (Netherlands)

    D.W. Voskuil; J.G.H. van Nes; J.M.C. Junggeburt; C.J.H. van de Velde; F.E. van Leeuwen; J.C.J.M. de Haes

    2010-01-01

    Patients and methods: In this side study of a large clinical trial, lifestyle and quality-of-life questionnaires were filled out 1 and 2 years after the start of endocrine therapy (T1 and T2, respectively) and included a pre-diagnosis lifestyle assessment (T0). A total of 435 breast cancer patients

  10. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  11. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  12. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme.

    Science.gov (United States)

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T; Peng, Lifeng; Davis, Paul F; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology. PMID:27148537

  13. Learning about Cancer by Studying Stem Cells

    Science.gov (United States)

    ... View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem Cells By Sharon ... culture. Credit: Anne Weston, London Research Institute, CRUK (image available under a Creative Commons Attribution, Non-Commercial, ...

  14. Noncoding RNAs in cancer and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Tianzhi Huang; Angel Alvarez; Bo Hu; Shi-Yuan Cheng

    2013-01-01

    In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potential y useful diagnostic tools.

  15. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  16. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  17. Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vikas Sehdev

    2009-01-01

    Full Text Available Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.

  18. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Chęcińska Agnieszka

    2007-11-01

    Full Text Available Abstract Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms.

  19. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie;

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  20. Lingual antimicrobial peptide and lactoferrin concentrations and lactoperoxidase activity in bovine colostrum are associated with subsequent somatic cell count.

    Science.gov (United States)

    Isobe, Naoki; Shibata, Ayumi; Kubota, Hirokazu; Yoshimura, Yukinori

    2013-11-01

    The present study was undertaken to examine whether potential levels of innate immune factors (lingual antimicrobial peptide (LAP), lactoferrin (LF) and lactoperoxidase (LPO)) in colostrum are associated with subsequent milk somatic cell count (SCC) in dairy cows. Quarter milk samples were collected daily for 1 week postpartum to measure LAP and LF concentrations and LPO activity. SCC in milk was determined weekly for 2 months postpartum and its correlations to concentrations of LAP and LF and LPO activity were examined. Only small variations of all immune factors were found among four udders in each individual cow, whereas there were great differences in these factors among cows. Negative correlation was detected only between LPO activity and mean and maximum SCC, whereas its relationship was not significant. LAP and LF concentrations were significantly correlated positively to mean, maximum and minimum SCC. These results suggest that the great difference in innate immune factors among animals and high LAP and LF concentrations in colostrum may be associated with subsequent high incidence of SCC increase. PMID:24001397

  1. Lingual antimicrobial peptide and lactoferrin concentrations and lactoperoxidase activity in bovine colostrum are associated with subsequent somatic cell count.

    Science.gov (United States)

    Isobe, Naoki; Shibata, Ayumi; Kubota, Hirokazu; Yoshimura, Yukinori

    2013-11-01

    The present study was undertaken to examine whether potential levels of innate immune factors (lingual antimicrobial peptide (LAP), lactoferrin (LF) and lactoperoxidase (LPO)) in colostrum are associated with subsequent milk somatic cell count (SCC) in dairy cows. Quarter milk samples were collected daily for 1 week postpartum to measure LAP and LF concentrations and LPO activity. SCC in milk was determined weekly for 2 months postpartum and its correlations to concentrations of LAP and LF and LPO activity were examined. Only small variations of all immune factors were found among four udders in each individual cow, whereas there were great differences in these factors among cows. Negative correlation was detected only between LPO activity and mean and maximum SCC, whereas its relationship was not significant. LAP and LF concentrations were significantly correlated positively to mean, maximum and minimum SCC. These results suggest that the great difference in innate immune factors among animals and high LAP and LF concentrations in colostrum may be associated with subsequent high incidence of SCC increase.

  2. Markers of small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Sharma SK

    2004-05-01

    Full Text Available Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.

  3. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Dongmei Lai; Te Liu; Weiwei Cheng; Lihe Guo

    2010-01-01

     One emerging model for the development of drugresistant tumors utilizes a pool of self-renewing malignant progenitors known as cancer stem cells(CSCs)or cancerinitiating cells(CICs).The purpose of this study was to propagate such CICs from the ovarian cancer cell line SKOV3.The SKOV3 sphere cells were selected using 40.0 μmol/l cisplatin and 10.0 μmol/l paclitaxel in serumfree culture system supplemented with epidermal growth factor,basic fibroblast growth factor,leukemia inhibitory factor,and insufin or standard serum-containing system.These cells formed non-adherent spheres under drug selection(cisplatin and paclitaxel)and serum-free culture system.The selected sphere cells are more resistant to cisplatin,paclitaxel,adriamycin,and methotrexate.Importantly,the sphere cells have the properties of se lfrenewal,with high expression of the stem cell genes Nanog,Oct4,sox2,nestin,ABCG2,CD133,and the stem cell factor receptor CD117(c-kit).Consistently,flow cytometric analysis revealed that the sphere cells have a much higher percentage of CD133+/CD117+-positive cells (71%)than differentiated cells(33%).Moreover,the SKOV3 sphere cells are more tumorigenic.Furthermore,cDNA microarray and subsequent ontological analyses revealed that a large proportion of the classified genes were related to angiogenesis,extracellular matrix,integrin-mediated signaling pathway,cell adhesion,and cell proliferation.The subpopulation isolation from the SKOV3 cell line under this culture system offers a suitable in vitro model for studying ovarian CSCs in terms of their survival,self-renewal,and chemoresistance,and for developing therapeutic drugs that specifically interfere with ovarian CSCs.

  4. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  5. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Hwa Shin

    2016-02-01

    Full Text Available The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1 complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells.

  6. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  7. Biomechanical investigation of colorectal cancer cells

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  8. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  9. Laser Direct-Write Onto Live Tissues: A Novel Model for Studying Cancer Cell Migration.

    Science.gov (United States)

    Burks, Hope E; Phamduy, Theresa B; Azimi, Mohammad S; Saksena, Jayant; Burow, Matthew E; Collins-Burow, Bridgette M; Chrisey, Douglas B; Murfee, Walter L

    2016-11-01

    Investigation into the mechanisms driving cancer cell behavior and the subsequent development of novel targeted therapeutics requires comprehensive experimental models that mimic the complexity of the tumor microenvironment. Recently, our laboratories have combined a novel tissue culture model and laser direct-write, a form of bioprinting, to spatially position single or clustered cancer cells onto ex vivo microvascular networks containing blood vessels, lymphatic vessels, and interstitial cell populations. Herein, we highlight this new model as a tool for quantifying cancer cell motility and effects on angiogenesis and lymphangiogenesis in an intact network that matches the complexity of a real tissue. Application of our proposed methodology offers an innovative ex vivo tissue perspective for evaluating the effects of gene expression and targeted molecular therapies on cancer cell migration and invasion. J. Cell. Physiol. 231: 2333-2338, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923437

  10. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Shin eHamada; Atsushi eMasamune; Tooru eShimosegawa

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also...

  11. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and al...

  12. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  13. Effect of NK4 Transduction in Bone Marrow-Derived Mesenchymal Stem Cells on Biological Characteristics of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yun-Peng Sun

    2014-03-01

    Full Text Available Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer.

  14. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan;

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  15. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  16. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie, E-mail: jie.wang2@osumc.edu [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States); Osei, Kwame [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States)

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin

  17. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in β-cells

    International Nuclear Information System (INIS)

    Highlights: → Primary proinsulin maturation disorder is inherent in Ins2+/Akita islets/β-cells. → A consequence is the inefficient conversion of proinsulin to insulin. → Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. → Proinsulin maturation chaos results in defects in the following conversion process. → A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of β-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal β-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to β-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2+/Akita islets/β-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2+/Akita islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the β-cells of Ins2+/Akita islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2+/Akita β-cells further confirmed the increased ratio of proinsulin to insulin despite the levels of PC1/3 and PC2 proteins were not reduced somehow

  18. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  19. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N;

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated......Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  20. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  1. Squamous cell cancer of the rectum

    Institute of Scientific and Technical Information of China (English)

    Tara Dyson; Peter V Draganov

    2009-01-01

    Squamous cell carcinoma of the rectum is a rare malignancy. It appears to be associated with chronic inflammatory conditions and infections. The clear association seen between Human Papilloma Virus and various squamous cancers has not been firmly established for the squamous cell cancer of the rectum. The presentation is nonspecific and patients tend to present with advanced stage disease. Diagnosis relies on endoscopic examination with biopsy of the lesion. Distinction from squamous cell cancer of the anus can be difficult, but can be facilitated by immunohistochemical staining for cytokeratins. Staging of the cancer with endoscopic ultrasound and computed tomography provides essential information on prognosis and can guide therapy. At present, surgery remains the main therapeutic option; however recent advances have made chemoradiation a valuable therapeutic addition. Squamous cell carcinoma of the rectum is a distinct entity and it is of crucial importance for the practicing Gastroenterologist to be thoroughly familiar with this disease. Compared to adenocarcinoma of the rectum and squamous cell cancer of the anal canal, squamous cell carcinoma of the rectum has different epidemiology, etiology, pathogenesis, and prognosis but, most importantly, requires a different therapeutic approach. This review will examine and summarize the available information regarding this disease from the perspective of the practicing gastroenterologist.

  2. A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia

    International Nuclear Information System (INIS)

    Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to “fever range” hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock

  3. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  4. Cancer Stem Cells: From Identification To Eradication

    International Nuclear Information System (INIS)

    A fundamental problem in cancer research is identification of the cells within a tumor that sustain the growth of the neoplastic clone. The concept that only a subpopulation of rare cancer stem cells (CSCs) is responsible for maintenance of the neoplasm emerged nearly 50 years ago: however, conclusive proof for the existence of a CSC was obtained only relatively recently. As definition, cancer stem cells (CSCs) are a sub-population of cancer cells (found within solid tumors or hematological malignancies) that possess characteristics normally associated with stem cells as high self-renewal potential. These cells are believed to be tumorige forming) in contrast to the bulk of cancer cells, which are thought to be non-tumorigenic. The first conclusive evidence for CSCs was published in 1997 in Nature Medicine by Bonnet and Dick who isolated a subpopulation of leukemic cells in AML that express a specific surface marker CD34 but lacks the CD38 marker. The authors established that the CD34+/CD38– subpopulation is capable of initiating leukemia in NOD/SCID mice that is histologically similar to the donor [1]. This subpopulation of cells is termed SCID Leukemia-initiating cells (SLIC). A theory suggests that such cells act as a reservoir for disease recurrence, are the origin of metastasis and exert resistance towards classical antitumor regimens. This resistance was attributed to a combination of several factors [2], suggesting that conventional antitumor regimens are targeting the bulk of the tumor not the dormant stubborn CSCs. Purpose Better understanding of the leukemogenic process and the biology of CSCS to define the most applicable procedures for their identification and isolation in order to design specific targeted therapies aiming at reducing disease burden to very low levels .. up to eradication of the tumor

  5. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  6. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  7. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  8. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  9. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  10. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells.

    Science.gov (United States)

    Venturelli, Sascha; Sinnberg, Tobias W; Niessner, Heike; Busch, Christian

    2015-06-01

    Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials. PMID:26065536

  11. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  12. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  13. Targeting cancer stem cells in hepatocellular carcinoma

    OpenAIRE

    MISHRA, LOPA

    2014-01-01

    Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC) is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the fun...

  14. How Taxol/paclitaxel kills cancer cells

    OpenAIRE

    Weaver, Beth A

    2014-01-01

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, r...

  15. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  16. Reversibility of apoptosis in cancer cells

    OpenAIRE

    Tang, H. L.; Yuen, K L; Tang, H M; Fung, M C

    2008-01-01

    Apoptosis is a cell suicide programme characterised by unique cellular events such as mitochondrial fragmentation and dysfunction, nuclear condensation, cytoplasmic shrinkage and activation of apoptotic protease caspases, and these serve as the noticeable apoptotic markers for the commitment of cell demise. Here, we show that, however, the characterised apoptotic dying cancer cells can regain their normal morphology and proliferate after removal of apoptotic inducers. In addition, we demonstr...

  17. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  18. Mapping proteolytic cancer cell-extracellular matrix interfaces.

    NARCIS (Netherlands)

    Wolf, K.A.; Friedl, P.H.A.

    2009-01-01

    For cancer progression and metastatic dissemination, cancer cells migrate and penetrate through extracellular tissues. Cancer invasion is frequently facilitated by proteolytic processing of components of the extracellular matrix (ECM). The cellular regions mediating proteolysis are diverse and depen

  19. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  20. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Abigail T., E-mail: abigail.berman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States); James, Sara St.; Rengan, Ramesh [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195 (United States)

    2015-07-02

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  1. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  2. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  3. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.

  4. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs. PMID:26337609

  5. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  6. An update on the biology of cancer stem cells in breast cancer.

    Science.gov (United States)

    García Bueno, José María; Ocaña, Alberto; Castro-García, Paola; Gil Gas, Carmen; Sánchez-Sánchez, Francisco; Poblet, Enrique; Serrano, Rosario; Calero, Raúl; Ramírez-Castillejo, Carmen

    2008-12-01

    Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24- select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.

  7. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  8. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  9. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer.

  10. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  11. Understanding cancer stem cell heterogeneity and plasticity

    Institute of Scientific and Technical Information of China (English)

    Dean G Tang

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo.It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells.Somatic stem cells in adult organs are also heterogeneous,containing many subpopulations of self-renewing cells with distinct regenerative capacity.The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches.Like normal stem cells,recent data suggest that cancer stem cells(CSCs)similarly display significant phenotypic and functional heterogeneity,and that the CSC progeny can manifest diverse plasticity.Here,I discuss CSC heterogeneity and plasticity in the context of tumor development and progression,and by comparing with normal stem cell development.Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted.By understanding the interrelationship between CSCs and their differentiated progeny,we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.

  12. Quantitative analysis of cell-free DNA in ovarian cancer

    Science.gov (United States)

    SHAO, XUEFENG; He, YAN; JI, MIN; CHEN, XIAOFANG; QI, JING; SHI, WEI; HAO, TIANBO; JU, SHAOQING

    2015-01-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer. PMID:26788153

  13. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  14. Foxp3 expression in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Konstantinos I

    2008-04-01

    Full Text Available Abstract Objective Transcription factor forkhead box protein 3 (Foxp3 specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs. Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively in various tumor types. Materials and methods Twenty five tumor cell lines of different tissue origins (lung cancer, colon cancer, breast cancer, melanoma, erythroid leukemia, acute T-cell leukemia were studied. Detection of Foxp3 mRNA was performed using both conventional RT-PCR and quantitative real-time PCR while protein expression was assessed by immunocytochemistry and flow cytometry, using different antibody clones. Results Foxp3 mRNA as well as Foxp3 protein was detected in all tumor cell lines, albeit in variable levels, not related to the tissue of origin. This expression correlated with the expression levels of IL-10 and TGFb1. Conclusion We offer evidence that Foxp3 expression, characterizes tumor cells of various tissue origins. The biological significance of these findings warrants further investigation in the context of tumor immune escape, and especially under the light of current anti-cancer efforts interfering with Foxp3 expression.

  15. Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation

    NARCIS (Netherlands)

    Borensztajn, Keren; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2010-01-01

    Previously, we showed that activated coagulation factor X (FXa) inhibits migration of breast, lung and colon cancer cells. We showed that the effect of FXa on migration was protease-activated receptor (PAR)-1-dependent, but the subsequent cellular signaling routes remained elusive. In the current ma

  16. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco;

    2013-01-01

    Monocyte-derived dendritic cells (DCs) used for immunotherapy e.g. against cancer are commonly matured by pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and prostaglandin E2 although the absence of Toll-like receptor mediated activation prevents secretion of IL-12 from DCs and subsequent efficie...

  17. LONG-TERM SURVIVAL OF SMALL-CELL LUNG-CANCER PATIENTS AFTER CHEMOTHERAPY

    NARCIS (Netherlands)

    VANDERGAAST, A; POSTMUS, PE; BURGHOUTS, J; VANBOLHUIS, C; STAM, J; SPLINTER, TAW

    1993-01-01

    Eighty-one patients with small cell lung cancer (SCLC) with a survival Of more than 2 years start of chemotherapy were studied. Twenty-six of the 28 patients who died of relapsed SCLC had in relapsed before two years and of the 55 who had not then only two (4%) relapsed subsequently. It is stressed

  18. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  19. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Shen Shengrong

    2010-09-01

    Full Text Available Abstract Some polyunsaturated fatty acids (PUFAs, if not all, have been shown to have tumoricidal action, but their exact mechanism(s of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA inhibited tumor cell growth at high concentrations (above 300 μM; while low concentrations (100-200 μM promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS formation, malondialdehyde (MDA accumulation and superoxide dismutase (SOD activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO while the normal human umbilical vein endothelial cells (HUVEC were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC. LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction.

  20. p21(WAF1) Mediates Cell-Cycle Inhibition, Relevant to Cancer Suppression and Therapy.

    Science.gov (United States)

    El-Deiry, Wafik S

    2016-09-15

    p21 (WAF1/CIP1; CDKN1a) is a universal cell-cycle inhibitor directly controlled by p53 and p53-independent pathways. Knowledge of the regulation and function of p21 in normal and cancer cells has opened up several areas of investigation and has led to novel therapeutic strategies. The discovery in 1993 and subsequent work on p21 has illuminated basic cellular growth control, stem cell phenotypes, the physiology of differentiation, as well as how cells respond to stress. There remain open questions in the signaling networks, the ultimate role of p21 in the p53-deficiency phenotype in the context of other p53 target defects, and therapeutic strategies continue to be a work in progress. Cancer Res; 76(18); 5189-91. ©2016 AACRSee related article by El-Deiry et al., Cancer Res 1994;54:1169-74Visit the Cancer Research 75(th) Anniversary timeline.

  1. Proteomic analysis of cancer stem cells in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Kyung; Cho, Hyungdon [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  2. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  3. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  4. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  5. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia (Italy)

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  6. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ilaria Chiodi

    2011-03-01

    Full Text Available Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  7. Side population cells isolated from KATO Ⅲ human gastric cancer cell line have cancer stem cell-like characteristics

    Institute of Scientific and Technical Information of China (English)

    Jun-Jun She; Peng-Ge Zhang; Xuan Wang; Xiang-Ming Che; Zi-Ming Wang

    2012-01-01

    AIM:To investigate whether the side population (SP)cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer.METHODS:We analyzed the presence of SP cells in different human gastric carcinoma cell lines,and then isolated and identified the SP cells from the KATO Ⅲ human gastric cancer cell line by flow cytometry.The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays.The related genes were determined by reverse transcription polymerase chain reaction.To compare tumorigenic ability,SP and non-side population (NSP) cells from the KATO Ⅲ human gastric cancer cell line were subcutaneously injected into nude mice.RESULTS:SP cells from the total population accounted for 0.57% in KATO Ⅲ,1.04% in Hs-746T,and 0.02% in AGS (CRL-1739).SP cells could grow clonally and have self-renewal capability in conditioned media.The expression of ABCG2,MDRI,Bmi-1 and Oct-4 was different between SP and NSP cells.However,there was no apparent difference between SP and NSP cells when they were injected into nude mice.CONCLUSION:SP cells have some cancer stem celllike characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  8. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  9. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  10. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  11. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  12. Sunitinib activates Axl signaling in renal cell cancer.

    Science.gov (United States)

    van der Mijn, Johannes C; Broxterman, Henk J; Knol, Jaco C; Piersma, Sander R; De Haas, Richard R; Dekker, Henk; Pham, Thang V; Van Beusechem, Victor W; Halmos, Balazs; Mier, James W; Jiménez, Connie R; Verheul, Henk M W

    2016-06-15

    Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies. PMID:26815723

  13. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  14. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  15. Orthotopic Injection of Pancreatic Cancer Cells.

    Science.gov (United States)

    Aiello, Nicole M; Rhim, Andrew D; Stanger, Ben Z

    2016-01-01

    Pancreatic ductal adenocarcinoma is an aggressive disease with a 5-yr survival rate of only 5%. The location of the pancreas in the abdomen, where it is obscured by other organs, makes it a difficult tissue to study and manipulate. This protocol describes in detail how to orthotopically inject cancer cells into the pancreas in mice. This technique is particularly useful when the cells must be manipulated in ways that cannot be modeled genetically. PMID:26729902

  16. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  17. Forcing Cancer Cells to Commit Suicide

    NARCIS (Netherlands)

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Peeters, Marc

    2009-01-01

    Apoptosis plays a crucial role in the normal development, homeostasis of multicellular organisms, carcinogenic process, and response of cancer cells to anticancer drugs. It is a genetically strictly regulated process, controlled by the balance between pro-and antiapoptotic proteins. Resistance to st

  18. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  19. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  20. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu C

    2015-03-01

    Full Text Available Chenxia Hu,1 Martin Niestroj,2,3 Daniel Yuan,4 Steven Chang,5 Jie Chen5,6 1Faculty of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China; 2Canadian Light Source, Saskatoon, SK, Canada; 3Physics Department, Bonn University, Bonn, Germany; 4Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA; 5Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; 6Canadian National Research Council/National Institute for Nanotechnology, Edmonton, AB, Canada Abstract: Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain. Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs with thio-PEG (polyethylene glycol and thio-glucose, the resulting functionalized GNPs (Glu-GNPs were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption

  1. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  2. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  3. Bromoenol Lactone Attenuates Nicotine-Induced Breast Cancer Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Lindsay E Calderon

    Full Text Available Calcium independent group VIA phospholipase A2 (iPLA2β and Matrix Metalloproteinase-9 (MMP-9 are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2β mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL to attenuate the severity of nicotine-induced breast cancer was examined.We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2β dependent manner. These results suggest that iPLA2β plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05 and nicotine-induced tumor growth (p<0.01. Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis.The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2β dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis.

  4. Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status.

    Directory of Open Access Journals (Sweden)

    Timothy M LeJeune

    Full Text Available Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2 and the pancreas (Panc28, whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116 and pancreas (MIA PaCa. Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT.

  5. Heme oxygenase-1 determines the differential response of breast cancer and normal cells to piperlongumine.

    Science.gov (United States)

    Lee, Ha-Na; Jin, Hyeon-Ok; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, BoRa; Kim, Wonki; Hong, Sung-Eun; Lee, Yun-Han; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Surh, Young-Joon; Lee, Jin Kyung

    2015-04-01

    Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic α,β-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine. PMID:25813625

  6. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients

  7. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  8. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  9. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  10. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer

    OpenAIRE

    Roh, Jong-Lyel; Kim, Eun Hye; Park, Jin Young; Kim, Ji Won; Kwon, Minsu; Lee, Byung-Heon

    2014-01-01

    Adaptation to cellular stress is not a vital function of normal cells but is required of cancer cells, and as such might be a sensible target in cancer therapy. Piperlongumine is a naturally occurring small molecule selectively toxic to cancer cells. This study assesses the cytotoxicity of piperlongumine and its combination with cisplatin in head-and-neck cancer (HNC) cells in vitro and in vivo. The effect of piperlongumine, alone and in combination with cisplatin, was assessed in human HNC c...

  11. New insights into pancreatic cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Chinthalapally V Rao; Altaf Mohammed

    2015-01-01

    Pancreatic cancer (PC) has been one of the deadliest of allcancers, with almost uniform lethality despite aggressivetreatment. Recently, there have been important advancesin the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recentnew targeted agents and the use of multiple therapeuticcombinations, no treatment option is viable in patients withadvanced cancer. Developing novel strategies to targetprogression of PC is of intense interest. A small populationof pancreatic cancer stem cells (CSCs) has been foundto be resistant to chemotherapy and radiation therapy.CSCs are believed to be responsible for tumor initiation,progression and metastasis. The CSC research has recentlyachieved much progress in a variety of solid tumors,including pancreatic cancer to some extent. This leads tofocus on understanding the role of pancreatic CSCs. Thefocus on CSCs may offer new targets for prevention andtreatment of this deadly cancer. We review the most salientdevelopments in important areas of pancreatic CSCs. Here,we provide a review of current updates and new insightson the role of CSCs in pancreatic tumor progression withspecial emphasis on DclK1 and Lgr5, signaling pathwaysaltered by CSCs, and the role of CSCs in prevention andtreatment of PC.

  12. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  13. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  14. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  15. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  16. Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption.

    Science.gov (United States)

    Master, Alyssa M; Williams, Philise N; Pothayee, Nikorn; Pothayee, Nipon; Zhang, Rui; Vishwasrao, Hemant M; Golovin, Yuri I; Riffle, Judy S; Sokolsky, Marina; Kabanov, Alexander V

    2016-01-01

    Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (>250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact. PMID:27644858

  17. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  18. Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation

    Science.gov (United States)

    2011-11-28

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  19. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  20. Use of subsequent PET/CT in diffuse large B-cell lymphoma patients in complete remission following primary therapy

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Wei Fan; Zhong-Jun Xia; Ying-Ying Hu; Xiao-Ping Lin; Ya-Rui Zhang; Zhi-Ming Li; Pei-Yan Liang; Yuan-Hua Li

    2015-01-01

    Interim 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (I-PET/CT) is a powerful tool for monitoring the response to therapy in diffuse large B-cell lymphoma (DLBCL). This retrospective study aimed to determine when and how to use I-PET/CT in DLBCL. A total of 197 patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were enrolled between October 2005 and July 2011; PET/CT was performed at the time of diagnosis (PET/CT0), after 2 and 4 cycles of chemotherapy (PET/CT2 and PET/CT4, respectively), and at the end of treatment (F-PET/CT). According to the International Harmonization Project for Response Criteria in Lymphoma, 110 patients had negative PET/CT2 scans, and 87 had positive PET/CT2 scans. The PET/CT2-negative patients had significantly higher 3-year progression-free survival rate (75.8% vs. 38.2%) and 3-year overal survival rate (93.5%vs. 55.6%) than PET/CT2-positive patients. Al PET/CT2-negative patients remained negative at PET/CT4, but 3 were positive at F-PET/CT. Among the 87 PET/CT2-positive patients, 57 remained positive at F-PET/CT, and 32 progressed during chemotherapy (15 at PET/CT4 and 17 at F-PET/CT). Comparing PET/CT4 with PET/CT0, 7 patients exhibited progression, and 8 achieved partial remission. Comparing F-PET/CT with PET/CT0, 10 patients exhibited progression, and 7 achieved partial remission. In conclusion, our results indicate that I-PET/CT should be performed after 2 rather than 4 cycles of immunochemotherapy in DLBCL patients. There is a limited role for subsequent PET/CT in the detection of relapse in PET/CT2-negative patients, but repeat PET/CT is required if the PET/CT2 findings are positive.

  1. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  2. Thyroid stem cells: lessons from normal development and thyroid cancer

    OpenAIRE

    Thomas, Dolly; Friedman, Susan; Lin, Reigh-Yi

    2008-01-01

    Ongoing advances in stem cell research have opened new avenues for therapy for many human disorders. Until recently, however, thyroid stem cells have been relatively understudied. Here, we review what is known about thyroid stem cells and explore their utility as models of normal and malignant biological development. We also discuss the cellular origin of thyroid cancer stem cells and explore the clinical implications of cancer stem cells in the thyroid gland. Since thyroid cancer is the most...

  3. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  4. Selective killing of cancer cells by nanoparticle-assisted ultrasound

    OpenAIRE

    Kosheleva, Olga K.; Lai, Tsung-Ching; Chen, Nelson G.; Hsiao, Michael; Chen, Chung-Hsuan

    2016-01-01

    Background Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells. Results Co-cultures of BEAS-2B normal lung cells and A549 cancerous lung cells labeled with green and red fluorescent proteins, res...

  5. Gastric cancer stem cells: A novel therapeutic target

    OpenAIRE

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, ...

  6. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    2001-01-01

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A sy

  7. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  8. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer.

    Science.gov (United States)

    Korkmaz, Deniz Taştemir; Demirhan, Osman; Abat, Deniz; Demirberk, Bülent; Tunç, Erdal; Kuleci, Sedat

    2015-09-01

    The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.

  9. Clinical perspectives of cancer stem cell research in radiation oncology

    International Nuclear Information System (INIS)

    Radiotherapy has a proven potential to eradicate cancer stem cells which is reflected by its curative potential in many cancer types. Considerable progress has been made in identification and biological characterisation of cancer stem cells during the past years. Recent biological findings indicate significant inter- and intratumoural and functional heterogeneity of cancer stem cells and lead to more complex models which have potential implications for radiobiology and radiotherapy. Clinical evidence is emerging that biomarkers of cancer stem cells may be prognostic for the outcome of radiotherapy in some tumour entities. Perspectives of cancer stem cell based research for radiotherapy reviewed here include their radioresistance compared to the mass of non-cancer stem cells which form the bulk of all tumour cells, implications for image- and non-image based predictive bio-assays of the outcome of radiotherapy and a combination of novel systemic treatments with radiotherapy

  10. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  11. Exosomes derived from SW480 colorectal cancer cells promote cell migration in HepG2 hepatocellular cancer cells via the mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Chiba, Mitsuru; Watanabe, Narumi; Watanabe, Miki; Sakamoto, Maki; Sato, Akika; Fujisaki, Mizuki; Kubota, Shiori; Monzen, Satoru; Maruyama, Atsushi; Nanashima, Naoki; Kashiwakura, Ikuo; Nakamura, Toshiya

    2016-01-01

    Exosomes are membrane-derived extracellular vesicles that have recently been recognized as important mediators of intercellular communication. In the present study, we investigated the effects of exosomes derived from SW480 colorectal cancer cells in recipient HepG2 hepatocellular cancer cells. We demonstrated that SW480-derived exosomes were taken up by the recipient HepG2 cells via dynamin-dependent endocytosis and were localized to the HepG2 lysosomes. In addition, SW480-derived exosomes induced the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 following their uptake into HepG2 cells. Of note, these changes occurred during the early phase after exosome treatment. Furthermore, SW480-derived exosomes promoted the migration of recipient HepG2 cells in a wound-healing assay, which was suppressed by pretreatment with U0126, an upstream inhibitor of ERK1/2. These results indicated that SW480-derived exosomes activated a classical mitogen-activated protein kinase pathway in recipient HepG2 cells via dynamin-dependent endocytosis and subsequently enhanced cell migration by ERK1/2 activation. Our results provide new insights into the regulation of cellular functions by exosomes.

  12. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  13. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  14. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  15. Electrodynamic activity of healthy and cancer cells

    International Nuclear Information System (INIS)

    Microtubules in the cell form a structure capable of generating electrodynamic field and mitochondria form their supporting system for physical processes including energy supply. Mitochondria transfer protons from their matrix space into cytosol, create strong static field around them that causes ordering of water and altering it into quasi-elastic medium with reduced viscous damping. Microtubules are composed of heterodimers that are electric dipoles. Microtubule oscillations generate an electrodynamic field. The greatest energy supply may be provided by liberation of non-utilized energy from mitochondria. Microtubules and mitochondria form a unique cooperating system in the cell. Mitochondria form a boundary element whose function depends on chemical-genetic control but their output is essential for physical processes in the cell. Mitochondrial dysfunction in cancer cells results in diminished intensity of the static electric field, disturbed water ordering, increased damping of microtubule oscillations and their shift towards linear region, and decreased energy supply. Power and coherence of oscillations and generated electrodynamic field is weakened. Malignant properties of cancer cell, in particular local invasion and metastasis, may depend on disturbed electrodynamic field. Nanotechnology is promising for investigation of electrodynamic activity in living cells.

  16. Clinical significance of T cell metabolic reprogramming in cancer.

    Science.gov (United States)

    Herbel, Christoph; Patsoukis, Nikolaos; Bardhan, Kankana; Seth, Pankaj; Weaver, Jessica D; Boussiotis, Vassiliki A

    2016-12-01

    Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy. PMID:27510264

  17. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells.

    Science.gov (United States)

    Liu, Hong; Ma, Yan; He, Hong-Wei; Wang, Jia-Ping; Jiang, Jian-Dong; Shao, Rong-Guang

    2015-01-01

    Autophagy, a self-catabolic process, has been found to be involved in abrogating the proliferation and metastasis of breast cancer. SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], member 3 regulator 1), a multifunctional scaffold protein, is involved in suppressing breast cancer cells proliferation and the SLC9A3R1-related signaling pathway regulates the activation of autophagy processes. However, the precise regulatory mechanism and signaling pathway of SLC9A3R1 in the regulation of autophagy processes in breast cancer cells remains unknown. Here, we report that the stability of BECN1, the major component of the autophagic core lipid kinase complex, is augmented in SLC9A3R1-overexpressing breast cancer MDA-MB-231 cells, subsequently stimulating autophagy by attenuating the interaction between BECN1 and BCL2. Initially, we found that SLC9A3R1 partially stimulated autophagy through the PTEN-PI3K-AKT1 signaling cascade in MDA-MB-231 cells. SLC9A3R1 then attenuated the interaction between BECN1 and BCL2 to stimulate the autophagic core lipid kinase complex. Further findings revealed that SLC9A3R1 bound to BECN1 and subsequently blocked ubiquitin-dependent BECN1 degradation. And the deletion of the C-terminal domain of SLC9A3R1 resulted in significantly reduced binding to BECN1. Moreover, the lack of C-terminal of SLC9A3R1 neither reduced the ubiquitination of BECN1 nor induced autophagy in breast cancer cells. The decrease in BECN1 degradation induced by SLC9A3R1 resulted in the activity of autophagy stimulation in breast cancer cells. These findings indicate that the SLC9A3R1-BECN1 signaling pathway participates in the activation of autophagy processes in breast cancer cells.

  18. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  19. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  20. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  1. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  2. Raman spectra of single cell from gastrointestinal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xun-Ling Yan; Rui-Xin Dong; Lei Zhang; Xue-Jun Zhang; Zong-Wang Zhang

    2005-01-01

    AIM: To explore the difference between cancer cells and normal cells, we investigated the Raman spectra of singlecells from gastrointestinal cancer patients. METHODS: All samples were obtained from 30 diagnosed as gastrointestinal cancer patients. The flesh tumor specimen is located in the center of tumor tissue, while the normal ones were 5 cm away from the outside tumor section. The imprint was put under the microscope and a single cell was chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (British Renishaw) with NIR 780 nm laser.RESULTS: We measured the Raman spectra of several cells from gastrointestinal cancer patients. The result shows that there exists the strong line at 1 002/cm with less half-width assigned to the phenylalanine in several cells. The Raman lines of white cell were lower and less, while those of red cell were not only higher in intensity and more abundant, but also had a parti cular C-N breathing stretching band of pyrrole ring at 1 620-1 540/cm. The line at 1 084/cm assigned to phosphate backbone of DNA became obviously weaker in cancer cell. The Raman spectra of stomach cancer cells were similar to those of normal cells, but the Raman intensity of cancer cells was much lower than that of normal cells, and even some lines disappear. The lines of enteric cancer cells became weaker than spectra above and many lines disappeared, and the cancer cells in different position had different fluorescence intensity.CONCLUSION: The Raman spectra of several cells from cancer patients show that the structural changes of cancer cells happen and many bonds rupture so that the biological function of cells are lost. The results indicate that Raman spectra can offer the experiment basis for the cancer diagnosis and treatment.

  3. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  4. An optimization study on unprogrammed cryopreservation of human CD34+ bone marrow cells and their subsequent storage in an -80 degrees C mechanical freezer.

    Science.gov (United States)

    Ratajczak, M Z; Ratajczak, J; Kregenow, D A; Marlicz, W; Machalinski, B; Simon, M; Luger, S; Gewirtz, A M

    1997-01-01

    Among the factors which enable successful bone marrow transplantation, the ability to store and subsequently recover sufficient viable marrow cells to reestablish hematopoiesis is crucial. In most centers, marrow is typically prepared for long term storage by programmed, controlled rate freezing with subsequent placement into the vapor phase of liquid nitrogen. Though clearly effective, this procedure is time consuming and equipment intensive. Since cost containment is an important issue for all medical procedures, we evaluated the utility of a faster and less costly method to accomplish the same purpose. We found that when CD34+ bone marrow cells are immediately frozen and stored at -80 degrees C, the number and quality of stem/progenitor cells recovered after thawing was comparable to those reported recovered after conventional processing. Herein we report optimized conditions for cryopreserving and storing CD34+ bone marrow cells at -80 degrees C and for subsequent thawing of the stored product. With these methods post-thaw recovery of CFU-Mix, for example, equaled or exceeded 80% of predicted numbers, even after six months of storage. Further, though progenitor cell recovery does not necessarily correlate with speed of engraftment, these results nonetheless suggest that storage of human CD34+ cells at -80 degrees C in a mechanical freezer is a convenient, inexpensive, and reliable method for storing marrow for transplantation. PMID:9869847

  5. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro.

    Science.gov (United States)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer. PMID:22546556

  6. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine

    Science.gov (United States)

    Bhutia, Yangzom D.; Babu, Ellappan; Ganapathy, Vadivel

    2016-01-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H+-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function. PMID:27234586

  7. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    Science.gov (United States)

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  8. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  9. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  10. Cancer stem cells in haematological malignancies

    OpenAIRE

    Zagozdzon, Radoslaw; Golab, Jakub

    2015-01-01

    At least several types of human haematological malignancies can now be seen as ‘stem-cell diseases’. The best-studied in this context is acute myeloid leukaemia (AML). It has been shown that these diseases are driven by a pool of ‘leukaemia stem cells (LSC)’, which remain in the quiescent state, have the capacity to survive and self-renew, and are responsible for the recurrence of cancer after classical chemotherapy. It has been understood that LSC must be eliminated in order to cure patients...

  11. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  12. Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin.

    Science.gov (United States)

    Dwivedi, Vinay; Shrivastava, Richa; Hussain, Showket; Ganguly, Chaiti; Bharadwaj, Mausumi

    2011-01-01

    Spices, active ingredients of Indian cooking, may play important roles in prevention and treatment of various cancers. The objective of the present study is to compare the in vitro anticancer activities of three different extracts of Clove (Syzygium aromaticum L), a commonly used spice and food flavouring agent, against different kinds of cancer cell lines of various anatomical derivations. Water, ethanol and oil extracts were screened for anti proliferative activity against HeLa (cervical cancer), MCF-7 (ER + ve) and MDA-MB-231 (ER - ve) breast cancer, DU-145 prostate cancer and TE-13 esophageal cancer cell lines, along with normal human peripheral blood lymphocytes. Inhibition of cell proliferation was assessed using MTT assay as a vital stain. In the examined five cancer cell lines, the extracts showed different patterns of cell growth inhibition activity, with the oil extract having maximal cytotoxic activity. Morphological analysis and DAPI staining showed cytotoxicity to be a result of cell disruption with subsequent membrane rupture. Maximum cell death and apoptotic cell demise occurred in TE-13 cells within 24 hours by clove oil at 300 μl/ml with 80% cell death whereas DU-145 cells showed minimal cell death. At the same time, no significant cytotoxicity was found in human PBMC's at the same dose. PMID:22292639

  13. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    Hoffman, Robert M.

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  14. Lack of correlation of stem cell markers in breast cancer stem cells

    OpenAIRE

    Liu, Y; Nenutil, R; Appleyard, M V; Murray, K; Boylan, M; Thompson, A. M.; Coates, P J

    2014-01-01

    Background: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. Methods: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and t...

  15. Can a Cancer Cell Turn into a Normal Cell?

    Directory of Open Access Journals (Sweden)

    Ranan Gülhan Aktas

    2014-09-01

    Full Text Available HepG2 cells, a human liver cancer cell line (hepatocellular carcinoma, are being considered as a future model for bioartificial liver studies. They have the ability to differentiate and demonstrate some features of normal liver cells. Our previous studies focused on examination of the morphological and functional properties of these cells under different extracellular environmental conditions. We have created a culture model that these cells demonstrate remarkable changes after 30 days. These changes include an increase in the cytoplasmic organelles, formation of bile canaliculi, occurrence of junctional complexes between the adjacent cells, existence of microvilli on the apical surfaces, accumulation of glycogen particles in the cytoplasm, an increase at the density of albumin labeled areas and a rise at the Na-K ATPase level on cellular membranes.

  16. Cancer Stem Cells in Brain Tumors and Their Lineage Hierarchy

    OpenAIRE

    Kong, Doo-Sik

    2012-01-01

    Despite recent advances in the development of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. The chemo-resistance of this tumor is attributed to tumor heterogeneity. To explain this unique chemo- resistance, the concept of cancer stem cells has been evoked. Cancer stem cells, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Here, the author reviews and discusses the cancer stem cell concept.

  17. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  18. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells

    OpenAIRE

    Ahmed Abdal Dayem; Hye-Yeon Choi; Jung-Hyun Kim; Ssang-Goo Cho

    2010-01-01

    The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive production of reactive oxygen species (ROS) and oxidative stress is one of the most important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of cancer stem cells arose from observations of similarities between the self-renewal mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, they are believed to have no control over the cell number. ROS have bee...

  19. Cavitary lung cancer lined with normal bronchial epithelium and cancer cells.

    Science.gov (United States)

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells. PMID:21980325

  20. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    OpenAIRE

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  1. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Taichiro Goto, Arafumi Maeshima, Yoshitaka Oyamada, Ryoichi Kato

    2011-01-01

    Full Text Available Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  2. Cancer Stem Cells: Foe or Reprogrammable Cells for Efficient Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2015-11-01

    Full Text Available Embryonic development and carcinogenesis share many molecular pathways and regulatory molecules. While the induction of a pluripotent state involves a significant oncogenic risk, as in induced pluripotent stem cells (iPSCs, the embryonic environment in vivo has been shown to suppress tumor development. In this review, we discuss the subtle equilibrium between the nanotopography (niche of the hosting tissue resident stem cells and their biological dynamics, including the transformation in cancer stem cells. We review consistent findings indicating the potential for modulating the biology of human cancer stem cells by the aid of naturally occurring or synthetic molecules, including developmental stage zebrafish embryo extracts, hyaluronan, butyric acid (BA and retinoic acid (RA, hyaluronan mixed esters of BA and RA, melatonin, vitamin D3, and endorphin peptides. Within this context, we dissect the multifaceted mechanisms orchestrated by endorphinergic systems, including paracrine cellto- cell communication, as well as the establishment of autocrine and intracrine (intracellular peptide actions driving transcriptional responses and self-sustaining loops that behave as long-lived signals imparting features characteristic of differentiation, growth regulation and cell memory. Based upon the remarkable action of electromagnetic fields and mechanical vibration on (stem cell signaling, differentiation, and senescence, we also consider the potential for using these physical energies as a tool to afford a fine tuning of cancer stem cell fate. On the whole, we forecast future deployment of the physical and/or chemical approaches described herein aiming at reprogramming, rather than destroying cancer stem cells, eventually placing cancer therapy within the context of Regenerative Medicine.

  3. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  4. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  5. Direct targeting of cancer cells: a multiparameter approach.

    Science.gov (United States)

    Heinrich, Eileen L; Welty, Lily Anne Y; Banner, Lisa R; Oppenheimer, Steven B

    2005-01-01

    Lectins have been widely used in cell surface studies and in the development of potential anticancer drugs. Many past studies that have examined lectin toxicity have only evaluated the effects on cancer cells, not their non-cancer counterparts. In addition, few past studies have evaluated the relationship between lectin-cell binding and lectin toxicity on both cell types. Here we examine these parameters in one study: lectin-cell binding and lectin toxicity with both cancer cells and their normal counterparts. We found that the human colon cancer cell line CCL-220/Colo320DM bound to agarose beads derivatized with Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA), while the non-cancer human colon cell line CRL-1459/CCD-18Co did not. When these lectins were tested for their effects on cell viability in culture, both cell lines were affected by the lectins but at 6, 48 and 72 h incubation times, PHA-L was most toxic to the cancer cell line in a concentration dependent manner. At 48 h incubation, WGA was more toxic to the cancer cell line. The results suggest that it may be possible to develop lectin protocols that selectively target cancer cells for death. In any case, examination of both malignant cells and their non-malignant counterparts, analysis of their binding characteristics to immobilized lectins, and examination of the toxicity of free lectins in culture, provides a multiparameter model for obtaining more comprehensive information than from more limited approaches. PMID:16181664

  6. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  7. Murine Lung Cancer Induces Generalized T Cell Exhaustion

    Science.gov (United States)

    Mittal, Rohit; Chen, Ching-Wen; Lyons, John D; Margoles, Lindsay M; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L

    2015-01-01

    Background Cancer is known to modulate tumor-specific immune responses by establishing a micro-environment that leads to the upregulation of T cell inhibitory receptors, resulting in the progressive loss of function and eventual death of tumor-specific T cells. However, the ability of cancer to impact the functionality of the immune system on a systemic level is much less well characterized. Because cancer is known to predispose patients to infectious complications including sepsis, we hypothesized that the presence of cancer alters pathogen-directed immune responses on a systemic level. Materials and Methods We assessed systemic T cell coinhibitory receptor expression, cytokine production, and apoptosis in mice with established subcutaneous lung cancer tumors and in unmanipulated mice without cancer. Results Results indicated that the frequencies of PD-1+, BTLA+, and 2B4+ cells in both the CD4+ and CD8+ T cell compartments were increased in mice with localized cancer relative to non-cancer controls, and the frequencies of both CD4+ and CD8+ T cells expressing multiple different inhibitory receptors was increased in cancer animals relative to non-cancer controls. Additionally, 2B4+CD8+ T cells in cancer mice exhibited reduced IL-2 and IFN-γ, while BTLA+CD8+ T cells in cancer mice exhibited reduced IL-2 and TNF. Conversely, CD4+ T cells in cancer animals demonstrated an increase in the frequency of Annexin V+ apoptotic cells. Conclusion Taken together, these data suggest that the presence of cancer induces systemic T cell exhaustion and generalized immune suppression. PMID:25748104

  8. Identification of genes involved in breast cancer and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Apostolou P

    2015-07-01

    Full Text Available Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs, which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarray

  9. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    OpenAIRE

    Tiffany M. Phillips; Kwanghee Kim; Erina Vlashi; McBride, William H.; Frank Pajonk

    2007-01-01

    BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs). In breast can...

  10. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples

    OpenAIRE

    Wang, Shunqi; Huang, Shengsong; Zhao, Xin; Zhang, Qimin; Wu, Min; Sun, Feng; Han, Gang; Wu, Denglong

    2013-01-01

    This study was to enrich prostate cancer stem cells (PrCSC) from primary prostate cancer cultures (PPrCC). Primary prostate cancer cells were amplified in keratinocyte serum-free medium with epidermal growth factor (EGF) and bovine pituitary extract (BPE), supplemented with leukemia inhibitory factor (LIF), stem cell factor (SCF) and cholera toxin. After amplification, cells were transferred into ultra-low attachment dishes with serum-free DMEM/F12 medium, supplemented with EGF, basic fibrobl...

  11. Niche construction game cancer cells play*

    Science.gov (United States)

    Bergman, Aviv; Gligorijevic, Bojana

    2016-01-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  12. Niche construction game cancer cells play

    Science.gov (United States)

    Bergman, Aviv; Gligorijevic, Bojana

    2015-10-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  13. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    Science.gov (United States)

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  14. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  15. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate

    Directory of Open Access Journals (Sweden)

    Yumi Kawazoe, Shinichi Katoh, Yuichiro Onodera, Takao Kohgo, Masanobu Shindoh, Toshikazu Shiba

    2008-01-01

    Full Text Available Inorganic polyphosphate [poly(P] is a biopolymer existing in almost all cells and tissues, although its biological functions in higher eukaryotes have not been completely elucidated. We previously demonstrated that poly(P enhances the function of fibroblast growth factors (FGFs by stabilizing them and strengthening the affinity between FGFs and their cell surface receptors. Since FGFs play crucial roles in bone regeneration, we further investigated the effect of poly(P on the cell differentiation of human stem cells via FGF signaling systems. Human dental pulp cells (HDPCs isolated from human dental pulp show the characteristics of multipotent mesenchymal stem cells (MSCs. HDPCs secreted FGFs and the proliferation of HDPCs was shown to be enhanced by treatment with poly(P. Cell surface receptor-bound FGF-2 was stably maintained for more than 40 hours in the presence of poly(P. The phosphorylation of ERK1/2 was also enhanced by poly(P. The effect of poly(P on the osteogenic differentiation of HDPCs and human MSCs (hMSCs were also investigated. After 5 days of treatment with poly(P, type-I collagen expression of both cell types was enhanced. The C-terminal peptide of type-I collagen was also released at higher levels in poly(P-treated HDPCs. Microarray analysis showed that expression of matrix metalloproteinase-1 (MMP1, osteopontin (OPN, osteocalcin (OC and osteoprotegerin was induced in both cell types by poly(P. Furthermore, induced expression of MMP1, OPN and OC genes in both cells was confirmed by real-time PCR. Calcification of both cell types was clearly observed by alizarin red staining following treatment with poly(P. The results suggest that the activation of the FGF signaling pathway by poly(P induces both proliferation and mineralization of stem cells.

  16. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  17. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells

    OpenAIRE

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the ef...

  18. Sensitization of human pancreatic cancer cells harboring mutated K-ras to apoptosis.

    Directory of Open Access Journals (Sweden)

    Ling Shen

    Full Text Available Pancreatic cancer is a devastating human malignancy and gain of functional mutations in K-ras oncogene is observed in 75%-90% of the patients. Studies have shown that oncogenic ras is not only able to promote cell growth or survival, but also apoptosis, depending upon circumstances. Using pancreatic cancer cell lines with or without expressing mutated K-ras, we demonstrated that the inhibition of endogenous PKC activity sensitized human pancreatic cancer cells (MIA and PANC-1 expressing mutated K-ras to apoptosis, which had no apoptotic effect on BxPC-3 pancreatic cancer cells that contain a normal Ras as well as human lung epithelial BAES-2B cells. In this apoptotic process, the level of ROS was increased and PUMA was upregulated in a p73-dependent fashion in MIA and PANC-1 cells. Subsequently, caspase-3 was cleaved. A full induction of apoptosis required the activation of both ROS- and p73-mediated pathways. The data suggest that PKC is a crucial factor that copes with aberrant K-ras to maintain the homeostasis of the pancreatic cancer cells harboring mutated K-ras. However, the suppression or loss of PKC disrupts the balance and initiates an apoptotic crisis, in which ROS and p73 appear the potential, key targets.

  19. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines.

    Science.gov (United States)

    Debnath, Shawon; Saloum, Darin; Dolai, Sukanta; Sun, Chong; Averick, Saadyah; Raja, Krishnaswami; Fata, Jimmie E

    2013-12-01

    Curcumin, which is derived from the plant Curcuma longa, has received considerable attention as a possible anti-cancer agent. In cell culture, curcumin is capable of inducing apoptosis in cancer cells at concentrations that do not affect normal cells. One draw-back holding curcumin back from being an effective anti-cancer agent in humans is that it is almost completely insoluble in water and therefore has poor absorption and subsequently poor bioavailability. Here we have generated a number of curcumin derivatives (tetrahydro-curcumin, curcumin mono-carboxylic acid, curcumin mono-galactose, curcumin mono-alkyne and dendrimer-curcumin conjugate) to test whether any of them display both cytotoxicity and water solubility. Of those tested only dendrimer-curcumin conjugate exhibited both water solubility and cytotoxicity against SKBr3 and BT549 breast cancer cells. When compared to curcumin dissolved in DMSO, dendrimer-curcumin conjugate dissolved in water was significantly more effective in inducing cytotoxicity, as measured by the MTT assay and effectively induced cellular apoptosis measured by caspase-3 activation. Since dendrimer-curcumin conjugate is water soluble and capable of inducing potent cytotoxic effects on breast cancer cell lines, it may prove to be an effective anti-cancer therapy to be used in humans. PMID:23387971

  20. Does the use of induction chemotherapy in oral cavity cancer compromise subsequent loco-regional treatment delivery: Results from a matched pair analysis

    Directory of Open Access Journals (Sweden)

    V M Patil

    2015-01-01

    Full Text Available BACKGROUND: Neoadjuvant chemotherapy is being increasingly used in patients with unresectable oral cavity cancers to make them resectable. However, its impact on locoregional treatment delivery in such setting remains poorly studied. AIMS: To evaluate the impact of neoadjuvant chemotherapy on delivery of further locoregional treatment. SETTINGS AND DESIGN: Mono institutional retrospective audit of patients with oral cavity squamous cell cancers treated with neoadjuvant triplet chemotherapy in India. MATERIALS AND METHODS: Patients receiving neoadjuvant chemotherapy (n = 14 from May 2012 to April 2014 were matched 1:2 to patients undergoing upfront surgery (n = 28 based on age (>60 or 60 and less, gender (male or female and subsite site (tongue and floor of mouth or buccoalveolar complex. Data regarding factors related to the delivery of locoregional treatment and toxicities were compiled. STATISTICAL ANALYSIS: Descriptive analysis in the form of median (range for continuous variables and frequencies for categorical variables. RESULTS: Patients undergoing neoadjuvant chemotherapy required more extensive resections and had greater operative time (460 vs. 415 min, P < 0.001. A greater incidence of locoregional wound complications was seen as a consequence (57.1% vs. 14.3%, P, 0.01. However, toxicities during radiotherapy were not substantially different between the two groups and compliance to radiation was also similar. Total package time of 100 days or less, was maintained in 90% of patients in both groups. CONCLUSIONS: Delivery of neoadjuvant chemotherapy does not impair the ability to deliver locoregional treatment.

  1. DUAL ROLES OF CANCER CELL-EXPRESSED IMMUNOGLOBULINS IN CANCER IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Gregory Lee

    2014-01-01

    Full Text Available While the expression of immunoglobulins and T cell receptors on cancer cells has been well-established for decades, the potential roles and mechanisms of action of these cancerous antigen receptors have not been fully elucidated. A monoclonal antibody designated as RP215, which reacts specifically with the carbohydrate-associated epitope located on the heavy chain region of cancerous immunoglobulins and T cell receptors, was used as a unique probe to study the roles of antigen receptors in the immunology of cancer cells. Through extensive cell-based biological and immunological studies, it was found that both anti-antigen receptors and RP215 demonstrated similar actions on the gene regulations involved in the growth/proliferation of cancer cells, as well as on toll-like receptors involved in innate immunity. In addition, RP215-specific cancerous immunoglobulins are believed to capture or neutralize circulating antigen/antibodies which may be harmful to cancer cells within the human body. In contrast to normal B and T cells and their respective receptors in the conventional immune system, cancer cells co-express both immunoglobulins and T cell receptors and immune protection is exercised by unique mechanisms. For example, these cancer cell-expressed antigen receptors display a lack of class switching, limited hyper-mutation, aberrant glycosylations and a strong influence on the toll-like receptors of cancer cells. Therefore, it is hypothesized that both normal and cancerous immune systems may co-exist and operate simultaneously within the human body. The balance of these two immune factors for respective surveillance and protection may be relevant to the outcome of cancer immunotherapy in humans. A potential therapeutic strategy is being developed by using RP215 as a drug candidate to target cancer cells based on these observations.

  2. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  3. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    Science.gov (United States)

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  4. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  5. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  6. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuhl, Heather M. [Pediatrics, National Jewish Health, Denver, Colorado (United States); Kachadourian, Remy; Min, Elysia [Department of Medicine, National Jewish Health, Denver, Colorado (United States); Chan, Daniel [Medical Oncology, University of Colorado Denver Health Sciences Center (United States); Day, Brian J., E-mail: dayb@njhealth.org [Department of Medicine, University of Colorado Denver Health Sciences Center (United States); Immunology, University of Colorado Denver Health Sciences Center (United States); Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center (United States); Department of Medicine, National Jewish Health, Denver, Colorado (United States)

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  7. Transcription profiles of non-immortalized breast cancer cell lines

    International Nuclear Information System (INIS)

    Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

  8. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    Science.gov (United States)

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  9. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

    Science.gov (United States)

    Oser, Matthew G; Niederst, Matthew J; Sequist, Lecia V; Engelman, Jeffrey A

    2015-04-01

    Lung cancer is the most common cause of cancer deaths worldwide. The two broad histological subtypes of lung cancer are small-cell lung cancer (SCLC), which is the cause of 15% of cases, and non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Although NSCLC and SCLC are commonly thought to be different diseases owing to their distinct biology and genomic abnormalities, the idea that these malignant disorders might share common cells of origin has been gaining support. This idea has been supported by the unexpected findings that a subset of NSCLCs with mutated EGFR return as SCLC when resistance to EGFR tyrosine kinase inhibitors develops. Additionally, other case reports have described the coexistence of NSCLC and SCLC, further challenging the commonly accepted view of their distinct lineages. Here, we summarise the published clinical observations and biology underlying tumours with combined SCLC and NSCLC histology and cancers that transform from adenocarcinoma to SCLC. We also discuss pre-clinical studies pointing to common potential cells of origin, and speculate how the distinct paths of differentiation are determined by the genomics of each disease.

  10. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  11. How Taxol/paclitaxel kills cancer cells.

    Science.gov (United States)

    Weaver, Beth A

    2014-09-15

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, recent evidence demonstrates that intratumoral concentrations of paclitaxel are too low to cause mitotic arrest and result in multipolar divisions instead. It is hoped that this insight can now be used to develop a biomarker to identify the ∼50% of patients that will benefit from paclitaxel therapy. Here I discuss the history of paclitaxel and our recently evolved understanding of its mechanism of action.

  12. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R.; Hermanutz-Klein, U.; Northoff, H. [Universitaetsklinikum Tuebingen (Germany). Inst. fuer Klinische und Experimentelle Transfusionsmedizin; Wiskirchen, J.; Kehlbach, R.; Pintaske, J. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Radiologische Diagnostik; Guo, K.; Neumann, B.; Voth, V.; Walker, T.; Scheule, A.M.; Greiner, T.O.; Ziemer, G.; Wendel, H.P. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Thorax-, Herz- und Gefaesschirurgie; Claussen, C.D. [Universitaetsklinikum Tuebingen (Germany). Radiologische Universitaetsklinik

    2007-10-15

    Purpose: Mesenchymal stem cells (MSC) seem to be a promising cell source for cellular cardiomyoplasty. We recently developed a new aptamer-based specific selection of MSC to provide ''ready to transplant'' cells directly after isolation. We evaluated MRI tracking of newly isolated and freshly transplanted MSC in the heart using one short ex vivo selection step combining specific aptamer-based isolation and labeling of the cells. Materials and Methods: Bone marrow (BM) was collected from healthy pigs. The animals were euthanized and the heart was placed in a perfusion model. During cold ischemia, immunomagnetic isolation of MSC from the BM by MSC-specific aptamers labeled with Dynabeads {sup registered} was performed within 2 h. For histological identification the cells were additionally stained with PKH26. Approx. 3 x 10{sup 6} of the freshly aptamer-isolated cells were injected into the ramus interventricularis anterior (RIVA) and 5 x 10{sup 5} cells were injected directly into myocardial tissue after damaging the respective area by freezing (cryo-scar). 3 x 10{sup 6} of the aptamer-isolated cells were kept for further characterization (FACS and differentiation assays). 20 h after cell transplantation, MRI of the heart using a clinical 3.0 Tesla whole body scanner (Magnetom Trio, Siemens, Germany) was performed followed by histological examinations. Results: The average yield of sorted cells from 120 ml BM was 7 x 10{sup 6} cells. The cells were cultured and showed MSC-like properties. MRI showed reproducible artifacts within the RIVA-perfusion area and the cryo-scar with surprisingly excellent quality. The histological examination of the biopsies showed PKH26-positive cells within the areas which were positive in the MRI in contrast to the control biopsies. Conclusion: Immunomagnetic separation of MSC by specific aptamers linked to magnetic particles is feasible, effective and combines a specific separation and labeling technique to a &apos

  13. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  14. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-02-08

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  15. Stem cells and lung cancer: future therapeutic targets?

    Science.gov (United States)

    Alison, Malcolm R; Lebrenne, Arielle C; Islam, Shahriar

    2009-09-01

    In both the UK and USA more people die of lung cancer than any other type of cancer. Lung cancer's high mortality rate is also reflected on a global scale, with lung cancer accounting for more than 1 million deaths per year. In tissues with ordered structure such a lung epithelia, it is likely that the cancers have their origins in normal adult stem cells, and then the tumours themselves are maintained by a population of malignant stem cells - so-called cancer stem cells. This review examines both these postulates in animal models and in the clinical setting, noting that stem cell niches appear to foster tumour development, and that drug resistance can often be attributed to malignant cells with stem cell properties. PMID:19653862

  16. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  17. Immunotherapy of Metastases Enhances Subsequent Chemotherapy

    Science.gov (United States)

    Hanna, Michael G.; Key, Marc E.

    1982-07-01

    In many multimodal therapies of cancer, postsurgical chemotherapy is administered before immunotherapy for treatment of micrometastatic disease. This sequence may not be the most efficacious. Experiments in which strain 2 guinea pigs bearing syngeneic L10 hepatocarcinomas were given immunotherapy showed that infiltrating immune effector cells not only were tumoricidal but disrupted the characteristically compact structure of metastatic foci. When cytotoxic drugs were administered at the peak of this inflammatory response, the survival rate of the guinea pigs increased significantly. We conclude that postsurgical immunotherapy can enhance the effect of cytotoxic drugs administered subsequently.

  18. NK cell phenotypic modulation in lung cancer environment.

    Directory of Open Access Journals (Sweden)

    Shi Jin

    Full Text Available Nature killer (NK cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.Our study analyzed the change about NK cells surface markers (NK cells receptors through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.

  19. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer

    Directory of Open Access Journals (Sweden)

    Létourneau Isabelle J

    2012-08-01

    Full Text Available Abstract Background Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy. Methods The cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133 were derived from solid tumor (TOV and ascites (OV, at specific time points at diagnosis and relapse (R. Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133, or cisplatin/topotecan (2295. Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2, the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay. Results All cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R and OV2295(R2 cell lines. Conclusion The study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian

  20. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  1. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis.

    Science.gov (United States)

    Shah, Birju P; Pasquale, Nicholas; De, Gejing; Tan, Tao; Ma, Jianjie; Lee, Ki-Bum

    2014-09-23

    Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target specificity, which impede their clinical applications. To this end, we report magnetic core-shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis. PMID:25133971

  2. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  3. Distinct metabolic responses of an ovarian cancer stem cell line

    OpenAIRE

    Kathleen A Vermeersch; Wang, Lijuan; McDonald, John F; Styczynski, Mark P.

    2014-01-01

    Background Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to b...

  4. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

    Directory of Open Access Journals (Sweden)

    Cheng BR

    2014-05-01

    Full Text Available Boran Cheng,1,* Zhaobo He,2,* Libo Zhao,2,* Yuan Fang,1 Yuanyuan Chen,1 Rongxiang He,2 Fangfang Chen,1 Haibin Song,1 Yuliang Deng,2 Xingzhong Zhao,2 Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, People’s Republic of China; 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor cells (CTCs in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS, which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain. We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. Keywords: cell capture, cell culture, nanofilms, hydroxyapatite/chitosan

  5. Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible?

    Directory of Open Access Journals (Sweden)

    Kavitha Yaddanapudi

    Full Text Available The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine embryonic stem cells (ESC. Naïve C57BL/6 mice were vaccinated with ESC along with a source of granulocyte macrophage-colony stimulating factor (GM-CSF in order to provide immunostimulatory adjuvant activity. Vaccinated mice were protected against subsequent challenge with implantable Lewis lung carcinoma (LLC. ESC-induced anti-tumor immunity was not due to a non-specific "allo-response" as vaccination with allogeneic murine embryonic fibroblasts did not protect against tumor outgrowth. Vaccine efficacy was associated with robust tumor-reactive primary and memory CD8(+ T effector responses, Th1 cytokine response, higher intratumoral CD8(+ T effector/CD4(+CD25(+Foxp3(+ T regulatory cell ratio, and reduced myeloid derived suppressor cells in the spleen. Prevention of tumorigenesis was found to require a CD8-mediated cytotoxic T lymphocyte (CTL response because in vivo depletion of CD8(+ T lymphocytes completely abrogated the protective effect of vaccination. Importantly, this vaccination strategy also suppressed the development of lung cancer induced by the combination of carcinogen administration and chronic pulmonary inflammation. Further refinement of this novel vaccine strategy and identification of shared ESC/tumor antigens may lead to immunotherapeutic options for lung cancer patients and, perhaps more importantly, could represent a first step toward the development of prophylactic cancer vaccines.

  6. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    Science.gov (United States)

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  7. Natural Products That Target Cancer Stem Cells.

    Science.gov (United States)

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  8. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  9. HS-4, a highly potent inhibitor of cell proliferation of human cancer cell

    Institute of Scientific and Technical Information of China (English)

    Gui-Lan Xing; Shu-Hong Tian; Xue-Li Xie; Jian Fu

    2015-01-01

    Objective:To investigate the antitumor activity of the compound HS-4 and the action mechanism.Methods:MTT method was used to testin vitroantitumor activity of the compound HS-4. Orthotopic xenotransplantation tumor model of liver cancer was established in nude mice, and,in vivoantitumor activity of compound HS-4 was tested with a small animal in-vivo imaging system. Sequencing of small RNA library and RNA library was performed in HS-4 treated tumor cell group and control group to investigate the anti-cancer mechanism of HS-4 at level of functional genomics, using high-throughput sequencing technology. Results:HS-4 was found to have relatively highin-vitro antitumor activity against liver cancer cells, gastric cancer cells, renal cancer cells, lung cancer cells, breast cancer cells and colon cancer cells. The IC50 values against SMMC-7721 and Bel-7402 of liver cancer cells were 0.14 and 0.13 nmol/L respectively, while the IC50 values against MGC-803 and SGC-7901 of gastric cancer cells were 0.19 and 0.21 nmol/L, respectively. It was demonstrated that HS- 4 possessed a better therapeutic effect in liver cancer.Conclusions: A new reliable orthotopic xenotransplantation tumor model of liver cancer in nude mice is established. The new compounds HS-4 was found to possess relatively highin vivo andin vitroantitumor activity against liver cancer cells.

  10. HS-4,a highly potent inhibitor of cell proliferation of human cancer cell

    Institute of Scientific and Technical Information of China (English)

    Gui-Lan; Xing; Shu-Hong; Tian; Xue-Li; Xie; Jian; Fu

    2015-01-01

    Objective:To investigate the antitumor activity of the compound HS-4 and the action mechanism.Methods:MTT method was used to test in vitro antitumor activity of the compound HS-4.Orthotopic xenotransplantation tumor model of liver cancer was established in nude mice,and.in vivo antitumor activity of compound HS-4 was tested with a small animal in-vivo imaging system.Sequencing of small RNA library and RNA library was performed in HS-4 treated tumor cell group and control group to investigate the anti-cancer mechanism of HS-4 at level of functional genomics,using high-throughput sequencing technology.Results:HS-4 was found to have relatively high in-vitro antitumor activity against liver cancer cells,gastric cancer cells,renal cancer cells,lung cancer cells,breast cancer cells and colon cancer cells.The IC50 values against SMMC-7721 and Bel-7402 of liver cancer cells were 0.14 and 0.13 nmol/L respectively,while the IC50 values against MGC-803 and SGC-7901 of gastric cancer cells were 0.19 and 0.21 nmol/L,respectively.It was demonstrated that HS- 4 possessed a betler therapeutic effect in liver cancer.Conclusions:A new reliable orthotopicxenotransplantation tumor model of liver cancer in nude mice is established.The new compounds HS-4 was found to possess relatively high in vivo and in vitro antitumor activity against liver cancer cells.

  11. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. PMID:25659759

  12. Feedback from each retinal neuron population drives expression of subsequent fate determinant genes without influencing the cell cycle exit timing.

    Science.gov (United States)

    Kei, Jeremy Ng Chi; Dudczig, Stefanie; Currie, Peter D; Jusuf, Patricia R

    2016-09-01

    During neurogenesis, progenitors balance proliferation and cell cycle exit together with expression of fate determinant genes to ensure that the correct number of each of these neuron types is generated. Although intrinsic gene expression acting cell autonomously within each progenitor drives these processes, the final number of neurons generated is also influenced by extrinsic cues, representing a potential avenue to direct neurogenesis in developmental disorders or regenerative settings without the requirement to change intrinsic gene expression. Thus, it is important to understand which of these stages of neurogenesis are amenable to such extrinsic influences. Additionally, all types of neurons are specified in a highly conserved histogenic order, although its significance is unknown. This study makes use of conserved patterns of neurogenesis in the relatively simple yet highly organized zebrafish retina model, in which such histogenic birth order is well characterized. We directly visualize and quantify birth dates and cell fate determinant expression in WT vs. environments lacking different neuronal populations. This study shows that extrinsic feedback from developing retinal neurons is important for the temporal expression of intrinsic fate determinants but not for the timing of birth dates. We found no changes in cell cycle exit timing but did find a significant delay in the expression of genes driving the generation only of later- but not earlier-born cells, suggesting that the robustness of this process depends on continuous feedback from earlier-formed cell types. Thus, extrinsic cues selectively influence cell fate determinant progression, which may explain the function of the retinal histogenic order observed. J. Comp. Neurol. 524:2553-2566, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850379

  13. Significance of Micrometastases: Circulating Tumor Cells and Disseminated Tumor Cells in Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Catherine Oakman

    2010-06-01

    Full Text Available Adjuvant systemic therapy targets minimal residual disease. Our current clinical approach in the adjuvant setting is to presume, rather than confirm, the presence of minimal residual disease. Based on assessment of the primary tumor, we estimate an individual’s recurrence risk. Subsequent treatment decisions are based on characteristics of the primary tumor, with the presumption of consistent biology and treatment sensitivity between micrometastases and the primary lesion. An alternative approach is to identify micrometastatic disease. Detection of disseminated tumor cells (DTC in the bone marrow and circulating tumor cells (CTC from peripheral blood collection may offer quantification and biocharacterization of residual disease. This paper will review the prognostic and predictive potential of micrometastatic disease in early breast cancer.

  14. Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhao; Wen-Lu Shen

    2005-01-01

    AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers

  15. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    Science.gov (United States)

    2016-08-25

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  16. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui;

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44+ ...

  17. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green;

    2011-01-01

    increase in the number of gamma-H2AX ‘DNA damage foci’, indicating replicative stress, which may lead to genomic instability. As the p53 tumor suppressor is an inducer of G1 arrest after DNA damage and often deregulated in cancer cells, we investigated if the growth reduction due to SSX2 expression was p53...... dependent. The growth reduction was similar in isogenic colon cancer cells with and without p53, indicating that SSX2 is able to inhibit the growth of cancer cells, even in absence of functional p53. Our results show that SSX2 acts as an inhibitor of cancer cell proliferation, possibly through replicative......The SSX family of cancer and germline antigens is mainly expressed in the germ cells of healthy individuals as well as wide range of cancers and is therefore potential targets for immunotherapy. However, little is known about the role of SSX proteins in tumorigenesis and normal cell function. Here...

  18. TRANSCRIPTIONAL LANDSCAPE OF NEURONAL and CANCER STEM CELLS

    OpenAIRE

    Miele, Evelina

    2013-01-01

    Tumor mass is composed by heterogeneous cell population including a subset of “cancer stem cells” (CSC). Oncogenic signals foster CSC by transforming tissue stem cells or by reprogramming progenitor/differentiated cells towards stemness. Thus, CSC share features with cancer and stem cells (e.g. self-renewal, hierarchical developmental program leading to differentiated cells, epithelial/mesenchimal transition) and these latter are maintained by the constitutive activation of stemne...

  19. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  20. Human prostate cancer stem cells: new features unveiled

    Institute of Scientific and Technical Information of China (English)

    Yuting Sun; Wei-Qiang Gao

    2011-01-01

    @@ Cancer stem cells (CSCs) are a rare sub-population of phenotypically distinct cancer cells exhibiting stem cell characteristics.They are tumourigenic, meanwhile capable of self-renewal and forming differentiated progenies.CSCs are believed to be resistant to the standard therapeutics, and provide the cell reservoir for tumour initiation.1 Understanding CSCs or in another word, tumour-initiating cells, is of critical therapeutic importance.

  1. Cancer Stem Cells – Basics, Progress and Future Potential

    OpenAIRE

    Bapat S.A

    2010-01-01

    The primary characteristics of adult stem cells are maintaining prolonged quiescence, ability to self-renew and plasticity to differentiate into multiple cell types. These properties are evolutionarily conserved from fruit fly to humans. Similar to normal tissue repair in organs, the stem cell concept is inherently impregnated in the etiology of cancer. Tumors contain a minor population of tumor-initiating cells, called "cancer stem cells" that maintain some similarities in self-renewal and d...

  2. Helicobacter pylori infection and stem cells at the origin of gastric cancer.

    Science.gov (United States)

    Bessède, E; Dubus, P; Mégraud, F; Varon, C

    2015-05-14

    Helicobacter pylori infection is now recognized as the main and specific infectious cause of cancer in the world. It is responsible for gastric adenocarcinomas of both intestinal and diffuse types, which are the long-term consequences of the chronic infection of the gastric mucosa. Case-control studies have shown an association between the two, recognized as early as 1994 and further substantiated by interventional studies in which H. pylori eradication has led to the prevention of at least part of the gastric cancers. Experimental studies have highlighted the role of bone marrow-derived cells (BMDCs) and particularly mesenchymal stem cells, in the neoplastic process in about a quarter of the cases and possibly an epithelial-mesenchymal transition (EMT) in the other cases. Different studies have confirmed that chronic infection with H. pylori induces a chronic inflammation and subsequent damage of the gastric epithelial mucosa, leading to BMDC recruitment. Once recruited, these cells home and differentiate by cell-cell fusion with local gastric epithelial cells, bearing local stem cell failure and participating in tissue regeneration. The context of chronic infection and inflammation leads to an EMT and altered tissue regeneration and differentiation from both local epithelial stem cells and BMDC. EMT induces the emergence of CD44+ cells possessing mesenchymal and stem cell properties, resulting in metaplastic and dysplastic lesions to give rise, after additional epigenetic and mutational events, to the emergence of cancer stem cells (CSCs) and adenocarcinoma. PMID:25043305

  3. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  4. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...... with initial versus delayed radiotherapy. No survival differences in the larger study of the two studies were detected, which compared alternating with sequential delivery of radiotherapy (n = 335). The optimal way to deliver radiotherapy still must be defined. Two small, randomized studies on dose intensity...

  5. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  6. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    Science.gov (United States)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  7. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    Science.gov (United States)

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  8. Low Doses of Gamma Rays Reduce the Sensitivity of Cervical Carcinoma Cells to Subsequent Treatment with Cisplatin

    International Nuclear Information System (INIS)

    One of the major challenges of modern genetics is to apply recent advances in mutation research to improve the accuracy of the estimates of the genetic risk for humans. Because of the important implications for radiation protection, biological effects of low-dose radiation have been a focus of research in recent years. Previously we have found that human cervical carcinoma HeLa cells irradiated repeatedly with low doses of gamma rays (HeLa1500 cells) became resistant to cisplatin. In this study we examine whether this effect was caused by inhibition of apoptosis. In HeLa and HeLa1500 cells we determined the induction of apoptosis following the treatment with cisplatin (i) by counting apoptotic cells with characteristic morphological changes, (ii) by analysing the expression of apoptotic genes involved in cytochrome c/Apaf-1/caspase-9 and in Fas/FasL pathways by Western blot method, and (iii) by estimating the activities of caspases by commercial caspase detection kits. Our results show that low doses of gamma rays induced alterations in human cervical carcinoma cells that were reflected in inhibition of p53-independent cisplatin-induced apoptosis due to reduced activity of caspase 3. (author)

  9. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  10. Adhesion between peptides/antibodies and breast cancer cells

    Science.gov (United States)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  11. Cancer Stem Cells: Biological Functions and Therapeutically Targeting

    Directory of Open Access Journals (Sweden)

    Marius Eugen Ciurea

    2014-05-01

    Full Text Available Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.

  12. Sodium hypochlorite decontamination of split-thickness cadaveric skin infected with bacteria and yeast with subsequent isolation and growth of basal cells to confluency in tissue culture.

    OpenAIRE

    Fader, R C; Maurer, A.; Stein, M D; Abston, S; Herndon, D N

    1983-01-01

    The ability of sodium hypochlorite to decontaminate skin while leaving sufficient epidermal cell viability for growth in tissue culture was investigated with an in vitro system. Split-thickness cadaveric skin was infected with Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans and subsequently treated with various concentrations of sodium hypochlorite for various time intervals. Exposure to a 0.5% solution of sodium hypochlorite for 6 min effectively decontaminated the skin w...

  13. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia;

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  14. Adaptation of BHK-21 cells to growth in shaker culture and subsequent challenge by Japanese encephalitis virus.

    Science.gov (United States)

    Guskey, L E; Jenkin, H M

    1975-09-01

    Baby hamster kidney (BHK-21) cells were adapted to grow in shaker culture using Waymouth medium 752/1 containing 20 mM N-2-hydroxyethyl-piperazine-N'-2'-ethanesulfonic acid buffer and supplemented with 2.5% (vol/vol) calf serum, 0.002% (wt/vol) sodium oleate, and 0.2% fatty acid-free bovine serum albumin (WO2.5). Infectivity of Japanese encephalitis virus grown in the cells adapted to WO2.5 approached 2 x 10(8) plaque-forming units per ml. The culture volume of infected cells was reduced fivefold 12 h after infection. This step resulted in a 10-fold increase in infectivity over that obtained from infected cultures not subjected to volume reduction. PMID:1237269

  15. Purine nucleoside analog--sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mirjana Dačević

    Full Text Available Achieving an effective treatment of cancer is difficult, particularly when resistance to conventional chemotherapy is developed. P-glycoprotein (P-gp activity governs multi-drug resistance (MDR development in different cancer cell types. Identification of anti-cancer agents with the potential to kill cancer cells and at the same time inhibit MDR is important to intensify the search for novel therapeutic approaches. We examined the effects of sulfinosine (SF, a quite unexplored purine nucleoside analog, in MDR (P-gp over-expressing non-small cell lung carcinoma (NSCLC and glioblastoma cell lines (NCI-H460/R and U87-TxR, respectively. SF showed the same efficacy against MDR cancer cell lines and their sensitive counterparts. However, it was non-toxic for normal human keratinocytes (HaCaT. SF induced caspase-dependent apoptotic cell death and autophagy in MDR cancer cells. After SF application, reactive oxygen species (ROS were generated and glutathione (GSH concentration was decreased. The expression of key enzyme for GSH synthesis, gamma Glutamyl-cysteine-synthetase (γGCS was decreased as well as the expression of gst-π mRNA. Consequently, SF significantly decreased the expression of hif-1α, mdr1 and vegf mRNAs even in hypoxic conditions. SF caused the inhibition of P-gp (coded by mdr1 expression and activity. The accumulation of standard chemotherapeutic agent--doxorubicin (DOX was induced by SF in concentration- and time-dependent manner. The best effect of SF was obtained after 72 h when it attained the effect of known P-gp inhibitors (Dex-verapamil and tariquidar. Accordingly, SF sensitized the resistant cancer cells to DOX in subsequent treatment. Furthermore, SF decreased the experssion of vascular endothelial growth factor (VEGF on mRNA and protein level and modulated its secretion. In conclusion, the effects on P-gp (implicated in pharmacokinetics and MDR, GSH (implicated in detoxification and VEGF (implicated in tumor-angiogenesis and

  16. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A.; Suranganie F. Dharmawardhane

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  17. Genistein-Inhibited Cancer Stem Cell-Like Properties and Reduced Chemoresistance of Gastric Cancer

    OpenAIRE

    Weifeng Huang; Chunpeng Wan; Qicong Luo; Zhengjie Huang; Qi Luo

    2014-01-01

    Genistein, the predominant isoflavone found in soy products, has exerted its anticarcinogenic effect in many different tumor types in vitro and in vivo. Accumulating evidence in recent years has strongly indicated the existence of cancer stem cells in gastric cancer. Here, we showed that low doses of genistein (15 µM), extracted from Millettia nitida Benth var hirsutissima Z Wei, inhibit tumor cell self-renewal in two types of gastric cancer cells by colony formation assay and tumor sphere f...

  18. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells

    Science.gov (United States)

    Suman, S; Das, T P; Damodaran, C

    2013-01-01

    Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. PMID:24129237

  19. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    Science.gov (United States)

    2016-03-01

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  20. Dominant B-cell epitopes from cancer/stem cell antigen SOX2 recognized by serum samples from cancer patients

    OpenAIRE

    Shih, Julia; Rahman, Munira; Luong, Quang T; Lomeli, Shirley H.; Riss, Joseph; Prins, Robert M.; Gure, Ali O.; Zeng, Gang

    2014-01-01

    Human sex determining region Y-box 2 (SOX2) is an important transcriptional factor involved in the pluripotency and stemness of human embryonic stem cells. SOX2 plays important roles in maintaining cancer stem cell activities of melanoma and cancers of the brain, prostate, breast, and lung. SOX2 is also a lineage survival oncogene for squamous cell carcinoma of the lung and esophagus. Spontaneous cellular and humoral immune responses against SOX2 present in cancer patients classify it as a tu...

  1. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  2. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  3. Stem cells in radiation and oral cancer research

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are defined as a small sub population of cancer cells that constitute a pool of self sustaining cells with the exclusive ability to cause the heterogeneous lineages of cancer cells that comprise the tumour. There are three main characteristics of CSCs. Initially the cell must show potent tumour initiation in that it can regenerate the tumour which it was derived from a limited number of cells. In addition, the cells should demonstrate self renewal in vivo, which is practically observed via regrowth of phenotypically indistinguishable and heterogeneous tumours following serial transplantation of re-isolated CSCs in secondary and tertiary recipients. Finally, the cells must show a differentiation capacity, allowing them to give rise to a heterogeneous progeny, which represents a phenocopy of the original tumour. This article highlights the radiation therapy resulting in radiation resistance in cancer stem cells. (author)

  4. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  5. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    2010-05-01

    Full Text Available The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3 in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.

  6. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available BACKGROUND: Ethanol ('alcohol' is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. METHODS: The study included cellular in vitro tests using α-galactosylceramide (αGalCer, and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. RESULTS: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05. CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05, whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. CONCLUSION: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.

  7. Experimental studies on ultralow frequency pulsed gradient magnetic field inducing apoptosis of cancer cell and inhibiting growth of cancer cell

    Institute of Scientific and Technical Information of China (English)

    曾繁清; 郑从义; 张新晨; 李宗山; 李朝阳; 王川婴; 张新松; 黄晓玲; 张沪生

    2002-01-01

    The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums(ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling(TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency(ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indicating that magnetic field can block DNA replication and inhibit mitosis of cancer cells. It was suggested that magnetic field could inhibit the metabolism of cancer cell, lower its malignancy, and restrain its rapid and heteromorphic growth. Since ULF pulsed gradient magnetic field can induce apoptosis of cancer cells and inhibit the growth of malignant tumour, it could be used as a new method to treat cancer.

  8. Pancreatic involvement in small cell lung cancer

    International Nuclear Information System (INIS)

    Few data are available concerning incidence, clinical picture, and prognosis for pancreatic metastases of small cell lung carcinoma. In this paper we review the related literature available in English language. Although pancreatic metastases are generally asymptomatic, they can rarely produce clinical symptoms or functional abnormalities. The widespread use of multi-detector computerised tomography (CT) in contemporary medical practice has led to an increased detection of pancreatic metastases in oncology patients. Tissue diagnosis is imperative because radiological techniques alone are incapable of differentiating them from primary pancreatic tumours. Pancreatic metastases occur in the relative end stage of small cell lung cancer. The main complications of these lesions, although rare, are acute pancreatitis and obstructive jaundice. Early chemotherapy can provide a survival benefit even in patients with mild acute pancreatitis or extrahepatic biliary obstruction

  9. Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers

    Institute of Scientific and Technical Information of China (English)

    Han-Chen Li; Calin Stoicov; Arlin B Rogers; JeanMarie Houghton

    2006-01-01

    Cancer commonly arises at the sites of chronic inflammation and infection. Although this association has long been recognized, the reason has remained unclear. Within the gastrointestinal tract, there are many examples of inflammatory conditions associated with cancer, and these include reflux disease and Barrett's adenocarcinoma of the esophagus, Helicobacter infection and gastric cancer, inflammatory bowel disease and colorectal cancer and viral hepatitis leading to hepatocellular carcinoma.There are several mechanisms by which chronic inflammation has been postulated to lead to cancer which includes enhanced proliferation in an endless attempt to heal damage, the presence of a persistent inflammatory environment creating a pro-carcinogenic environment and more recently a role for engraftment of circulating marrow-derived stem cells which may contribute to the stromal components of the tumor as well as the tumor mass itself. Here we review the recent advances in our understanding of the contributions of circulating bone marrow-derived stem cells to the formation of tumors in animal models as well as in human beings.

  10. Optimization of an Enrichment process for Circulating tumor cells from the blood of Head and Neck Cancer patients through depletion of normal cells

    OpenAIRE

    Yang, Liying; Lang, James C.; Balasubramanian, Priya; Jatana, Kris R.; Schuller, David; Agrawal, Amit; Zborowski, Maciej; Chalmers, Jeffrey J.

    2009-01-01

    The optimization of a purely negative depletion, enrichment process for circulating tumor cells, CTC's, in the peripheral blood of Head and Neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling, and subsequent depletion, of CD45 positive cells. A number of relevant variables are quantified, or attempted to be quantified, which control the performance of the enrichment process. Six different immunomagnetic labeling combinations...

  11. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  12. Characterization of normal and cancer stem cells: One experimental paradigm for two kinds of stem cells

    OpenAIRE

    Mayol, Jean-François; Loeuillet, Corinne; Hérodin, Francis; Wion, Didier

    2009-01-01

    The characterization of normal stem cells and cancer stem cells uses the same paradigm. These cells are isolated by a Fluorescent-Activated Cell Sorting step and their stemness is assayed following implantation into animals. However, differences exist between these two kinds of stem cells. Therefore, the translation of the experimental procedures used for normal stem cell isolation into the cancer stem cell research field is a potential source of artefacts. In addition, normal stem cell thera...

  13. Liver Label Retaining Cancer Cells Are Relatively Resistant to the Reported Anti-Cancer Stem Cell Drug Metformin

    OpenAIRE

    Xin, Hong-Wu; Ambe, Chenwi M.; Miller, Tyler C.; Chen, Jin-Qiu; Wiegand, Gordon W.; Anderson, Andrew J.; Ray, Satyajit; Mullinax, John E.; Hari, Danielle M; Koizumi, Tomotake; Godbout, Jessica D.; Goldsmith, Paul K.; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S.

    2016-01-01

    Background & Aims: Recently, we reported that liver Label Retaining Cancer Cells (LRCC) can initiate tumors with only 10 cells and are relatively resistant to the targeted drug Sorafenib, a standard of practice in advanced hepatocellular carcinoma (HCC). LRCC are the only cancer stem cells (CSC) isolated alive according to a stem cell fundamental function, asymmetric cell division. Metformin has been reported to preferentially target many other types of CSC of different organs, including live...

  14. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  15. Personalized Therapy of Small Cell Lung Cancer.

    Science.gov (United States)

    Schneider, Bryan J; Kalemkerian, Gregory P

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials. PMID:26703804

  16. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  17. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  18. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  19. Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells

    Science.gov (United States)

    McDermott, N.; Meunier, A.; Mooney, B.; Nortey, G.; Hernandez, C.; Hurley, S.; Lynam-Lennon, N.; Barsoom, S. H.; Bowman, K. J.; Marples, B.; Jones, G. D. D.; Marignol, L.

    2016-01-01

    The risk of recurrence following radiation therapy remains high for a significant number of prostate cancer patients. The development of in vitro isogenic models of radioresistance through exposure to fractionated radiation is an increasingly used approach to investigate the mechanisms of radioresistance in cancer cells and help guide improvements in radiotherapy standards. We treated 22Rv1 prostate cancer cells with fractionated 2 Gy radiation to a cumulative total dose of 60 Gy. This process selected for 22Rv1-cells with increased clonogenic survival following subsequent radiation exposure but increased sensitivity to Docetaxel. This RR-22Rv1 cell line was enriched in S-phase cells, less susceptible to DNA damage, radiation-induced apoptosis and acquired enhanced migration potential, when compared to wild type and aged matched control 22Rv1 cells. The selection of radioresistant cancer cells during fractionated radiation therapy may have implications in the development and administration of future targeted therapy in conjunction with radiation therapy. PMID:27703211

  20. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation.

    Science.gov (United States)

    Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J

    2011-07-01

    The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.

  1. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China); Dong, Wei-Guo, E-mail: dongwg1966@yahoo.com.cn [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  2. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    International Nuclear Information System (INIS)

    Highlights: ► Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. ► G2/M phase arrest and chromatin condensation and nuclear fragmentation were induced. ► Noscapine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC50 = 75 μM). This cytotoxicity was reflected by cell cycle arrest at G2/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  3. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  4. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines

    OpenAIRE

    Higuchi, M; Kudo, T; Suzuki, S.; Evans, TT; Sasaki, R.; Wada, Y; Shirakawa, T.; Sawyer, JR; Gotoh, A

    2006-01-01

    Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is verycommon in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstra...

  5. The role of regulatory T cells in cancer immunology

    OpenAIRE

    Whiteside TL

    2015-01-01

    Theresa L Whiteside University of Pittsburgh Cancer Institute, Pittsburgh, PA, US Abstract: Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well und...

  6. Role of Inflammation and Substrate Stiffness in Cancer Cell Transmigration

    Science.gov (United States)

    Hamilla, Susan; Stroka, Kimberly; Aranda-Espinoza, Helim

    2013-03-01

    Cancer metastasis, the ability for cancer cells to break away from the primary tumor site and spread to other organs of the body, is one of the main contributing factors to the deadliness of the disease. One of the rate-limiting steps in cancer metastasis that is not well understood is the adhesion of tumor cells to the endothelium followed by transmigration. Other factors include substrate stiffness and inflammation. To test these parameters, we designed an in vitro model of transendothelial migration. Our results suggest that cancer cell transmigration is a two-step process in which they first incorporate into the endothelium before migrating through. It was observed that the cumulative fraction of cancer cells that incorporate into the endothelium increases over time. Unlike leukocytes, which can directly transmigrate through the endothelium, cancer cells appear to have a two-step process of transmigration. Our results indicate that inflammation does not act as a signal for cancer cells to localize at specific sites and transmigrate similarly to leukocytes. Cancer cell transmigration also does not vary with substrate stiffness indicating that tissue stiffness may not play a role in cancer's propensity to metastasize to certain tissues.

  7. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L;

    1991-01-01

    % of the samples. When the GRP(14-27) peptide was added exogenously to breast cancer and SCLC cell lines under serum-free culture conditions, (3H)-thymidine incorporation was stimulated by GRP(14-27) in the SCLC cell lines. Of the breast cancer cell lines only the T47D cell line responded with an increase in (3H......Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells......(14-27) or GRP(18-27) in Sephadex G-50 chromatography. No immunoreactivity was detected in the fractions containing high molecular weight components. In a total of 41 human breast carcinoma biopsies from different postmenopausal patients, IR-GRP was detected by immunohistological staining in 39...

  8. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  9. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  10. Double Stem Cell Transplant May Help Fight a Childhood Cancer

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159243.html Double Stem Cell Transplant May Help Fight a Childhood Cancer Tandem ... better chance of survival if they receive two stem cell transplants, a new study reports. The double stem ...

  11. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation

    Science.gov (United States)

    Cidado, Justin; Wong, Hong Yuen; Rosen, D. Marc; Cimino-Mathews, Ashley; Garay, Joseph P.; Fessler, Abigail G.; Rasheed, Zeshaan A.; Hicks, Jessica; Cochran, Rory L.; Croessmann, Sarah; Zabransky, Daniel J.; Mohseni, Morassa; Beaver, Julia A.; Chu, David; Cravero, Karen; Christenson, Eric S.; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M.; Argani, Pedram; Chawla, Ajay; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2016-01-01

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies. PMID:26823390

  12. Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-pu; LIU Yan; ZHONG Wei; YU Dan; WEN Lian-ji; JIN Chun-shun

    2011-01-01

    Background Mounting evidence suggests that tumors are histologically heterogeneous and are maintained by a small population of tumor cells termed cancer stem cells. CD133 has been identified as a candidate marker of cancer stem cells in laryngeal carcinoma. This study aimed to analyze the chemoresistance of CD133+ cancer stem cells.Methods The response of Hep-2 cells to different chemotherapeutic agents was investigated and the expression of CD133 was studied. Fluorescence-activated cell sorting analysis was used to identify CD133,and the CD133+ subset of cells was separated and analyzed in colony formation assays,cell invasion assays,chemotherapy resistance studies,and analyzed for the expression of the drug resistance gene ABCG2.Results About 1%-2% of Hep-2 cells were CD133+ cells,and the CD133+ proportion was enriched by chemotherapy.CD133+ cancer stem cells exhibited higher potential for clonogenicity and invasion,and were more resistant to chemotherapy. This resistance was correlated with higher expression of ABCG2.Conclusions This study suggested that CD133+ cancer stem cells are more resistant to chemotherapy. The expression of ABCG2 could be partially responsible for this. Targeting this small population of CD133+ cancer stem cells could be a strategy to develop more effective treatments for laryngeal carcinoma.

  13. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  14. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway

    International Nuclear Information System (INIS)

    iASPP is a key inhibitor of tumour suppressor p53 and is found to be up-regulated in certain malignant conditions. The present study investigated the expression of iASPP in clinical lung cancer, a leading cancer type in the world, and the biological impact of this molecule on lung cancer cells. iASPP protein levels in lung cancer tissues were evaluated using an immunohistochemical method. In vitro, iASPP gene expression was suppressed with a lentvirus-mediated shRNA method and the biological impact after knocking down iASSP on lung cancer cell lines was investigated in connection with the p53 expression status. We showed here that the expression of iASPP was significantly higher in lung cancer tissues compared with the adjacent normal tissues. iASPP shRNA treatment resulted in a down-regulation of iASPP in lung cancer cells. There was a subsequent reduction of cell proliferation of the two lung tumour cell lines A459 and 95D both of which had wild-type p53 expression. In contrast, reduction of iASPP in H1229 cells, a cell with little p53 expression, had no impact on its growth rate. iASPP regulates the proliferation and motility of lung cancer cells. This effect is intimately associated with the p53 pathway. Together with the pattern of the over-expression in clinical lung cancers, it is concluded that iASPP plays an pivotal role in the progression of lung cancer and is a potential target for lung cancer therapy

  15. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    OpenAIRE

    Lillard James W; Grizzle William E; Johnson Erica L; Singh Rajesh; Johnson-Holiday Crystal; Singh Shailesh

    2011-01-01

    Abstract Background Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa) cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have rece...

  16. Renal cell cancer among African Americans: an epidemiologic review

    Directory of Open Access Journals (Sweden)

    Lipworth Loren

    2011-04-01

    Full Text Available Abstract Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease. This excess dates back to the 1970s, despite less access among blacks to imaging procedures in the past. In contrast, mortality rates for this cancer have been virtually identical among blacks and whites since the early 1990s, despite the fact that nephrectomy rates, regardless of stage, are lower among blacks than among whites. These observations suggest that renal cell cancer may be a less aggressive tumor in blacks. We have reviewed the epidemiology of renal cell cancer, with emphasis on factors which may potentially play a role in the observed differences in incidence and mortality patterns of renal cell cancer among blacks and whites. To date, the factors most consistently, albeit modestly, associated with increased renal cell cancer risk in epidemiologic studies among whites - obesity, hypertension, cigarette smoking - likely account for less than half of these cancers, and there is virtually no epidemiologic evidence in the literature pertaining to their association with renal cell cancer among blacks. There is a long overdue need for detailed etiologic cohort and case-control studies of renal cell cancer among blacks, as they now represent the population at highest risk in the United States. In particular, investigation of the influence on renal cell cancer development of hypertension and chronic kidney disease, both of which occur substantially more frequently among blacks, is warranted, as well as investigations into the biology and natural history of this cancer among blacks.

  17. Stem Cell Based Gene Therapy in Prostate Cancer

    OpenAIRE

    Jae Heon Kim; Hong Jun Lee; Yun Seob Song

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new ...

  18. Pitavastatin suppressed liver cancer cells in vitro and in vivo.

    Science.gov (United States)

    You, He-Yi; Zhang, Wei-Jian; Xie, Xue-Meng; Zheng, Zhi-Hai; Zhu, Heng-Liang; Jiang, Fei-Zhao

    2016-01-01

    Pitavastatin classically functions as a blood cholesterol-lowering drug. Previously, it was discovered with antiglioma stem cell properties through drug screening. However, whether it can be used for liver cancer cell therapy has never been reported. In this study, the cell viability and colony formation assay were utilized to analyze the cytotoxicity of pitavastatin on liver cancer cells. The cell cycle alteration was checked after pitavastatin treatment. Apoptosis-related protein expression and the effect of caspase inhibitor were also checked. The in vivo inhibitory effect of pitavastatin on the growth of liver tumor was also tested. It was found that pitavastatin inhibited growth and colony formation of liver cancer Huh-7 cells and SMMC7721 cells. It induced arrest of liver cancer cells at the G1 phase. Increased proportion of sub-G1 cells was observed after pitavastatin treatment. Pitavastatin promoted caspase-9 cleavage and caspase-3 cleavage in liver cancer cells. Caspase inhibitor Z-VAD-FMK reversed the cleavage of cytotoxic effect of pitavastatin. Moreover, pitavastatin decreased the tumor growth and improved the survival of tumor-bearing mice. This study suggested the antiliver cancer effect of the old drug pitavastatin. It may be developed as a drug for liver cancer therapy. PMID:27621652

  19. Pitavastatin suppressed liver cancer cells in vitro and in vivo

    Science.gov (United States)

    You, He-Yi; Zhang, Wei-Jian; Xie, Xue-Meng; Zheng, Zhi-Hai; Zhu, Heng-Liang; Jiang, Fei-Zhao

    2016-01-01

    Pitavastatin classically functions as a blood cholesterol-lowering drug. Previously, it was discovered with antiglioma stem cell properties through drug screening. However, whether it can be used for liver cancer cell therapy has never been reported. In this study, the cell viability and colony formation assay were utilized to analyze the cytotoxicity of pitavastatin on liver cancer cells. The cell cycle alteration was checked after pitavastatin treatment. Apoptosis-related protein expression and the effect of caspase inhibitor were also checked. The in vivo inhibitory effect of pitavastatin on the growth of liver tumor was also tested. It was found that pitavastatin inhibited growth and colony formation of liver cancer Huh-7 cells and SMMC7721 cells. It induced arrest of liver cancer cells at the G1 phase. Increased proportion of sub-G1 cells was observed after pitavastatin treatment. Pitavastatin promoted caspase-9 cleavage and caspase-3 cleavage in liver cancer cells. Caspase inhibitor Z-VAD-FMK reversed the cleavage of cytotoxic effect of pitavastatin. Moreover, pitavastatin decreased the tumor growth and improved the survival of tumor-bearing mice. This study suggested the antiliver cancer effect of the old drug pitavastatin. It may be developed as a drug for liver cancer therapy. PMID:27621652

  20. Dynamics of Cancer Cell near Collagen Fiber Chain

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  1. Reliable in vitro studies require appropriate ovarian cancer cell lines.

    Science.gov (United States)

    Jacob, Francis; Nixdorf, Sheri; Hacker, Neville F; Heinzelmann-Schwarz, Viola A

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  2. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  3. Proteomic evaluation of MCF-7 human breast cancer cells after treatment with retinoic acid isomers: Preliminary insights

    OpenAIRE

    Flodrová, Dana

    2012-01-01

    The effects of 9-cis retinoic acid and all-trans retinoic acid in human MCF-7 breast cancer line have been investigated. The total cell proteins were extracted and separated on 1D SDS-PAGE. The proteins were subsequently in-gel digested by trypsin and identified by MALDI-TOF/TOF.

  4. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    OpenAIRE

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cancer stem cells form resected tumor specimens was used.

  5. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fennell Dean A

    2012-06-01

    Full Text Available Abstract Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.

  6. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon [Korea Institute of Radiologicaland Medical Sciences, Seoul (Korea, Republic of)

    2010-11-15

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  7. Cancer mortality in ethnic South Asian migrants in England and Wales (1993–2003): patterns in the overall population and in first and subsequent generations

    OpenAIRE

    Mangtani, P; Maringe, C; Rachet, B; Coleman, M P; dos Santos Silva, I.

    2010-01-01

    Background: Cancer mortality has been examined among ethnic South Asian migrants in England and Wales, but not by generation of migration. Methods: Using South Asian mortality records, identified by a name-recognition algorithm, and census information, age-standardised rates among South Asians, and South Asian vs non-South Asian rate ratios, were calculated. Results and conclusions: All-cancer rates in ethnic South Asians were half of those in non-South Asians in first-generation (all-cancer-...

  8. Effect of free fatty acids and lysolipids on cellular uptake of doxorubicin in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Andersen, Jonas; Jespersen, Henrik;

    2010-01-01

    and lysolipids. Dox uptake was quantified by flow cytometry and fluorescence microscopy. We observed no increased Dox uptake in any of the breast cancer cell lines, suggesting that growth inhibitory effects observed earlier subsequent to the addition of free fatty acids to cancer cells are not caused......, the liposome could deliver membrane permeability enhancers in addition to the drug to increase the targeted anticancer effect. In this study, we examined the effect on Dox uptake in the breast cancer cell lines MDA-MB-231, MCF7, and MCF7-MDR when incubated with a large panel of different free fatty acids......Several fatty acids and lysolipids have been shown earlier to increase the permeability of membranes of artificial liposomes, thereby increasing the release of drugs such as doxorubicin (Dox) contained within them. Free fatty acids can also inhibit cancer cell growth in vitro, and it has been...

  9. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells.

    Science.gov (United States)

    Oak, Prajakta S; Kopp, Florian; Thakur, Chitra; Ellwart, Joachim W; Rapp, Ulf R; Ullrich, Axel; Wagner, Ernst; Knyazev, Pjotr; Roidl, Andreas

    2012-12-15

    A major obstacle in the successful treatment of cancer is the occurrence of chemoresistance. Cancer cells surviving chemotherapy and giving rise to a recurrence of the tumor are termed cancer stem cells and can be identified by elevated levels of certain stem cell markers. Eradication of this cell population is a priority objective in cancer therapy. Here, we report elevated levels of stem cell markers in MCF-7 mammospheres. Likewise, an upregulation of HER2 and its differential expression within individual cells of mammospheres was observed. Sorting for HER2(high) and HER2(low) cells revealed an upregulation of stem cell markers NANOG, OCT4 and SOX2 in the HER2(low) cell fraction. Accordingly, HER2(low) cells also showed reduced proliferation, ductal-like outgrowths and an increased number of colonies in matrigel. Xenografts from subcutaneously injected HER2(low) sorted cells exihibited earlier onset but slower growth of tumors and an increase in stem cell markers compared to tumors developed from the HER2(high) fraction. Treatment of mammospheres with salinomycin reduced the expression of SOX2 indicating a selective targeting of cancer stem cells. Trastuzumab however, did not reduce the expression of SOX2 in mammospheres. Furthermore, a combinatorial treatment of mammospheres with trastuzumab and salinomycin was superior to single treatment with each drug. Thus, targeting HER2 expressing tumors with anti-HER2 therapies will not necessarily eliminate cancer stem cells and may lead to a more aggressive cancer cell phenotype. Our study demonstrates efficient killing of both HER2 positive cells and cancer stem cells, hence opening a possibility for a new combinatorial treatment strategy. PMID:22511343

  10. NK cells and cancer: You can teach innate cells new tricks

    OpenAIRE

    Morvan, MG; Lanier, LL

    2015-01-01

    © 2016 Macmillan Publishers Limited. Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer.

  11. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  12. Cellular spectroscopy: applications to cancer stem cell characterization

    Science.gov (United States)

    Wiegand, G.; Xin, H.; Anderson, A.; Mullinax, J.; Jaiswal, K.; Wiegand, A.; Avital, Itzhak

    2011-02-01

    Spectroscopic and light scattering methods were used to gain insight into the existence and characterization of the cancer stem cell. Fundamental technical description of devices used have been reported elsewhere. We included alterations and implementation of these biophotonic instruments as applied to our objectives. We disassociated human tumor and submitted the cells to optical characterization to support our working hypothesis of stem cell origins to cancer and mechanisms. Single cell combined with population based analysis within the Pancreatic cancer system led us to information regarding the polarization state of cells possessing anchor proteins and drug influx pumps. Multispectral imaging combined with flow cytometry enabled us to target rare cells that appear to retain template DNA. rendering them resistant to anti-cancer drug therapy. In this study we describe an optical method that combines high-throughput population pattern and correlates each cell with an individual fluorescent and bright-field image.

  13. Proteomic analysis of changes in the protein composition of MCF-7 human breast cancer cells induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination

    OpenAIRE

    Flodrová, D. (Dana); Benkovská, D. (Dagmar); Macejová, D.; Bialesova, L.; Hunakova, L.; Brtko, J.; Bobálová, J. (Janette)

    2015-01-01

    Retinoic acid (all-trans and 9-cis) isomers represent important therapeutic agents for many types of cancers, including human breast cancer. Changes in protein composition of the MCF-7 human breast cancer cells were induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination and subsequently proteomic strategies based on bottom-up method were applied. Proposed approach was used for the analysis of proteins extracted from MCF-7 human breast cancer cell line utilizing a ...

  14. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients

  15. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  16. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells.

    Science.gov (United States)

    Guelen, Lars; Paterson, Hugh; Gäken, Joop; Meyers, Michelle; Farzaneh, Farzin; Tavassoli, Mahvash

    2004-02-01

    Apoptin has been described to induce apoptosis in various human cancer cell lines, but not in normal cells, thus making it an interesting candidate for the development of novel therapeutic strategies. Apoptin was generated and cloned into several mammalian expression vectors. Transfection or microinjection of apoptin cDNA resulted in its expression, initially in the cytoplasm with a filamentous pattern. Subsequently, apoptin entered the nucleus and efficiently induced apoptosis in several cancer cell lines. Nuclear localization was shown to be required for induction of apoptosis. Apoptin expression level was found to be an important determinant of the efficiency of induction of apoptosis. Surprisingly, expression of apoptin or GFP-apoptin cDNA induced apoptosis in some normal cells. When fused to the HIV-TAT protein transduction domain and delivered as a protein, TAT-apoptin was transduced efficiently (>90%) into normal and tumour cells. However, TAT-apoptin remained in the cytoplasm and did not kill normal 6689 and 1BR3 fibroblasts. In contrast TAT-apoptin migrated from the cytoplasm to the nucleus of Saos-2 and HSC-3 cancer cells resulting in apoptosis after 24 h. This study shows that apoptin is a powerful apoptosis-inducing protein with a potential for cancer therapy. PMID:14691460

  17. M-Cells Contribute to the Entry of an Oral Vaccine but Are Not Essential for the Subsequent Induction of Protective Immunity against Francisella tularensis

    Science.gov (United States)

    Cunningham, Aimee L.; Guentzel, M. Neal; Yu, Jieh-Juen; Hung, Chiung-Yu; Forsthuber, Thomas G.; Navara, Christopher S.; Yagita, Hideo; Williams, Ifor R.; Klose, Karl E.; Eaves-Pyles, Tonyia D.; Arulanandam, Bernard P.

    2016-01-01

    M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination. PMID:27100824

  18. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs wi