WorldWideScience

Sample records for cancer cells subjected

  1. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells.

    Science.gov (United States)

    Welsch, Thilo; Younsi, Alexander; Disanza, Andrea; Rodriguez, Jose Antonio; Cuervo, Ana Maria; Scita, Giorgio; Schmidt, Jan

    2010-07-15

    Eps8 controls actin dynamics directly through its barbed end capping and actin-bundling activity, and indirectly by regulating Rac-activation when engaged into a trimeric complex with Eps8-Abi1-Sos1. Recently, Eps8 has been associated with promotion of various solid malignancies, but neither its mechanisms of action nor its regulation in cancer cells have been elucidated. Here, we report a novel association of Eps8 with the late endosomal/lysosomal compartment, which is independent from actin polymerization and specifically occurs in cancer cells. Endogenous Eps8 localized to large vesicular lysosomal structures in metastatic pancreatic cancer cell lines, such as AsPC-1 and Capan-1 that display high Eps8 levels. Additionally, ectopic expression of Eps8 increased the size of lysosomes. Structure-function analysis revealed that the region encompassing the amino acids 184-535 of Eps8 was sufficient to mediate lysosomal recruitment. Notably, this fragment harbors two KFERQ-like motifs required for chaperone-mediated autophagy (CMA). Furthermore, Eps8 co-immunoprecipitated with Hsc70 and LAMP-2, which are key elements for the CMA degradative pathway. Consistently, in vitro, a significant fraction of Eps8 bound to (11.9+/-5.1%) and was incorporated into (5.3+/-6.5%) lysosomes. Additionally, Eps8 binding to lysosomes was competed by other known CMA-substrates. Fluorescence recovery after photobleaching revealed that Eps8 recruitment to the lysosomal membrane was highly dynamic. Collectively, these results indicate that Eps8 in certain human cancer cells specifically localizes to lysosomes, and is directed to CMA. These results open a new field for the investigation of how Eps8 is regulated and contributes to tumor promotion in human cancers.

  2. Regulatory B Cell Function Is Suppressed by Smoking and Obesity in H. pylori-Infected Subjects and Is Correlated with Elevated Risk of Gastric Cancer.

    Science.gov (United States)

    Li, Guanggang; Wulan, Hasi; Song, Zongchang; Paik, Paul A; Tsao, Ming L; Goodman, Gary M; MacEachern, Paul T; Downey, Robert S; Jankowska, Anna J; Rabinowitz, Yaron M; Learch, Thomas B; Song, David Z; Yuan, Ji J; Zheng, Shihang; Zheng, Zhendong

    2015-01-01

    Helicobacter pylori infection occurs in more than half of the world's population and is the main cause for gastric cancer. A series of lifestyle and nutritional factors, such as tobacco smoking and obesity, have been found to elevate the risk for cancer development. In this study, we sought to determine the immunological aspects during H. pylori infection and gastric cancer development. We found that B cells from H. pylori-infected patients presented altered composition and function compared to uninfected patients. IL-10-expressing CD24+CD38+ B cells were upregulated in H. pylori-infected patients, contained potent regulatory activity in inhibiting T cell pro-inflammatory cytokine secretion, and responded directly to H. pylori antigen stimulation. Interestingly, in H. pylori-infected smoking subjects and obese subjects, the number of IL-10+ B cells and CD24+CD38+ B cells were reduced compared to H. pylori-infected asymptomatic subjects. Regulatory functions mediated by CD24+CD38+ B cells were also impaired. In addition, gastric cancer positive patients had reduced IL-10-producing B cell frequencies after H. pylori-stimulation. Altogether, these data suggest that in H. pylori-infection, CD24+CD38+ B cell is upregulated and plays a role in suppressing pro-inflammatory responses, possibly through IL-10 production, a feature that was not observed in smoking and obese patients.

  3. Regulatory B Cell Function Is Suppressed by Smoking and Obesity in H. pylori-Infected Subjects and Is Correlated with Elevated Risk of Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Guanggang Li

    Full Text Available Helicobacter pylori infection occurs in more than half of the world's population and is the main cause for gastric cancer. A series of lifestyle and nutritional factors, such as tobacco smoking and obesity, have been found to elevate the risk for cancer development. In this study, we sought to determine the immunological aspects during H. pylori infection and gastric cancer development. We found that B cells from H. pylori-infected patients presented altered composition and function compared to uninfected patients. IL-10-expressing CD24+CD38+ B cells were upregulated in H. pylori-infected patients, contained potent regulatory activity in inhibiting T cell pro-inflammatory cytokine secretion, and responded directly to H. pylori antigen stimulation. Interestingly, in H. pylori-infected smoking subjects and obese subjects, the number of IL-10+ B cells and CD24+CD38+ B cells were reduced compared to H. pylori-infected asymptomatic subjects. Regulatory functions mediated by CD24+CD38+ B cells were also impaired. In addition, gastric cancer positive patients had reduced IL-10-producing B cell frequencies after H. pylori-stimulation. Altogether, these data suggest that in H. pylori-infection, CD24+CD38+ B cell is upregulated and plays a role in suppressing pro-inflammatory responses, possibly through IL-10 production, a feature that was not observed in smoking and obese patients.

  4. T lymphocyte subsets in prostate cancer subjects in south eastern ...

    African Journals Online (AJOL)

    Humoral and cellular mechanisms play roles in immune response to foreign antigens. The present study was designed to determine the T lymphocyte subsets (CD4 + T cells, CD8 + T cells and CD4/CD8 ratio) in the prostate cancer subjects and control subjects. CD4 + T cells (`l/count) and CD8 + T cells (`l/count) were ...

  5. Incidence of head and neck squamous cell carcinoma among subjects at high risk of lung cancer: results from the Pittsburgh Lung Screening Study.

    Science.gov (United States)

    Dixit, Ronak; Weissfeld, Joel L; Wilson, David O; Balogh, Paula; Sufka, Pamela; Siegfried, Jill M; Grandis, Jennifer R; Diergaarde, Brenda

    2015-05-01

    Earlier detection and diagnosis of head and neck squamous cell carcinoma (HNSCC) should lead to improved outcomes. However, to the authors' knowledge, no effective screening strategy has been identified to date. In the current study, the authors evaluated whether it would be useful to screen subjects targeted for lung cancer screening for HNSCC as well. Medical records, death certificates, and cancer registry and questionnaire data were used to determine the number of observed incident HNSCC cases in the Pittsburgh Lung Screening Study (PLuSS), a cohort of current and former smokers aged ≥50 years with a ≥12.5 pack-year smoking history. The expected number of cases was estimated using stratum-specific incidence rates obtained from Surveillance, Epidemiology, and End Results data for 2000 through 2011. The standardized incidence ratio was calculated to examine the difference between the observed and expected number of cases. Of the 3587 at-risk participants in the PLuSS, 23 (0.64%) developed HNSCC over a total of 32,201 person-years of follow-up. This finding was significantly higher than expected based on incidence rates obtained from the Surveillance, Epidemiology, and End Results program (13.70 cases expected; standardized incidence ratio, 1.68 [95% confidence interval, 1.06-2.52]). The excess burden of HNSCC in the PLuSS was 28.9 cases per 100,000 person-years. Observed incident cases were significantly more often male, had started smoking at a younger age, smoked more per day, and had more pack-years of smoking than the rest of the PLuSS at-risk participants. The results of the current study provide a rationale for offering head and neck cancer screening along with computed tomography screening for lung cancer. Randomized controlled trials that assess the effectiveness of adding examination of the head and neck area to lung cancer screening programs are warranted. © 2015 American Cancer Society.

  6. Lung cancer - small cell

    Science.gov (United States)

    ... carcinoma Small cell carcinoma Squamous cell carcinoma Secondhand smoke and lung cancer Normal lungs and alveoli Respiratory system Smoking hazards Bronchoscope References Horn L, Eisenberg R, ...

  7. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  8. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells

    NARCIS (Netherlands)

    Arner, Erik; Forrest, Alistair R R; Ehrlund, Anna; Mejhert, Niklas; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Laurencikiene, Jurga; Rydén, Mikael; Arner, Peter; Clevers, Hans

    2014-01-01

    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone

  9. Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells

    NARCIS (Netherlands)

    Arner, Erik; Forrest, Alistair R. R.; Ehrlund, Anna; Mejhert, Niklas; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Laurencikiene, Jurga; Rydén, Mikael; Arner, Peter; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A. Maxwell; Califano, Andrea; Cannistraci, Carlo V.; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie A.; Detmar, Michael; Diehl, Alexander D.; Dohi, Taeko; Edge, Albert S. B.; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gibson, Andrew; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J.; Sui, Shannan J. Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, S. Peter; Knox, Alan J.; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F. J.; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C.; Marchand, Benoit; Mathelier, Anthony; Meynert, Alison; Mizuno, Yosuke; de Lima Morais, David A.; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G. D.; Rackham, Owen J. L.; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B.; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Swoboda, Rolf K.; 't Hoen, Peter A. C.; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Suzan E.; Zhang, Peter G.; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten O.; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Hayashizaki, Yoshihide

    2014-01-01

    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone

  10. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  11. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  12. [Lung cancer in the elderly subject].

    Science.gov (United States)

    Albrand, G; Biron, E; Boucot, I; Couderc, L J; Crestani, B; Dombret, M C; Guenard, H; Grivaux, M; Hervy, M P; Housset, B; Jougon, J; Orvoen-Frija, E; Piette, F; Pignon, T; Pinganaud, G; Puisieux, F; Quoix, E; Sauty, E; Vaylet, F; Wary, B; Weill-Engerer, S; Westeel, V; Wislez, M

    2007-06-01

    In France, the average age for the diagnosis of bronchial carcinoma is 64. It is 76 in the population of over 70. In fact, its incidence increases with age linked intrinsic risk of developing a cancer and with general ageing of the population. Diagnosis tools are the same for elderlies than for younger patients, and positive diagnosis mainly depends on fibreoptic bronchoscopy, complications of which being comparable to those observed in younger patients. The assessment of dissemination has been modified in recent years by the availability of PET scanning which is increasingly becoming the examination of choice for preventing unnecessary surgical intervention, a fortiori in elderly subjects. Cerebral imaging by tomodensitometry and nuclear magnetic resonance should systematically be obtained before proposing chirurgical treatment. An assessment of the general state of health of the elderly subject is an essential step before the therapeutic decision is made. This depends on the concept of geriatric evaluation: Geriatric Multidimensional Assessment, and the Comprehensive Geriatric Assessment which concerns overall competence of the elderly. This is a global approach that allows precise definition and ranking of the patient's problems and their impact on daily life and social environment. Certain geriatric variables (IADL, BADL, MMSE, IMC etc) may be predictive of survival rates after chemotherapy or the incidence of complications following thoracic surgery. The main therapeutic principles for the management of bronchial carcinoma are applicable to the elderly subject; long term survival without relapse after surgical resection is independent of age. Whether the oncological strategy is curative or palliative, the elderly patient with bronchial carcinoma should receive supportive treatments. They should be integrated into a palliative programme if such is the case. In fact, age alone is not a factor that should detract from optimal oncological management. The

  13. Basal cell cancer (image)

    Science.gov (United States)

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  14. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  16. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  17. Basal cell skin cancer

    Science.gov (United States)

    Basal cell skin cancer almost never spreads. If it is left untreated, it may spread into surrounding areas and nearby tissues and bone. In these cases, treatment can injure the appearance of the skin.

  18. Mortality of Adult Critically Ill Subjects With Cancer.

    Science.gov (United States)

    Rosa, Regis Goulart; Tonietto, Tulio Frederico; Duso, Bruno Achutti; Maccari, Juçara Gasparetto; de Oliveira, Roselaine Pinheiro; Rutzen, William; Madeira, Laura; Ascoli, Aline; Hessler, Rachel; Morandi, Paola; Cremonese, Ricardo Viegas; Neto, Felippe Leopoldo Dexheimer; Tagliari, Luciana; de Campos Balzano, Patrícia; Barth, José Hervê Diel; Teixeira, Cassiano

    2017-05-01

    Cancer patients may require intensive care support for postoperative care, complications associated with underlying malignancy, or toxicities related to cancer therapy. The higher mortality rates found in this population than in the population of ICU patients without cancer may be attributable to confounding due to a higher prevalence of multiple organic dysfunctions at ICU admission in patients with malignancy; however, data regarding this hypothesis are scarce. Accordingly, we performed the present study to compare the crude and propensity score-matched mortality rates between adult subjects with and without cancer admitted to a mixed medical-surgical ICU. We conducted a retrospective analysis of a comprehensive longitudinal ICU database in a tertiary referral hospital in Southern Brazil. All adult subjects who were admitted to the ICU from January 2008 to December 2014 were evaluated. Crude and propensity score-matched all-cause 30-d mortality rates of critically ill subjects with cancer were compared with those of critically ill subjects without cancer. A total of 4,221 subjects were evaluated. The survival analysis revealed that the crude mortality rate was higher among subjects with cancer than among subjects without cancer (18.7% vs 10.2%, P < .001). However, after matching by propensity score, the 30-d mortality rates of subjects with and without cancer were similar (18.5% vs 15.2%, P = .17). The present study failed to show an association between malignancy and all-cause 30-d mortality rate in adult subjects admitted to a mixed medical-surgical ICU. The propensity score-matched analysis showed no evidence of excessive mortality due to cancer diagnosis. Copyright © 2017 by Daedalus Enterprises.

  19. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  20. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  2. Squamous cell skin cancer

    Science.gov (United States)

    ... squamous cell cancer include: Having light-colored skin, blue or green eyes, or blond or red hair Long-term, daily sun exposure (such as in people who work outside) Many severe sunburns early in life Older age Having had many x-rays Chemical exposure A weakened immune system, especially in ...

  3. Alcohol and Cancer Stem Cells

    OpenAIRE

    Mei Xu; Jia Luo

    2017-01-01

    Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and ...

  4. Important prognostic factors for the long-term survival of lung cancer subjects in Taiwan

    Directory of Open Access Journals (Sweden)

    Ko Albert

    2008-11-01

    Full Text Available Abstract Background This study used a large-scale cancer database in determination of prognostic factors for the survival of lung cancer subjects in Taiwan. Methods Total of 24,910 subjects diagnosed with lung cancer was analysed. Survival estimates by Kaplan-Meier methods. Cox proportional-hazards model estimated the death risk (hazard ratio (HR for various prognostic factors. Results The prognostic indicators associated with a higher risk of lung cancer deaths are male gender (males versus females; HR = 1.07, 95% confidence intervals (CI: 1.03–1.11, males diagnosed in later periods (shown in 1991–1994 versus 1987–1990; HR = 1.13, older age at diagnosis, large cell carcinoma (LCC/small cell carcinoma (SCC, and supportive care therapy over chemotherapy. The overall 5-year survival rate for lung cancer death was significantly poorer for males (21.3% than females (23.6%. Subjects with squamous cell carcinoma (SQCC and treatment by surgical resection alone had better prognosis. We find surgical resections to markedly increase 5-year survival rate from LCC, decreased risk of death from LCC, and no improved survival from SCC. Conclusion Gender and clinical characteristics (i.e. diagnostic period, diagnostic age, histological type and treatment modality play important roles in determining lung cancer survival.

  5. Cancer Stem Cells and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sheetal Dyall

    2010-01-01

    Full Text Available The cancer stem cell hypothesis is becoming more widely accepted as a model for carcinogenesis. Tumours are heterogeneous both at the molecular and cellular level, containing a small population of cells that possess highly tumourigenic “stem-cell” properties. Cancer stem cells (CSCs, or tumour-initiating cells, have the ability to self-renew, generate xenografts reminiscent of the primary tumour that they were derived from, and are chemoresistant. The characterisation of the CSC population within a tumour that drives its growth could provide novel target therapeutics against these cells specifically, eradicating the cancer completely. There have been several reports describing the isolation of putative cancer stem cell populations in several cancers; however, no defined set of markers has been identified that conclusively characterises “stem-like” cancer cells. This paper highlights the current experimental approaches that have been used in the field and discusses their limitations, with specific emphasis on the identification and characterisation of the CSC population in epithelial ovarian cancer.

  6. Cancer treatments transform residual cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    Harless William W

    2011-01-01

    Full Text Available Abstract Background Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor. Presentation of the hypothesis Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1 facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2 induce residual cancer stem cell proliferation. Testing the hypothesis Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression and cancer stem cell enrichment (stem cell markers upregulated. Implications of the hypothesis Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor repair may be amenable to treatment intervention at the time it is upregulated.

  7. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  8. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  9. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  11. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  12. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  13. Mechanotransduction in cancer stem cells.

    Science.gov (United States)

    Hao, Jin; Zhang, Yueling; Ye, Rui; Zheng, Yingcheng; Zhao, Zhihe; Li, Juan

    2013-09-01

    The cancer stem cell (CSC) concept, which arose about a decade ago, proposes that tumor growth is sustained by a subpopulation of highly malignant cells. These cells, termed CSCs, are capable of extensive self-renewal that contributes to metastasis and treatment resistance. Therefore, therapeutic strategies that target CSCs should be developed for improving outcomes of cancer patients. Recent progress has highlighted the importance of physical properties of the extracellular matrix and mechanotransduction pathway in cancer cells during cancer development. On the other hand, the significance of CXCR1, an upstream signal of FAK/PI3K/Akt has been revealed in CSCs. FAK/PI3K/Akt is a key signal mediator in mechanotransduction pathway. Therefore, mechanotransduction could be a new target for CSCs, and would be an innovative way to treat cancer by inhibiting FAK/PI3K/Akt. © 2013 International Federation for Cell Biology.

  14. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  15. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  16. Multifaceted Interpretation of Colon Cancer Stem Cells

    OpenAIRE

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-01-01

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but...

  17. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  18. Characterising Castrate Tolerant Prostate Cancer Cells

    OpenAIRE

    ASHLEE KATE CLARK

    2017-01-01

    Prostate cancer is a prevalent disease in aging males. This thesis explores prostate cancer cells that escape current therapy and give rise to end-stage disease. Using sophisticated experimental approaches, this important cancer cell population was identified and characterised in human prostate cancer tissues.  Our discoveries will eventually lead to improved cancer treatments for men with prostate cancer.

  19. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  20. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H.; Boersma-van Ek, Wytske; Terstappen, Leon W. M. M.; Groen, Harry J. M.; Timens, Wim; Kruyt, Frank A. E.; Hiltermann, T. Jeroen N.

    2016-01-01

    The prognostic value of markers of cancer stem cells and epithelial to mesenchymal transition in small cell lung cancer is not known. We retrospectively studied these markers in the biopsy tissue of patients with small cell lung cancer and correlated them with overall survival and the strongest

  1. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  2. Metallic elements in pulmonary biopsies from lung cancer and control subjects.

    Science.gov (United States)

    De Palma, Giuseppe; Goldoni, Matteo; Catalani, Simona; Carbognani, Paolo; Poli, Diana; Mozzoni, Paola; Acampa, Olga; Internullo, Eveline; Rusca, Michele; Apostoli, Pietro

    2008-01-01

    Occupational/environmental exposure to some metallic elements is a risk factor for the development of lung diseases, including lung cancer. We aimed at investigating the levels of arsenic, beryllium, cadmium, cobalt, chromium, nickel and lead in the lung tissue of patients affected by early stage non small cell lung cancer (NSCLC). A small number of patients without a diagnosis of lung cancer were also included as control group. Lung tissue biopsies were collected from 45 NSCLC patients (both cancerous and unaffected tissues) and 8 control subjects undergoing surgery. Patients were stratified for smoking habits, histopathology and cancer sites. Metallic elements were determined in dry tissue after digestion by means of ICP-MS. Cd, Ni and Pb levels were higher in unaffected than in control tissues (0.52 vs 0.18 microg/g dry, p elements, and particularly Cd, were influenced by smoking habits; Pb levels were higher in squamocellular carcinoma than adenocarcinomas; Ni distributed in the lungs in an inhomogeneous way. This study demonstrates that the unaffected lung tissue is more representative than the cancerous tissue of the pulmonary content of metallic elements. Tobacco smoke is a main factor affecting the concentration levels of Cd, Pb, and to a lesser extent Ni in the lung tissues of NSCLC patients. The role of past environmental-occupational exposures could not be fully elucidated, due to the limited sample size and the retrospective nature of the study.

  3. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  4. Subjectivity

    Directory of Open Access Journals (Sweden)

    Jesús Vega Encabo

    2015-11-01

    Full Text Available In this paper, I claim that subjectivity is a way of being that is constituted through a set of practices in which the self is subject to the dangers of fictionalizing and plotting her life and self-image. I examine some ways of becoming subject through narratives and through theatrical performance before others. Through these practices, a real and active subjectivity is revealed, capable of self-knowledge and self-transformation. 

  5. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  6. Breast cancer circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Maria Joao Carvalho

    2011-12-01

    Full Text Available Metastasization of breast cancer involves various mechanisms responsible for progression from invasive lesion to dissemination in distant organs. Regional lymph node metastasization was considered an initial step in this process, but it is now recognized that hematogenous dissemination is a deviation from lymphatic circulation. The detection of circulating tumor cells (CTC is an aim in several oncology areas. For this purpose, several techniques have been used to detect CTC, including the use of antibodies and techniques with nucleic acids. This study reviews the published studies considering the detection of breast cancer CTC. There are focused the difficulties in identifying a CTC in a heterogeneous population, the handling of the sample, criteria of positivity, analytical techniques, and specific markers. There are systematized various specific markers of breast cancer cells also the problems with false positive results. Finally, we hypothesize clinical applications either as a prognostic marker or as a therapeutic response monitor.

  7. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  8. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  9. Evolution and phenotypic selection of cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2015-03-01

    Full Text Available Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC, as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes.

  10. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  11. Stem cells in prostate cancer.

    Science.gov (United States)

    Mateo, Francesca; Fernandez, Pedro L; Thomson, Timothy M

    2013-06-01

    Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.

  12. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, M.M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, Leonardus Wendelinus Mathias Marie; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.N.J.

    2016-01-01

    Background Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and

  13. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  14. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    Directory of Open Access Journals (Sweden)

    Arif Malik

    2016-01-01

    Full Text Available Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  15. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update.

    Science.gov (United States)

    Malik, Arif; Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  16. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  17. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk

    Science.gov (United States)

    2007-04-01

    Early life processes, endocrine mediators and number of susceptible cells in relation 5a. CONTRACT NUMBER to breast cancer ... cancer risk. Method: Five interlinked component projects covering the spectrum from endometrial to adult life . Progress report: Component projects...Analyses are pending and no findings can be reported yet. 15. SUBJECT TERMS Breast cancer , early life , mammary gland specific stem cells, hormones 16

  18. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  19. Cancer Stem Cells and the Ontogeny of Lung Cancer

    OpenAIRE

    Peacock, Craig D.; Watkins, D. Neil

    2008-01-01

    Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth, survival, and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramou...

  20. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  1. Cancer stem cells: the theory and perspectives in cancer therapy.

    Science.gov (United States)

    Gil, Justyna; Stembalska, Agnieszka; Pesz, Karolina A; Sasiadek, Maria M

    2008-01-01

    The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour's ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The 'niche' hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.

  2. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  3. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2017-09-01

    chose to make new medulloblastoma models with oncogenic PIK3CA (PIK3CAH1047R). However, this change caused major delay in our progress since we have not...these tumors. 15. SUBJECT TERMS cancer stem cells, medulloblastoma, targeted therapy, therapy resistance , pediatric cancer, brain tumor, Notch1...Keywords……………………………………………………………. 4 3. Accomplishments………..………………………………………….. 4 4. Impact…………………………...…………………………………… 8 5. Changes /Problems

  4. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  5. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  6. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Directory of Open Access Journals (Sweden)

    Felicite K. Noubissi

    2016-09-01

    Full Text Available Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

  7. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Wei ZHAO

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  8. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Clavier, Séverine; Zaal, Esther A; Pijls, Maud M E; van Kooten, Robert T; Vermaas, Klaas; Leen, René; Jongejan, Aldo; Moerland, Perry D; van Kampen, Antoine H C; van Kuilenburg, André B P; Berkers, Celia R; Lemeer, Simone; Heger, Michal

    2017-03-01

    Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC50) and supralethal (LC90) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC90. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.

  9. Anticoagulant drugs increase natural killer cell activity in lung cancer

    Czech Academy of Sciences Publication Activity Database

    Bobek, M.; Boubelík, Michael; Fišerová, Anna; Luptovcová, Martina; Vannucci, Luca; Kacprzak, G.; Kolodzej, J.; Majewski, A.M.; Hoffman, R. M.

    2005-01-01

    Roč. 47, č. 2 (2005), s. 215-223 ISSN 0169-5002 Institutional research plan: CEZ:AV0Z5052915 Keywords : anticoagulant drugs * lung cancer * NK cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.172, year: 2005

  10. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  11. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  12. Ovarian Cancer Stem Cells: A New Target for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Qinglei Zhan

    2013-01-01

    Full Text Available Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.

  13. Cancer fear and fatalism: how African American participants construct the role of research subject in relation to clinical cancer research.

    Science.gov (United States)

    Somayaji, Darryl; Cloyes, Kristin Gates

    2015-01-01

    Lack of African American participation in cancer clinical trials has been identified as a critical problem. Historical interactions related to race, identity, and power may contribute to continued inequity in healthcare and research participation. The aim of this study was to explore the perceptions of African Americans regarding cancer and research and how these perceptions shape their beliefs about participating as cancer research subjects. Three African American focus groups were conducted including people who had never participated in cancer research, those who had, and those who were asked but refused (n = 16). Discussion focused on their perceptions of cancer research and actual or potential participation as research subjects. Data were coded using both structured and inductive coding methods. Fear and fatalism emerged in relation to research, race, power, and identity and were related to larger historical and social issues rather than only individual thoughts or feelings. Participants described fears of the unknown, death, mistrust, conspiracy, and discrimination together with positive/negative tensions between self, family, and community responsibilities. Complex identities linked perceptions of cancer and cancer research with broader historical and cultural issues. Fear, fatalism, and current and historical relationships influence how people perceive themselves as research subjects and may influence their decisions to participate in cancer research. Acknowledging how complex factors including race and racism contribute to health disparities may give nurses and other healthcare providers a better appreciation of how historical, social, and cultural dynamics at individual, community, and organizational levels influence access to and participation in cancer research.

  14. Cancer stem cell targeted therapy: progress amid controversies

    Science.gov (United States)

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  15. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  16. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  17. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  18. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Molecular Biology of Liver Cancer Stem Cells

    National Research Council Canada - National Science Library

    Oishi, Naoki; Yamashita, Taro; Kaneko, Shuichi

    2014-01-01

    .... The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased...

  20. Cancer Stem Cells: Repair Gone Awry?

    Directory of Open Access Journals (Sweden)

    Fatima Rangwala

    2011-01-01

    Full Text Available Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh, that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors.

  1. NK Cells and Virus-Related Cancers

    OpenAIRE

    Mishra, Rabinarayan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2014-01-01

    Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.

  2. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics ......, help us both in the identification and characterization of cancer stem cells and in the further development of therapeutic strategies including tissue engineering...

  3. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  4. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  5. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  6. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  7. Betulinic Acid Kills Colon Cancer Stem Cells

    NARCIS (Netherlands)

    Potze, Lisette; Di Franco, Simone; Kessler, Jan H.; Stassi, Giorgio; Medema, Jan Paul

    2016-01-01

    Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad

  8. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  9. Subjective sexual well-being and sexual behavior in young women with breast cancer

    NARCIS (Netherlands)

    Kedde, H.; van de Wiel, H. B. M.; Schultz, W. C. M. Weijmar; Wijsen, C.

    The aim of this study was to systematically describe the nature and context of subjective sexual well-being and sexual behavior in young women with breast cancer. Data on sexual behavior and subjective sexual well-being were collected through an internet questionnaire. Respondents were included if

  10. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. Of germ cells, trophoblasts, and cancer stem cells.

    Science.gov (United States)

    Burleigh, Angela R

    2008-12-01

    The trophoblastic theory of cancer, proposed in the early 1900s by Dr John Beard, may not initially seem relevant to current cancer models and treatments. However, the underpinnings of this theory are remarkably similar to those of the cancer stem cell (CSC) theory. Beard noticed that a significant fraction of germ cells never reach their final destination as they migrate during embryonic development from the hindgut to the germinal ridge. In certain situations, upon aberrant stimulation, these vagrant germ cells are able to generate tumors. Simplistically, the CSC theory surmises that a small population of tumorigenic cells exists, which initiate and maintain tumors, and these cells have a likely origin in normal stem cells. Both these theories are based on the potential of a single primitive cell to form a tumor. This has a major implication for cancer therapy, in that only a small percentage of cells need to be targeted to ablate a tumor.

  12. Subjective experience analysis in women with breast cancer

    Directory of Open Access Journals (Sweden)

    Miriam Belber-Gómez

    2018-01-01

    Full Text Available In this article the psychological experience and needs shown in the discourse of women diagnosed with breast cancer in a psychological group intervention was analyzed. The sessions are transcribed and a discourse analysis is performed, selecting the most prevailing topics. The main psychological difficulties perceived by the participants are the following: body identity change, sexuality changes, new quality of interpersonal relationships, implications of positive thinking culture, fear of recurrence, the relationship with the hospital staff and change after diagnosis. The aspects of the group considered to be helpful are also addressed, i.e. feeling understood by the others, seeing the rest of participants as coping models, changing their relationship with the illness. Several clinical implications are highlighted in order to improve a comprehensive care.

  13. Single Cell Characterization of Prostate Cancer Circulating Tumor Cells

    Science.gov (United States)

    2011-08-01

    CTCs from patient blood, a single T24 bladder and LNCaP prostate cancer cells, a pool of 8 prostate CTCs, and one leukocyte isolated from the blood...amplify 66% of mRNA pool from a single cell. Clustering analysis does differentiate CTCs from LNCaP and T24 bladder cell lines (Figure 4). At present we...profiles could distinguish a CTC from prostate cancer cell line LNCaP and T24 bladder cancer cell line.  There was intra and inter patient heterogeneity

  14. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  15. Evaluation of perioperative nutritional status with subjective global assessment method in patients undergoing gastrointestinal cancer surgery.

    Science.gov (United States)

    Erdim, Aylin; Aktan, Ahmet Özdemir

    2017-01-01

    This study was designed to evaluate the perioperative nutritional status of patients undergoing surgery for gastrointestinal cancer using Subjective Global Assessment and surgeon behavior on nutritional support. We recruited 100 patients undergoing surgery for gastrointestinal cancer in one university and two state teaching hospitals. Subjective Global Assessment was administered to evaluate preoperative and postoperative nutritional status. Fifty-two patients in the state hospitals (Group 1) and 48 in the university hospital were assessed. Anthropometric and biochemical measurements were performed. Changes in preoperative Subjective Global Assessment scores and scores at the time of discharge and types of nutritional support were compared. Subjective Global Assessment-B was regarded as moderate and Subjective Global Assessment-C as heavy malnutrition. Ten patients had Subjective Global Assessment-B and 29 had Subjective Global Assessment-C malnutrition in Group 1 and nine had Subjective Global Assessment-B and 31 had Subjective Global Assessment-C malnutrition in Group 2 during preoperative assessment. Respective numbers in postoperative assessment were 12 for Subjective Global Assessment-B and 30 for Subjective Global Assessment-C in Group 1 and 14 for Subjective Global Assessment-B and 26 for Subjective Global Assessment-C in Group 2. There was no difference between two groups. Nutritional methods according to Subjective Global Assessment evaluation in pre- and postoperative periods were not different between the groups. This study demonstrated that the malnutrition rate is high among patients scheduled for gastrointestinal cancer surgery and the number of surgeons were inadequate to provide perioperative nutritional support. Both university and state hospitals had similar shortcomings. Subjective Global Assessment is an easy and reliable test and if utilized will be helpful to detect patients requiring nutritional support.

  16. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  17. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  18. Thymidylate synthase (TS tandem repeat promoter polymorphism and susceptibility to colorectal cancer of romanian subjects

    Directory of Open Access Journals (Sweden)

    Mihai TOMA

    2010-05-01

    Full Text Available The risk of colorectal cancer (CRC is influence by polymorphisms located in the genes encoding enzymes of the folate pathway. The aim of this study was to evaluate if 2R/3R TS (rs34743033 polymorphism is involved in predisposition for colorectal in Romanian subjects. In the present case-control study, 75 sporadic CRC subjects and 60 healthy controls were genotyped by PCR method. The frequency of 3R/3R genotype was 40% in control group and 42.7% in cancer group. We found that there was no statistically significant association between the risk for CRC and 2R/3R TS polymorphism in Romanian subjects.

  19. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Directory of Open Access Journals (Sweden)

    Thomas W.J. Lennard

    2011-04-01

    Full Text Available In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP, have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC, combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  20. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  1. Cisplatin induces differentiation of breast cancer cells.

    Science.gov (United States)

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.

  2. Antioxidant Activity and Cytotoxicity Effect of Cocoa Beans Subjected to Different Processing Conditions in Human Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Deborah Bauer

    2016-01-01

    Full Text Available Lung cancer is a common malignancy in men and the second leading cause of cancer-related mortality in men in the western world. Phenolic cocoa ingredients have a strong antioxidative activity and the potential to have a protective effect against cancer. In the present study, we have evaluated the influence of cocoa beans subjected to different processing conditions on cell viability and apoptosis of human lung cancer cells (A549. We measured the viability of lung cells treated with cocoa beans, unroasted slates (US, roasted slates (RS, unroasted well fermented (UWF cocoa, and roasted well fermented (RWF cocoa for 24 h. Using an MTT assay, we observed a decrease in the viability of A549 cells after treatment with cocoa bean extracts. Flow cytometer analysis revealed that cocoa beans increased the percentage of cells in sub-G1 phase and promoted up to twofold increase of apoptotic cells when compared to the control group. Taken together, the present study suggests that cocoa beans may have a protective effect against lung cancer.

  3. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  4. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, B; Holck, Susanne; Christensen, Ib Jarle

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  5. Data on the recurrence of breast tumors fit a model in which dormant cells are subject to slow attrition but can randomly awaken to become malignant

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas

    2006-01-01

    by the body's immune system, or by random apoptosis or senescence. (iv) Recurrence suppressor mechanisms exist. (v) When such genes are disabled by random mutations, the dormant metastatic cell is activated, and will develop to a cancer recurrence. The model was also fitted to data on the survival......We successfully modeled the recurrence of tumors in breast cancer patients, assuming that: (i) A breast cancer patient is likely to have some circulating metastatic cells, even after initial surgery. (ii) These metastatic cells are dormant. (iii) The dormant cells are subject to attrition...

  6. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However...

  7. A randomized, double-blind, placebo-controlled phase 3 skin cancer prevention study of DFMO in subjects with previous history of skin cancer

    Science.gov (United States)

    Bailey, HH; Kim, K; Verma, A; Sielaff, K; Larson, PO; Snow, S; Lenaghan, T; Viner, JL; Douglass, J; Dreckschmidt, N; Hamielec, M; Pomplun, M; Sharata, HH; Puchalsky, D; Berg, ER; Havighurst, T; Carbone, PP

    2009-01-01

    Preclinical studies have shown the inhibition of ornithine decarboxylase (ODC) by α-difluoromethylornithine (DFMO) and resultant decreases in tissue concentrations of polyamines (putrescine & spermidine) prevents neoplastic developments in many tissue types. Clinical studies of oral DFMO at 500 mg/m2/day revealed it to be safe and tolerable and resulted in significant inhibition of phorbol ester-induced skin ODC activity. Two hundred and ninety-one participants (mean 61 y.o., 60% male) with a history of prior non-melanoma skin cancer (mean 4.5 skin cancers) were randomized to oral DFMO (500 mg/m2/day) or placebo for 4–5 years. There was a trend toward a history of more prior skin cancers in subjects randomized to placebo, but all other characteristics including sunscreen and NSAID use were evenly distributed. Evaluation of 1200-person years of follow-up revealed a new non-melanoma skin cancer (NMSC) rate of 0.5 events/person/year. The primary endpoint, new NMSC’s, was not significantly different between subjects taking DFMO and placebo (260 vs. 363 cancers, p=0.069, two-sample t test). Evaluation of basal cell (BCC) and squamous cell (SCC) cancers separately revealed very little difference in SCC between treatment groups but a significant difference in new BCC (DFMO 163 cancers; Placebo 243 cancers; expressed as event rate 0.28 BCC/person/year vs. 0.40 BCC/person/year, p=0.03). Compliance with DFMO was >90% and it appeared to be well tolerated with evidence of mild ototoxicity as measured by serial audiometric examination when compared to placebo subjects. Analysis of normal skin biopsies revealed a significant (pskin cancer taking daily DFMO had an insignificant reduction (p=0.069), in new NMSC that was predominantly due to a marked reduction in new BCC. Based on these data, the potential of DFMO, alone or in combination, to prevent skin cancers should be explored further. PMID:20051371

  8. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  9. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  10. Lipid degradation promotes prostate cancer cell survival

    Science.gov (United States)

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Lau, Chung Ho; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J.; Takhar, Mandeep; Heemers, Hannelore V.; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L.; Clarke, Noel; Swinnen, Johan V.; Keun, Hector C.; Rekvig, Ole P.; Mills, Ian G.

    2017-01-01

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. PMID:28415728

  11. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45.

    Science.gov (United States)

    Zhang, Hai-hong; Cai, Ai-zhen; Wei, Xue-ming; Ding, Li; Li, Feng-zhi; Zheng, Ai-ming; Dai, Da-jiang; Huang, Rong-rong; Cao, Hou-jun; Zhou, Hai-yang; Wang, Jian-mei; Wang, Xue-jing; Shi, Wei; Zhu, Heng; Yuan, Xiao-ying; Chen, Lin

    2013-03-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many kinds of cell lines and tissues have demonstrated the presence of SP cells, including several gastric cancer cell lines. This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45. We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells. This study found that the SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness-related gene expression profiles, including OCT-4, SOX-2, NANOG, CD44, and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2, were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Western blot was used to show the difference of protein expression between SP and MP cells. Both results show that there was significantly higher protein expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells show higher tumorigenesis tendency than MP cells. These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  12. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Germana Castelli

    2017-09-01

    Full Text Available Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (iCCA. Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV infection (frequent in Asia and Africa, hepatitis C virus (HCV, chronic alcohol abuse, or metabolic syndrome (frequent in Western countries. In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47; the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.

  13. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  14. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  16. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  17. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  18. Experiencing menopause in the context of cancer: Women's constructions of gendered subjectivities.

    Science.gov (United States)

    Parton, Chloe; Ussher, Jane M; Perz, Janette

    2017-09-01

    Many women experience premature menopause following cancer treatment, accompanied by psychological distress, and poor health-related quality of life. In this qualitative study, we examined how women construct their gendered subjectivities - their sense of self as a woman - in the context of premature menopause after cancer. We analysed data from open-ended survey items and semi-structured interviews with women who had experienced cancer. Six hundred and ninety-five women completed the online survey and 61 took part in a semi-structured interview. A thematic decomposition was conducted to identify the subject positions associated with menopause taken up by the women. Three overall themes were identified: 'The Incomplete Woman,' 'The Abject, Asexual Woman' and 'Out of Time and Social Isolation.' Menopause was predominantly constructed as a negative experience, similar to older post-menopausal women and dissimilar to peers, contributing to experiences of social isolation. Menopause also signified the presence of a medically diagnosed cancer condition, and uncertainty around cancer prognosis. It is important for cancer support group leaders and other service providers to be sensitive to women's negotiation of menopause following cancer, in the context of broader cultural constructions, in order to provide appropriate information and support.

  19. Alterations of calcium homeostasis in cancer cells.

    Science.gov (United States)

    Marchi, Saverio; Pinton, Paolo

    2016-08-01

    Typical hallmarks of cancer include programmed cell death evasion, uncontrolled cell growth, invasion, and metastasis. Changes in intracellular Ca(2+) levels can modulate signaling pathways that control a broad range of cellular events, including those important to tumorigenesis and cancer progression. Here we discuss how known molecular mediators of cellular Ca(2+) homeostasis impact tumor dynamics and how deregulation of major oncogenes and tumor suppressors is tightly associated with Ca(2+) signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lgr5-Positive Cells are Cancer-Stem-Cell-Like Cells in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhongli Wang

    2015-07-01

    Full Text Available Background/Aims: Effective treatment of gastric cancer (GC requires better understanding of the molecular regulation of its carcinogenesis. Identification of cancer stem cells (CSCs in GC appears to be a critical question. Methods: We analyzed Lgr5 expression in GC specimen. We used an adeno-associated virus (AAV that carries diphtheria toxin fragment A (DTA under the control of Lgr5 promoter (AAV-pLgr5-DTA to transduce human GC cells. The growth of GC cells with/without depletion of Lgr5-positive cells was studied in vitro in an MTT assay, and in vivo by analyzing bioluminescence levels. Results: A portion of GC cells in the resected specimen expressed Lgr5. GC cells that formed tumor spheres expressed high Lgr5. Selective depletion of Lgr5-positive GC cells resulted in significant growth inhibition of GC cells in vitro and in vivo. Conclusion: Lgr5-positive cells may be CSCs-like cells in GC and may play a pivotal role in the tumorigenesis of GC. Treating Lgr5-positive GC cells may substantially improve the therapeutic outcome.

  1. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Science.gov (United States)

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  2. Epigenetics of solid cancer stem cells.

    Science.gov (United States)

    Mishra, Alok; Verma, Mukesh

    2012-01-01

    Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

  3. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    2011-01-01

    Full Text Available Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  4. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  5. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  6. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  7. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  8. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our under...

  9. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our understanding of ...

  10. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  11. Authors' response: 'Lung cancer risk in subjects exposed to organic dust'

    NARCIS (Netherlands)

    Peters, S.; Kromhout, H.; Olsson, A.; Straif, K.; Vermeulen, R.

    2012-01-01

    Response to: Mastrangelo, G., Rylander, R., Cegolon, L. & Lange, J.H. (2012). Lung cancer risk in subjects exposed to organic dust: an unexpected and surprising story. Thorax 67(12), 1112–1112. Original article: Peters, S., Kromhout, H., Olsson, A.C., Wichmann, H.-E., Brüske, I., Consonni, D.,

  12. Frequency of Acentric Fragments Are Associated with Cancer Risk in Subjects Exposed to Ionizing Radiation.

    Czech Academy of Sciences Publication Activity Database

    Fucic, A.; Bonassi, S.; Gundy, S.; Šrám, Radim; Ceppi, M.; Lucas, J.N.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 2451-2457 ISSN 0250-7005 Institutional support: RVO:68378041 Keywords : ionizing radiation * cancer risk * acentric fragments * chromosomal aberrations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 1.937, year: 2016

  13. Death Pathways Triggered by Activated Ras in Cancer Cells

    Science.gov (United States)

    Overmeyer, Jean H.; Maltese, William A.

    2011-01-01

    Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras proteins have been clearly linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. The balance between the opposing functions of Ras in cell proliferation/survival versus cell death can be critical for determining the overall fate of the cancer cell. In this review we will survey the body of literature that points to the ability of activated Ras proteins to tip the scales toward cell death under conditions where cancer cells encounter adverse environmental conditions or are subjected to apoptotic stimuli. In some cases the consequences of Ras activation are mediated through interactions with known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding the details of these pathways, and the various factors that go into changing the nature of Ras signaling from pro-survival to pro-death, could potentially set the stage for the development of novel therapeutic approaches aimed at manipulating the pro-death Ras effector pathways in cancers. PMID:21196257

  14. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Gao, Quanli; Geng, Li; Kvalheim, Gunnar; Gaudernack, Gustav; Suo, Zhenhe

    2009-01-01

    Side population (SP) cells may enrich stem-like cells in many normal and malignant tissues. However, SP method application has drawn special attention to the field of stem cell research, and the existence of SP cells in cell culture is being debated, most probably because different cell lines require different technical modifications, especially when cell staining is considered. In this study, the authors aimed to disclose whether the hoechst33342 staining required extensive optimization for identifying SP cells in the human ovarian cancer cell line OVCAR-3. After systematic evaluations, it was found that only 2.5 microg/mL hoechst33342 staining of the cells for 60 min could get an ideal SP population, which accounted for 0.9% of the whole cell population. The sorted SP cells showed significantly higher colony formation efficiency than the non-side population (NSP) cells, and only the SP cells could form holoclones. Real-time PCR disclosed that SP cells expressed higher levels of "stemness" gene Oct3/4 than the NSP cells did, indicating that the SP cells might harbor cancer stem cells in this cell line. The results highlight the necessity of SP method optimization in cell studies, and the SP cells in this cell line merit further studies when cancer stem cell identification and isolation are considered.

  15. Cancer stem cells and their implication in breast cancer.

    Science.gov (United States)

    Carrasco, E; Alvarez, Pablo J; Prados, José; Melguizo, Consolación; Rama, Ana R; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2014-07-01

    The cancer stem cell (CSC) hypothesis on the origin of cancer has recently gained considerable support. CSCs are tumour cells with the capacity for self-renewal and differentiation that direct the origin and progression of the disease and may be responsible for relapse, metastasis and treatment failures. This article reviews breast CSCs (BCSCs) phenotyping, clinical implications and clinical trials focused on BCSCs in breast cancer. Relevant studies were found through PubMed and Clinicaltrials.gov databases. Cancer stem cells are identified and isolated using membrane and cell activity markers; in the case of BCSCs, these are CD44(+) /CD24(low/-) and show aldehyde dehydrogenase activity, alongside their capacity to grow and form mammospheres. The presence of stem cell properties is associated with a worse outcome. Hence, these cells have important clinical implications, and elucidation of the mechanisms underlying their activity will allow the development of novel effective therapies and diagnostic instruments, improving the prognosis of these patients. Standard treatments are directed against the tumour mass and do not eliminate CSCs. There is therefore a need for specific anti-CSC therapies, and numerous authors are investigating new targets to this end, as reported in this review. It is also necessary for clinical trials to be undertaken to allow this new knowledge to be applied in the clinical setting. However, there have been few trials on anti-BCSCs therapies to date. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  16. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    OpenAIRE

    Halliday A Idikio

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...

  17. Subjective sexual well-being and sexual behavior in young women with breast cancer.

    Science.gov (United States)

    Kedde, H; van de Wiel, H B M; Weijmar Schultz, W C M; Wijsen, C

    2013-07-01

    The aim of this study was to systematically describe the nature and context of subjective sexual well-being and sexual behavior in young women with breast cancer. Data on sexual behavior and subjective sexual well-being were collected through an internet questionnaire. Respondents were included if they had been diagnosed with breast cancer within the past 6 years and were currently 45 years of age or younger. Results were compared with a representative sample of the general Dutch population. In comparison with the general Dutch population of women, young women still undergoing breast cancer treatment are less sexually active and have a more negative experience of sexuality. While women who had already finished their treatment had more or less the same amount of sexual activity as the general Dutch population, there were still major differences in their experience of sexuality. Particularly strong associations were found between these women's sexual well-being in relation to their relationship satisfaction, and sexual interaction competence. In the wake of breast cancer treatment, young women have difficulty enjoying sex; it is evidently hard for them to resume their sex lives after breast cancer. In particular, women who find it hard to discuss sexual wishes and the possibilities and impossibilities associated with breast cancer with their partner experience negative consequences when trying to resume their sex lives.

  18. Cell Phones and Cancer Risk

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... interagency program headquartered at the National Institute of Environmental Health Sciences (NIEHS), which is part of the ...

  19. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  20. The therapeutic promise of the cancer stem cell concept

    National Research Council Canada - National Science Library

    Frank, Natasha Y; Schatton, Tobias; Frank, Markus H

    2010-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation...

  1. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Shun-Yao Ko

    Full Text Available Advanced glycation end products (AGEs are produced in an irreversible non-enzymatic reaction of carbohydrates and proteins. Patients with diabetes mellitus (DM are known to have elevated AGE levels, which is viewed as a risk factor of diabetes-related complications. In a clinical setting, it has been shown that patients with oral cancer in conjunction with DM have a higher likelihood of cancer metastasis and lower cancer survival rates. AGE-RAGE (a receptor of AGEs is also correlated with metastasis and angiogenesis. Recent studies have suggested that the malignancy of cancer may be enhanced by glyceraldehyde-derived AGEs; however, the underlying mechanism remains unclear. This study examined the apparently close correlation between AGE-RAGE and the malignancy of SAS oral cancer cell line. In this study, AGEs increased ERK phosphorylation, enhanced cell migration, and promoted the expression of RAGE, MMP2, and MMP9. Using PD98059, RAGE antibody, and RAGE RNAi to block RAGE pathway resulted in the inhibition of ERK phosphorylation. Cell migration, MMP2 and MMP9 expression were also reduced by this treatment. Our findings demonstrate the importance of AGE-RAGE with regard to the malignancy of oral cancer, and help to explain the poor prognosis of DM subjects with oral cancer.

  2. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. Copyright © 2010 AACR.

  3. Liver cancer stem cells as an important target in liver cancer therapies.

    Science.gov (United States)

    Zou, Gang-Ming

    2010-02-01

    Hepatic cancer is one of most common cause of cancer-related death. Hepato-epithelial cancers are believed to originate from the malignant transformation of liver-resident stem/progenitor cells. Liver cancer stem cells have been characterized recently and the phenotype of liver cancer stem cells has been defined as CD133+ CD44+ cancer cells. Recently, it has been also demonstrated about the relevance of targeting liver cancer stem cells, due to cancer stem cells are related to cancer metastasis. These advances no doubt to bring the new strategy in liver cancer treatment and control in this disease. This review describes the current status and progress about cancer stem cell research in liver and discuss of the implications of these studies in new liver cancer treatment strategies.

  4. Cells as delivery vehicles for cancer therapeutics.

    Science.gov (United States)

    Basel, Matthew T; Shrestha, Tej B; Bossmann, Stefan H; Troyer, Deryl L

    2014-05-01

    Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.

  5. Raman spectroscopic characterization of urine of normal and cervical cancer subjects

    Science.gov (United States)

    Pappu, Raja; Prakasarao, Aruna; Dornadula, Koteeswaran; Singaravelu, Ganesan

    2017-02-01

    Cervical cancer is the fourth most common malignancy in female worldwide; the present method for diagnosis is the biopsy, Pap smear, colposcopy etc. To overcome the drawbacks of diagnosis an alternative technique is required, optical spectroscopy is a new technique where the discrimination of normal and cancer subjects provides valuable potential information in the diagnostic oncology at an early stage. Raman peaks in the spectra suggest interesting differences in various bio molecules. In this regard, non invasive optical detection of cervical cancer using urine samples by Raman Spectroscopy combined with LDA diagnostic algorithm yields an accuracy of 100% for original and cross validated group respectively. As the results were appreciable it is necessary to carry out the analysis for more number of samples to explore the facts hidden at different stages during the development of cervical cancer.

  6. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  7. IL-4-mediated drug resistance in colon cancer stem cells

    NARCIS (Netherlands)

    Todaro, Matilde; Perez Alea, Mileidys; Scopelliti, Alessandro; Medema, Jan Paul; Stassi, Giorgio

    2008-01-01

    Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently

  8. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  9. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  10. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  11. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells.

    Science.gov (United States)

    Chang, Yung-Ting; Wu, Chang-Yi; Tang, Jen-Yang; Huang, Chiung-Yao; Liaw, Chih-Chuang; Wu, Shih-Hsiung; Sheu, Jyh-Horng; Chang, Hsueh-Wei

    2017-09-01

    Soft corals-derived natural product, sinularin, was antiproliferative against some cancers but its effect and detailed mechanism on oral cancer cells remain unclear. The subject of this study is to examine the antioral cancer effects and underlying detailed mechanisms in terms of cell viability, oxidative stress, cell cycle analysis, and apoptosis analyses. In MTS assay, sinularin dose-responsively decreased cell viability of three oral cancer cells (Ca9-22, HSC-3, and CAL 27) but only little damage to oral normal cells (HGF-1). This cell killing effect was rescued by the antioxidant N-acetylcysteine (NAC) pretreatment. Abnormal cell morphology and induction of reactive oxygen species (ROS) were found in sinularin-treated oral cancer Ca9-22 cells, however, NAC pretreatment also recovered these changes. Sinularin arrested the Ca9-22 cells at G2/M phase and dysregulated the G2/M regulatory proteins such as cdc2 and cyclin B1. Sinularin dose-responsively induced apoptosis on Ca9-22 cells in terms of flow cytometry (annexin V and pancaspase analyses) and western blotting (caspases 3, 8, 9) and poly (ADP-ribose) polymerase (PARP). These apoptotic changes of sinularin-treated Ca9-22 cells were rescued by NAC pretreatment. Taken together, sinularin induces oxidative stress-mediated antiproliferation, G2/M arrest, and apoptosis against oral cancer cells and may be a potential marine drug for antioral cancer therapy. © 2017 Wiley Periodicals, Inc.

  12. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... immunology approach is applied. Via in silico screening of the protein sequences, 415 peptides were predicted as HLA-A*0201 and HLA-B*0702 binders. Subsequent in vitro binding analysis in a MHC ELISA platform confirmed binding for 147 of the 415 predicted binders. The 147 peptides were evaluated for T cell...

  13. Phenotypic Heterogeneity of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Aurelio Lorico

    2011-01-01

    Full Text Available Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006, and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006. The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005, has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et al., 2006 has suggested that current anticancer drugs, which inhibit bulk replicating cancer cells, may not effectively inhibit CSC. The clinical relevance of targeting CSC-associated genes is supported by several recent studies, including CD44 targeting for treatment of acute myeloid leukemia (Jin et al., 2006, CD24 targeting for treatment of colon and pancreatic cancer (Sagiv et al., 2008, and CD133 targeting for hepatocellular and gastric cancer (Smith et al., 2008. One promising approach is to target CSC survival signaling pathways, where leukemia stem cell research has already made some progress (Mikkola et al., 2010.

  14. Breast cancer development in transsexual subjects receiving cross-sex hormone treatment.

    Science.gov (United States)

    Gooren, Louis J; van Trotsenburg, Michael A A; Giltay, Erik J; van Diest, Paul J

    2013-12-01

    Transsexual people receive cross-sex hormones as part of their treatment, potentially inducing hormone-sensitive malignancies. To examine the occurrence of breast cancer in a large cohort of Dutch male and female transsexual persons, also evaluating whether the epidemiology accords with the natal sex or the new sex. Number of people with breast cancer between 1975 and 2011. We researched the occurrence of breast cancer among transsexual persons 18-80 years with an exposure to cross-sex hormones between 5 to >30 years. Our study included 2,307 male-to-female (MtF) transsexual persons undergoing androgen deprivation and estrogen administration (52,370 person-years of exposure), and 795 female-to-male (FtM) subjects receiving testosterone (15,974 total years of exposure). Among MtF individuals one case was encountered, as well as a probable but not proven second case. The estimated rate of 4.1 per 100,000 person-years (95% confidence interval [CI]: 0.8-13.0) was lower than expected if these two cases are regarded as female breast cancer, but within expectations if viewed as male breast cancer. In FtM subjects, who were younger and had shorter exposure to cross-sex hormones compared with the MtF group, one breast cancer case occurred. This translated into a rate of 5.9 per 100,000 person-years (95% CI: 0.5-27.4), again lower than expected for female breast cancer but within expected norms for male breast cancer. The number of people studied and duration of hormone exposure are limited but it would appear that cross-sex hormone administration does not increase the risk of breast cancer development, in either MtF or FtM transsexual individuals. Breast carcinoma incidences in both groups are comparable to male breast cancers. Cross-sex hormone treatment of transsexual subjects does not seem to be associated with an increased risk of malignant breast development. © 2013 International Society for Sexual Medicine.

  15. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  16. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects.

    Science.gov (United States)

    Alnuaimi, A D; Ramdzan, A N; Wiesenfeld, D; O'Brien-Simpson, N M; Kolev, S D; Reynolds, E C; McCullough, M J

    2016-11-01

    To compare biofilm-forming ability, hydrolytic enzymes and ethanol-derived acetaldehyde production of oral Candida isolated from the patients with oral cancer and matched non-oral cancer. Fungal biofilms were grown in RPMI-1640 medium, and biofilm mass and biofilm activity were assessed using crystal violet staining and XTT salt reduction assays, respectively. Phospholipase, proteinase, and esterase production were measured using agar plate method, while fungal acetaldehyde production was assessed via gas chromatography. Candida isolated from patients with oral cancer demonstrated significantly higher biofilm mass (P = 0.031), biofilm metabolic activity (P Candida were more prevalent in patients with oral cancer than non-oral cancer (P = 0.01). In univariate regression analysis, high biofilm mass (P = 0.03) and biofilm metabolic activity (P Candida isolates to form biofilms, to produce hydrolytic enzymes, and to metabolize alcohol to acetaldehyde with their ability to promote oral cancer development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Cancer stem cells in the development of liver cancer

    Science.gov (United States)

    Yamashita, Taro; Wang, Xin Wei

    2013-01-01

    Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs. PMID:23635789

  18. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  19. with esophageal squamous cell cancer

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-02-01

    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT. Material and methods : From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results : The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS and local-regional control (LRC were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010, according to univariate analysis. The 5-year OS (LRC was 37.3% (58.6% for patients aged 70-74 years and 14.5% (47.9% for patients aged > 74 years (p = 0.010 and p = 0.038. In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]. From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6% patients experienced fistula and 15 (7.9% experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027, higher NBT dose/fraction (20-25 Gy/5 fractions, and higher total dose (> 66 Gy. Conclusions : The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients.

  20. Traditional home-brewed beer consumption and iron status in patients with esophageal cancer and healthy control subjects from Transkei, South Africa.

    Science.gov (United States)

    Matsha, Tandi; Brink, Lucy; van Rensburg, Susan; Hon, Dinie; Lombard, Carl; Erasmus, Rajiv

    2006-01-01

    Consumption of home-brewed beer is associated with dietary iron excess and a high incidence of esophageal cancer in Transkei, South Africa. We examined the relationship between home-brewed beer consumption and body iron status in 234 patients with esophageal squamous cell carcinoma and 595 control subjects residing in Transkei. Subjects were screened for iron overload using transferrin saturation >45%, and/or serum ferritin >200 microg/l for women and >300 microg/l for men. A questionnaire was administered to all subjects, and iron content of randomly selected home-brewed beer samples was determined. The iron content of home-brewed beer was 258-fold higher than the commercial Castle Lager beer produced by South African Breweries. The prevalence of home-brewed beer consumption was 30.1% in esophageal cancer patients and 15.5% in control subjects and was found not to be a risk factor for esophageal cancer after adjustment for age, sex, and tobacco consumption (male subjects, odds ratio= 1.6 (95% confidence interval [CI]: 0.7-4.5); female subjects, odds ratio=1.7 (95% CI: 0.7-4.5). Iron overload as determined by transferrin saturation and elevated serum ferritin was observed in 4.3% of patients with esophageal cancer and 0.7% of control subjects and was not associated with the consumption of home-brewed beer. Consumption of home-brewed beer is not a risk factor for esophageal cancer and is not linked with iron overload in either cancer patients or control subjects; however, iron overload is likely to result from a combination of dietary intake and a genetic component.

  1. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  2. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  4. Dendritic cell immunotherapy in uterine cancer.

    Science.gov (United States)

    Coosemans, An; Tuyaerts, Sandra; Vanderstraeten, Anke; Vergote, Ignace; Amant, Frédéric; Van Gool, Stefaan W

    2014-01-01

    Uterine cancer is the most common pelvic gynecological malignancy. Uterine sarcomas and relapsed uterine carcinomas have limited treatment options. The search for new therapies is urgent. Dendritic cell (DC) immunotherapy holds much promise, though has been poorly explored in uterine cancer. This commentary gives an insight in existing DC immunotherapy studies in uterine cancer and summarizes the possibilities and the importance of the loading of tumor antigens onto DC and their subsequent maturation. However, the sole application of DC immunotherapy to target uterine cancer will be insufficient because of tumor-induced immunosuppression, which will hamper the establishment of an effective anti-tumor immune response. The authors give an overview on the limited existing immunosuppressive data and propose a novel approach on DC immunotherapy in uterine cancer.

  5. Dormancy activation mechanism of oral cavity cancer stem cells.

    Science.gov (United States)

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  6. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only...experience in ovary research (ovarian physiology , oogonial stem cells) to work on this project. We also ! 5! obtained approval of our animal

  7. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  8. Distancing, self-esteem, and subjective well-being in head and neck cancer.

    Science.gov (United States)

    Devins, Gerald M; Wong, Janice C; Payne, Ada Y M; Lebel, Sophie; Lee, Ruth N F; Mah, Kenneth; Irish, Jonathan; Rodin, Gary

    2015-11-01

    Distancing (i.e. construing oneself as dissimilar to a negatively-stereotyped group) preserves self-esteem and may benefit other domains of subjective well-being. Head and neck cancer (HNC) is stigmatized because major risk factors include avoidable lifestyle variables (smoking, alcohol consumption, and human papilloma virus). Because the benefits of coping efforts, such as distancing, are most evident when people are under stress, we hypothesize that the psychosocial benefits of distancing will be most pronounced when cancer and its treatment interfere substantially with participation in valued activities and interests (i.e. high illness intrusiveness). To test whether distancing preserves self-esteem and other domains of subjective well-being (SWB) in HNC, especially when illness intrusiveness is high. Five hundred and twenty-two HNC outpatients completed a semantic-differential measure of perceived similarity to the 'cancer patient' and measures of illness intrusiveness, self-esteem, depressive symptoms, and psychological well-being in structured interviews. Evaluations of the 'cancer patient' reflected cancer stereotypes. A statistically significant interaction supported the central hypothesis: When people held negative stereotypes, those who construed themselves as similar to the 'cancer patient' reported lower self-esteem than those who construed themselves as dissimilar. Distancing did not benefit other SWB variables. Some results were counter-intuitive: e.g. Emotional distress increased with increasing illness intrusiveness when people did not hold negative cancer stereotypes, but when they held highly negative stereotypes, distress decreased with increasing illness intrusiveness. Overall, distancing preserved self-esteem in people with HNC and was associated with benefits in other SWB domains. Copyright © 2015 John Wiley & Sons, Ltd.

  9. The evolving cancer stem cell paradigm: implications in veterinary oncology.

    Science.gov (United States)

    Pang, Lisa Y; Argyle, David J

    2015-08-01

    The existence of subpopulations of cells in cancer with increased tumour-initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics formed the basis of the cancer stem cell model. Some tumours have since been viewed as aberrant tissues with a unidirectional hierarchical structure consisting of cancer stem cells at the apex, driving tumour growth, metastasis and relapse after therapy. Here, recent developments in cancer stem cell research are reviewed with a focus on tumour heterogeneity, cellular plasticity and cancer stem cell reprogramming. The impact of these findings on the cancer stem cell model is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics.

    Science.gov (United States)

    She, Jun-Jun; Zhang, Peng-Ge; Wang, Xuan; Che, Xiang-Ming; Wang, Zi-Ming

    2012-09-07

    To investigate whether the side population (SP) cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer. We analyzed the presence of SP cells in different human gastric carcinoma cell lines, and then isolated and identified the SP cells from the KATO III human gastric cancer cell line by flow cytometry. The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays. The related genes were determined by reverse transcription polymerase chain reaction. To compare tumorigenic ability, SP and non-side population (NSP) cells from the KATO III human gastric cancer cell line were subcutaneously injected into nude mice. SP cells from the total population accounted for 0.57% in KATO III, 1.04% in Hs-746T, and 0.02% in AGS (CRL-1739). SP cells could grow clonally and have self-renewal capability in conditioned media. The expression of ABCG2, MDRI, Bmi-1 and Oct-4 was different between SP and NSP cells. However, there was no apparent difference between SP and NSP cells when they were injected into nude mice. SP cells have some cancer stem cell-like characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  11. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells.

    Science.gov (United States)

    Debeb, Bisrat G; Zhang, Xiaomei; Krishnamurthy, Savitri; Gao, Hui; Cohen, Evan; Li, Li; Rodriguez, Angel A; Landis, Melissa D; Lucci, Anthony; Ueno, Naoto T; Robertson, Fredika; Xu, Wei; Lacerda, Lara; Buchholz, Thomas A; Cristofanilli, Massimo; Reuben, James M; Lewis, Michael T; Woodward, Wendy A

    2010-07-08

    Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced by serial xenograft passages through transplantation. Herein we fully characterize cancer stem cell-like features in 293T human embryonic kidney cells. 293T cells can be readily cultured and passaged as spheres in serum-free stem cell promoting culture conditions. Cells cultured in vitro as three-dimensional spheres (3D) were shown to contain higher ALDH1 and CD44+/CD24- population compared to monolayer cells. These cells were also resistant to radiation and upregulate stem cell survival signaling including beta-catenin, Notch1 and Survivin in response to radiation. Moreover, 3D spheres generated from the 293T cells have increased expression of mesenchymal genes including vimentin, n-cadherin, zeb1, snail and slug as well as pro-metastatic genes RhoC, Tenascin C and MTA1. In addition, microRNAs implicated in self-renewal and metastases were markedly reduced in 3D spheres. 293T cells exhibit a cancer stem cell-like phenotype when cultured as 3D spheres and represent an important research tool for studying the molecular and biological mechanisms of cancer stem cells and for testing and developing novel targets for cancer therapy.

  12. Loss, uncertainty, or acceptance: subjective experience of changes to fertility after breast cancer.

    Science.gov (United States)

    Perz, J; Ussher, J; Gilbert, E

    2014-07-01

    This qualitative study examines the subjective experience of infertility in a large sample of Australian women with breast cancer. Participants were 1830 women, average age 54, who responded to an email invitation to complete an online survey on sexual well-being and fertility concerns after breast cancer. 24.6% (n = 452) reported that cancer had affected their fertility; 21.3% (n = 391) did not know their fertility status. In thematic analysis of open-ended responses provided by 381 women about changes to fertility status, reactions to infertility, and experiences of information and interventions to assist fertility, five themes were identified: 'Negative responses to infertility and early menopause'; 'Sexual changes associated with menopause and infertility'; 'Uncertainty and anxiety about fertility status'; 'Information and fertility preservation'; 'Acceptance of the end of fertility'. These findings confirm previous reports that infertility and premature menopause are a significant cause of anxiety for many women with breast cancer. However, some women closer to natural menopause, or who had completed their families, reported acceptance of changed fertility status. Accounts of deficits in information provision and fertility counselling suggest an urgent need for accessible and comprehensive information about fertility and cancer to be developed and evaluated, as well as education and training of health professionals in addressing fertility concerns following cancer. © 2013 John Wiley & Sons Ltd.

  13. Stemness is Derived from Thyroid Cancer Cells

    Science.gov (United States)

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  14. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  15. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  16. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  17. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts

    Directory of Open Access Journals (Sweden)

    Norashikin Zakaria

    2017-05-01

    Full Text Available Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC, which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.

  18. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  19. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    Science.gov (United States)

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Innate immune cells in inflammation and cancer.

    Science.gov (United States)

    Nowarski, Roni; Gagliani, Nicola; Huber, Samuel; Flavell, Richard A

    2013-08-01

    The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development. ©2013 AACR.

  1. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  2. Cancer stem cells: a minor cancer subpopulation that redefines global cancer features

    Directory of Open Access Journals (Sweden)

    Heiko eEnderling

    2013-04-01

    Full Text Available In recent years cancer stem cells (CSCs have been hypothesized to comprise only a minor subpopulation in solid tumors that drives tumor initiation, development and metastasis; the so-called cancer stem cell hypothesis. While a seemingly trivial statement about numbers, much is put at stake. If true, the conclusions of many studies of cancer cell populations could be challenged, as the bulk assay methods upon which they depend have, by and large, taken for granted the notion that a ‘typical’ cell of the population possesses the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the CSC hypothesis, populations enriched for so-called ‘tumor-initiating’ cells have demonstrated a corresponding increase in tumorigenicity as measured by dilution assay, although estimates have varied widely as to what the fractional contribution of tumor-initiating cells is in any given population. Some have taken this variability to suggest the CSC fraction may be nearly 100% after all, countering the CSC hypothesis, and that there are simply assay-dependent error rates in our ability to ‘reconfirm’ CSC status at the cell level. To explore this controversy more quantitatively, we developed a simple theoretical model of cancer stem cell-driven tumor growth dynamics. Assuming CSC and non-stem cancer cell subpopulations coexist to some degree, we evaluated the impact of an environmentally-dependent cancer stem cell symmetric division probability and a non-stem cancer cell proliferation capacity on tumor progression and morphology. Our model predicts, as expected, that the frequency of CSC divisions that are symmetric highly influences the frequency of CSCs in the population, but goes on to predict the two frequencies can be widely divergent, and that spatial constraints will tend to increase the CSC fraction over time.

  3. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  4. Sphingosine 1-Phosphate and Cancer: Lessons from Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kid Törnquist

    2013-05-01

    Full Text Available Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P, have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK, i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.

  5. Favored subjects and psychosocial needs in music therapy in terminally ill cancer patients: a content analysis

    OpenAIRE

    Preissler, Pia; Kordovan, Sarah; Ullrich, Anneke; Bokemeyer, Carsten; Oechsle, Karin

    2016-01-01

    Background Research has shown positive effects of music therapy on the physical and mental well-being of terminally ill patients. This study aimed to identify favored subjects and psychosocial needs of terminally ill cancer patients during music therapy and associated factors. Methods Forty-one Patients receiving specialized inpatient palliative care prospectively performed a music therapy intervention consisting of at least two sessions (total number of sessions: 166; per patient average: 4,...

  6. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  7. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  8. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  9. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    Directory of Open Access Journals (Sweden)

    Sif Holmboe

    Full Text Available Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  10. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    Science.gov (United States)

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  11. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study.

    Science.gov (United States)

    Bang, Oh Young; Chung, Jong-Won; Lee, Mi Ji; Kim, Suk Jae; Cho, Yeon Hee; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Ahn, Myung-Ju; Moon, Gyeong Joon

    2016-01-01

    Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs) play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke. Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326]), tissue factor (TF [CD142]), endothelial cells (CD31+CD42b-), and platelets (CD62P) were measured using flow cytometry in (a) 155 patients with ischemic stroke and active cancer (116 - cancer-related, 39 - conventional stroke mechanisms), (b) 25 patients with ischemic stroke without cancer, (c) 32 cancer patients without stroke, and (d) 101 healthy subjects. The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+) were higher in cancer-related stroke than in other groups (P<0.05 in all the cases). Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs. Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms.

  12. Identifying cancer subjects with acute respiratory failure at high risk for intubation and mechanical ventilation.

    Science.gov (United States)

    Lemiale, Virginie; Lambert, Jérôme; Canet, Emmanuel; Mokart, Djamel; Pène, Frederic; Rabbat, Antoine; Kouatchet, Achille; Vincent, François; Bruneel, Fabrice; Gruson, Didier; Chevret, Sylvie; Azoulay, Elie

    2014-10-01

    We sought to identify risk factors for mechanical ventilation in patients with malignancies and acute respiratory failure (ARF). We analyzed data from a previous randomized controlled trial in which nonintubated oncology and hematology subjects with ARF were randomized to early bronchoalveolar lavage or routine care in 16 ICUs in France. Consecutive patients with malignancies were admitted to the ICU for ARF in 2005 and 2006 with no intervention. During the study period, 219 patients were admitted to the ICU for ARF, and 8 patients were not included due to a nonintubation order. Data on the underlying disease, pulmonary involvement, and extrapulmonary organ dysfunctions were recorded at admission in the 211 remaining subjects. Ventilatory support included oxygen only (49 subjects), noninvasive ventilation (NIV) only (81 subjects), NIV followed by invasive mechanical ventilation (49 subjects), and first-line invasive mechanical ventilation (32 subjects). The 81 subjects who required invasive mechanical ventilation were compared with the 130 subjects who remained on oxygen or NIV. Factors associated with invasive mechanical ventilation by multivariate analysis were the oxygen flow required at ICU admission, the number of quadrants involved on chest x-ray, and hemodynamic dysfunction. Mortality rates for subjects who had NIV failure were 65.3% compared with 50% for subjects who were first-line intubated (P = .34). In cancer patients with ARF, hypoxemia, extent of pulmonary infiltration on chest x-ray, or hemodynamic dysfunction are risk factors for invasive mechanical ventilation. Mortality was not significantly different between NIV failure and first-line intubation. Copyright © 2014 by Daedalus Enterprises.

  13. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  14. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    OpenAIRE

    Kanada, Masamitsu; Zhang, Jinyan; Libo YAN; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility re...

  15. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects.

    Science.gov (United States)

    Faris, Mo'ez Al-Islam E; Kacimi, Safia; Al-Kurd, Ref'at A; Fararjeh, Mohammad A; Bustanji, Yasser K; Mohammad, Mohammad K; Salem, Mohammad L

    2012-12-01

    Intermittent fasting and caloric restriction have been shown to extend life expectancy and reduce inflammation and cancer promotion in animal models. It was hypothesized that intermittent prolonged fasting practiced during the month of Ramadan (RIF) could positively affect the inflammatory state. To investigate this hypothesis, a cross-sectional study was designed to investigate the impact of RIF on selected inflammatory cytokines and immune biomarkers in healthy subjects. Fifty (21 men and 29 women) healthy volunteers who practiced Ramadan fasting were recruited for the investigation of circulating proinflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor α), immune cells (total leukocytes, monocytes, granulocytes, and lymphocytes), and anthropometric and dietary assessments. The investigations were conducted 1 week before Ramadan fasting, at the end of the third week of Ramadan, and 1 month after the cessation of Ramadan month. The proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor α; systolic and diastolic blood pressures; body weight; and body fat percentage were significantly lower (P fasting. Immune cells significantly decreased during Ramadan but still remained within the reference ranges. These results indicate that RIF attenuates inflammatory status of the body by suppressing proinflammatory cytokine expression and decreasing body fat and circulating levels of leukocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    abrogated by small interfering RNA to PTEN, indicating PTEN-dependence. Using FACS analysis , we showed that GEN induced cell cycle arrest at G0-G1 phase...isolated from WT (PND 100) and Tg (PND75) mice. The percentage of mammary SCs was quantified by Fluorescence activated cell sorting analysis of...fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms underlying their presumed anti-tumor activities

  17. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  18. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and. L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquid-.

  19. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    1998-01-01

    Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  20. Cancer stem cells: the challenges ahead

    NARCIS (Netherlands)

    Medema, Jan Paul

    2013-01-01

    Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this

  1. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  2. DNA repair of cancer stem cells

    National Research Council Canada - National Science Library

    Mathews, Lesley A; Cabarcas, Stephanie M; Hurt, Elaine M

    2013-01-01

    ... leukemia by John E. Dick from the University of Toronto. The heterogeneity of human leukemia and the presence of stem cells in cancer was further translated into solid tumors by Al-Hajj et al. when they published a provocative paper in Proceedings of the National Academy of Sciences discussing the ability to distinguish tumorigenic (tumor-initi...

  3. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  4. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering.

    Science.gov (United States)

    Gholizadeh-Ghaleh Aziz, Shiva; Fathi, Ezzatollah; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Fardyazar, Zahra; Pashaiasl, Maryam

    2017-06-01

    Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diagnostic samples during pregnancy and less ethical and legal concern are associated with the collection and application than other putative cells are subjected. This review will designate representatives of amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengineered and engineered based approaches). Our study shows the advantage of AFS cells over other putative cells types in terms differentiation ability to a wide range of cells by potential and effective use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.

  6. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    Science.gov (United States)

    Dillon, Christopher P; Green, Douglas R

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  7. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  8. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  9. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  10. Sexual dysfunction in testicular cancer patients subjected to post-chemotherapy retroperitoneal lymph node dissection: a focus beyond ejaculation disorders.

    Science.gov (United States)

    Dimitropoulos, K; Karatzas, A; Papandreou, C; Daliani, D; Zachos, I; Pisters, L L; Tzortzis, V

    2016-05-01

    Post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) represents an integral part of multidisciplinary treatment of advanced germ cell cancer; however, it is associated with a high complications rate. The present study aimed to describe sexual disorders in 53 patients with testicular cancer who underwent full bilateral, non-nerve-sparing PC-RPLND in our institution, focusing beyond ejaculatory dysfunction. The International Index for Erectile Function (IIEF) questionnaire was used as diagnostic tool of male sexual functioning pre-operatively and three months after RPLND, while post-operatively patients were asked to describe and evaluate changes in selected sexual parameters. Study findings demonstrate mixed pattern of changes in sexual functioning, with no difference in erectile functioning before and after operation. However, orgasmic function and intercourse and overall sexual satisfaction were found significantly impaired post-operatively. Sexual desire and frequency of attempted sexual intercourses were found significantly increased post-operatively, in comparison with pre-operative levels. With regard to patients' subjective perception on sexual functioning alterations after PC-RPLND, a significant number of patients reported higher levels of sexual desire, no difference in erectile function and worse orgasmic function and satisfaction post-operatively. Thus, patients subjected to PC-RPLND should be closely and routinely evaluated due to close relationship of sexual dissatisfaction with secondary psychological disorders. © 2015 Blackwell Verlag GmbH.

  11. Distance in cancer gene expression from stem cells predicts patient survival.

    Directory of Open Access Journals (Sweden)

    Markus Riester

    Full Text Available The degree of histologic cellular differentiation of a cancer has been associated with prognosis but is subjectively assessed. We hypothesized that information about tumor differentiation of individual cancers could be derived objectively from cancer gene expression data, and would allow creation of a cancer phylogenetic framework that would correlate with clinical, histologic and molecular characteristics of the cancers, as well as predict prognosis. Here we utilized mRNA expression data from 4,413 patient samples with 7 diverse cancer histologies to explore the utility of ordering samples by their distance in gene expression from that of stem cells. A differentiation baseline was obtained by including expression data of human embryonic stem cells (hESC and human mesenchymal stem cells (hMSC for solid tumors, and of hESC and CD34+ cells for liquid tumors. We found that the correlation distance (the degree of similarity between the gene expression profile of a tumor sample and that of stem cells orients cancers in a clinically coherent fashion. For all histologies analyzed (including carcinomas, sarcomas, and hematologic malignancies, patients with cancers with gene expression patterns most similar to that of stem cells had poorer overall survival. We also found that the genes in all undifferentiated cancers of diverse histologies that were most differentially expressed were associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes. Thus, a stem cell-oriented phylogeny of cancers allows for the derivation of a novel cancer gene expression signature found in all undifferentiated forms of diverse cancer histologies, that is competitive in predicting overall survival in cancer patients compared to previously published prediction models, and is coherent in that gene expression was associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes associated with

  12. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Science.gov (United States)

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  13. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  14. Levobuipivacaine-Induced Dissemination of A549 Lung Cancer Cells.

    Science.gov (United States)

    Chan, Shun-Ming; Lin, Bo-Feng; Wong, Chih-Shung; Chuang, Wen-Ting; Chou, Yu-Ting; Wu, Zhi-Fu

    2017-08-17

    While anaesthetics are frequently used on cancer patients during surgical procedures, their consequence on cancer progression remains to be elucidated. In this study, we sought to investigate the influence of local anesthetics on lung cancer cell dissemination in vitro and in vivo. A549 human non-small lung cancer cells were treated with various local anaesthetics including ropivacaine, lidocaine, levobupivacaine and bupivacaine. Cell barrier property was assessed using an electric cell-substrate impedance sensing (ECIS) system. The epithelial-to-mesenchymal transition (EMT) of treated cells was studied by immunofluorescence staining. In vitro and in vivo cancer cell dissemination were investigated.Gene expression microarray and quantitative real-time PCR (qrt-PCR) assays were used to identify the genes responsible for levobupivacaine-mediated cancer cell dissemination.The results illustrated that only levobupivacaine induced EMT in the treated cells and also caused the dissemination of cancer cells in vitro. In addition, after intravenous injection, levobupivacaine encouraged cancer cell dissemination in vivo. Gene expression microarray, qrt-PCR and immunoblotting revealed that after levobupivacaine treatment, the hypoxia-inducible factor (HIF)- 2α gene was upregulated in cancer cells. Our findings suggest that levobupivacaine may induce A549 lung cancer cell dissemination both in vitro and in vivo. More specifically, HIF-2α signaling possibly contributes to levobupivacaine-mediated A549 lung cancer cell dissemination.

  15. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hereditary kidney cancer (renal cell cancer) syndromes include von Hippel-Lindau disease, hereditary leiomyomatosis and renal cell cancer, Birt-Hogg-Dubé syndrome, and hereditary papillary renal carcinoma. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  16. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  17. The effect of Stokes shift in the discrimination of urine of cervical cancer from normal subjects

    Science.gov (United States)

    Rajasekaran, Ramu; Brindha, Elumalai; Aruna, Prakasa Rao; Koteeswaran, Dornadula; Ganesan, Singaravelu

    2016-03-01

    Stokes shift spectroscopy has been considered as a potential tool in characterization of multiple components present in tissues and biofluids. Since, the intensity and resolution of the fluorophores depends on the Stokes shift, different opinion has been reflected by the researchers in fixing the Stokes shift. Also, not many studies have been reported on the characterization of biofluids and especially on the diagnosis of cancer. Urine is considered as an important diagnostic biofluid as it is rich in many metabolites where many of them are native fluorophores. In this study, we aimed at characterizing the urine of normal subjects and patients with cervical cancer as function of different Stokes shift. It is observed that Neopterin and Riboflavin are the main fluorophores contribute to the variation between normal and cervical cancer subjects. Ratio variables based linear discriminant analysis shows that the Stokes shift of 40 nm and 60 nm may be considered for better characterization with better signal to noise ratio when compared to others.

  18. Favored subjects and psychosocial needs in music therapy in terminally ill cancer patients: a content analysis.

    Science.gov (United States)

    Preissler, Pia; Kordovan, Sarah; Ullrich, Anneke; Bokemeyer, Carsten; Oechsle, Karin

    2016-05-12

    Research has shown positive effects of music therapy on the physical and mental well-being of terminally ill patients. This study aimed to identify favored subjects and psychosocial needs of terminally ill cancer patients during music therapy and associated factors. Forty-one Patients receiving specialized inpatient palliative care prospectively performed a music therapy intervention consisting of at least two sessions (total number of sessions: 166; per patient average: 4, range, 2-10). Applied music therapy methods and content were not pre-determined. Therapeutic subjects and psychosocial needs addressed in music therapy sessions were identified from prospective semi-structured "field notes" using qualitative content analysis. Patient- and treatment-related characteristics as well as factors related to music and music therapy were assessed by questionnaire or retrieved from medical records. Seven main categories of subjects were identified: "condition, treatment, further care", "coping with palliative situation", "emotions and feelings", "music and music therapy", "biography", "social environment", and "death, dying, and spiritual topics". Patients addressed an average of 4.7 different subjects (range, 1-7). Some subjects were associated with gender (p = .022) and prior impact of music in patients' life (p = .012). The number of subjects per session was lower when receptive music therapy methods were used (p = .040). Psychosocial needs were categorized into nine main dimensions: "relaxing and finding comfort", "communication and dialogue", "coping and activation of internal resources", "activity and vitality", "finding expression", "sense of self and reflection", "finding emotional response", "defocusing and diversion", and "structure and hold". Patients expressed an average of 4.9 psychosocial needs (range, 1-8). Needs were associated with age, parallel art therapy (p = .010), role of music in patient's life (p = .021), and the applied music

  19. Fluid intake and the risk of urothelial cell carcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC)

    NARCIS (Netherlands)

    Ros, M.M.; Bueno de Mesquita, H.B.; Büchner, F.L.; Kampman, E.; Duijnhoven, van F.J.B.

    2011-01-01

    Results from previous studies investigating the association between fluid intake and urothelial cell carcinomas (UCC) are inconsistent. We evaluated this association among 233,236 subjects in the European Prospective Investigation into Cancer and Nutrition (EPIC), who had adequate baseline

  20. Are All Highly Malignant Cancer Cells Identical?

    Science.gov (United States)

    1979-01-01

    ADA3665 ARE AL HIGHL MAGNANTCANCER CELLS DENOIALU) PENNSYLVANIA HOSPITAL PHILADELPHIA DEPT OF MOLECULAR BIOLOGY G NIGET AL 199 N00014-ACA026 UNCLASFE...embryo cells or even the original fertilized ovum . If this speculation has validity, the carcinogenesis and differentiation have the same destinies but...F/G /5 N 1111 2Z111117 1 125iiI 1 1. 1111_L6. -11 O=M 1 MrCROCOP RErSOLUTICN TEST CHART N, APoP SN A’ ,- ARE ALL HIGHLY MALIGNANT CANCER CELLS

  1. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells...

  2. Trismus following different treatment modalities for head and neck cancer: a systematic review of subjective measures.

    Science.gov (United States)

    Loh, Sook Y; Mcleod, Robert W J; Elhassan, Hassan A

    2017-07-01

    The aim of this review was to compare systematically the subjective measure of trismus between different interventions to treat head and neck cancer, particularly those of the oropharynx. Using The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines, Six databases were searched for the text using various terms which include "oropharyngeal/head and neck cancer", "trismus/mouth opening" and the various treatment modalities. Included in the review were clinical studies (> or =10 patients). Three observers independently assessed the papers identified. Among the six studies reviewed, five showed a significantly worst outcome with regard to the quality-of-life questionnaire scores for a radiotherapy or surgery and radiotherapy (RT) ± chemotherapy or chemoradiotherapy when compared to surgery alone. Only one study showed no significant difference between surgery alone and other treatment modalities. Subjective quality-of-life measures are a concurrent part of modern surgical practice. Although subjective measures were utilised to measure post operative trismus successfully, there was no consensus as to which treatment modality had overall better outcomes, with conflicting studies in keeping with the current debate in this field. Larger and higher quality studies are needed to compare all three treatment modalities.

  3. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  4. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells.

    Directory of Open Access Journals (Sweden)

    Shuping Yin

    Full Text Available Women with triple negative breast cancer (TNBC have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA and European American (EA women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women. Our in vitro studies indicate that cancer stem-like cells (CSCs derived from AA TNBC cell lines have significantly higher self-renewal potential (mammosphere formation than CSCs derived from EA cell lines. TNBC tumors express high levels of Myc compared to luminal A or HER2 expressing breast cancers. We studied the effects of c-Myc overexpression on CSCs and chemotherapy in AA, and EA derived TNBC cell line(s. Overexpression of c-Myc in AA derived MDA-MB-468 (Myc/MDA-468 cells resulted in a significant increase in CSCs and with minimal changes in epithelial-to-mesenchymal transition (EMT compared to the control group. In contrast, overexpression of c-Myc in EA derived MDA-MB-231(Myc/MDA-231 cells led to increased epithelial-to-mesenchymal transition (EMT, with a minimal increase in CSCs compared to the control group. Myc/MDA-468 cells were resistant to standard chemotherapeutic treatments such as iniparib (PARP inhibitor plus cisplatin, / iniparib, cisplatin, paclitaxel and docetaxel. However, Myc/MDA-231 cells, which showed EMT changes responded to iniparib with cisplatin, but were resistant to other drugs, such as iniparib, cisplatin, paclitaxel and docetaxel. Collectively, our results indicate that intrinsic differences in the tumor biology may contribute to the breast cancer disparities.

  5. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A

  6. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  8. A pilot study of subjective well-being in colorectal cancer patients and their caregivers

    Directory of Open Access Journals (Sweden)

    Graham J

    2017-10-01

    Full Text Available Janet Graham,1 Pavlina Spiliopoulou,1 Rob Arbuckle,2 Julie Ann Bridge,3 James Cassidy1 1Department of Medical Oncology, Beatson, West of Scotland Cancer Center, Glasgow, UK, 2Adelphi Values, Adelphi Mill Macclesfield, Cheshire, UK; 3Eli Lilly Pty Ltd., West Ryde, NSW, Australia Background: Traditional endpoints in oncology are based on measuring the tumor size and combining this with a time factor. Current studies with immunotherapy show that even when median survival is unaltered, a significant proportion of patients can achieve prolonged survival. Objective tumor response does not always mean “overall” improvement, especially if toxicity is harsh. Novel agents are significantly expensive, and it is therefore crucial to measure the impact on “quality” of life, in addition to “quantity”.Materials and methods: We studied the preferences and experiences of cancer patients and their caregivers, measuring subjective well-being (SWB ratings, EQ5D descriptions and time trade-off preferences.Results: We studied 99 patients and 88 caregivers. Life satisfaction ratings were similar between the two groups, but daily mood was significantly lower in caregivers (P<0.1. Anxiety/depression affected SWB, while pain and mobility did not. Positive thoughts about health were associated with better daily moods in both groups, and stage IV cancer was associated with lower life satisfaction. Cancer in remission was associated with better daily moods, but, interestingly, not with patient life satisfaction. Patients with better daily mood and positive thoughts about family were less willing to “trade-off” life years.Conclusion: Caregivers are as anxious or depressed as patients, and report similar levels of life satisfaction but lower daily mood. A focus on SWB could provide a valid assessment of treatment benefit. Given the interesting results of this pilot study, we suggest a larger study should be conducted, measuring SWB over time. Keywords

  9. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation. Copyright © 2013 Wiley Periodicals

  10. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2016-09-01

    Full Text Available The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.

  11. Calcium wave signaling in cancer cells

    Science.gov (United States)

    PARKASH, JAI; ASOTRA, KAMLESH

    2010-01-01

    Ca2+ functions as an important signaling messenger right from beginning of the life to final moment of the end of the life. Ca2+ is needed at several steps of the cell cycle such as early G1, at the G1/S, and G2/M transitions. The Ca2+ signals in the form of time-dependent changes in intracellular Ca2+ concentrations, [Ca2+]i, are presented as brief spikes organized into regenerative Ca2+ waves. Ca2+-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca2+ oscillations arise from Ca2+ waves initiated locally, it results in stochastic oscillations because although each cell has many IP3Rs and Ca2+ ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP3Rs due to steep Ca2+ concentration gradients. The specific Ca2+ signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca2+ oscillations and decoded again at a later stage. Since Ca2+ channels or pumps involved in regulating Ca2+ signaling pathways show altered expression in cancer, one can target these Ca2+ channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca2+ wave patterns in carcinogenesis and lead to development of newer technologies based on Ca2+ waves for the diagnosis and therapy of cancer. PMID:20875431

  12. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Directory of Open Access Journals (Sweden)

    John D Lyons

    Full Text Available Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003. Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on

  13. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  14. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  15. Comparison of methods of estimating body fat in normal subjects and cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H. (Brookhaven National Lab., Upton, NY); Ellis, K.J.; Vartsky, D.; Sawitsky, A.; Gartenhaus, W.; Yasumura, S.; Vaswani, A.N.

    1981-12-01

    Total body fat can be indirectly estimated by the following noninvasive techniques: determination of lean body mass by measurement of body potassium or body water, and determination of density by underwater weighing or by skinfold measurements. The measurement of total body nitrogen by neutron activation provides another technique for estimating lean body mass and hence body fat. The nitrogen measurement can also be combined with the measurement of total body potassium in a two compartment model of the lean body mass from which another estimate of body fat can be derived. All of the above techniques are subject to various errors and are based on a number of assumptions, some of which are incompletely validated. These techniques were applied to a population of normal subjects and to a group of cancer patients. The advantages and disadvantages of each method are discussed in terms of their ability to estimate total body fat.

  16. Comparison of methods of estimating body fat in normal subjects and cancer patients.

    Science.gov (United States)

    Cohn, S H; Ellis, K J; Vartsky, D; Sawitsky, A; Gartenhaus, W; Yasumura, S; Vaswani, A N

    1981-12-01

    Total body fat can be indirectly estimated by the following noninvasive techniques: determination of lean body mass by measurement of body potassium or body water, and determination of density by underwater weighing or by skinfold measurements. The measurement of total body nitrogen by neutron activation provides another technique for estimating lean body mass and hence body fat. The nitrogen measurement can also be combined with the measurement of total body potassium in a two compartment model of the lean body mass from which another estimate of body fat can be derived. All of the above techniques are subject to various errors and are based on a number of assumptions, some of which are incompletely validated. These techniques were applied to a population of normal subjects and to a group of cancer patients. The advantages and disadvantages of each method are discussed in terms of their ability to estimate total body fat.

  17. Diffuse thyroid uptake incidentally found on 18F-fluorodeoxyglucose positron emission tomography in subjects without cancer history.

    Science.gov (United States)

    Lee, Ji Young; Choi, Joon Young; Choi, Yoon-Ho; Hyun, Seung Hyup; Moon, Seung Hwan; Jang, Su Jin; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2013-01-01

    We investigated the clinical significance of incidental diffuse thyroid uptake (DTU) on (18)F-FDG PET in subjects without a history of cancer. This study included 2062 studies from adults who underwent (18)F-FDG PET as a cancer screening program. Subjects were divided into the following two groups: with (group I) or without (group II) DTU. The presence of DTU and the thyroid visual grading score were compared with thyroid function tests, serum anti-microsomal antibody (AMA) levels, and the presence of diffuse parenchymal change (DPC) on ultrasonography (USG). DTU was found in 6.6% of the scans (137/2062). Serum thyroid stimulating hormone (TSH) and AMA levels were significantly higher in group I than in group II. Increased AMA level (55.1%) and DPC (48.7%) were more frequently found in group I (p < 0.001). The proportion of subjects with any abnormal results in serum free thyroxine, triiodothyronine, TSH, or AMA levels or DPC on USG was significantly higher in group I than in group II (71.5% vs. 10.6%, p < 0.001), and was significantly and gradually increased according to the visual grading score group (0 vs. 1-2 vs. 3-4 = 10.6% vs. 58.5% vs. 90.9%, p < 0.001). TSH and is AMA levels were significantly increased according to the visual grading score. The presence or degree of incidental DTU on (18)F-FDG PET is closely correlated with increased serum AMA and TSH levels, and the presence of DPC on USG. Therefore, the most plausible pathological cause of DTU may be cell damage by an autoimmune mechanism.

  18. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  19. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Cui, Dan; Kuramitsu, Yasuhiro; Matsumoto, Takuya; Ikeda, Eiji; Okano, Hideyuki; Ueyama, Yoshiya

    2016-07-27

    The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor

  20. Transcription profiles of non-immortalized breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Holland James F

    2006-04-01

    Full Text Available Abstract Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs were used in addition to commercially-available normal breast epithelial cells (HMECs, established breast cancer cell lines (T-est and established normal breast cells (N-est. The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research.

  1. Natural killer cells enhance the immune surveillance of cancer

    African Journals Online (AJOL)

    Faisal Nouroz

    2015-09-11

    Sep 11, 2015 ... All the cells of the immune sys- tem cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells ..... Cancer stem cells (CSCs) retain the growth of tumor and resist chemotherapy [25]. ... radiation therapy and mushroom beta glucans showed only 1 nodule. The experiments ...

  2. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  3. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Zu-Yau Lin

    2013-06-01

    Full Text Available Cancer-associated fibroblast (CAF is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif ligand 2 (CCL2, chemokine (C-C motif ligand 26 (CCL26, interleukin 6 (IL6, and lysyl oxidase-like 2 (LOXL2 genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH and two human CAF cell lines (F26/KMUH, F28/KMUH were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005 and migration (all p < 0.0001 of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001. Eleven up-regulated cancer-promoting genes, including apelin (APLN, CCL2, CCL26, fibroblast growth factor 1 (FGF1, fibroblast growth factor 2 (FGF2, IL6, mucin 1 (MUC1, LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA, phosphoglycerate kinase 1 (PGK1, and vascular endothelial growth factor A (VEGFA detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene

  4. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-07

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  5. A stochastic model for cancer stem cell origin in metastatic colon cancer.

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W; Gollin, Susanne M; Gamblin, T Clark; Geller, David A; Lagasse, Eric

    2008-09-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here, we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally derived tumor cells expressed many consistent (clonal) along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability.

  6. Surgery for nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Loïc Lang-Lazdunski

    2013-09-01

    Full Text Available Surgery remains the best curative option in patients with early stage lung cancer (stage I and II. Developments in minimally invasive techniques now allow surgeons to perform lung resections on elderly patients, patients with poor pulmonary function or significant cardiopulmonary comorbidities. New techniques, such as stereotactic radiotherapy and ablative procedures, are being evaluated in early-stage lung cancer and may represent an alternative to surgery in patients unfit for lung resection. Perioperative mortality rates have dropped significantly at most institutions in the past two decades and complications are managed more efficiently. Progress in imaging and staging techniques have helped cut futile thoracotomy rates and offer patients the most adequate treatment options. Large randomised trials have helped clarify the role of neoadjuvant, induction and adjuvant chemotherapy, as well as radiotherapy. Surgery remains an essential step in the multimodality therapy of selected patients with advanced-stage lung cancer (stage III and IV. Interventional and endoscopic techniques have reduced the role of surgery in the diagnosis and staging of nonsmall cell lung cancer, but surgery remains an important tool in the palliation of advanced-stage lung cancer. Large national/international surgical databases have been developed and predictive risk-models for surgical mortality/morbidity published by learned surgical societies. Nonetheless, lung cancer overall survival rates remain deceptively low and it is hoped that early detection/screening, better understanding of tumour biology and development of biomarkers, and development of efficient targeted therapies will help improve the prognosis of lung cancer patients in the next decade.

  7. Effects of laser peripheral iridotomy on corneal endothelial cell density and cell morphology in primary angle closure suspect subjects

    Directory of Open Access Journals (Sweden)

    Hossein Jamali

    2016-01-01

    Conclusion: In PACS eyes, we did not find a decline in corneal endothelial cell density or a change in cell morphological characteristics, including cell hexagonality and CV, in the central, nasal, and temporal regions of the cornea in any of our subjects over a one-year follow-up period.

  8. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  9. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Increased numbers and functional activity of CD56+ T cells in healthy cytomegalovirus positive subjects

    Science.gov (United States)

    Almehmadi, Mazen; Flanagan, Brian F; Khan, Naeem; Alomar, Suliman; Christmas, Stephen E

    2014-01-01

    Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. Proportions of CD56+ T cells were found to be highly significantly increased in cytomegalovirus-seropositive (CMV+) compared with seronegative (CMV−) healthy subjects (9·1 ± 1·5% versus 3·7 ± 1·0%; P < 0·0001). Proportions of CD56+ T cells expressing CD28, CD62L, CD127, CD161 and CCR7 were significantly lower in CMV+ than CMV− subjects but those expressing CD4, CD8, CD45RO, CD57, CD58, CD94 and NKG2C were significantly increased (P < 0·05), some having the phenotype of T effector memory cells. Levels of pro-inflammatory cytokines and CD107a were significantly higher in CD56+ T cells from CMV+ than CMV− subjects following stimulation with CMV antigens. This also resulted in higher levels of proliferation in CD56+ T cells from CMV+ than CMV− subjects. Using Class I HLA pentamers, it was found that CD56+ T cells from CMV+ subjects contained similar proportions of antigen-specific CD8+ T cells to CD56− T cells in donors of several different HLA types. These differences may reflect the expansion and enhanced functional activity of CMV-specific CD56+ memory T cells. In view of the link between CD56 expression and T-cell cytotoxic function, this strongly implicates CD56+ T cells as being an important component of the cytotoxic T-cell response to CMV in healthy carriers. PMID:24433347

  11. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  12. Optical imaging of cancer and cell death

    OpenAIRE

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic and macroscopic level. Because we believe optical imaging in particular represents a technology that has unique potential to exploit further our knowledge in preclinical research. First, we imaged...

  13. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    14 4 1. Introduction Prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer- related deaths in American men...internalization by MSCs (red (DiI) - MPs, green ( cholera toxin) - cell membrane, blue (Hoechst) - cell nucleus). (d) To assess drug release from G114 MP-loaded

  14. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells.

    Science.gov (United States)

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-06-30

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.

  15. Novel regulators of prostate cancer stem cells and tumor aggressiveness

    NARCIS (Netherlands)

    Zoni, E.

    2016-01-01

    In the past decade it became increasingly clear that tumor heterogeneity represents one of the major problems for cancer treatment, also in prostate cancer. The identification of the molecular properties of highly aggressive cells (Cancer Stem Cells, CSCs) dispersed within the tumor represents a

  16. Differentiation of Prostate Cancer Cells by Using Flexible Fluorescent Polymers

    Science.gov (United States)

    Scott, Michael D.; Dutta, Rinku; Haldar, Manas K.; Guo, Bin; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Using water soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. By using a step-wise linear discriminant analysis we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and non-cancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. PMID:22148518

  17. Breast Cancer Stem Cells and Tumor Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Wendy W. Hwang-Verslues

    2008-10-01

    Full Text Available Studies of breast cancer stem cells are in their infancy and many fundamental questions have yet to be fully addressed. The molecular distinction between normal and cancerous breast stem cells is not clear. While there have been recent breakthroughs in mouse mammary stem cells and lineage determination in mammary glands, little has been determined in human cells. Microarray analyses have provided molecular categorization of breast cancer. However, the cellular origin of different types of breast cancer is largely unknown. In addition, the relationship between breast cancer stem cells and mammary progenitor cells has yet to be clarified. One of the key questions is how a normal mammary stem cell becomes a breast cancer stem cell. Importantly, the existence of different types of human breast cancers with distinct pathologic and molecular signatures suggests the possibility that different types of breast cancer stem cells may exist. Here, we aim to review the current evidence for the existence of different subtypes of breast cancer stem cells and provide further insight into how tumor suppressors might be involved in the initiation of breast cancer stem cells.

  18. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  19. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  20. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  1. Breast cancer stem cells, cytokine networks, and the tumor microenvironment

    National Research Council Canada - National Science Library

    Korkaya, Hasan; Liu, Suling; Wicha, Max S

    2011-01-01

    .... These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment - including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune...

  2. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids.

    Directory of Open Access Journals (Sweden)

    Siddarth Chandrasekaran

    Full Text Available TNF-alpha-related-apoptosis-inducing-ligand (TRAIL has been explored as a therapeutic drug to kill cancer cells. Cancer cells in the circulation are subjected to apoptosis-inducing factors. Despite the presence of these factors, cells are able to extravasate and metastasize. The homotypic and heterotypic cell-cell interactions in a tumor are known to play a crucial role in bestowing important characteristics to cancer cells that leave the primary site. Spheroid cell culture has been extensively used to mimic these physiologically relevant interactions. In this work, we show that the breast cancer cell lines BT20 and MCF7, cultured as 3D tumor spheroids, are more resistant to TRAIL-mediated apoptosis by downregulating the expression of death receptors (DR4 and DR5 that initiate TRAIL-mediated apoptosis. For comparison, we also investigated the effect of TRAIL on cells cultured as a 2D monolayer. Our results indicate that tumor spheroids are enriched for CD44hiCD24loALDH1hi cells, a phenotype that is predominantly known to be a marker for breast cancer stem cells. Furthermore, we attribute the TRAIL-resistance and cancer stem cell phenotype observed in tumor spheroids to the upregulation of cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE₂ pathway. We show that inhibition of the COX-2/PGE₂ pathway by treating tumor spheroids with NS-398, a selective COX-2 inhibitor, reverses the TRAIL-resistance and decreases the incidence of a CD44hiCD24lo population. Additionally, we show that siRNA mediated knockdown of COX-2 expression in MCF7 cells render them sensitive to TRAIL by increasing the expression of DR4 and DR5. Collectively, our results show the effect of the third-dimension on the response of breast cancer cells to TRAIL and suggest a therapeutic target to overcome TRAIL-resistance.

  3. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    Science.gov (United States)

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  4. Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  5. Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  6. Stages of Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  7. NCI Designated Cancer Centers

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  8. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  9. Esophageal Cancer Prevention

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  10. Stages of Vulvar Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  11. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Teodoro Anderson

    2012-08-01

    Full Text Available Abstract Background Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound’s action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. Methods Human cell lines were treated with lycopene (1–5 μM for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL and by DAPI. Results Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7 after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145 when cells were treated with lycopene. Conclusions Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.

  12. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  13. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties.

    Science.gov (United States)

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-02-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

  14. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P.

    Science.gov (United States)

    Huang, Bin; Huang, Yi Jun; Yao, Zhi Jun; Chen, Xu; Guo, Sheng Jie; Mao, Xiao Peng; Wang, Dao Hu; Chen, Jun Xing; Qiu, Shao Peng

    2013-01-01

    Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells as compared with other four cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  15. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  16. On-chip dynamic stress control for cancer cell evolution study

    Science.gov (United States)

    Liu, Liyu; Austin, Robert

    2010-03-01

    The growth and spreading of cancer in host organisms is an evolutionary process. Cells accumulate mutations that help them adapt to changing environments and to obtain survival fitness. However, all cancer--promoting mutations do not occur at once. Cancer cells face selective environmental pressures that drive their evolution in stages. In traditional cancer studies, environmental stress is usually homogenous in space and difficult to change in time. Here, we propose a microfluidic chip employing embedded dynamic traps to generate dynamic heterogeneous microenvironments for cancer cells in evolution studies. Based on polydimethylsiloxane (PDMS) flexible diaphragms, these traps are able to enclose and shield cancer cells or expose them to external environmental stress. Digital controls for each trap determine the nutrition, antibiotics, CO2/O2 conditions, and temperatures to which trapped cells are subjected. Thus, the stress applied to cells can be varied in intensity and duration in each trap independently. The chip can also output cells from specific traps for sequencing and other biological analysis. Hence our design simultaneously monitors and analyzes cell evolution behaviors under dynamic stresses.

  17. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  18. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  19. Renal cell cancer among African Americans: an epidemiologic review

    National Research Council Canada - National Science Library

    Lipworth, Loren; Tarone, Robert E; McLaughlin, Joseph K

    2011-01-01

    Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease...

  20. Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M.; Muller, William J.

    2009-01-01

    Summary Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis. PMID:19118213

  1. Integrins in mammary-stem-cell biology and breast-cancer progression--a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M; Muller, William J

    2009-01-15

    Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis.

  2. Can subjective global assessment of nutritional status predict survival in ovarian cancer?

    Directory of Open Access Journals (Sweden)

    Gupta Digant

    2008-10-01

    Full Text Available Abstract Background Malnutrition is a significant problem in patients with ovarian cancer. The goal of this study was to investigate the prognostic role of Subjective Global Assessment (SGA in patients with ovarian cancer treated in an integrative cancer treatment setting. Methods We evaluated a case series of 132 ovarian cancer patients treated at Cancer Treatment Centers of America® from Jan 2001 to May 2006. SGA was used to assess nutritional status at baseline. Using SGA, patients were classified as well nourished (SGA A, moderately malnourished (SGA B or severely malnourished (SGA C. Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of SGA independent of other factors. Results Of 132 patients, 24 were newly diagnosed while 108 had received prior treatment. 15 had stage I disease at diagnosis, 8 stage II, 85 stage III and 17 stage IV. The median age at presentation was 54.4 years (range 25.5 – 82.5 years. 66 patients were well-nourished (SGA A, 35 moderately malnourished (SGA B and 31 severely malnourished (SGA C. Well nourished patients had a median survival of 19.3 months (95% CI: 14.1 to 24.5, moderately malnourished 15.5 months (95% CI: 5.8 to 25.1, and severely malnourished 6.7 months (95% CI: 4.1 to 9.3; the difference being statistically significant (p = 0.0003. Multivariate Cox modeling, after adjusting for stage at diagnosis and prior treatment history found that moderately malnourished and severely malnourished status were associated with a relative risk of 2.1 (95% CI: 1.2 to 3.6, p = 0.008 and 3.4 (95% CI: 1.9 to 5.8, p Conclusion Univariate and multivariate survival analyses found that low SGA scores (i.e. well-nourished status are associated with better survival outcomes. This study lends support to the role of aggressive nutritional intervention in improving patient outcomes in cancer care.

  3. Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device

    Science.gov (United States)

    Hondroulis, Evangelia; Zhang, Rui; Zhang, Chengxiao; Chen, Chunying; Ino, Kosuke; Matsue, Tomokazu; Li, Chen-Zhong

    2014-01-01

    Electrical properties of cells determine most of the cellular functions, particularly ones which occur in the cell's membrane. Manipulation of these electrical properties may provide a powerful electrotherapy option for the treatment of cancer as cancerous cells have been shown to be more electronegative than normal proliferating cells. Previously, we used an electrical impedance sensing system (EIS) to explore the responses of cancerous SKOV3 cells and normal HUVEC cells to low intensity (electrotherapy for clinical and drug delivery applications. PMID:25057316

  4. Gallium phosphinoarylbisthiolato complexes counteract drug resistance of cancer cells.

    Science.gov (United States)

    Fischer-Fodor, Eva; Vălean, Ana-Maria; Virag, Piroska; Ilea, Petru; Tatomir, Corina; Imre-Lucaci, Florica; Schrepler, Maria Perde; Krausz, Ludovic Tibor; Tudoran, Lucian Barbu; Precup, Calin George; Lupan, Iulia; Hey-Hawkins, Evamarie; Silaghi-Dumitrescu, Luminita

    2014-04-01

    In cancer therapy the platinum-based drugs are used frequently with a good clinical outcome, but besides unwanted side effects which occur, the tumour cells subjected to treatment are prone to develop tolerance or even multidrug resistance (MDR). Metal compounds with a central atom other than platinum are efficient in targeting the chemoresistant cells, therefore the biological outcome of two recently synthesized gallium phosphinoarylbisthiolato complexes was studied, having the formula [X][Ga{PPh(2-SC6H4)2-κ(3)S,S',P}{PPh(2-SC6H4)2-κ(2)S,S'}] where [X] is either the NEt3H (1) or PPh4 (2) cation. Compounds 1 and 2 display in vitro cytotoxicity against both platinum-sensitive and platinum-resistant cell lines (A2780 and A2780cis). Morphological and ultrastructural evidence points toward their capacity to impair tumour cells survival. This behaviour is based on malignant cells capacity to selectively intake gallium, and to bind to the cellular DNA. They are able to cause massive DNA damage in treated cancer cells, focusing on 7-methylguanine and 8-oxoguanine sites and oxidizing the pyrimidine bases; this leads to early apoptosis of a significant percent of treated cells. The intrinsic and extrinsic apoptotic pathways are influenced through the modulation of gene expression following the treatment with complexes 1 and 2, which accompanies the negative regulation of P-glycoprotein 1 (Pgp-1), an important cellular ABC-type transporter from the multidrug resistance (MDR) family. The studied Ga(III) compounds demonstrated the capacity to counteract the chemoresistance mechanisms in the tumours defiant to standard drug action. Compound 2 shows a good anticancer potential and it could represent an alternative to platinum-based drugs especially in the situation of standard treatment failure.

  5. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  6. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44......+ EOC stem cells in ovarian cancer tumors and progression-free survival. EOC stem cells exist as clusters located close to the stroma forming the cancer stem cell "niche". 17.1% of the samples reveled high number of CD44+ EOC stem cells (>20% positive cells). In addition, the number of CD44+ EOC stem...... cells was significantly higher in patients with early-stage ovarian cancer (FIGO I/II), and it was associated with shorter progression-free survival (P = 0.026). This study suggests that quantification of the number of EOC stem cells in the tumor can be used as a predictor of disease and could...

  7. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment....... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  8. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Case of heterochronous triple urogenital cancer (renal cell carcinoma, bladder cancer, prostatic cancer)].

    Science.gov (United States)

    Okumura, Akiou; Tsuritani, Shinji; Takagawa, Kiyoshi; Fuse, Hideki

    2013-11-01

    We report a case of a 73-year-old male with heterochronous triple urogenital cancer. The patient was referred to our hospital because serum PSA was elevated (7.0 ng/ml) in 1998. Prostatic needle biopsy revealed prostatic cancer in the right lobe, and total prostatectomy was performed. The histopathological diagnosis was moderately differentiated adenocarcinoma (TlcNOMO). Non-muscle invasive bladder cancer (NMIBC) was detected during an examination for microhematuria in 2002. Transurethral resection of the bladder tumor (TURBT) procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). A right renal mass was detected incidentally on follow-up CT for bladder cancer in 2008. Renal enucleation was performed in 2009. The histopathological diagnosis was grade 2 clear cell renal cell carcinoma (pTlaNXMO). NMIBC was detected on follow-up urethrocystoscopy in 2011. The TURBT procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). On follow-up for urogenital cancer patients, it is important to investigate recurrence of the primary cancer and also heterochronous canceration of other urogenital organs.

  10. From gametogenesis and stem cells to cancer: common metabolic themes.

    Science.gov (United States)

    Pereira, Sandro L; Rodrigues, Ana Sofia; Sousa, Maria Inês; Correia, Marcelo; Perestrelo, Tânia; Ramalho-Santos, João

    2014-01-01

    Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  11. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  12. Oct-4 expression maintained stem cell properties in prostate cancer ...

    African Journals Online (AJOL)

    The purpose of the present study is to isolate cancerous stem-like cells from normal healthy volunteers and prostate cancer patients (CD133+) which also express MDR1 and to ascertain the influence of Oct-4 on 'stem-ness' and differentiation of these CD133+ cells towards epithelium. Methods: CD133+ cells were isolated ...

  13. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. ... Cytotoxicity of SEE on cancer (HepG2 and CT26) and normal (CHO and rat fibroblast) cell lines was evaluated by MTT assay. IC50 of SEE on ... African Journal of Biotechnology Vol.

  14. Targeting Apoptotic Activity Against Prostate Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2017-07-01

    Full Text Available Numerous data suggest that an increase of cancer stem cells (CSCs in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24− cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an activator of apoptosis in tumor cells. However, some tumors are TRAIL-resistant. Cancer cells can be re-sensitized to TRAIL induced apoptosis by a combination of TRAIL and taxanes. The aim of this work was to analyze the enhancement of the anticancer effect of TRAIL by paclitaxel, cabazitaxel and docetaxel in the whole population of PC3 and DU145 prostate cancer cells, but also in CD44+/CD24− prostate cancer stem cells. We examined the apoptotic effect of TRAIL and taxanes using flow cytometry and Annexin-V-PE staining. The co-treatment with taxanes and TRAIL enhanced significantly the apoptosis in CD44+/CD24− cells only in PC3 cell line but not in DU145 cells. We discovered also that taxanes can increase the expression of death receptor TRAIL-R2 in PC3 prostate cancer cells. The results of our study show that treatment with paclitaxel, cabazitaxel and docetaxel is able to enhance the apoptosis induced by TRAIL even in prostate cancer stem cells.

  15. Milk stimulates growth of prostate cancer cells in culture.

    Science.gov (United States)

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes.

  16. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  17. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  18. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  19. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  20. Spheroid Cultures of Primary Urothelial Cancer Cells: Cancer Tissue-Originated Spheroid (CTOS) Method.

    Science.gov (United States)

    Yoshida, Takahiro; Okuyama, Hiroaki; Endo, Hiroko; Inoue, Masahiro

    2018-01-01

    Increasingly, it has been recognized that studying cancer samples from individual patients is important for the development of effective therapeutic strategies and in endeavors to overcome therapy resistance. Primary cultures of cancer cells acutely dissected from individual patients can provide a platform that enables the study and characterization of individual tumors. To that end, we have developed a method for preparing cancer cells in the form of multi-cellular spheroids. The cells can be derived from patient tumors (primary cells), from patient-derived xenografts, or from genetically- or chemically induced animal tumors. This method of culturing spheroids composed of cells derived from cancer tissues can be applied to various types of cancer, including urothelial cancer. The method is based on the principle of retaining cell-cell contact throughout cancer cell preparation and culturing. The first step is a partial digestion of the tumor specimen into small fragments; these fragments spontaneously form spheroidal shapes within several hours. The spheroid is referred to as a cancer tissue-originated spheroid (CTOS). The advantage of the CTOS method is that it allows one to prepare pure cancer cells at high yield. CTOSs can be stably cultured in serum-free conditions. The CTOS method can be applied to drug sensitivity assays, drug screening, and analyses of intracellular signaling. Moreover, the CTOS method provides a platform for studying the nature of cancer cell clusters.

  1. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    Science.gov (United States)

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  2. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer.

    Science.gov (United States)

    Steg, Adam D; Bevis, Kerri S; Katre, Ashwini A; Ziebarth, Angela; Dobbin, Zachary C; Alvarez, Ronald D; Zhang, Kui; Conner, Michael; Landen, Charles N

    2012-02-01

    Within heterogeneous tumors, subpopulations often labeled cancer stem cells (CSC) have been identified that have enhanced tumorigenicity and chemoresistance in ex vivo models. However, whether these populations are more capable of surviving chemotherapy in de novo tumors is unknown. We examined 45 matched primary/recurrent tumor pairs of high-grade ovarian adenocarcinomas for expression of CSC markers ALDH1A1, CD44, and CD133 using immunohistochemistry. Tumors collected immediately after completion of primary therapy were then laser capture microdissected and subjected to a quantitative PCR array examining stem cell biology pathways (Hedgehog, Notch, TGF-β, and Wnt). Select genes of interest were validated as important targets using siRNA-mediated downregulation. Primary samples were composed of low densities of ALDH1A1, CD44, and CD133. Tumors collected immediately after primary therapy were more densely composed of each marker, whereas samples collected at first recurrence, before initiating secondary therapy, were composed of similar percentages of each marker as their primary tumor. In tumors collected from recurrent platinum-resistant patients, only CD133 was significantly increased. Of stem cell pathway members examined, 14% were significantly overexpressed in recurrent compared with matched primary tumors. Knockdown of genes of interest, including endoglin/CD105 and the hedgehog mediators Gli1 and Gli2, led to decreased ovarian cancer cell viability, with Gli2 showing a novel contribution to cisplatin resistance. These data indicate that ovarian tumors are enriched with CSCs and stem cell pathway mediators, especially at the completion of primary therapy. This suggests that stem cell subpopulations contribute to tumor chemoresistance and ultimately recurrent disease.

  3. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  4. Glucose challenge increases circulating progenitor cells in Asian Indian male subjects with normal glucose tolerance which is compromised in subjects with pre-diabetes: A pilot study

    Directory of Open Access Journals (Sweden)

    Bairagi Soumi

    2011-01-01

    Full Text Available Abstract Background Haematopoietic stem cells undergo mobilization from bone marrow to blood in response to physiological stimuli such as ischemia and tissue injury. The aim of study was to determine the kinetics of circulating CD34+ and CD133+CD34+ progenitor cells in response to 75 g glucose load in subjects with normal and impaired glucose metabolism. Methods Asian Indian male subjects (n = 50 with no prior history of glucose imbalance were subjected to 2 hour oral glucose tolerance test (OGTT. 24 subjects had normal glucose tolerance (NGT, 17 subjects had impaired glucose tolerance (IGT and 9 had impaired fasting glucose (IFG. The IGT and IFG subjects were grouped together as pre-diabetes group (n = 26. Progenitor cell counts in peripheral circulation at fasting and 2 hour post glucose challenge were measured using direct two-color flow cytometry. Results The pre-diabetes group was more insulin resistant (p + cells (p = 0.003 and CD133+CD34+ (p = 0.019 cells was seen 2 hours post glucose challenge in the NGT group. This increase for both the cell types was attenuated in subjects with IGT. CD34+ cell counts in response to glucose challenge inversely correlated with neutrophil counts (ρ = -0.330, p = 0.019, while post load counts of CD133+CD34+ cells inversely correlated with serum creatinine (ρ = -0.312, p = 0.023. Conclusion There is a 2.5-fold increase in the circulating levels of haematopoietic stem cells in response to glucose challenge in healthy Asian Indian male subjects which is attenuated in subjects with pre-diabetes.

  5. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

    Science.gov (United States)

    Lawson, Devon A.; Bhakta, Nirav R.; Kessenbrock, Kai; Prummel, Karin D.; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-01-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality1. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours2–5. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown2. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are

  6. Risk of spilling cancer cells during total laparoscopic hysterectomy in low-risk endometrial cancer

    Directory of Open Access Journals (Sweden)

    Satoshi Shinohara

    2017-08-01

    Conclusion: We conclude that fallopian tubal cauterization is sufficient to provide protection from the dissemination of cancer cells into the peritoneal cavity at the time of TLH for endometrial cancers in early stages.

  7. Examining parents' assessments of objective and subjective social status in families of children with cancer.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gage-Bouchard

    Full Text Available INTRODUCTION: Understanding the social determinants of child health is a prominent area of research. This paper examines the measurement of socioeconomic position in a sample of families of children with cancer. Socioeconomic position is difficult to measure in pediatric health research due to sensitivity of asking about finances when research is conducted in health care delivery settings, financial volatility associated with periods of pediatric illness, and difficulty recruiting fathers to research. METHODS: Caregivers of children with cancer (n=76 completed a questionnaire that included the MacArthur Scale of Subjective Social Status (SSS. SSS was measured using two 10-rung ladders with differing referent groups: the US and respondents' communities. Respondents placed themselves on each ladder by placing an X on the rung that represented their social position in relation to the two referent groups. Individuals' SSS ratings and discrepancies in SSS ratings within couples were examined, and associations with objective social status measures were evaluated using Pearson correlations or t-tests. RESULTS: Parents' placement on the US and community ladders was positively associated with their income, education, wealth, household savings, and household savings minus debt. On average, respondents placed themselves higher on the US ladder compared to the community ladder. There was an average intra-couple discrepancy of 1.25 rungs in partner's placements on the US ladder and a 1.56 rung difference for the community ladder. This intra-couple discrepancy was not associated with gender. DISCUSSION: Results offer insight into the use of subjective social status measures to capture a more holistic assessment of socioeconomic position and the measurement of socioeconomic position in two-parent families.

  8. Examining Parents’ Assessments of Objective and Subjective Social Status in Families of Children with Cancer

    Science.gov (United States)

    Gage-Bouchard, Elizabeth A.; Devine, Katie A.

    2014-01-01

    Introduction Understanding the social determinants of child health is a prominent area of research. This paper examines the measurement of socioeconomic position in a sample of families of children with cancer. Socioeconomic position is difficult to measure in pediatric health research due to sensitivity of asking about finances when research is conducted in health care delivery settings, financial volatility associated with periods of pediatric illness, and difficulty recruiting fathers to research. Methods Caregivers of children with cancer (n = 76) completed a questionnaire that included the MacArthur Scale of Subjective Social Status (SSS). SSS was measured using two 10-rung ladders with differing referent groups: the US and respondents’ communities. Respondents placed themselves on each ladder by placing an X on the rung that represented their social position in relation to the two referent groups. Individuals’ SSS ratings and discrepancies in SSS ratings within couples were examined, and associations with objective social status measures were evaluated using Pearson correlations or t-tests. Results Parents’ placement on the US and community ladders was positively associated with their income, education, wealth, household savings, and household savings minus debt. On average, respondents placed themselves higher on the US ladder compared to the community ladder. There was an average intra-couple discrepancy of 1.25 rungs in partner’s placements on the US ladder and a 1.56 rung difference for the community ladder. This intra-couple discrepancy was not associated with gender. Discussion Results offer insight into the use of subjective social status measures to capture a more holistic assessment of socioeconomic position and the measurement of socioeconomic position in two-parent families. PMID:24599006

  9. Examining parents' assessments of objective and subjective social status in families of children with cancer.

    Science.gov (United States)

    Gage-Bouchard, Elizabeth A; Devine, Katie A

    2014-01-01

    Understanding the social determinants of child health is a prominent area of research. This paper examines the measurement of socioeconomic position in a sample of families of children with cancer. Socioeconomic position is difficult to measure in pediatric health research due to sensitivity of asking about finances when research is conducted in health care delivery settings, financial volatility associated with periods of pediatric illness, and difficulty recruiting fathers to research. Caregivers of children with cancer (n=76) completed a questionnaire that included the MacArthur Scale of Subjective Social Status (SSS). SSS was measured using two 10-rung ladders with differing referent groups: the US and respondents' communities. Respondents placed themselves on each ladder by placing an X on the rung that represented their social position in relation to the two referent groups. Individuals' SSS ratings and discrepancies in SSS ratings within couples were examined, and associations with objective social status measures were evaluated using Pearson correlations or t-tests. Parents' placement on the US and community ladders was positively associated with their income, education, wealth, household savings, and household savings minus debt. On average, respondents placed themselves higher on the US ladder compared to the community ladder. There was an average intra-couple discrepancy of 1.25 rungs in partner's placements on the US ladder and a 1.56 rung difference for the community ladder. This intra-couple discrepancy was not associated with gender. Results offer insight into the use of subjective social status measures to capture a more holistic assessment of socioeconomic position and the measurement of socioeconomic position in two-parent families.

  10. β-cell function is associated with metabolic syndrome in Mexican subjects

    Science.gov (United States)

    Baez-Duarte, Blanca G; Sánchez-Guillén, María Del Carmen; Pérez-Fuentes, Ricardo; Zamora-Ginez, Irma; Leon-Chavez, Bertha Alicia; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio

    2010-01-01

    Aims The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS) or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects. Material and methods This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study) with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1) control group of individuals at metabolic balance without metabolic syndrome and (2) group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out. Results Average age of the subjects in the control group (n = 254) was 35.7 ± 11.5 years and 42.0 ± 10.7 years for subjects in the metabolic syndrome group (n = 190). Subjects at metabolic balance without metabolic syndrome showed decreased IS, increased insulin resistance (IR), and altered β-cell function. Individuals with metabolic syndrome showed a high prevalence (P ≤ 0.05) of family history of type 2 diabetes (T2D). This group also showed a significant metabolic imbalance with glucose and insulin levels and lipid profile outside the ranges considered safe to prevent the development of cardiovascular disease and T2D. Conclusion The main finding in this study was the detection of altered β-cell function, decreased IS, an increased IR in subjects at metabolic balance, and the progressive deterioration of β-cell function and IS in subjects with metabolic syndrome as the number of features of metabolic syndrome increases

  11. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  12. Differentiation of prostate cancer cells using flexible fluorescent polymers.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Guo, Bin; Friesner, Daniel L; Mallik, Sanku

    2012-01-03

    Using water-soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. Using a stepwise linear discriminant analysis, we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and noncancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. © 2011 American Chemical Society

  13. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Global Gene Expression Profiling in Three Tumor Cell Lines Subjected to Experimental Cycling and Chronic Hypoxia

    Science.gov (United States)

    Olbryt, Magdalena; Habryka, Anna; Student, Sebastian; Jarząb, Michał; Tyszkiewicz, Tomasz; Lisowska, Katarzyna Marta

    2014-01-01

    Hypoxia is one of the most important features of the tumor microenvironment, exerting an adverse effect on tumor aggressiveness and patient prognosis. Two types of hypoxia may occur within the tumor mass, chronic (prolonged) and cycling (transient, intermittent) hypoxia. Cycling hypoxia has been shown to induce aggressive tumor cell phenotype and radioresistance more significantly than chronic hypoxia, though little is known about the molecular mechanisms underlying this phenomenon. The aim of this study was to delineate the molecular response to both types of hypoxia induced experimentally in tumor cells, with a focus on cycling hypoxia. We analyzed in vitro gene expression profile in three human cancer cell lines (melanoma, ovarian cancer, and prostate cancer) exposed to experimental chronic or transient hypoxia conditions. As expected, the cell-type specific variability in response to hypoxia was significant. However, the expression of 240 probe sets was altered in all 3 cell lines. We found that gene expression profiles induced by both types of hypoxia were qualitatively similar and strongly depend on the cell type. Cycling hypoxia altered the expression of fewer genes than chronic hypoxia (6,132 vs. 8,635 probe sets, FDR adjusted pcycling hypoxia than by prolonged hypoxia, such as IL8, PLAU, and epidermal growth factor (EGF) pathway-related genes (AREG, HBEGF, and EPHA2). These transcripts were, in most cases, validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our results indicate that experimental cycling hypoxia exerts similar, although less intense effects, on the examined cancer cell lines than its chronic counterpart. Nonetheless, we identified genes and molecular pathways that seem to be preferentially regulated by cyclic hypoxia. PMID:25122487

  15. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro

    2017-02-01

    Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.

  16. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    , we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... dependent. The growth reduction was similar in isogenic colon cancer cells with and without p53, indicating that SSX2 is able to inhibit the growth of cancer cells, even in absence of functional p53. Our results show that SSX2 acts as an inhibitor of cancer cell proliferation, possibly through replicative...... stress, and therefore have important implications for the use of SSX2 as a target for cancer therapy....

  18. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  19. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  20. Verrucous Squamous Cell Cancer in the Esophagus

    DEFF Research Database (Denmark)

    Egeland, C; Achiam, M P; Federspiel, B

    2016-01-01

    Verrucous carcinoma is a rare, slow-growing type of squamous cell cancer. Fewer than 50 patients with verrucous carcinoma in the esophagus have been described worldwide. In 2014, two male patients were diagnosed with verrucous carcinoma in the distal part of the esophagus. The endoscopic examinat...... with dysphagia, weight loss, and an endoscopically malignant tumor, but surgery was not performed until after 9 and 10 months, respectively, and then in order to get a diagnosis. At the last follow-up, both patients were without any recurrence of the disease....

  1. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary O. Rankin

    2013-03-01

    Full Text Available Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70 cell lines and a normal ovarian cell line (IOSE-364 were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 µM for baicalin and 25–40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein. Baicalin decreased expression of VEGF (20 µM, cMyc (80 µM, and NFkB (20 µM; baicalein decreased expression of VEGF (10 µM, HIF-1α (20 µM, cMyc (20 µM, and NFkB (40 µM. Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers.

  2. Identification of genes involved in breast cancer and breast cancer stem cells

    OpenAIRE

    Apostolou P; Toloudi M; Papasotiriou I

    2015-01-01

    Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs), which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed t...

  3. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells.

    Science.gov (United States)

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-10-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription‑quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, as well as in PSCs. An enzyme‑linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)‑α and transforming growth factor‑β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co‑cultured adhesive potential of Panc‑1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc‑1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc‑1 cells. The expression of TNF‑α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc

  4. [Identification and significance of myeloid-derived suppressor cells in peripheral blood of breast cancer patients].

    Science.gov (United States)

    Wang, C Q; Wei, G; Xu, G Y; Wang, J M; Bian, J; Ma, M S; Wang, W; Xu, D; Zhou, Z J; Zhao, D D; Li, H

    2016-02-01

    To investigate the presence, biological features, and clinical significance of myeloid-derived suppressor cells (MDSCs) in breast cancer patients. Eighty-four cases of breast cancer, 37 cases of benign breast tumor and 21 cases of healthy individuals were included in this study. Samples of peripheral blood (2 ml) were collected, and in the breast cancer patients, blood samples were taken both before and after treatment. Flow cytometry using anti-CD11b, CD33, CD14 and HLA-DR antibody was conducted to identify the unique membrane markers of MDSCs, and statistical analysis was performed to explore the relationship between MDSCs and clinical factors. Cell isolation and in vitro assay were used to test T cell function. CD11b(+) CD33(+) CD14(-) MDSCs were present in the blood of breast cancer patients, and these MDSCs were histologically of mononuclear cells. Cell proliferation assay confirmed that MDSCs inhibited proliferation of homologous T cells in vitro. MDSCs levels in patients with breast cancer, benign disease and the health control were (15.93±3.17)%, (8.92±4.42)% and (5.02±2.75)%, respectively, with a statistically significant difference (Pbreast cancer patients and the other subjects (patients with benign lesions and healthy controls). The expression level of MDSCs in patients with breast cancer was associated with surgical treatment, but not with age, disease stage, lymph node metastasis, ER or PR expression. MDSCs levels were significantly lower in post-operative patients[(7.83±3.78) %] than the (15.37±2.49) % in patients before surgery (Pbreast cancer patients and the level of MDSCs is associated with surgical treatment. Our findings suggest that CD11b(+) CD33(+) CD14(-) MDSCs are likely involved in breast cancer initiation and development, and may become a novel biomarker to facilitate diagnosis and to predict clinical outcomes of breast cancer.

  5. Intention, Subjective Norms, and Cancer Screening in the Context of Relational Culture

    Science.gov (United States)

    Pasick, Rena J.; Barker, Judith C.; Otero-Sabogal, Regina; Burke, Nancy J.; Joseph, Galen; Guerra, Claudia

    2010-01-01

    Research targeting disparities in breast cancer detection has mainly utilized theories that do not account for social context and culture. Most mammography promotion studies have used a conceptual framework centered in the cognitive constructs of intention (commonly regarded as the most important determinant of screening behavior), self-efficacy, perceived benefit, perceived susceptibility, and/or subjective norms. The meaning and applicability of these constructs in diverse communities are unknown. The purpose of this study is to inductively explore the social context of Filipina and Latina women (the sociocultural forces that shape people’s day-to-day experiences and that directly and indirectly affect health and behavior) to better understand mammography screening behavior. One powerful aspect of social context that emerged from the findings was relational culture, the processes of interdependence and interconnectedness among individuals and groups and the prioritization of these connections above virtually all else. The authors examine the appropriateness of subjective norms and intentions in the context of relational culture and identify inconsistencies that suggest varied meanings from those intended by behavioral theorists. PMID:19805793

  6. Squamous Cell Lung Cancer: From Tumor Genomics to Cancer Therapeutics

    Science.gov (United States)

    Gandara, David R.; Hammerman, Peter S.; Sos, Martin L.; Lara, Primo N.; Hirsch, Fred R.

    2016-01-01

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the last several years, therapeutic progress in SCC has lagged behind the now more common NSCLC histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC. PMID:25979930

  7. Reduced pyramidal cell somal volume in auditory association cortex of subjects with schizophrenia.

    Science.gov (United States)

    Sweet, Robert A; Pierri, Joseph N; Auh, Sungyoung; Sampson, Allan R; Lewis, David A

    2003-03-01

    Subjects with schizophrenia have decreased gray matter volume of auditory association cortex in structural imaging studies, and exhibit deficits in auditory sensory memory processes subserved by this region. In dorsal prefrontal cortex (dPFC), similar in vivo observations of reduced regional volume and working memory deficits in subjects with schizophrenia have been related to reduced somal volume of deep layer 3 pyramidal cells. We hypothesized that deep layer 3 pyramidal cell somal volume would also be reduced in auditory association cortex (BA42) in schizophrenia. We used the nucleator to estimate the somal volume of pyramidal neurons in deep layer 3 of BA42 in 18 subjects with schizophrenia, each of whom was matched to one normal comparison subject for gender, age, and post-mortem interval. For all subject pairs, somal volume of pyramidal neurons in deep layer 3 of dPFC (BA9) had previously been determined. In BA42, somal volume was reduced by 13.1% in schizophrenic subjects (p=0.03). Reductions in somal volume were not associated with the history of antipsychotic use, alcohol dependence, schizoaffective disorder, or death by suicide. The percent change in somal volume within-subject pairs was highly correlated between BA42 and BA9 (r=0.67, p=0.002). Deep layer 3 pyramidal cell somal volume is reduced in BA42 of subjects with schizophrenia. This reduction may contribute to impairment in auditory function. The correlated reductions of somal volume in BA42 and BA9 suggest that a common factor may affect deep layer 3 pyramidal cells in both regions.

  8. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  9. Tracking the Evolution of Non-Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Jamal-Hanjani, Mariam; Wilson, Gareth A.; McGranahan, Nicholas

    2017-01-01

    Background Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine...... as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .)....

  10. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  11. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  12. Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects

    Directory of Open Access Journals (Sweden)

    Kamil Brzóska

    2014-09-01

    Full Text Available [b]Introduction and objective[/b]. Chronic obstructive pulmonary disease (COPD is often accompanied by lung cancer. Among the genes that may play a role in the occurrence of COPD and lung cancer are those encoding the proteolytic enzymes, such as matrix metalloproteinases (MMPs and their tissue inhibitors. The objective of this study was to find MMPs-associated markers useful in the identification of COPD subjects with increased susceptibility to developing lung cancer. [b]Materials and methods[/b]. We compared the frequency of single nucleotide polymorphisms in genes coding for matrix proteinases ([i]MMP1, MMP2, MMP3, MMP9, MMP12[/i] as well as tissue inhibitor of metalloproteinases ([i]TIMP1[/i] in two groups of subjects: COPD patients (54 subjects and COPD patients diagnosed for lung cancer occurrence (53 subjects.The levels of the respective proteins in blood serum were also analyzed. [b]Results[/b]. The frequencies of 2 genotypes, [i]MMP3[/i] rs3025058 and MMP3 rs678815, were significantly different between the studied groups. In both cases, more heterozygotes and less homozygotes (both types were observed in the COPD group than in the COPD + cancer group. A significantly higher TIMP1 level in blood serum was observed in the COPD + cancer group than in the COPD group. There were no statistically significant differences in[i] MMPs[/i] blood levels between the studied groups. In addition, no genotype-associated differences in [i]TIMP1[/i] or[i] MMPs[/i] blood levels were observed. [b]Conclusions[/b]. Homozygocity for [i]MMP3[/i] rs3025058 and rs678815 polymorphisms is a potential marker of enhanced susceptibility to lung cancer development among COPD subjects.

  13. [Expression of a new lung cancer drug resistance-related gene in lung cancer tissues and lung cancer cell strains].

    Science.gov (United States)

    Liu, Ling-Zhi; Qian, Gui-Sheng; Zhou, Xiang-Dong

    2003-02-01

    A new drug resistance-related gene fragment which was 494 bp long was found using suppression subtractive hybridization (SSH) and its full-length cDNA fragment was cloned by the authors. This study was designed to determine the expression of this lung cancer drug resistance-related gene (LCDRG) in lung cancer tissues, juxtacancerous tissues, and five lung cancer cell strains. The expression of LCDRG was determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method in 38 lung cancer tissues,12 juxtacancerous tissues, and 5 lung cancer cell strains. The expression of LCDRG in cancer tissues was significantly higher than that in juxtacancerous tissue (Pcancer cell strains, the expression levels of LCDRG in adenocarcinoma cell strains SPC-A-1 and A549, big cell lung cancer cell strain H460, small cell lung cancer cell strains H446 and SH77 were decreased gradually. LCDRG is closely related to lung cancer and may be involved in the pathogenesis of lung cancer.

  14. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A.; Dharmawardhane, Suranganie F.

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  15. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  16. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  17. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...... in normal peripheral lymphocytes. In this study, we show that addition of serotonin decreases intracellular levels of cAMP in lymphocytes from HIV-seropositive subjects and significantly increases the proliferative capacity in vitro. However, the effect of serotonin varies with the initial proliferative...... enhancing effect on cell proliferation in some HIV-seropositive individuals than in others....

  18. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  19. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  20. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  1. Engineering chemically modified viruses for prostate cancer cell recognition.

    Science.gov (United States)

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  2. The complexity of the complicity of mast cells in cancer.

    Science.gov (United States)

    Nechushtan, Hovav

    2010-05-01

    Mast cells are evolutionarly ancient cells of the immune cells which can secrete a variety of effector molecules. Animal and pathologic studies suggest that mast cells may promote tumor growth in some cancer types but may act in an opposite manner in others. In several mouse models a critical role of mast cells for tumor promotion was demonstrated. In humans mast cells are dependent upon the tyrosine kinase receptor c-Kit. This receptor is inhibited by many of the new anti-cancer tyrosine kinase inhibitors including Pazopanib, Imatinib and Masitinib. These drugs probably ablate some tumor mast cells, in addition to their other known antitumor effects. Understanding the complex roles of mast cells in cancer should aid in understanding mechanisms of current tyrosine kinase inhibitors, and the development of innovative anti-cancer therapies. 2009 Elsevier Ltd. All rights reserved.

  3. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  4. Cancer metabolism: the volatile signature of glycolysis-in vitro model in lung cancer cells.

    Science.gov (United States)

    Feinberg, Tali; Herbig, Jens; Kohl, Ingrid; Las, Guy; Cancilla, John C; Torrecilla, Jose S; Ilouze, Maya; Haick, Hossam; Peled, Nir

    2017-01-09

    Discovering the volatile signature of cancer cells is an emerging approach in cancer research, as it may contribute to a fast and simple diagnosis of tumors in vivo and in vitro. One of the main contributors to such a volatile signature is hyperglycolysis, which characterizes the cancerous cell. The metabolic perturbation in cancer cells is known as the Warburg effect; glycolysis is preferred over oxidative phosphorylation (OXPHOS), even in the presence of oxygen. The precise mitochondrial alterations that underlie the increased dependence of cancer cells on aerobic glycolysis for energy generation have remained a mystery. We aimed to profile the volatile signature of the glycolysis activity in lung cancer cells. For that an in vitro model, using lung cancer cell line cultures (A549, H2030, H358, H322), was developed. The volatile signature was measured by proton transfer reaction mass spectrometry under normal conditions and glycolysis inhibition. Glycolysis inhibition and mitochondrial activity were also assessed by mitochondrial respiration capacity measurements. Cells were divided into two groups upon their glycolytic profile (PET positive and PET negative). Glycolysis blockade had a unique characteristic that was shared by all cells. Furthermore, each group had a characteristic volatile signature that enabled us to discriminate between those sub-groups of cells. In conclusion, lung cancer cells may have different subpopulations of cells upon low and high mitochondrial capacity. In both groups, glycolysis blockade induced a unique volatile signature.

  5. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Molecular Genetic Characterization of Individual Cancer Cells Isolated via Single-Cell Printing.

    Directory of Open Access Journals (Sweden)

    Julian Riba

    Full Text Available Intratumoral genetic heterogeneity may impact disease outcome. Gold standard for dissecting clonal heterogeneity are single-cell analyses. Here, we present an efficient workflow based on an advanced Single-Cell Printer (SCP device for the study of gene variants in single cancer cells. To allow for precise cell deposition into microwells the SCP was equipped with an automatic dispenser offset compensation, and the 384-microwell plates were electrostatically neutralized. The ejection efficiency was 99.7% for fluorescent beads (n = 2304 and 98.7% for human cells (U-2 OS or Kasumi-1 cancer cell line, acute myeloid leukemia [AML] patient; n = 150. Per fluorescence microscopy, 98.8% of beads were correctly delivered into the wells. A subset of single cells (n = 81 was subjected to whole genome amplification (WGA, which was successful in all cells. On empty droplets, a PCR on LINE1 retrotransposons yielded no product after WGA, verifying the absence of free-floating DNA in SCP-generated droplets. Representative gene variants identified in bulk specimens were sequenced in single-cell WGA DNA. In U-2 OS, 22 of 25 cells yielded results for both an SLC34A2 and TET2 mutation site, including cells harboring the SLC34A2 but not the TET2 mutation. In one cell, the TET2 mutation analysis was inconclusive due to allelic dropout, as assessed via polymorphisms located close to the mutation. Of Kasumi-1, 23 of 33 cells with data on both the KIT and TP53 mutation site harbored both mutations. In the AML patient, 21 of 23 cells were informative for a TP53 polymorphism; the identified alleles matched the loss of chromosome arm 17p. The advanced SCP allows efficient, precise and gentle isolation of individual cells for subsequent WGA and routine PCR/sequencing-based analyses of gene variants. This makes single-cell information readily accessible to a wide range of applications and can provide insights into clonal heterogeneity that were indeterminable solely by

  7. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  8. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Donatella D’Eliseo

    2016-01-01

    Full Text Available Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.

  9. Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

    Science.gov (United States)

    Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R

    2017-09-01

    Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.

  10. Against Lung Cancer Cells: To Be, or Not to Be, That Is the Problem

    OpenAIRE

    Okumura, Naoko; Yoshida, Hitomi; Kitagishi, Yasuko; Nishimura, Yuri; Iseki, Shio; Matsuda, Satoru

    2012-01-01

    Tobacco smoke and radioactive radon gas impose a high risk for lung cancer. The radon-derived ionizing radiation and some components of cigarette smoke induce oxidative stress by generating reactive oxygen species (ROS). Respiratory lung cells are subject to the ROS that causes DNA breaks, which subsequently bring about DNA mutagenesis and are intimately linked with carcinogenesis. The damaged cells by oxidative stress are often destroyed through the active apoptotic pathway. However, the ROS...

  11. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  12. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  13. Oncogene-directed alterations in cancer cell metabolism.

    Science.gov (United States)

    Nagarajan, Arvindhan; Malvi, Parmanand; Wajapeyee, Narendra

    2016-07-01

    Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.

  14. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Manuela Schwegler

    2015-01-01

    Full Text Available Background. In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. Methods. The phenomenon of one cell being internalized into another, which we refer to as “cell-in-cell event,” was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. Results. Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm2. Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients’ survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (p=0.008. Conclusion. Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies.

  15. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Clinical Trials Information A to Z List of Cancer Drugs Complementary & Alternative Medicine (CAM) Questions to Ask about ... Treatment Types of Treatment Side Effects Clinical Trials Cancer Drugs Complementary & Alternative Medicine Coping Feelings & Cancer Adjusting to ...

  16. Modeling selective elimination of quiescent cancer cells from bone marrow.

    Science.gov (United States)

    Cavnar, Stephen P; Rickelmann, Andrew D; Meguiar, Kaille F; Xiao, Annie; Dosch, Joseph; Leung, Brendan M; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E; Takayama, Shuichi; Luker, Gary D

    2015-08-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cytotoxic effect of TDZ on human cervical cancer cells.

    Science.gov (United States)

    Enkhtaivan, Gansukh; Kim, Doo Hwan; Pandurangan, Muthuraman

    2017-08-01

    The present study investigates the anticancer activity of Thidiazuron (TDZ). Anticancer activity of TDZ was evaluated in cervical carcinoma cells (HeLa cells). Sulforhodamine-B (SRB) assay indicates that TDZ was about 100 times more toxic to the cancer cell than normal cells. TUNEL assay showed TDZ induced DNA damage in tumor cells. The loss of mitochondrial membrane potential (MMP) in cancer cells was observed following TDZ treatment. The Bax and bcl-2 gene expression ratio are highly responsible for the regulation of MMP balance, and these ratio was significantly altered following TDZ treatment. The p53 and caspase-3 expressions were increased in cancer cells following treatment. Caspase-3 activation is the key factor for apoptosis. Cytotoxicity of TDZ on HeLa cells was 100 times higher than normal kidney cell (MDCK cells). Moreover, the anticancer activity of TDZ was tested by DNA damage, mitochondrial dysfunction, some gene expression and caspase-3 inhibition in silico. TDZ detected has higher ability on early apoptosis of cancer cell through DNA damage. Additionally, cancer cellular MMP was significantly reduced under inoculation of TDZ. In silico assay confirmed that TDZ was able to bind with the active site of the capase-3 protein. Therefore, taking all these data together it is suggested that the TDZ may be a potential agent to act against cervical cancer cells. Copyright © 2017. Published by Elsevier B.V.

  18. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    user

    2011-02-18

    Feb 18, 2011 ... To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells. (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No.

  19. Sensitizing Cancer Cells: Is It Really All about U?

    OpenAIRE

    Stover, Patrick J.; Weiss, Robert S.

    2012-01-01

    In this issue of Cancer Cell, Hu et al. report that TMPK and RNR, two key enzymes in deoxyribonucleotide biosynthesis, co-localize to damaged DNA and produce nucleotides necessary for DNA repair while suppressing uracil incorporation. TMPK inhibition disrupts this balance and selectively sensitizes cancer cells to low-dose chemotherapy.

  20. Dendritic cell-based immunotherapy in ovarian cancer.

    Science.gov (United States)

    Coosemans, An; Vergote, Ignace; Van Gool, Stefaan W

    2013-12-01

    Worldwide, 80% of patients with ovarian cancer die of the disease. New treatments for this aggressive disease are therefore being intensively searched. Although dendritic cell-based vaccines against gynecological malignancies are in their infancy, this immunotherapeutic approach holds much promise. Here, we present our view on an optimal dendritic cell-based immunotherapeutic strategy against ovarian cancer.

  1. Intravital characterization of tumor cell migration in pancreatic cancer

    NARCIS (Netherlands)

    Beerling, Evelyne; Oosterom, Ilse; Voest, Emile E; Lolkema, Martijn P; van Rheenen, Jacco

    2016-01-01

    Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior

  2. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No severe toxicity ...

  3. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  4. Cell proliferation and apoptosis in gastric cancer and intestinal metaplasia

    OpenAIRE

    Nora Manoukian Forones; Ana Paula Souza Carvalho; Oswaldo Giannotti-Filho; Laércio Gomes Lourenço; Celina Tizuko Fujiyama Oshima

    2005-01-01

    BACKGROUND: Higher proliferation is commonly observed in cancer cells. Apoptosis can be a useful measure of a tumor cell kinetic. Alteration of the balance between proliferation and apoptosis is associated with cancer. AIM: To study proliferation and apoptosis on gastric cancer and in intestinal metaplasia. METHODOLOGY: Twenty-two samples from gastric adenocarcinomas and 22 biopsies from intestinal metaplasia were studied. The apoptotic bodies in hematoxylin-eosin slides and the expression of...

  5. Renal cell cancer among African Americans: an epidemiologic review

    Science.gov (United States)

    2011-01-01

    Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease. This excess dates back to the 1970s, despite less access among blacks to imaging procedures in the past. In contrast, mortality rates for this cancer have been virtually identical among blacks and whites since the early 1990s, despite the fact that nephrectomy rates, regardless of stage, are lower among blacks than among whites. These observations suggest that renal cell cancer may be a less aggressive tumor in blacks. We have reviewed the epidemiology of renal cell cancer, with emphasis on factors which may potentially play a role in the observed differences in incidence and mortality patterns of renal cell cancer among blacks and whites. To date, the factors most consistently, albeit modestly, associated with increased renal cell cancer risk in epidemiologic studies among whites - obesity, hypertension, cigarette smoking - likely account for less than half of these cancers, and there is virtually no epidemiologic evidence in the literature pertaining to their association with renal cell cancer among blacks. There is a long overdue need for detailed etiologic cohort and case-control studies of renal cell cancer among blacks, as they now represent the population at highest risk in the United States. In particular, investigation of the influence on renal cell cancer development of hypertension and chronic kidney disease, both of which occur substantially more frequently among blacks, is warranted, as well as investigations into the biology and natural history of this cancer among blacks. PMID:21486465

  6. An overview of concepts for cancer stem cells.

    Science.gov (United States)

    Chen, Shih-Yin; Huang, Yu-Chuen; Liu, Shih-Ping; Tsai, Fuu-Jen; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    For many years, cancer research has focused on the adult stem cells present in malignant tumors. It is believed that current cancer treatments sometimes fail because they do not target these cells. According to classic models of carcinogenesis, these events can occur in any cell. In contrast, the cancer stem cell (CSC) hypothesis states that the preferential targets of oncogenic transformation are tissue stem cells or early progenitor cells that have acquired the potential for self-renewal. These tumor-initiating cells, or CSCs, in turn, are characterized by their ability to undergo self-renewal, a process that drives tumorigenesis and differentiation, which contributes to the cellular heterogeneity of tumors. Herein, we discuss the definitions and properties of CSCs in the major human cancers.

  7. A Single Human Papillomavirus Vaccine Dose Improves B Cell Memory in Previously Infected Subjects

    Directory of Open Access Journals (Sweden)

    Erin M. Scherer

    2016-08-01

    Full Text Available Although licensed human papillomavirus (HPV vaccines are most efficacious in persons never infected with HPV, they also reduce infection and disease in previously infected subjects, indicating natural immunity is not entirely protective against HPV re-infection. The aim of this exploratory study was to examine the B cell memory elicited by HPV infection and evaluate whether vaccination merely boosts antibody (Ab levels in previously infected subjects or also improves the quality of B cell memory. Toward this end, the memory B cells (Bmem of five unvaccinated, HPV-seropositive subjects were isolated and characterized, and subject recall responses to a single HPV vaccine dose were analyzed. Vaccination boosted Ab levels 24- to 930-fold (median 77-fold and Bmem numbers 3- to 27-fold (median 6-fold. In addition, Abs cloned from naturally elicited Bmem were generally non-neutralizing, whereas all those isolated following vaccination were neutralizing. Moreover, Ab and plasmablast responses indicative of memory recall responses were only observed in two subjects. These results suggest HPV vaccination augments both the magnitude and quality of natural immunity and demonstrate that sexually active persons could also benefit from HPV vaccination. This study may have important public policy implications, especially for the older ‘catch-up’ group within the vaccine's target population.

  8. Endothelial cells activate the cancer stem cell-associated NANOGP8 pathway in colorectal cancer cells in a paracrine fashion.

    Science.gov (United States)

    Wang, Rui; Bhattacharya, Rajat; Ye, Xiangcang; Fan, Fan; Boulbes, Delphine R; Xia, Ling; Ellis, Lee M

    2017-08-01

    In colorectal cancer (CRC), cancer stem cells (CSCs) have been hypothesized to mediate cell survival and chemoresistance. Previous studies from our laboratory described a role for liver parenchymal endothelial cells (LPECs) in mediating the CSC phenotype in CRC cells in a paracrine/angiocrine fashion. The objectives of this study were to determine whether endothelial cells (ECs) from different organs can induce the CSC phenotype in CRC cells and to elucidate the signaling pathways involved. We treated a newly developed CRC cell line (HCP-1) and established CRC cell lines (HT29 and SW480) with conditioned medium (CM) from primary ECs isolated from nonmalignant liver, lung, colon mucosa, and kidney. Our results showed that CM from ECs from all organs increased the number of CSCs, as determined by sphere formation, and protein levels of NANOG and OCT4 in CRC cells. With the focus of further elucidating the role of the liver vascular network in mediating the CSC phenotype, we demonstrated that CM from LPECs increased resistance to 5-fluorouracil in CRC cells. Moreover, we showed that LPEC CM specifically induced NANOGP8 expression in CRC cells by specific enzyme digestion and a luciferase reporter assay using a vector containing the NANOGP8 promoter. Lastly, we found that LPEC CM-induced NANOGP8 expression and sphere formation were mediated by AKT activation. Our studies demonstrated a paracrine role for ECs in regulating the CSC phenotype and chemoresistance in CRC cells by AKT-mediated induction of NANOGP8. These studies suggest a more specific approach to target CSCs by blocking the expression of NANOGP8 in cancer cells. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Cancer stem cells: constantly evolving and functionally heterogeneous therapeutic targets.

    Science.gov (United States)

    Yang, Tao; Rycaj, Kiera; Liu, Zhong-Min; Tang, Dean G

    2014-06-01

    Elucidating the origin of and dynamic interrelationship between intratumoral cell subpopulations has clear clinical significance in helping to understand the cellular basis of treatment response, therapeutic resistance, and tumor relapse. Cancer stem cells (CSC), together with clonal evolution driven by genetic alterations, generate cancer cell heterogeneity commonly observed in clinical samples. The 2013 Shanghai International Symposium on Cancer Stem Cells brought together leaders in the field to highlight the most recent progress in phenotyping, characterizing, and targeting CSCs and in elucidating the relationship between the cell-of-origin of cancer and CSCs. Discussions from the symposium emphasize the urgent need in developing novel therapeutics to target the constantly evolving CSCs. ©2014 American Association for Cancer Research.

  11. Stromal cells in tumor microenvironment and breast cancer.

    Science.gov (United States)

    Mao, Yan; Keller, Evan T; Garfield, David H; Shen, Kunwei; Wang, Jianhua

    2013-06-01

    Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.

  12. Stroma Cells in Tumor Microenvironment and Breast Cancer

    Science.gov (United States)

    Mao, Yan; Keller, Evan T.; Garfield, David H.; Shen, Kunwei; Wang, Jianhua

    2015-01-01

    Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment. PMID:23114846

  13. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...

  14. Internal Lymphedema Correlates with Subjective and Objective Measures of Dysphagia in Head and Neck Cancer Patients.

    Science.gov (United States)

    Jackson, Leanne K; Ridner, Sheila H; Deng, Jie; Bartow, Carmin; Mannion, Kyle; Niermann, Ken; Gilbert, Jill; Dietrich, Mary S; Cmelak, Anthony J; Murphy, Barbara A

    2016-09-01

    Tumor/treatment-related internal lymphedema (IL) and/or external lymphedema (EL) are associated with functional deficits and increased symptom burden in head and neck cancer patients (HNCP). Previously, we noted association between EL/IL and patient-reported dysphagia using the Vanderbilt Head and Neck Symptom Survey (VHNSS) version 1.0. To determine the relationship between IL/EL and subjective and objective measures of swallowing function. Eighty-one HNCP completed: (1) VHNSS version 2.0, including 13 swallowing/nutrition-related questions grouped into three clusters: swallow solids (ss), swallow liquids (sl), and nutrition(nt); (2) physical assessment of EL using Foldi scale; (3) endoscopic assessment of IL using Patterson scale (n = 56); and (4) modified barium swallow study rated by dysphagia outcome and severity scale (DOSS) and in conjunction with a swallow evaluation by National Outcomes Measurement System (NOMS). Examinations were performed at varied time points to assess lymphedema spectrum, from baseline (n = 15, 18.1%) to 18 months post-therapy (n = 20, 24.1%). VHNSS swallow/nutrition items scores correlated with NOMS/DOSS ratings (p nutrition scores correlated with maximum grade of swelling for any single structure on Patterson scale: ss (0.43; p = 0.001); sl (0.38; p = 0.004); nt (0.41; p = 0.002). IL of aryepiglottic/pharyngoepiglottic folds, epiglottis, and pyriform sinus were most strongly correlated with VHNSS and NOMS ratings. NOMS/DOSS ratings correlated with EL (> = -0.34; p nutrition items and EL ( 0.20). IL correlated with subjective and objective measures of swallow dysfunction. Longitudinal analysis of trajectory and impact of IL/EL on dysphagia is ongoing.

  15. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  16. Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24.

    Science.gov (United States)

    Ning, Z-F; Huang, Y-J; Lin, T-X; Zhou, Y-X; Jiang, C; Xu, K-W; Huang, H; Yin, X-B; Huang, J

    2009-01-01

    Cancer stem cells can be isolated from human tumours using specific cell surface markers. Bladder cancer cells, however, lack specific cell surface markers, making this approach impracticable. In this study an alternative method was used, involving isolation of side population cells to explore the stem cell characteristics of bladder cancer. Side population cells were isolated from the bladder transitional cell cancer cell line T24 and examined for potential stem cell characteristics related to proliferation, cell cycle distribution, self-renewal and differentiation. It was observed that T24 side population cells have stronger proliferative and colony formation abilities than non-side population cells. Side population cells were also more resistant to chemotherapy and radiotherapy, which may be due to expression of the ATP-binding cassette half-transporter, sub-family G, member 2 protein. Overall, the results suggest that side population cells from the human bladder transitional cell cancer cell line T24 harbour stem-like cells.

  17. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per

    2015-01-01

    and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4(+) T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response...... to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4(+) T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response showed a trend...

  18. DNA Methylation and Apoptosis Resistance in Cancer Cells

    Science.gov (United States)

    Hervouet, Eric; Cheray, Mathilde; Vallette, François Marie; Cartron, Pierre-François

    2013-01-01

    Apoptosis is a cell death programme primordial to cellular homeostasis efficiency. This normal cell suicide program is the result of the activation of a cascade of events in response to death stimuli. Apoptosis occurs in normal cells to maintain a balance between cell proliferation and cell death. A deregulation of this balance due to modifications in the apoptosic pathway leads to different human diseases including cancers. Apoptosis resistance is one of the most important hallmarks of cancer and some new therapeutical strategies focus on inducing cell death in cancer cells. Nevertheless, cancer cells are resistant to treatment inducing cell death because of different mechanisms, such as DNA mutations in gene coding for pro-apoptotic proteins, increased expression of anti-apoptotic proteins and/or pro-survival signals, or pro-apoptic gene silencing mediated by DNA hypermethylation. In this context, aberrant DNA methylation patterns, hypermethylation and hypomethylation of gene coding for proteins implicated in apoptotic pathways are possible causes of cancer cell resistance. This review highlights the role of DNA methylation of apoptosis-related genes in cancer cell resistance. PMID:24709797

  19. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  20. Decreased levels of stem cell factor in subjects with incident coronary events.

    Science.gov (United States)

    Wigren, M; Rattik, S; Hultman, K; Björkbacka, H; Nordin-Fredrikson, G; Bengtsson, E; Hedblad, B; Siegbahn, A; Gonçalves, I; Nilsson, J

    2016-02-01

    It has been proposed that vascular progenitor cells play an important role in vascular repair, but their possible clinical importance in cardiovascular disease has not been fully characterized. Vascular endothelial growth factor A, placental growth factor and stem cell factor (SCF) are three growth factors that are important in recruiting vascular progenitor cells. In this study, we investigated the association between the plasma levels of these growth factors and incident coronary events (CEs). Levels of the three growth factors were measured using the proximity extension assay technique in baseline plasma samples from 384 subjects with a first CE (mean follow-up 14.0 ± 4.3 years) and 409 event-free control subjects matched by sex and age, as well as in homogenates from 201 endarterectomy specimens. After controlling for known cardiovascular disease risk factors in a Cox regression model, subjects in the lowest SCF tertile had a hazard ratio of 1.70 (95% confidence interval 1.14-2.54) compared with subjects in the highest SCF tertile. Lower SCF levels were also associated with more severe carotid disease, less fibrous atherosclerotic plaques and an increased incidence of heart failure. Expression of the SCF receptor c-kit was demonstrated in the subendothelial layer and fibrous cap of human atherosclerotic plaques. Smokers and subjects with diabetes had decreased levels of SCF compared with control subjects. To our knowledge, this is the first clinical study to provide evidence to support a key role for SCF and progenitor cells in vascular repair. We suggest that the SCF-c-kit pathway may be a promising biomarker and therapeutic target in cardiovascular disease. © 2015 The Association for the Publication of the Journal of Internal Medicine.

  1. [Impact of sickle cell trait on arterial stiffness in African subjects].

    Science.gov (United States)

    Ouédraogo, V; Soleti, R; Signolet, I; Diaw, M; Hallab, M; Samb, A; Andriantsitohaina, R; Ba, A; Lefthériotis, G

    2017-02-01

    Sickle cell trait (SCT) is the benign condition of sickle cell disease. Often asymptomatic, the carriers of the sickle cell trait have hemorheological disturbances with increased oxidative stress compared to healthy subjects. These disturbances can lead to structural and functional changes in large vessels. The aim of the study was to measure arterial stiffness, an independent marker of subclinical atherosclerosis, SCT carriers compared to sickle cell anemia (SCA) subjects. Nine SCT carriers aged 32±9 years (7 men) were compared to 14 SCA subjects aged 29±9 years (2 men) and 22 control subjects aged 34±9 years (11 men) recruited by the National blood transfusion center (CNTS) in Dakar (Senegal). Arterial stiffness was assessed by measurement of the finger-toe pulse wave velocity (PWVft) using pOpmètre® (Axelife SAS-France). The cardiovascular risk (CVR) was assessed according to the Framingham Laurier score. The SCT carriers had a higher PWVft (m/s) than SCA subjects (8.2±2.2 vs 6.1±0.9m/s, P=0.004) but not different from that of healthy controls (8.2±2.2 vs 7.4±1.8m/s, P=0.33). Linear regression showed a positive relationship between PWVft and the pulse pressure (PP) (P˂0.001; r2=0.39; F=13.20). The results show that the SCT carriers have stiffer arteries than SCA subjects. Linear regressions adjusted for age, mean arterial pressure (MAP) and PP, showed that only age and PP were independently correlated with arterial stiffness in the entire population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  3. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  4. Risks of Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  5. Stages of Small Intestine Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  6. Treatment Options for Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  7. Risks of Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  8. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  9. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    Purpose: To investigate anticancer effects of bergenin on human colorectal cancer cell lines. Methods: Human colorectal adenocarcinoma cell line HCT116 was treated with various concentrations of bergenin for 24 and 48 h. Cell viability, apoptosis, cell cycle arrest and reactive oxygen species (ROS) level were analyzed ...

  10. Cancer Stem Cells and stress induced evolution - understanding the ...

    Indian Academy of Sciences (India)

    Dr S Bapat

    2015-11-08

    Nov 8, 2015 ... Most therapies fail to consider differential drug sensitivities of various cells in a tumor. (Tumor Cell Heterogeneity). • Drug refractory behaviour of tumor cells may arise due to either –. - Intrinsic drug resistance mechanisms (Molecular Heterogeneity). - Cell dormancy / reversible quiescence (Cancer stem ...

  11. Effects of music therapy on subjective sensations and heart rate variability in treated cancer survivors: a pilot study.

    Science.gov (United States)

    Chuang, Chih-Yuan; Han, Wei-Ru; Li, Pei-Chun; Young, Shuenn-Tsong

    2010-10-01

    Data on the effects of music therapy on subjective sensations and the physiological parameters of heart rate variability (HRV) in treated cancer survivors are scarce. The aim of this study was to determine whether or not music therapy affects the sensations of fatigue, comfort, and relaxation in cancer survivors, and affects the activities of the sympathetic and parasympathetic nervous systems as indicated by HRV parameters. Twenty-three patients aged 30-67 years and with cancer that had been treated at least 6 months previously received music therapy for about 2h, which included singing, listening to music, learning the recorder, and performing music. Subjective sensations and electrocardiogram were recorded before and after the music therapy. The low-frequency and high-frequency components of HRV were assessed by the frequency analysis of sequential R wave to R wave intervals of electrocardiogram obtained from 5-min recordings. Subjective sensations were quantitatively assessed using a visual analog mood scale. Two hours of music therapy significantly increased relaxation sensations and significantly decreased fatigue sensation in treated cancer survivors. Moreover, the HRV parameters showed that parasympathetic nervous system activity increased and sympathetic nervous system activity decreased. This study provides preliminary evidence that music therapy may be clinically useful for promoting relaxation sensation and increasing parasympathetic nervous system activity in treated cancer survivors. Copyright © 2010. Published by Elsevier Ltd.

  12. Cell Surface and Secreted Protein Profiles of Human Thyroid Cancer Cell Lines Reveal Distinct Glycoprotein Patterns

    Science.gov (United States)

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A.

    2009-01-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using 2-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hürthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57 percent are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g. CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hürthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e. anaplastic). Based on the results obtained, a

  13. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  14. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro

    OpenAIRE

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the h...

  15. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells

    OpenAIRE

    Tang, Yuzhe; Chen, Ruibao; Huang, Yan; Li, Guodong; Huang, Yiling; Chen, Jiepeng; Duan, Lili; Zhu, Bao-Ting; Thrasher,J. Brantley; Zhang, Xu; Li, Benyi

    2014-01-01

    Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anti-cancer effect of a recently isolated natural compound Alternol in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived non-malignant cells. As assessed by trypan blue exclusion a...

  16. Physical activity of subjects aged 50-64 years involved in the European Prospective Investigation into Cancer and Nutrition (EPIC)

    NARCIS (Netherlands)

    Haftenberger, M; Schuit, A.J.; Tormo, M J; Boeing, H; Wareham, N; Bueno-de-Mesquita, H B; Kumle, M; Hjartåker, A; Chirlaque, M D; Ardanaz, E; Andren, C; Lindahl, B; Peeters, P H M; Allen, N E; Overvad, K; Tjønneland, A; Clavel-Chapelon, F; Linseisen, J; Bergmann, M M; Trichopoulou, A; Lagiou, P; Salvini, S; Panico, S; Riboli, E; Ferrari, P; Slimani, N

    2002-01-01

    Objective: To describe physical activity of participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Design: A cross-sectional analysis of baseline data of a European prospective cohort study. Subjects: This analysis was restricted to participants in the age group

  17. MET and Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gelsomino, Francesco, E-mail: francesco.gelsomino@istitutotumori.mi.it [Medical Oncology Unit 1, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milano (Italy); Rossi, Giulio [Operative Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo 71, 41124 Modena (Italy); Tiseo, Marcello [Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Viale A. Gramsci 14, 43126 Parma (Italy)

    2014-10-13

    Small-cell lung cancer (SCLC) is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  18. MET and Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Francesco Gelsomino

    2014-10-01

    Full Text Available Small-cell lung cancer (SCLC is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  19. Differential roles of leptin in regulating cell migration in thyroid cancer cells.

    Science.gov (United States)

    Cheng, Shih-Ping; Yin, Pen-Hui; Chang, Yuan-Ching; Lee, Chen-Hsen; Huang, Shih-Yuan; Chi, Chin-Wen

    2010-06-01

    Excess body weight is associated with a moderately increased risk of thyroid cancer. Adipocyte-derived hormone, leptin, has been shown to enhance cell growth and migration in many cancer types. Limited evidence suggests that leptin has direct actions on the thyroid gland, but there are no data available on the effect of leptin on thyroid cancer cells. We evaluated the action of leptin on gene expression, cell growth, cell cycle, and cell migration in anaplastic (ARO), follicular (WRO) and papillary (CGTH-W3) thyroid carcinoma cell lines. Expression of long-form leptin receptors was observed in all thyroid cancer cell lines. Leptin stimulation did not alter the expression levels of leptin, leptin receptor and sodium-iodide symporter. Cell growth and cell cycle were not changed after leptin treatment. However, leptin was able to promote cell migration of papillary thyroid cancer cells, but inhibited migration of anaplastic and follicular cancer cells. In summary, our study suggests that leptin modulates cell migration of thyroid cancer cells in a cell type-specific manner.

  20. Current advances in T-cell-based cancer immunotherapy

    Science.gov (United States)

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy. PMID:25524383

  1. Characteristics of liver cancer stem cells and clinical correlations.

    Science.gov (United States)

    Cheng, Zhuo; Li, Xiaofeng; Ding, Jin

    2016-09-01

    Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The role of proteasome inhibition in nonsmall cell lung cancer.

    Science.gov (United States)

    Escobar, Mauricio; Velez, Michel; Belalcazar, Astrid; Santos, Edgardo S; Raez, Luis E

    2011-01-01

    Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  3. The Role of Proteasome Inhibition in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mauricio Escobar

    2011-01-01

    Full Text Available Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  4. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  5. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  6. Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    2015-01-01

    Full Text Available Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs. Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.

  7. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  8. Valproic acid enhances bosutinib cytotoxicity in colon cancer cells.

    Science.gov (United States)

    Mologni, Luca; Cleris, Loredana; Magistroni, Vera; Piazza, Rocco; Boschelli, Frank; Formelli, Franca; Gambacorti-Passerini, Carlo

    2009-04-15

    Unbalanced histone deacetylase (HDAC) hyperactivity is a common feature of tumor cells. Inhibition of HDAC activity is often associated with cancer cell growth impairment and death. Valproic acid (VPA) is a HDAC inhibitor used for the treatment of epilepsy. It has recently been recognized as a promising anticancer drug. We investigated the effects of VPA on growth and survival of colon cancer cells. VPA caused growth inhibition and programmed cell death that correlated with histone hyperacetylation. VPA modulated the expression of various factors involved in cell cycle control and apoptosis and induced caspase activation. Interestingly, VPA induced downregulation of c-Src and potentiated the cytotoxic effects of the c-Src inhibitor bosutinib, both in vitro and in vivo. The combination of sublethal doses of VPA and bosutinib led to massive apoptosis of colon cancer cells, irrespective of their genetic background. These results suggest that VPA may be employed as a positive modulator of bosutinib antitumor activity in colorectal cancer.

  9. Rhein Induces Apoptosis in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chang

    2012-01-01

    Full Text Available Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2 and control vector MCF-7 (MCF-7/VEC cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

  10. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    CERN Document Server

    Heyden, Stefanie

    2015-01-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  11. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  12. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  13. Duramycin-induced calcium release in cancer cells.

    Science.gov (United States)

    Broughton, Laura J; Crow, Chris; Maraveyas, Anthony; Madden, Leigh A

    2016-03-01

    Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner.

  14. Elasticity measurement of breast cancer cells by atomic force microscopy

    Science.gov (United States)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  15. Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state

    Science.gov (United States)

    Prakash, S; Agrawal, S; Vahed, H; Ngyuen, M; BenMohamed, L; Gupta, S; Agrawal, A

    2014-01-01

    The mechanisms underlying the increased susceptibility of the elderly to respiratory infections are not well understood. The crosstalk between the dendritic cells (DCs) and epithelial cells is essential in maintaining tolerance as well as in generating immunity in the respiratory mucosa. DCs from aged subjects display an enhanced basal level of activation, which can affect the function of epithelial cells. Our results suggest that this is indeed the scenario as exposure of primary bronchial epithelial cells (PBECs) to supernatants from unstimulated DCs of aged subjects resulted in activation of PBECs. The expression of CCL20, CCL26, CXCL10, mucin, and CD54 was significantly increased in the PBECs exposed to aged DC supernatants, but not to young DC supernatants. Furthermore, aged DC supernatants also enhanced the permeability of the PBEC barrier. We also found that DCs from aged subjects spontaneously secreted increased levels of pro-inflammatory mediators, interleukin-6, tumor necrosis factor (TNF)-α, and metalloproteinase A disintegrin family of metalloproteinase 10, which can affect the functions of PBECs. Finally, we demonstrated that TNF-α, present in the supernatant of DCs from aged subjects, was the primary pro-inflammatory mediator that affected PBEC functions. Thus, age-associated alterations in DC–epithelial interactions contribute to chronic airway inflammation in the elderly, increasing their susceptibility to respiratory diseases. PMID:24759206

  16. Subjective cognitive impairment and brain structural networks in Chinese gynaecological cancer survivors compared with age-matched controls: a cross-sectional study.

    Science.gov (United States)

    Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H

    2017-11-28

    Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the

  17. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  18. Objective-subjective disparity in cancer-related cognitive impairment: does the use of change measures help reconcile the difference?

    Science.gov (United States)

    O'Farrell, Erin; Smith, Andra; Collins, Barbara

    2017-10-01

    Studies to date have found little correlation between subjective and objective measures of cognitive function in cancer patients, making it difficult to interpret the significance of their cognitive complaints. The purpose of this study was to determine if a stronger correlation would be obtained using measures of cognitive change rather than static scores. Sixty women with early stage breast cancer underwent repeated cognitive assessment over the course of chemotherapy with a neuropsychological test battery (objective measure) and with the FACT-Cog (subjective measure). Their results were compared to 60 healthy women matched on age and education and assessed at similar intervals. We used multilevel modeling, with FACT-Cog as the dependent measure and ordinary least squares slopes of a neuropsychological summary score as the independent variable, to evaluate the co-variation between the subjective and objective measures over time RESULTS: Measures of both objective and subjective cognitive function declined over the course of chemotherapy in the breast cancer patients but there was no significant relationship between them, even when using change measures. Change in objective cognitive function was not related to change in anxiety or fatigue scores but the decline in perceived cognitive function was associated with greater anxiety and fatigue. The discrepancy in objective and subjective measures of cognition in breast cancer patients cannot be accounted for in terms of a failure to use change measures. Although the results are negative, we contend that this is the more appropriate methodology for analyzing cancer-related changes in cognition. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Estimation of physical activity levels using cell phone questionnaires: a comparison with accelerometry for evaluation of between-subject and within-subject variations.

    Science.gov (United States)

    Bexelius, Christin; Sandin, Sven; Trolle Lagerros, Ylva; Litton, Jan-Eric; Löf, Marie

    2011-09-25

    Physical activity promotes health and longevity. Further elaboration of the role of physical activity for human health in epidemiological studies on large samples requires accurate methods that are easy to use, cheap, and possible to repeat. The use of telecommunication technologies such as cell phones is highly interesting in this respect. In an earlier report, we showed that physical activity level (PAL) assessed using a cell phone procedure agreed well with corresponding estimates obtained using the doubly labeled water method. However, our earlier study indicated high within-subject variation in relation to between-subject variations in PAL using cell phones, but we could not assess if this was a true variation of PAL or an artifact of the cell phone technique. Our objective was to compare within- and between-subject variations in PAL by means of cell phones with corresponding estimates using an accelerometer. In addition, we compared the agreement of daily PAL values obtained using the cell phone questionnaire with corresponding data obtained using an accelerometer. PAL was measured both with the cell phone questionnaire and with a triaxial accelerometer daily during a 2-week study period in 21 healthy Swedish women (20 to 45 years of age and BMI from 17.7 kg/m² to 33.6 kg/m²). The results were evaluated by fitting linear mixed effect models and descriptive statistics and graphs. With the accelerometer, 57% (95% confidence interval [CI] 40%-66%) of the variation was within subjects, while with the cell phone, within-subject variation was 76% (95% CI 59%-83%). The day-to-day variations in PAL observed using the cell phone questions agreed well with the corresponding accelerometer results. Both the cell phone questionnaire and the accelerometer showed high within-subject variations. Furthermore, day-to-day variations in PAL within subjects assessed using the cell phone agreed well with corresponding accelerometer values. Consequently, our cell phone

  20. Dendritic Cells from Aged Subjects Display Enhanced Inflammatory Responses to Chlamydophila pneumoniae

    Science.gov (United States)

    Prakash, Sangeetha; Agrawal, Sudhanshu; Gupta, Sudhir; Peterson, Ellena M.

    2014-01-01

    Chlamydophila pneumoniae (CPn) is a common respiratory pathogen that causes a chronic and persistent airway infection. The elderly display an increased susceptibility and severity to this infection. However, the underlying mechanisms are not well understood. Dendritic cells (DCs) are the initiators and regulators of immune responses. Therefore, we investigated the role of DCs in the age-associated increased CPn infection in vitro in humans. Though the expression of activation markers was comparable between the two age groups, DCs from aged subjects secreted enhanced levels of proinflammatory mediators such as TNF-α and CXCL-10 in response to CPn. In contrast, the secretion of IL-10 and innate interferons, IFN-α and IFN-λ, was severely impaired in DCs from aged donors. The increased activation of DCs from aged subjects to CPn also resulted in enhanced proliferation of CD4 and CD8 T cells in a DC-T coculture. Furthermore, T cells primed with CPn-stimulated DCs from aged subjects secreted increased levels of IFN-γ and reduced levels of IL-10 compared to DCs obtained from young subjects. In summary, DCs from the elderly displayed enhanced inflammatory response to CPn which may result in airway remodeling and increase the susceptibility of the elderly to respiratory diseases such as asthma. PMID:25253920

  1. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    Ewelina Szliszka; Zenon P. Czuba; Bogdan Mazur; Lukasz Sedek; Andrzej Paradysz; Wojciech Krol

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  2. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  3. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...

  4. E. coli as a biological model for cancer cells

    Science.gov (United States)

    Liao, David; Lambert, Guillaume; Austin, Robert

    2010-03-01

    Uninhibited growth and invasion of healthy tissue characterize cancer. We co-cultured two strains of E. coli bacteria in a microfabricated environment to model cancer. During starvation, growth-advantage-in-stationary-phase, or GASP, cells grew to a higher population than wild-type cells. GASP cells also displaced wild-type cells from nutrient-rich chambers. When we repeated the experiment with medium depleted by wild-type cells, the peak GASP population density increased 54%, and the ``invasion,'' or displacement of wild-type cells from nutrient-rich chambers, occurred 5 hours earlier. We mathematically modeled both this increase in GASP population and this acceleration of spatial invasion by assuming that GASP cells consume detritus secreted by wild-type cells. Our experimental and model results corroborate recent caution against using tumor starvation as a cancer therapy.

  5. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    Science.gov (United States)

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  7. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  8. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  9. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  10. Isolation and characterization of spheroid cells from the HT29 colon cancer cell line.

    Science.gov (United States)

    Fan, Xinlan; Ouyang, Nengyong; Teng, Hong; Yao, Herui

    2011-10-01

    Colorectal cancer stem cells (Cr-CSCs) are involved in the growth of colon cancer, but their specific role in tumor biology, including metastasis, is still unclear. Currently, methods for sorting Cr-CSCs are based on the expression of surface markers (e.g., CD133(+), CD44(+), and aldehyde dehydrogenase 1 (ALDH1(+))); however, the specificity of these markers for Cr-CSCs is uncertain. This study aimed to develop more effective ways of isolating and purifying Cr-CSCs. Suspension culture was used for isolation of Cr-CSCs. And spheroid cells were performed by side population technology, and the putative molecular marker analysis of colorectal cancer stem cell. Migration assay and chemoresistance experiment were conducted between the adherent cells and spheroid cells. HT29 colon cancer cells grew well in suspension culture. The percentage of CD44(+) cancer cell of spheroid cells was 68 times higher than that of adherent cells (89.5% vs. 1.3%), but there was no obvious difference in the percentage of CD133(+) cells (6.25% vs. 5.6%). Moreover, it is worth noting that the percent of CD133 (+)/CD44(+) cells remarkably rose (from 0.6% to 5.4%). The expression of ALDH1 was markedly increased (7.5% vs. 20.5%) for the spheroid cells than the adherent cells. The side population within the spheroid population dramatically increased from 0.2% to 6.3%. The resistance of spheroid cells to 5-FU was higher than that of adherent cells, as was their ability to migrate in the presence of SDF-1α. Suspension culture is an effective approach for enriching Cr-CSCs and can provide an inexhaustible supply of genetically stable colon cancer stem cells for targeted Cr-CSC studies. Spheroid cell models also enable the study of colon cancer chemoresistance and metastasis and may help to elucidate the role of cancer stem cells in colon cancer.

  11. Stem Cell Based Gene Therapy in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    2014-01-01

    Full Text Available Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.

  12. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, K. E.; Novosadová, Vendula; Bendahl, P.-O.; Graffman, C.; Larsson, A.-M.; Ryden, L.

    2017-01-01

    Roč. 8, č. 28 (2017), s. 45544-45565 ISSN 1949-2553 Keywords : metastatic breast cancer * circulating tumor cells * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  13. Proteomic signatures of human oral epithelial cells in HIV-infected subjects.

    Directory of Open Access Journals (Sweden)

    Elizabeth Yohannes

    Full Text Available The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE analyses of human oral gingival epithelial cell (HOEC lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1. Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1, and proteins that maintain cellular integrity (e.g., Vimentin. In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of

  14. Single Cell “Glucose Nanosensor” Verifies Elevated Glucose Levels in Individual Cancer Cells

    OpenAIRE

    Nascimento, Raphael A. S.; Özel, Rıfat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader

    2016-01-01

    Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucos...

  15. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    Directory of Open Access Journals (Sweden)

    Minet-Quinard Régine

    2010-08-01

    Full Text Available Abstract Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days, whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC and polymorphonuclear cells (PMN were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years and older subjects (n = 20, 65 ± 4 years, retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25. Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions.

  16. New high-speed cell sorting methods for stem cell sorting and breast cancer cell purging

    Science.gov (United States)

    Leary, James F.; McLaughlin, Scott R.; Hokanson, James A.; Rosenblatt, Judah I.

    1998-04-01

    An important problem in clinical medicine is that of positively selecting hematopoietic stem cells or mobilized peripheral blood stem cells for autologous bone marrow transplantation while purging it of contaminating tumor cells. Since both the stem cells to be positively selected and the tumor cells to be purged are relatively rare cells, this poses special problems for their isolation in terms of purity and yield of stem cells, with a high penalty of misclassification for contaminating tumor cells. A model system of tumor cells spiked into bone marrow or blood cells was used to validate the system. Multiparameter data mixtures of human MCF-7 breast cancer cells and human peripheral blood or bone marrow cells were first analyzed by discriminant function analysis. Mathematical methods were developed to assess the relative probabilities of misclassification. Cell identification tags, implemented as additional correlated listmode parameters not used for these analyses, were used to uniquely identify each cell type and to compare classifier results. The performance of classifier systems was also assessed using ROC (`receiver operating characteristics') analysis. Then the classification system was implemented using lookup tables allowing for real-time (in this system approximately 625 microseconds) rapid separation of these cell types. Isolated cell types, purities and yields were assessed by single-cell PCR molecular characterizations.

  17. Reprogramming to developmental plasticity in cancer stem cells.

    Science.gov (United States)

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cell-mediated immune responses to Plasmodium falciparum purified soluble antigens in sickle-cell trait subjects

    DEFF Research Database (Denmark)

    Bayoumi, R A; Abu-Zeid, Y A; Abdulhadi, N H

    1990-01-01

    To determine the possible differences in the immune response to Plasmodium falciparum between sickle-cell trait (Hb AS) and normal haemoglobin (Hb AA) individuals, we examined 35 Hb AS and 24 Hb AA subjects matched for age and microenvironment. Their age was 2-55 years and all lived in a malaria...... individuals (P less than 0.025). Responses of BMNCs to PPD and PHA were also higher among Hb AS individuals and correlated positively with responses to SPAg. These findings support the hypotheses that the sickle-cell trait protects individuals from P. falciparum infections, at least in part, by modulating...... endemic area 300 km south of Khartoum. Antibodies to ring-infected erythrocyte surface antigen (Pf155/RESA) and to circumsporozoite (CS) protein (anti-NANP40) indicated equal exposure to falciparum malaria. Peripheral blood mononuclear cells (BMNCs) from 20/35 (57%) Hb AS subjects compared with 10/24 (42...

  19. Androgen receptor expression on circulating tumor cells in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Takeo Fujii

    Full Text Available Androgen receptor (AR is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+ breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer.Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK, and biomarkers of interest (AR, estrogen receptor [ER], and HER2 on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms.Of 68 patients, 51 (75% had at least 1 CTC, and 49 of these 51 (96% had hormone-receptor-positive (HR+/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells.CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their heterogeneity.

  20. Androgen receptor expression on circulating tumor cells in metastatic breast cancer

    Science.gov (United States)

    Fujii, Takeo; Reuben, James M.; Huo, Lei; Espinosa Fernandez, Jose Rodrigo; Gong, Yun; Krupa, Rachel; Suraneni, Mahipal V.; Graf, Ryon P.; Lee, Jerry; Greene, Stephanie; Rodriguez, Angel; Dugan, Lyndsey; Louw, Jessica; Lim, Bora; Barcenas, Carlos H.; Marx, Angela N.; Tripathy, Debu; Wang, Yipeng; Landers, Mark; Dittamore, Ryan

    2017-01-01

    Purpose Androgen receptor (AR) is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+) breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs) can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer. Methods Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK), and biomarkers of interest (AR, estrogen receptor [ER], and HER2) on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM) using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms. Results Of 68 patients, 51 (75%) had at least 1 CTC, and 49 of these 51 (96%) had hormone-receptor-positive (HR+)/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells. Conclusions CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their

  1. Nicotinamide sensitizes human breast cancer cells to the cytotoxic effects of radiation and cisplatin.

    Science.gov (United States)

    Domínguez-Gómez, G; Díaz-Chávez, J; Chávez-Blanco, A; Gonzalez-Fierro, A; Jiménez-Salazar, J E; Damián-Matsumura, P; Gómez-Quiroz, L E; Dueñas-González, A

    2015-02-01

    Poly(ADP-ribose) polymerase (PARP) inhibitors enhance the effect of DNA alkylating agents on BRCA1‑ and BRCA2-deficient cell lines. The aim of this study was to analyze the effect of the PARP inhibitor nicotinamide (NAM) on breast cancer cells with different BRCA1 expression or function, such as BRCA1‑deficient MDA-MB-436 cells, low expression BRCA1 MCF-7 cells, and the BRCA1 wild‑type MDA-MB-231 cells, to demonstrate its effects as a chemo‑ or radiosensitizing agent. PARP activity was analyzed in MDA-MB-436, MCF-7 and MDA-MB-231 breast cancer cells subjected or not to NAM. Inhibition of PARP by NAM in the presence of DNA damage was examined by Alexa Fluor 488 immunofluorescence. Crystal violet assays were used to test growth inhibition and the chemo‑ and radiosensitization effects of NAM were investigated using clonogenic assays. Significant differences among data sets were determined using two-tailed ANOVA and Bonferroni tests. We demonstrated that NAM reduces PARP activity in vitro, and in cells subjected or not to DNA damage, it also reduces the viability of breast cancer cell lines and synergyzes the cytotoxicity of cisplatin in MDA-MB-436 and MCF-7 cells. Downregulation of PARP1 with siRNA led to modest growth inhibition, which was further increased by cisplatin. Nicotinamide also induced radiosensitization in MDA-MB-436 and MDA-MB-231 cells. In conclusion, NAM may be used as a chemo‑ or radiosensitizing agent regardless of the BRCA1 status in breast cancer.

  2. GOLPH2 expression in renal cell cancer

    Directory of Open Access Journals (Sweden)

    Jung Klaus

    2008-11-01

    Full Text Available Abstract Background Renal cell carcinomas (RCC are among the most common and most lethal genitourinary malignancies. GOLPH2 (golgi phosphoprotein 2, GOLM1 has recently been proposed as a biomarker for hepatocellular and prostate cancer. In this study we analysed the expression patterns and the prognostic and diagnostic value of GOLPH2 in RCC. Methods GOLPH2 protein expression was analysed by immunohistochemistry in 104 clinically well characterized RCC cases in comparison with matched normal kidney tissue and in association with clinico-pathological parameters. Statistical analyses including Kaplan Meier analyses were performed with SPSS version 15.0. Results GOLPH2 was highly expressed in normal renal tubules and in almost half of RCC with a statistically significant predominance in the papillary and chromophobe histological subtypes. No other associations with clinico-pathological parameters were detectable. The Kaplan-Meier curves showed a weak trend for unfavourable prognosis of tumours with high GOLPH2 expression, but failed significance. Conclusion GOLPH2 protein is expressed in normal renal tissue (especially in distal tubular epithelia and is down-regulated in the majority of clear cell RCC. In papillary and chromophobe RCC GOLPH2 expression is consistently present. In contrast to its diagnostic value in hepatocellular and prostatic carcinomas, a prognostic or diagnostic value of GOLPH2 in RCC appears to be unlikely.

  3. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  4. ABO blood types and cancer risk--a cohort study of 339,432 subjects in Taiwan.

    Science.gov (United States)

    Sun, Wenjie; Wen, Chi-Pang; Lin, Jie; Wen, Christopher; Pu, Xia; Huang, Maosheng; Tsai, Min Kuang; Tsao, Chwen Keng; Wu, Xifeng; Chow, Wong-Ho

    2015-04-01

    The associations of laboratory-based ABO phenotypes with cancer risks and mortality have not been systematically determined. The study subjects were 339,432 healthy individuals with laboratory-based blood types from a Taiwan cohort. Compared to blood type O, blood type A was significantly associated with an elevated risk of stomach cancer incidence (Hazard Ratio [HR], 1.38 [95% CI, 1.11-1.72]) and mortality (HR, 1.38 [95% CI, 1.02-1.86]) compared with blood type O, after adjusting for age, sex, education, smoking, alcohol drinking, physical activity, and body mass index. Non-O blood types were associated with an elevated risk of pancreatic cancer, with blood type B reaching statistical significance for incidence (HR, 1.59 [95% CI, 1.02-2.48]) and mortality (HR, 1.63 [95% CI, 1.02-2.60]). In contrast, kidney cancer risk was inversely associated with blood type AB (HR, 0.41 [95% CI, 0.18-0.93]) compared to type O. Cancer risks vary in people with different ABO blood types, with elevated risks of stomach cancer associated with blood type A and pancreatic cancer associated with non-O blood types (A, B, and AB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    OpenAIRE

    Castelli, Germana; Pelosi, Elvira; Testa, Ugo

    2017-01-01

    Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa)...

  6. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  7. Isolation and identification of a distinct side population cancer cells in the human epidermal squamous cancer cell line A431.

    Science.gov (United States)

    Geng, Songmei; Wang, Qianqian; Wang, Jianli; Hu, Zhishang; Liu, Chunchun; Qiu, Junkang; Zeng, Weihui

    2011-04-01

    Side population (SP) cells have been suggested to be multipotent cancer stem cells. To address whether SP cells exist in epidermal squamous cancer cell line A431, A431 cells dyed with Hoechst 33342 were sorted through flow cytometry. The SP cells were then analyzed by colony-forming and cell proliferation assay. Further, tumorigenicity and microarray analysis were used to compare biological difference between SP and non-SP (NSP) cells. Our results showed that SP cells existed in the A431 cell line, showing higher proliferating and colony-forming ability than NSP cells. Tumors generated from SP cells were larger than those from the NSP cells in NOD/SCID mice. The mRNA microarray profiling revealed that five cancer marker gene expressions were up-regulated and one tumor suppressor gene expression was down-regulated. These findings suggest that SP cells in A431 could contribute to self-renewal, neoplastic transformation, and cancer metastasis of human epidermal squamous cell carcinoma.

  8. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    OpenAIRE

    Kimitoshi Kohno; Noriaki Kitamura; Akihiro Kuma; Yoshihiro Yasuniwa; Takahiro Yamaguchi; Masaki Akiyama; Hiroto Izumi

    2011-01-01

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-li...

  9. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice.

    Science.gov (United States)

    Lin, Xueping; Luo, Kai; Lv, Zhongwei; Huang, Jian

    2012-01-01

    There is growing evidence that some cancer progression is closely associated with beta- adrenoreceptors (β-ARs). However, the underlying mechanisms for β-ARs mediated proliferation of pancreatic cancer cell are poorly understood. In the current study, we evaluated the possible function of β-ARs on the proliferation of human pancreatic ductal adenocarcinomas (PDAC) cell line Panc-1 and explored β-ARsmediated downstream signal pathway. Series of experiments, such as expression of β1- and β2-ARs on pancreatic cancer cell line Panc-1, β-ARsmediated downstream signal pathway activation as well as cell proliferation assay in vitro and in vivo were performed with immunofluorescence, Western blot analysis, BrdU incorporation assays and xenograft tumor growth respectively. Non-selective β-ARs agonist Isoproterenol (ISO) significantly increased cell proliferation via β-ARs in a dose-dependent manner, with concomitant activation of ERK/MAPK signal pathway in Panc-1 cells. ISO increased expression level of phosphorylated ERK in Panc-1 cells. Furthermore, in vivo study showed that ISO enhanced xenograft tumor growth and this effect was suppressed by non-selective β-ARs antagonist (β-blocker), propranolol (PRO) treatment. These findings suggest that the development and progression of PDAC is subject to significant modulation by ISO and PRO and the treatment with PRO may be useful for marker-guided cancer intervention of PDAC. Therefore, PRO may be developed a novel drug for the treatment and intervention of PDAC for its high specificity.

  10. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer.

    Science.gov (United States)

    Bousquet, Guilhem; El Bouchtaoui, Morad; Sophie, Tan; Leboeuf, Christophe; de Bazelaire, Cédric; Ratajczak, Philippe; Giacchetti, Sylvie; de Roquancourt, Anne; Bertheau, Philippe; Verneuil, Laurence; Feugeas, Jean-Paul; Espié, Marc; Janin, Anne

    2017-05-23

    There is growing evidence for the role of cancer stem-cells in drug resistance, but with few in situ studies on human tumor samples to decipher the mechanisms by which they resist anticancer agents.Triple negative breast cancer (TNBC) is the most severe sub-type of breast cancer, occurring in younger women and associated with poor prognosis even when treated at a localized stage.We investigated here the relationship between complete pathological response after chemotherapy and breast cancer stem-cell characteristics in pre-treatment biopsies of 78 women with triple negative breast carcinoma (TNBC).We found that chemoresistance was associated with large numbers of breast cancer stem-cells, and that these cancer stem-cells were neither proliferative nor apoptotic, but in an autophagic state related to hypoxia. Using relevant pharmacological models of patient-derived TNBC xenografts, we further investigated the role of autophagy in chemoresistance of breast cancer stem-cells. We demonstrated that hypoxia increased drug resistance of autophagic TNBC stem-cells, and showed that molecular or chemical inhibition of autophagic pathway was able to reverse chemoresistance.Our results support breast cancer stem-cell evaluation in pre-treatment biopsies of TNBC patients, and the need for further research on autophagy inhibition to reverse resistance to chemotherapy.

  11. Metabolic Plasticity in Cancer Cells: Reconnecting Mitochondrial Function to Cancer Control.

    Science.gov (United States)

    Ramanujan, V Krishnan

    2015-06-01

    Anomalous increase in glycolytic activity defines one of the key metabolic alterations in cancer cells. A realization of this feature has led to critical advancements in cancer detection techniques such as positron emission tomography (PET) as well as a number of therapeutic avenues targeting the key glycolytic steps within a cancer cell. A normal healthy cell's survival relies on a sensitive balance between the primordial glycolysis and a more regulated mitochondrial bioenergetics. The salient difference between these two bioenergetics pathways is that oxygen availability is an obligatory requirement for mitochondrial pathway while glycolysis can function without oxygen. Early observations that some cancer cells up-regulate glycolytic activity even in the presence of oxygen (aerobic glycolysis) led to a hypothesis that such an altered cancer cell metabolism stems from inherent mitochondrial dysfunction. While a general validity of this hypothesis is still being debated, a number of recent research efforts have yielded clarity on the physiological origins of this aerobic glycolysis phenotype in cancer cells. Building on these recent studies, we present a generalized scheme of cancer cell metabolism and propose a novel hypothesis that might rationalize new avenues of cancer intervention.

  12. Chromosomal Damage and Apoptosis in Exfoliated Buccal Cells from Individuals with Oral Cancer

    Directory of Open Access Journals (Sweden)

    Lavínia Tércia Magalhães Dórea

    2012-01-01

    Full Text Available This study aimed to investigate cytological abnormalities indicative of chromosome damage (micronuclei and apoptosis (karyorrhexis, pyknosis, and condensed chromatin in exfoliated cells from the buccal mucosa of patients with oral cancer and control subjects. The sample included twenty individuals with oral cancer and forty individuals with normal buccal mucosa. Material was collected from the cheek epithelium in areas with lesions and areas without abnormalities. A minimum of one thousand cells was analyzed. Micronuclei were found significantly more frequently in cells collected from lesions than in cells from normal areas, independent of the presence/absence of cancer (P<0.0001. They were also significantly more frequent in smokers and in mouthwash users (P<0.0001. Apoptosis occurred significantly less frequently in individuals with oral cancer (P<0.0001. These results show that oral cancer is associated with higher frequency of chromosomal damage and suggest that apoptosis is compromised in the buccal cells of individuals with this kind of neoplasia.

  13. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  14. [Isolation and in vitro characterization of CD133(+) side population cells from laryngeal cancer cell line].

    Science.gov (United States)

    Wu, Chun-ping; Zhou, Liang; Xie, Ming; Tao, Lei; Zhang, Ming; Tian, Jie

    2011-09-01

    To investigate an approach enriching cancer stem cells (CSCs) more effectively from laryngeal cancer cell line. CD133(+)SP and CD133(-)SP subpopulation was detected and isolated from Hep-2 cell line using Hoechst33342 dye and phycoerythrin (PE)-conjugated CD133 monoclonal antibody assisted by fluorescence activated cell sorting technology. Sorted CD133(+)SP and CD133(-)SP cells were compared in CSCs-related assays including proliferation, differentiation, spheroid formation and drug sensitivity. CD133(+)SP cells accounted for a very small fraction of (0.30 ± 0.12)% in Hep-2 cell line, far less than the proportion of CD133(+) subgroup and side population subgroup, which were (3.15 ± 0.83)% and (17.1 ± 2.0)% respectively. Intriguingly, CD133(+)SP cells proliferated much faster than CD133(-)SP cells in RPMI1640 and gave rise to CD133(-)SP cells and other heterogeneous cells that formed the bulk of the tumor. In contrast, CD133(-)SP cells were not able to differentiate into CD133(+)SP cells. In serum-free medium CD133(+)SP cells grew as spherical clusters and remained floating. In addition, CD133(+)SP cells manifested the marked resistance to chemotherapy than CD133(-)SP cells. Compared with CD133(-)SP cells, CD133(+)SP subpopulation exhibited extraordinary cancer stem-like properties, were enriched for cancer stem cells more effectively and might serve as an ideal putative candidate for CSCs research in laryngeal cancer.

  15. Characterization of side population cells isolated from the colon cancer cell line SW480.

    Science.gov (United States)

    Xiong, Binghong; Ma, Li; Hu, Xiang; Zhang, Caiquan; Cheng, Yong

    2014-09-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many types of cell lines and tissues have demonstrated the presence of SP cells, including colon cancer cell lines. This study aimed to identify cancer stem cells (CSCs) in the SP of the colon cancer cell line SW480. SP cells were isolated by fluorescence-activated cell sorting (FACS), followed by serum-free medium (SFM) culture. The self-renewal, differentiated progeny, clone formation, proliferation, invasion ability, cell cycle, chemosensitivity and tumorigenic properties in SP and non-SP (NSP) cells were investigated through in vitro culture and in vivo serial transplantation. The expression profiles of ATP-binding cassette (ABC) protein transporters and stem cell-related genes were examined by RT-PCR and western blot analysis. The human colon cancer cell lines SW480, Lovo and HCT116 contain 1.1 ± 0.10, 0.93 ± 0.11 and 1.33 ± 0.05% SP cells, respectively. Flow cytometry analysis revealed that SP cells could differentiate into SP and NSP cells. SP cells had a higher proliferation potency and CFE than NSP cells. Compared to NSP cells, SP cells were also more resistant to CDDP and 5-FU, and were more invasive and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA and protein expression of ABCG2, MDR1, OCT-4, NANOG, SOX-2, CD44 and CD133. SP cells isolated from human colon cancer cell lines harbor CSC properties that may be related to the invasive potential and therapeutic resistance of colon cancer.

  16. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min-1). Further, in response to a fast flow (5 µl min-1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  17. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  18. Isolation, identification, and characterization of cancer stem cells: A review.

    Science.gov (United States)

    Abbaszadegan, Mohammad Reza; Bagheri, Vahid; Razavi, Mahya Shariat; Momtazi, Amir Abbas; Sahebkar, Amirhossein; Gholamin, Mehran

    2017-08-01

    Cancer stem cells (CSCs) or tumor-initiating cells (TICs) as a small subset of neoplastic cells are able to produce a tumor (tumorigenesis), maintain the population of tumorigenic cells (self-renewal), and generate the heterogeneous cells constructing the entire tumor (pluripotency). The research on stationary and circulating CSCs due to resistance to conventional therapies and inability in complete eradication of cancer is critical for developing novel therapeutic strategies for a more effective reduction in the risk of tumor metastasis and cancer recurrence. This review compiles information about different methods of detection and dissociation, side population, cellular markers, and establishment culture of CSCs, as well as characteristics of CSCs such as tumorigenicity, and signaling pathways associated with self-renewal and the capability of the same histological tumor regeneration in various cancers. © 2016 Wiley Periodicals, Inc.

  19. Compatibility of cancer cells with nanostructured oxidized porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, Tal; Parush, Ran; Massad, Na' ama [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Segal, Ester [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2011-06-15

    The attachment and long-term viability of three types of human cancer cell lines (glioma U87, breast cancer MDA-MB-231, and cervical cancer HeLa) onto nanostructured oxidized porous Si substrates is investigated. The porous layers are fabricated to give cylindrically-shaped structures with pore diameters in the tunable range of 10 to 150 nm by anodizing a heavily-doped p-type Si. The Alamar Blue viability assay and optical microscopy are employed to assess the attachment, viability and the morphology of the cells. The results show that cells remain viable and proliferate on all surfaces. The nano-architecture of the studied scaffolds does not exert a deleterious effect on cancer cells. Cell coverage levels comparable to standard culture preparations on tissue culture polystyrene are observed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells.

    Science.gov (United States)

    Wang, Meiping; Xie, Fangyuan; Wen, Xikai; Chen, Han; Zhang, Hai; Liu, Junjie; Zhang, He; Zou, Hao; Yu, Yuan; Chen, Yan; Sun, Zhiguo; Wang, Xinxia; Zhang, Guoqing; Yin, Chuan; Sun, Duxin; Gao, Jie; Jiang, Beige; Zhong, Yanqiang; Lu, Ying

    2017-05-01

    Salinomycin (SAL)-loaded PEG-ceramide nanomicelles (SCM) were prepared to target both liver cancer cells and cancer stem cells. The synergistic ratio of SAL/PEG-ceramide was evaluated to prepare SCM, and the antitumor activity of SCM was examined both in vitro and in vivo. SAL/PEG-ceramide molar ratio of 1:4 was chosen as the synergistic ratio, and SCM showed superior cytotoxic effect and increased apoptosis-inducing activity in both liver cancer cells and cancer stem cells. In vivo, SCM showed the best tumor inhibitory effect with a safety profile. Thus, PEG-ceramide nanomicelles could serve as an effective and safe therapeutic drug carrier to deliver SAL into liver cancer, opening up the avenue of using PEG-ceramide as therapeutic drug carriers.

  1. Heparan sulfate mediates trastuzumab effect in breast cancer cells

    Science.gov (United States)

    2013-01-01

    Background Trastuzumab is an antibody widely used in the treatment of breast cancer cases that test positive for the human epidermal growth factor receptor 2 (HER2). Many patients, however, become resistant to this antibody, whose resistance has become a major focus in breast cancer research. But despite this interest, there are still no reliable markers that can be used to identify resistant patients. A possible role of several extracellular matrix (ECM) components—heparan sulfate (HS), Syn-1(Syndecan-1) and heparanase (HPSE1)—in light of the influence of ECM alterations on the action of several compounds on the cells and cancer development, was therefore investigated in breast cancer cell resistance to trastuzumab. Methods The cDNA of the enzyme responsible for cleaving HS chains from proteoglycans, HPSE1, was cloned in the pEGFP-N1 plasmid and transfected into a breast cancer cell lineage. We evaluated cell viability after trastuzumab treatment using different breast cancer cell lines. Trastuzumab and HS interaction was investigated by confocal microscopy and Fluorescence Resonance Energy Transfer (FRET). The profile of sulfated glycosaminoglycans was also investigated by [35S]-sulfate incorporation. Quantitative RT-PCR and immunofluorescence were used to evaluate HPSE1, HER2 and Syn-1 mRNA expression. HPSE1 enzymatic activity was performed using biotinylated heparan sulfate. Results Breast cancer cell lines responsive to trastuzumab present higher amounts of HER2, Syn-1 and HS on the cell surface, but lower levels of secreted HS. Trastuzumab and HS interaction was proven by FRET analysis. The addition of anti-HS to the cells or heparin to the culture medium induced resistance to trastuzumab in breast cancer cells previously sensitive to this monoclonal antibody. Breast cancer cells transfected with HPSE1 became resistant to trastuzumab, showing lower levels of HER2, Syn-1 and HS on the cell surface. In addition, HS shedding was increased significantly in

  2. Side population cells separated from A549 lung cancer cell line possess cancer stem cell-like properties and inhibition of autophagy potentiates the cytotoxic effect of cisplatin.

    Science.gov (United States)

    Yang, Yang; Fan, Yuxia; Qi, Yu; Liu, Donglei; Wu, Kai; Wen, Fengbiao; Zhao, Song

    2015-08-01

    Recent studies have suggested that cancer stem cells (CSCs) may be responsible for tumorigenesis and contribute to resistance to chemotherapy. Side population (SP) cells are thought to be enriched for CSCs in most types of human tumors. Therefore, the aim of the present study was to sort SP cells using an A549 lung cancer cell line, identify the cancer stem cell-like properties of SP and determine the role of autophagy in the survival of SP cells of lung cancer. SP cells were isolated by fluorescence-activated cell sorter (FACS) from A549 lung cancer cells, and the CSC-like properties were verified through confocal fluorescence imaging, sphere formation assays, cell proliferation and colony formation assay, gene expression in vitro and tumor formation in vivo. The role of autophagy in the survival of SP cells was assessed by western blotting and flow cytometric analysis. A549 lung cancer cells contained 1.10% SP cells. SP cells showed higher abilities of sphere and colony formation, cell proliferation and self-renewal. Moreover, compared to non-SP, SP cells demonstrated a higher mRNA expression of stem cell markers (MDR1, ABCG2 and OCT-4). The clone formation efficiency of SP cells was significantly higher than that non-SP cells under the same conditions. Expression of autophagosomes in SP cells was markedly lower than that in non-SP cells. However, the level of autophagy in SP cells was found to be markedly increased in the presence of cisplatin. In addition, inhibition of autophagy enhanced the effects of apoptosis induced by cisplatin. SP cells from the A549 lung cancer cell line possessed the properties of CSCs and were used to investigate the further characteristics of lung CSCs. SP cells were more resistant to chemotherapy and inhibition of autophagy enhanced the effects of apoptosis induced by the chemotherapeutic agent, cisplatin. These results may provide insight into novel therapeutic targets.

  3. Hypothesis of mitochondrial oncogenesis as the trigger of normal cells to cancer cells.

    Science.gov (United States)

    Du, Jianping

    2014-06-01

    The Warburg Effect showed that energy metabolism of cancer cells was similar to prokaryotic cells, which were different from normal eucaryotic cells. The Endosymbiotic Theory offered a plausible explanation that the eucaryotic cells were evolved from prokaryotic cells, by which host cells (ancient prokaryotic cells) had ingested mitochondria (ancient aerobic bacteria), which depended on oxidative phosphorylation rather than glycolysis for generating energy. The alteration of energy metabolism might mean that the survival style of cancer cells were the re-evolution from eucaryotic cells to prokaryotic cells. But how this alteration happened was still unknown. This hypothesis tries to explain how mitochondria take part in the re-evolution from normal cell to cancer cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types

    Directory of Open Access Journals (Sweden)

    Chanan-Khan Asher A

    2010-01-01

    Full Text Available Abstract Background Survivin is known playing a role in drug resistance. However, its role in bortezomib-mediated inhibition of growth and induction of apoptosis is unclear. There are conflicting reports for the effect of bortezomib on survivin expression, which lacks of a plausible explanation. Methods: In this study, we tested cancer cells with both p53 wild type and mutant/null background for the relationship of bortezomib resistance with survivin expression and p53 status using MTT assay, flow cytometry, DNA fragmentation, caspase activation, western blots and RNAi technology. Results We found that cancer cells with wild type p53 show a low level expression of survivin and are sensitive to treatment with bortezomib, while cancer cells with a mutant or null p53 show a high level expression of survivin and are resistant to bortezomib-mediated apoptosis induction. However, silencing of survivin expression utilizing survivin mRNA-specific siRNA/shRNA in p53 mutant or null cells sensitized cancer cells to bortezomib mediated apoptosis induction, suggesting a role for survivin in bortezomib resistance. We further noted that modulation of survivin expression by bortezomib is dependent on p53 status but independent of cancer cell types. In cancer cells with mutated p53 or p53 null, bortezomib appears to induce survivin expression, while in cancer cells with wild type p53, bortezomib downregulates or shows no significant effect on survivin expression, which is dependent on the drug concentration, cell line and exposure time. Conclusions Our findings, for the first time, unify the current inconsistent findings for bortezomib treatment and survivin expression, and linked the effect of bortezomib on survivin expression, apoptosis induction and bortezomib resistance in the relationship with p53 status, which is independent of cancer cell types. Further mechanistic studies along with this line may impact the optimal clinical application of bortezomib in

  5. Genes and miRNA expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil.

    Science.gov (United States)

    D'Amore, Simona; Vacca, Michele; Cariello, Marica; Graziano, Giusi; D'Orazio, Andria; Salvia, Roberto; Sasso, Rosa Cinzia; Sabbà, Carlo; Palasciano, Giuseppe; Moschetta, Antonio

    2016-11-01

    Extra virgin olive oil (EVOO) consumption has been associated with reduced cardiovascular risk but molecular mechanisms underlying its beneficial effects are not fully understood. Here we aimed to identify genes and miRNAs expression changes mediated by acute high- and low-polyphenols EVOO intake. Pre- and post-challenge gene and miRNAs expression analysis was performed on the peripheral blood mononuclear cells (PBMCs) of 12 healthy subjects and 12 patients with metabolic syndrome (MS) by using microarray and RT-qPCR. In healthy subjects, acute intake of EVOO rich in polyphenols was able to ameliorate glycaemia and insulin sensitivity, and to modulate the transcription of genes and miRNAs involved in metabolism, inflammation and cancer, switching PBMCs to a less deleterious inflammatory phenotype; weaker effects were observed in patients with MS as well as in healthy subjects following low-polyphenol EVOO challenge. Concluding, our study shows that acute high-polyphenols EVOO intake is able to modify the transcriptome of PBMCs through the modulation of different pathways associated with the pathophysiology of cardio-metabolic disease and cancer. These beneficial effects are maximized in healthy subjects, and by the use of EVOO cultivars rich in polyphenols. Nutrigenomic changes induced by EVOO thus legitimate the well-known beneficial effects of EVOO in promoting human health and, potentially, preventing the onset of cardiovascular disease and cancer. Copyright © 2016. Published by Elsevier B.V.

  6. Cancer Stem Cells in Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Amy Ruth Bradshaw

    2016-08-01

    Full Text Available Aim To identify and characterize cancer stem cells (CSC in glioblastoma multiforme (GBM.Methods 4μm-thick formalin-fixed paraffin-embedded GBM samples from six patients underwent 3,3-diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining for the embryonic stem cell (ESC markers NANOG, OCT4, SALL4, SOX2 and pSTAT3. IF IHC staining was performed to demonstrate co-expression of these markers with GFAP. The protein expression and the transcriptional activities of the genes encoding NANOG, OCT4, SOX2, SALL4 and STAT3 were investigated using Western blotting (WB and NanoString gene expression analysis, respectively. Results DAB and IF IHC staining demonstrated the presence of a CSC population expressing NANOG, OCT4, SOX2, SALL4 and STAT3 with the almost ubiquitous presence of SOX2 and a relatively low abundance of OCT4, within GBM. The expression of NANOG, SOX2 and pSTAT3 but, not OCT and SALL4, was confirmed by WB. NanoString gene analysis demonstrated transcriptional activation of NANOG, OCT4, SALL4, STAT3 and SOX2 in GBM. Conclusion This study demonstrated a population of CSCs within GBM characterized by the expression of the CSC markers NANOG, SALL4, SOX2, pSTAT3 and OCT4 at the protein and mRNA levels. The almost ubiquitous presence of SOX2 and a relatively low abundance of OCT4 would support the putative existence of a stem cell hierarchy within GBM.

  7. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    Directory of Open Access Journals (Sweden)

    Yueh-Chiao Yeh

    2015-01-01

    Full Text Available Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.

  8. Intestinal stem cell imaging in colorectal cancer screening.

    Science.gov (United States)

    Moossavi, S; Ansari, R

    2013-01-01

    Colorectal cancer (CRC) is a common cancer and cause of cancer-related death worldwide. Although, the step-wise genetic alteration in the course of adenoma-carcinoma progression is well-understood, the mechanism of the tumour initiation and promotion is yet to be elucidated. Murine studies indicate that intestinal tumour originates from normal intestinal stem cells which acquire the oncogenic hits. It is plausible to consider the abnormality of the stem cell compartment as the earliest potentially detectable phenotypic change in the course of intestinal tumourigenesis. Hereby, it is hypothesised that imaging of the abnormal state of the intestinal stem cell compartment could potentially be integrated in CRC screening strategy.

  9. Role of Pancreatic Stellate Cells in Chemoresistance in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Joshua eMcCarroll

    2014-04-01

    Full Text Available Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumour volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumour microenvironment following activation of pancreatic stellate cells, tumour progression and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer.

  10. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechani