WorldWideScience

Sample records for cancer cells role

  1. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  2. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    infiltrating human tumors, but less information is known about how these T-cells gain access to the tumor or how they are primed to become tumor-specific. Here, we highlight recent findings that demonstrate a vital role of CD103+ DCs, which have been shown to be experts in cross-priming and the induction...

  3. Role of Pancreatic Stellate Cells in Chemoresistance in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Joshua eMcCarroll

    2014-04-01

    Full Text Available Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumour volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumour microenvironment following activation of pancreatic stellate cells, tumour progression and chemoresistance is enhanced. This review will discuss how PSCs contribute to chemoresistance in pancreatic cancer.

  4. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    Directory of Open Access Journals (Sweden)

    Arif Malik

    2016-01-01

    Full Text Available Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  5. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update.

    Science.gov (United States)

    Malik, Arif; Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  6. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  7. Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M.; Muller, William J.

    2009-01-01

    Summary Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis. PMID:19118213

  8. Integrins in mammary-stem-cell biology and breast-cancer progression--a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M; Muller, William J

    2009-01-15

    Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis.

  9. Mammary Development and Breast Cancer: The Role of Stem Cells

    Science.gov (United States)

    Ercan, C.; van Diest, P.J.; Vooijs, M.

    2014-01-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies. PMID:21506923

  10. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  11. Role of Cell Senescence in Breast Cancer

    National Research Council Canada - National Science Library

    Krtolica, Ana

    2000-01-01

    .... Here, we report that both mouse and human immortal pre-malignant breast epithelial cell lines increase 2 to 5 times their proliferation in the presence of senescent, compared to presenescent, human fibroblasts...

  12. Role of Cell Senescence in Breast Cancer

    National Research Council Canada - National Science Library

    Krtolica, Ana

    1999-01-01

    .... Here, we report that both mouse and human immortal pre-malignant breast epithelial cell lines show increased proliferation in the presence of senescent, compared to presenescent, human fibroblasts...

  13. Role of Cell Senescence in Breast Cancer

    National Research Council Canada - National Science Library

    Krtolica, Ana

    2001-01-01

    .... In culture, the growth stimulation was evident when senescent cells comprised only 10% of the fibroblast population, and was equally robust whether senescence was induced by replicative exhaustion, oncogenic RAS, p14ARF or hydrogen peroxide...

  14. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior.

    Directory of Open Access Journals (Sweden)

    Denise K Reaves

    Full Text Available The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.

  15. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  16. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. How cancer cells dictate their microenvironment: present roles of extracellular vesicles.

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Yamamoto, Yusuke; Ochiya, Takahiro

    2017-02-01

    Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.

  18. The role of mismatch repair in small-cell lung cancer cells

    DEFF Research Database (Denmark)

    Hansen, L T; Thykjaer, T; Ørntoft, T F

    2003-01-01

    The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous...

  19. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2014-12-30

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.

  20. The role of proteasome inhibition in nonsmall cell lung cancer.

    Science.gov (United States)

    Escobar, Mauricio; Velez, Michel; Belalcazar, Astrid; Santos, Edgardo S; Raez, Luis E

    2011-01-01

    Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  1. The Role of Proteasome Inhibition in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mauricio Escobar

    2011-01-01

    Full Text Available Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  2. Breast cancer and amyloid bodies: is there a role for amyloidosis in cancer-cell dormancy?

    Directory of Open Access Journals (Sweden)

    Mizejewski GJ

    2017-04-01

    Full Text Available Gerald J Mizejewski Wadsworth Center, New York State Department of Health, Albany, NY, USA Abstract: Breast cancer and Alzheimer’s disease (AD are major causes of death in older women. Interestingly, breast cancer occurs less frequently in AD patients than in the general population. Amyloidosis, the aggregation of amyloid proteins to form amyloid bodies, plays a central role in the pathogenesis of AD and other human neuropathies by forming intracellular fibrillary proteins. Contrary to popular belief, amyloidosis is a common occurrence in mammalian cells, and has recently been reported to be a natural physiological process in response to environmental stress stimulations (such as pH and temperature extremes, hypoxia, and oxidative stress. Many proteins contain an intrinsic “amyloid-converting motif”, which acts in conjunction with a specific noncoding RNA to induce formation of proteinaceous amyloid bodies that are stored in intracellular bundles. In cancer cells such as breast and prostate, the process of amyloidosis induces cells to enter a dormant or resting stage devoid of cell division and proliferation. Therefore, cancer cells undergo growth cessation and enter a dormant stage following amyloidosis in the cell; this is akin to giving the cell AD to cease growth. Keywords: α-fetoprotein, noncoding RNA, amyloid bodies, dormancy, breast cancer, Alzheimer’s disease

  3. The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer.

    Science.gov (United States)

    Suresh, Raagini; Ali, Shadan; Ahmad, Aamir; Philip, Philip A; Sarkar, Fazlul H

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide with a 5-year overall survival rate of less than 20 %. Considering the treatments currently available, this statistics is shocking. A possible explanation for the disconnect between sophisticated treatments and the survival rate can be related to the post-treatment enrichment of Cancer Stem Cells (CSCs), which is one of a sub-set of drug resistant tumor cells with abilities of self-renewal, cancer initiation, and further maintenance of tumors. Lung CSCs have been associated with resistance to radiation and chemotherapeutic treatments. CSCs have also been implicated in tumor recurrence because CSCs are not typically killed after conventional therapy. Investigation of CSCs in determining their role in tumor recurrence and drug-resistance relied heavily on the use of specific markers present in CSCs, including CD133, ALDH, ABCG2, and Nanog. Yet another cell type that is also associated with increased resistance to treatment is epithelial-to-mesenchymal transition (EMT) phenotypic cells. Through the processes of EMT, epithelial cells lose their epithelial phenotype and gain mesenchymal properties, rendering EMT phenotypic cells acquire drug-resistance. In this chapter, we will further discuss the role of microRNAs (miRNAs) especially because miRNA-based therapies are becoming attractive target with respect to therapeutic resistance and CSCs. Finally, the potential role of the natural agents and synthetic derivatives of natural compounds with anti-cancer activity, e.g. curcumin, CDF, and BR-DIM is highlighted in overcoming therapeutic resistance, suggesting that the above mentioned agents could be important for better treatment of lung cancer in combination therapy.

  4. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells

    Science.gov (United States)

    Guo, Shanchun; Liu, Mingli; Wang, Guangdi; Torroella-Kouri, Marta; Gonzalez-Perez, Ruben R.

    2012-01-01

    Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e, canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts. PMID:22289780

  5. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  6. The role of epithelial cell adhesion molecule N-glycosylation on apoptosis in breast cancer cells.

    Science.gov (United States)

    Zhang, Dandan; Liu, Xue; Gao, Jiujiao; Sun, Yan; Liu, Tingjiao; Yan, Qiu; Yang, Xuesong

    2017-03-01

    Glycosylation of cell surface proteins plays an important role in the regulation of apoptosis. It has been demonstrated that knockdown of epithelial cell adhesion molecule promoted apoptosis, inhibited cell proliferation, and caused cell-cycle arrest. In this study, we investigated whether and how N-glycosylation of epithelial cell adhesion molecule influenced the apoptosis in breast cancer cells. We applied the N-glycosylation mutation epithelial cell adhesion molecule plasmid to express deglycosylation of epithelial cell adhesion molecule and then to study its function. Our results showed that deglycosylation of epithelial cell adhesion molecule promoted apoptosis and inhibited cell proliferation. Deglycosylation of epithelial cell adhesion molecule enhanced the cytotoxic effect of 5-fluorouracil, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax and Caspase 3 via the extracellular-signal-regulated kinase 1/2 and c-Jun N-terminal kinase mitogen-activated protein kinase signaling pathways in MCF-7 and MDA-MB-231 cells. These findings are important for a better understanding of epithelial cell adhesion molecule apoptosis regulation and suggest epithelial cell adhesion molecule as a potential target for the treatment of breast cancer.

  7. The role of individual caspases in cell death induction by taxanes in breast cancer cells.

    Science.gov (United States)

    Jelínek, Michael; Balušíková, Kamila; Schmiedlová, Martina; Němcová-Fürstová, Vlasta; Šrámek, Jan; Stančíková, Jitka; Zanardi, Ilaria; Ojima, Iwao; Kovář, Jan

    2015-01-01

    In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3). Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment. We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.

  8. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Zhiju Zhao

    2015-09-01

    Full Text Available Abstract Cancer stem cells (CSCs, a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA including microRNAs and long non-coding RNAs (lncRNAs, and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs.

  9. Role of p53 in Cell Death and Human Cancers

    Science.gov (United States)

    Ozaki, Toshinori; Nakagawara, Akira

    2011-01-01

    p53 is a nuclear transcription factor with a pro-apoptotic function. Since over 50% of human cancers carry loss of function mutations in p53 gene, p53 has been considered to be one of the classical type tumor suppressors. Mutant p53 acts as the dominant-negative inhibitor toward wild-type p53. Indeed, mutant p53 has an oncogenic potential. In some cases, malignant cancer cells bearing p53 mutations display a chemo-resistant phenotype. In response to a variety of cellular stresses such as DNA damage, p53 is induced to accumulate in cell nucleus to exert its pro-apoptotic function. Activated p53 promotes cell cycle arrest to allow DNA repair and/or apoptosis to prevent the propagation of cells with serious DNA damage through the transactivation of its target genes implicated in the induction of cell cycle arrest and/or apoptosis. Thus, the DNA-binding activity of p53 is tightly linked to its tumor suppressive function. In the present review article, we describe the regulatory mechanisms of p53 and also p53-mediated therapeutic strategies to cure malignant cancers. PMID:24212651

  10. Imaging the Role of Multinucleate Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in Peritoneal Metastasis in Mouse Models.

    Science.gov (United States)

    Hasegawa, Kosuke; Suetsugu, Atsushi; Nakamura, Miki; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    The interaction between pancreatic-cancer cells and stromal cells in the tumor microenvironment (TME) is of particular importance in cancer progression and metastasis. The present report demonstrates the role of cancer-associated fibroblasts (CAFs) and multinucleate pancreatic-cancer cells in peritoneal metastasis. An orthotopic mouse model of pancreatic cancer was established with the human pancreatic cancer cell line BxPC3, which stably expresses green fluorescent protein (GFP). BxPC3-GFP cells formed peritoneal metastases by week 18 after orthotopic implantation. Using an Olympus FV1000 confocal microscope, multi-nucleated cancer cells were frequently observed in the peritoneal metastases. The primary pancreatic tumor and peritoneal-metastases were harvested, cultured and then transplanted subcutaneously. Subcutaneous tumors established from peritoneal-metastatic cells were larger than subcutaneous tumors established from primary-tumor cells. Subcutaneous tumors of each type were subsequently cultured in vitro. CAFs were observed growing out from the tumors established from peritoneal-metastatic cells, but not the tumors established from the primary cancer. The results of the present study suggest that multi-nucleated cancer cells and CAFs were related to peritoneal metastasis of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1998-01-01

    .... This project is aimed at testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-a (TNF...

  12. The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells.

    Science.gov (United States)

    Chen, Zongyan; Wang, Benli; Yu, Feifei; Chen, Qiao; Tian, Yuxi; Ma, Shumei; Liu, Xiaodong

    2016-03-01

    Mitochondria as the critical powerhouse of eukaryotic cells play important roles in regulating cell survival or cell death. Under numerous stimuli, impaired mitochondria will generate massive reactive oxygen species (ROS) which participate in the regulation of vital signals and could even determine the fate of cancer cells. While the roles of mitochondria in radiation-induced autophagic cell death still need to be elucidated. Human cervical cancer cell line, Hela, was used, and the SOD2 silencing model (SOD2-Ri) was established by gene engineering. Cell viability was detected by methyl thiazolyl tetrazolium (MTT) assays, MitoTracker Green staining was used to detect mitochondrial mass, Western blot was used to detect protein expression, and the level of ROS, autophagy, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. Ionizing radiation (IR) could induce the increase of MAPLC3-II/MAPLC3-I ratio, Beclin1 expression, and ROS generation but decrease the MMP in a time-dependent manner. After SOD2 silencing, the IR-induced changes of ROS and the MMP were significantly enhanced. Moreover, both the radio sensitivity and autophagy increased in SOD2-Ri cells. Whereas, compared with SOD2-Ri, the opposite results were obtained by NAC, an antioxidant. After the treatment with the inhibitor of mitochondrial electron-transport chain complex II, thenoyltrifluoroacetone (TTFA), the rate of autophagy, ROS, and the total cell death induced by IR increased. In addition, the decrease of MMP was more obvious. However, these results were reversed by cyclosporine A (CsA). IR could induce ROS generation and mitochondrial damage which lead to autophagic cell death in Hela cells.

  13. Deciphering the role of microRNA 21 in cancer stem cells (CSCs

    Directory of Open Access Journals (Sweden)

    Durairaj Sekar

    2016-12-01

    Full Text Available Irrespective of positive developments of cancer treatment, the mortality due to various cancers remains high and the mechanisms of cancer initiation and the development also remains mysterious. As we know that microRNAs are considered to be a short noncoding RNA molecules consisting of 21–25 nucleotides (nt in length and they silence their target genes by inhibiting mRNA translation or degrading the mRNA molecules by binding to their 3′-untranslated (UTR region and play a very important role in cancer biology. Recent evidences indicate that miR-21 is over expressed in cancer stem cells and plays a vital role in cell proliferation, apoptosis, and invasion. Even though an increased expression level of miR-21 has been observed in cancer stem cells, studies related to the role of miR-21 in cancer stem cells are limited. The main aim of this mini review is to explain the potency of miR-21 in various cancer stem cells (CSCs and as a new target for therapeutic interventions of cancer progression.

  14. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Neelesh; Ghosh, Mrinmoy; Park, Yang Ho; Jeong, Dong Kee

    2017-11-02

    Recent years have seen an unpretending increase in research using dietary phytochemicals for targeting cancer and cancer stem cells (CSCs) due to the limited efficacy of conventional chemotherapy and radiotherapy and numerous associated side effects. A large number of dietary phytochemicals using traditional recommendation and experimental approaches have been demonstrated to have anti-proliferative, anti-metastatic, reactive oxygen species (ROS) inducing, anti-angiogenic, pro-apoptotic effects and efficacy in targeting cellular molecules and pathways implicated in malignancy. Researchers have shown the knack of phytochemicals in interfering with the CSCs self-renewal process. Thus, dietary phytochemicals can play a significant role in the cancer therapy owing to the plethora of targets without toxicity. In this review, we have discussed about the basic knowledge of CSCs, their identification, characterization, mechanism of self-renewal pathways (Wnt/β-catenin, Hedgehog, and Notch), features that help in the survival of CSCs and use of phytochemicals to replace chemotherapy. Applications of phytochemicals including curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, and sulforaphane for their effect on targeting cancer and in particular CSCs along with their molecular mechanisms responsible for pharmacological action are also discussed.

  15. The role of Nanog expression in tamoxifen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Arif K

    2015-06-01

    Full Text Available Khalid Arif,1 Issam Hussain,1 Carol Rea,1 Mohamed El-Sheemy2 1School of Life Sciences, University of Lincoln, Brayford Pool, 2Lincoln County Hospital, Greetwell Road, Lincoln, Lincolnshire, UK Abstract: There is an accumulation of evidence that shows a significant role of cancer stem cells in tumor initiation, proliferation, relapse, and metastasis. Nanog is the most important core transcription marker of stem cells, known by its role in maintaining pluripotency, proliferation, and differentiation. Therefore, this study aimed to examine the role of Nanog in breast cancer cell tamoxifen resistance and its implications in breast cancer treatment. In this study, the expression of the three core transcription markers Nanog, Oct3/4, and Sox2 were quantitatively evaluated using flow cytometry. Then, small interfering RNA (siRNA against human Nanog was transfected into tamoxifen-resistant breast cancer cells via Lipofectamine 2000. Nanog gene expression in the cells was detected using reverse transcription polymerase chain reaction (RT-PCR. The change in cell proliferation was evaluated using the tetrazolium bromide method. An enzyme-linked immunosorbent assay was used to detect apoptosis of the transfected cells alone and in combination with 4-hydroxytamoxifen. The results showed a high level expression of Nanog, Oct3/4, and Sox2 in MDA-MB-231 and MCF7/tamoxifen resistant cells compared with MCF7/wild-type. siRNA-mediated Nanog gene silencing can efficiently inhibit cell proliferation and induce apoptosis of tamoxifen-resistant breast cancer cells. This study provides a basis for further study of the role of Nanog in developing resistance to tamoxifen, its implication in breast cancer management, and as a new strategy to enhance response to endocrine therapy. Keywords: breast cancer, cancer stem cell, Nanog, tamoxifen, estrogen receptor

  16. SMARCAD1 knockdown uncovers its role in breast cancer cell migration, invasion, and metastasis.

    Science.gov (United States)

    Al Kubaisy, Elham; Arafat, Kholoud; De Wever, Olivier; Hassan, Ahmed H; Attoub, Samir

    2016-09-01

    Breast cancer is the most common cancer seen in women worldwide and breast cancer patients are at high risk of recurrence in the form of metastatic disease. Identification of genes associated with invasion and metastasis is crucial in order to develop novel anti-metastasis targeted therapy. It has been demonstrated that the DEAD-BOX helicase DP103 was implicated in breast cancer invasion and metastasis. SMARCAD1 is also a DEAD/H box-containing helicase, suggested to play a role in genetic instability. However, its involvement in cancer migration, invasion, and metastasis has never been explored. Using two different designs of shRNA targeting SMARCAD1, we investigated the impact of SMARCAD1 knockdown on the migration, invasion, and metastasis potential of the breast cancer cells MDA-MB-231 and T47D. We observed that SMARCAD1 knockdown in the invasive breast cancer cells MDA-MB-231, unlike in the non-invasive breast cancer cells T47D, was associated with an increased cell-cell adhesion and a significant decrease in cell migration, invasion, and metastasis due at least in part to a strong inhibition of STAT3 phosphorylation. These results indicate that SMARCAD1 is involved in breast cancer metastasis and can be a promising target for metastatic breast cancer therapy.

  17. Induction of Cancer Cell Death by Isoflavone: The Role of Multiple Signaling Pathways

    Science.gov (United States)

    Li, Yiwei; Kong, Dejuan; Bao, Bin; Ahmad, Aamir; Sarkar, Fazlul H.

    2011-01-01

    Soy isoflavones have been documented as dietary nutrients broadly classified as “natural agents” which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR), p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s) by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials. PMID:22200028

  18. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Differential roles of leptin in regulating cell migration in thyroid cancer cells.

    Science.gov (United States)

    Cheng, Shih-Ping; Yin, Pen-Hui; Chang, Yuan-Ching; Lee, Chen-Hsen; Huang, Shih-Yuan; Chi, Chin-Wen

    2010-06-01

    Excess body weight is associated with a moderately increased risk of thyroid cancer. Adipocyte-derived hormone, leptin, has been shown to enhance cell growth and migration in many cancer types. Limited evidence suggests that leptin has direct actions on the thyroid gland, but there are no data available on the effect of leptin on thyroid cancer cells. We evaluated the action of leptin on gene expression, cell growth, cell cycle, and cell migration in anaplastic (ARO), follicular (WRO) and papillary (CGTH-W3) thyroid carcinoma cell lines. Expression of long-form leptin receptors was observed in all thyroid cancer cell lines. Leptin stimulation did not alter the expression levels of leptin, leptin receptor and sodium-iodide symporter. Cell growth and cell cycle were not changed after leptin treatment. However, leptin was able to promote cell migration of papillary thyroid cancer cells, but inhibited migration of anaplastic and follicular cancer cells. In summary, our study suggests that leptin modulates cell migration of thyroid cancer cells in a cell type-specific manner.

  20. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer.

    Science.gov (United States)

    Song, Yang; Yang, Jian Ming

    2017-11-04

    Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4 + T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4 + T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Atomic Force Microscopy Reveals a Role for Endothelial Cell ICAM-1 Expression in Bladder Cancer Cell Adherence

    Science.gov (United States)

    Laurent, Valérie M.; Duperray, Alain; Sundar Rajan, Vinoth; Verdier, Claude

    2014-01-01

    Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells. PMID:24857933

  2. The Role of Biomaterials on Cancer Stem Cell Enrichment and Behavior

    Science.gov (United States)

    Ordikhani, Faride; Kim, Yonghyun; Zustiak, Silviya P.

    2015-11-01

    The theory of cancer stem cells (CSCs) and their role in cancer metastasis, tumorigenicity and resistance to therapy is slowly shifting the emphasis on the search for cancer cure: more evidence is surfacing that a successful therapy should be geared against this rare cancer cell population. Unfortunately, CSCs are difficult to culture in vitro which severely limits the progress of CSC research. This review gives a brief overview of CSCs and their microenvironment, with particular focus on studies that used in vitro biomaterial-based models and biomaterial/CSC interfaces for the enrichment of CSCs. Biomaterial properties relevant to CSC behaviors are also addressed. While the discussed research field is still in its infancy, it appears that in vitro cancer models that include a biomaterial can support CSC enrichment and this has proved indispensable to the study of their biology as well as the development of novel cancer therapies.

  3. Novel roles of DC-SIGNR in colon cancer cell adhesion, migration, invasion, and liver metastasis.

    Science.gov (United States)

    Na, Heya; Liu, Xiaoli; Li, Xiaomeng; Zhang, Xinsheng; Wang, Yu; Wang, Zhaohui; Yuan, Menglang; Zhang, Yu; Ren, Shuangyi; Zuo, Yunfei

    2017-01-21

    Tumor metastasis is an essential cause of the poor prognosis of colon cancer. DC-SIGNR is a C-type lectin that is frequently found on human liver sinusoidal endothelial cells. LSECtin, which is a homologue of DC-SIGNR, has been demonstrated to participate in colon cancer liver metastasis. Due to the similarities in the expression pattern and structure of the two proteins, we speculated that DC-SIGNR could also be involved in this process. Colon cancer cells were treated with the DC-SIGNR protein or control IgG, after which cell migration, invasion, and morphology were assayed. Xenograft mouse models were used to determine the role of DC-SIGNR in colon cancer liver metastasis in vivo. In addition, a human gene expression array was used to detect differential gene expression in colon cancer cells stimulated with the DC-SIGNR protein. The serum level of DC-SIGNR was examined in colon cancer patients by ELISA, and the significance of DC-SIGNR was determined. In our research, we investigated whether DC-SIGNR promotes colon cancer cell adhesion, migration, and invasion. Knocking down mouse DC-SIGNR decreased the liver metastatic potency of colon cancer cells and increased survival time. Expressing human DC-SIGNR enhanced colon cancer liver metastasis. Furthermore, DC-SIGNR conferred metastatic capability on cancer cells by upregulating various metallothionein isoforms. To validate the above results, we also found that the serum DC-SIGNR level was statistically higher in colon cancer patients with liver metastasis compared with those without metastasis. These results imply that DC-SIGNR may promote colon carcinoma hepatic metastasis and could serve as a promising therapeutic target for anticancer treatment.

  4. Role of cancer stem cells in racial disparity in colorectal cancer.

    Science.gov (United States)

    Farhana, Lulu; Antaki, Fadi; Anees, Mohammad R; Nangia-Makker, Pratima; Judd, Stephanie; Hadden, Timothy; Levi, Edi; Murshed, Farhan; Yu, Yingjie; Van Buren, Eric; Ahmed, Kulsoom; Dyson, Gregory; Majumdar, Adhip P N

    2016-06-01

    Although African-Americans (AAs) have a higher incidence of colorectal cancer (CRC) than White people, the underlying biochemical mechanisms for this increase are poorly understood. The current investigation was undertaken to examine whether differences in self-renewing cancer stem/stem-like cells (CSCs) in the colonic mucosa, whose stemness is regulated by certain microRNAs (miRs), could partly be responsible for the racial disparity in CRC. The study contains 53 AAs and 47 White people. We found the number of adenomas and the proportion of CD44(+) CD166(-  ) CSC phenotype in the colon to be significantly higher in AAs than White people. MicroRNAs profile in CSC-enriched colonic mucosal cells, expressed as ratio of high-risk (≥3 adenomas) to low-risk (no adenoma) CRC patients revealed an 8-fold increase in miR-1207-5p in AAs, compared to a 1.2-fold increase of the same in White people. This increase in AA was associated with a marked rise in lncRNA PVT1 (plasmacytoma variant translocation 1), a host gene of miR-1207-5p. Forced expression of miR-1207-5p in normal human colonic epithelial cells HCoEpiC and CCD841 produced an increase in stemness, as evidenced by morphologically elongated epithelial mesenchymal transition( EMT) phenotype and significant increases in CSC markers (CD44, CD166, and CD133) as well as TGF-β, CTNNB1, MMP2, Slug, Snail, and Vimentin, and reduction in Twist and N-Cadherin. Our findings suggest that an increase in CSCs, specifically the CD44(+) CD166(-) phenotype in the colon could be a predisposing factor for the increased incidence of CRC among AAs. MicroRNA 1207-5p appears to play a crucial role in regulating stemness in colonic epithelial cells in AAs. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Circadian Rhythms and Breast Cancer: The Role of Per2 in Doxorubicin-Induced Cell Death.

    Science.gov (United States)

    Mitchell, Megan I; Engelbrecht, Anna-Mart

    2015-01-01

    Mammalian circadian rhythms form an integral physiological system allowing for the synchronisation of all metabolic processes to daily light/dark cycles, thereby optimising their efficacy. Circadian disruptions have been implicated in the onset and progression of various cancers, including those arising in the breast. Several links between the circadian protein Per2 and DNA damage responses exist. Aberrant Per2 expression results in potent downstream effects on both cell cycle and apoptotic targets, suggestive of a tumour suppressive role for Per2. Due to the severe dose limiting side effects associated with current chemotherapeutic strategies, including the use of doxorubicin, a need for more effective adjuvant therapies to increase cancer cell susceptibility has arisen. This study was therefore aimed at characterizing the role of Per2 in normal breast epithelia (MCF-12A) and in ER(-) breast cancer cells (MDA-MB-231) and also at determining the role of Per2 in doxorubicin-induced cell death. In both cell lines Per2 protein expression displayed a 24-hour circadian rhythm in both cell lines. Per2 was located predominantly in the cytoplasm, with nuclear localization observed with lower cytoplasmic fluorescent intensities. Our results show that Per2 silencing effectively sensitizes the chemoresistant MDA-MB-231 breast cancer cells to the cytotoxic effects of doxorubicin.

  6. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.

    Science.gov (United States)

    Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh

    2018-01-01

    Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.

  7. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Lendorf, Maria E; Couchman, John R

    2012-01-01

    of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups...... of proteoglycans, the transmembrane syndecans and the lipid-anchored glypicans. Both families of proteoglycans have been implicated in cellular responses to growth factors and morphogens, including many now associated with tumor progression....

  8. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression.

    Directory of Open Access Journals (Sweden)

    Marie-Josée Langlois

    2010-12-01

    Full Text Available The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function, migration (wound assay, invasion (matrigel-coated transwells and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells.

  9. The role of microRNAs in stemness of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Hosseini Rad

    2013-12-01

    Full Text Available Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs. Tumor-initiating cells (T-ICs or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs in many aspects (such as pluripotency and self-renewal, recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs. ncRNAs are classified in two groups: microRNAs (miRNAs and long non-coding RNAs (lncRNAs. miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.

  10. The role of the chemokine receptor XCR1 in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yang XL

    2017-03-01

    Full Text Available Xiao Li Yang,1,* Li Guo Qi,2,* Feng Juan Lin,1 Zhou Luo Ou1 1Department of Oncology, Breast Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai, 2Department of Neurosurgery, Taian City Central Hospital, Taian, Shangdong, People’s Republic of China *These authors contributed equally to this work Abstract: Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3. We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1 in XCR1 low expression cell line MDA-MB-231 (231. The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1 and their parental cell line MDA-MB-231/Vector (simplified as “231/Vector”; 5×106/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro

  11. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    Science.gov (United States)

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Role of mesenchymal cells in the natural history of ovarian cancer: a review.

    Science.gov (United States)

    Touboul, Cyril; Vidal, Fabien; Pasquier, Jennifer; Lis, Raphael; Rafii, Arash

    2014-10-11

    Ovarian cancer is the deadliest gynaecologic malignancy. Despite progresses in chemotherapy and ultra-radical surgeries, this locally metastatic disease presents a high rate of local recurrence advocating for the role of a peritoneal niche. For several years, it was believed that tumor initiation, progression and metastasis were merely due to the changes in the neoplastic cell population and the adjacent non-neoplastic tissues were regarded as bystanders. The importance of the tumor microenvironment and its cellular component emerged from studies on the histopathological sequence of changes at the interface between putative tumor cells and the surrounding non-neoplastic tissues during carcinogenesis. In this review we aimed to describe the pro-tumoral crosstalk between ovarian cancer and mesenchymal stem cells. A PubMed search was performed for articles published pertaining to mesenchymal stem cells and specific to ovarian cancer. Mesenchymal stem cells participate to an elaborate crosstalk through direct and paracrine interaction with ovarian cancer cells. They play a role at different stages of the disease: survival and peritoneal infiltration at early stage, proliferation in distant sites, chemoresistance and recurrence at later stage. The dialogue between ovarian and mesenchymal stem cells induces the constitution of a pro-tumoral mesencrine niche. Understanding the dynamics of such interaction in a clinical setting might propose new therapeutic strategies.

  13. PUTATIVE ROLE OF ADIPOSE TISSUE IN GROWTH AND METABOLISM OF COLON CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Betty eSchwartz

    2014-06-01

    Full Text Available Newly emerging data highlight obesity as an important risk factor for developing certain types of cancer, including colorectal cancer. Although evidence supports a link between the two, the mechanisms responsible for this relationship have not yet been fully elucidated. Hypertrophied and dysfunctional adipose tissue of the obese state is characterized by low-grade inflammation. Adipokines and cytokines secreted from adipocytes, together with the abundant availability of lipids from adipocytes in the tumor microenvironment, promote adhesion, migration, and invasion of tumor cells and support tumor progression and uncontrolled growth. One of the predisposed targets of the deleterious effects exerted by secretions from adipose tissue in obesity are the activities associated with the cellular mitochondria. Mitochondrial oxidative metabolism plays a key role in meeting cells' energetic demands by oxidative phosphorylation (OxPhos. Here we discuss: (a the dynamic relationship between glycolysis, the tricarboxylic acid (TCA cycle, and OxPhos; (b the evidence for impaired OxPhos (i.e. mitochondrial dysfunction in colon cancer; (c the mechanisms by which mitochondrial dysfunction can predispose to cancer. We propose that impaired OxPhos increases susceptibility to colon cancer since OxPhos is sensitive to a large number of factors that are intrinsic to the host (e.g. inflammation.Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities.

  14. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation.

    Science.gov (United States)

    Thomas, Paul D; Kahn, Michael

    2016-02-01

    Long-lived somatic stem cells regenerate adult tissues throughout our lifetime. However, with aging, there is a significant deterioration in the function of stem and progenitor cells, which contribute to diseases of aging. The decision for a long-lived somatic stem cell to become activated and subsequently to undergo either a symmetric or an asymmetric division is a critical cellular decision process. The decision to preferentially divide symmetrically or asymmetrically may be the major fundamental intrinsic difference between normal somatic stem cells and cancer stem cells. Based upon work done primarily in our laboratory over the past 15 years, this article provides a perspective on the critical role of somatic stem cells in aging. In particular, we discuss the importance of symmetric versus asymmetric divisions in somatic stem cells and the role of the differential usage of the highly similar Kat3 coactivators, CREB-binding protein (CBP) and p300, in stem cells. We describe and propose a more complete model for the biological mechanism and roles of these two coactivators, their evolution, and unique roles and importance in stem cell biology. Finally, we discuss the potential to pharmacologically manipulate Kat3 coactivator interactions in endogenous stem cells (both normal and cancer stem cells) to potentially ameliorate the aging process and common diseases of aging.

  15. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells

    Science.gov (United States)

    Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen

    2013-01-01

    We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495

  16. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells.

    Science.gov (United States)

    Teng, Ji-Ping; Yang, Zhi-Ying; Zhu, Yu-Ming; Ni, Da; Zhu, Zhi-Jun; Li, Xiao-Qiang

    2017-10-01

    Lung cancer is a leading cause of cancer-related mortalities worldwide. In the present study, a comparison of To determine the roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells expression levels between normal lung tissues and lung cancer tissues were compared using immunoblotting, and CCK-8 and Transwell assays. Lung cancer tissues had a decreased ARHGAP10 mRNA expression level compared to the adjacent normal tissues. The ectopic expression of ARHGAP10 significantly suppressed the migration, invasion and proliferation of lung cancer cells. Gene set enrichment analysis revealed that metastasis and Wnt signaling pathways were negatively correlated with ARHGAP10 expression. Immunoblotting analysis revealed that ARHGAP10 overexpression inhibited metastasis [matrix metalloproteinase (MMP)-2, MMP-9 and VEGF] and the expression of Wnt pathway-related proteins (β-catenin and c-Myc). Moreover, the stimulation effects of lithium chloride, a GSK3β inhibitor, on the accumulation of β-catenin were notably suppressed by ARHGAP10 overexpression. Collectively, ARHGAP10 acts to suppress tumor within lung cancer by affecting metastasis and Wnt signaling pathways. The results therefore suggest that ARHGAP10 is a potentially attractive target for the treatment of lung cancer.

  17. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy

    Science.gov (United States)

    Liao, Gaoyong; Gao, Bing; Gao, Yingnv; Yang, Xuegan; Cheng, Xiaodong; Ou, Yu

    2016-01-01

    Pancreatic adenocarcinoma (PDA) is one of the most lethal human malignancies, and unresponsive to current chemotherapies. Here we investigate the therapeutic potential of phycocyanin as an anti-PDA agent in vivo and in vitro. Phycocyanin, a natural product purified from Spirulina, effectively inhibits the pancreatic cancer cell proliferation in vitro and xenograft tumor growth in vivo. Phycocyanin induces G2/M cell cycle arrest, apoptotic and autophagic cell death in PANC-1 cells. Inhibition of autophagy by targeting Beclin 1 using siRNA significantly suppresses cell growth inhibition and death induced by phycocyanin, whereas inhibition of both autophagy and apoptosis rescues phycocyanin-mediated cell death. Mechanistically, cell death induced by phycocyanin is the result of cross-talk among the MAPK, Akt/mTOR/p70S6K and NF-κB pathways. Phycocyanin is able to induce apoptosis of PANC-1 cell by activating p38 and JNK signaling pathways while inhibiting Erk pathway. On the other hand, phycocyanin promotes autophagic cell death by inhibiting PI3/Akt/mTOR signaling pathways. Furthermore, phycocyanin promotes the activation and nuclear translocation of NF-κB, which plays an important role in balancing phycocyanin-mediated apoptosis and autosis. In conclusion, our studies demonstrate that phycocyanin exerts anti-pancreatic cancer activity by inducing apoptotic and autophagic cell death, thereby identifying phycocyanin as a promising anti-pancreatic cancer agent. PMID:27694919

  18. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis

    Directory of Open Access Journals (Sweden)

    Gagan Deep

    2016-07-01

    Full Text Available Prostate cancer (PCa is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa.

  19. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  20. Damaged DNA binding protein 2 plays a role in breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zilal Kattan

    Full Text Available The Damaged DNA binding protein 2 (DDB2, is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER-positive (MCF-7 and T47D, but not in ER-negative breast cancer (MDA-MB231 and SKBR3 or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold higher in ER-positive than in ER-negative tumor samples (P = 0.0208 from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase. These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer.

  1. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sensitivity of SCLC cells. VP16 sensitivity and RAD51, DNA-PK(cs), topoisomerase IIalpha and P-glycoprotein protein levels were determined in 17 SCLC cell lines. In order to unravel the role of RAD51 in VP16 resistance, we cloned the human RAD51 gene, transfected SCLC...... cells with RAD51 sense or antisense constructs and measured the VP16 resistance. Finally, we measured VP16-induced DSBs in the 17 SCLC cell lines. Two cell lines exhibited a multidrug-resistant phenotype. In the other SCLC cell lines, the cellular VP16 resistance was positively correlated with the RAD51...

  2. The Role of Merkel Cell Polyomavirus and Other Human Polyomaviruses in Emerging Hallmarks of Cancer

    Directory of Open Access Journals (Sweden)

    Ugo Moens

    2015-04-01

    Full Text Available Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.

  3. Cancer becomes wasteful: emerging roles of exosomes in cell-fate determination

    Directory of Open Access Journals (Sweden)

    Franz Wendler

    2013-09-01

    Full Text Available Extracellular vesicles (EVs, including exosomes, have been widely recognized for their role in intercellular communication of the immune response system. In the past few years, significance has been given to exosomes in the induction and modulation of cell-fate-inducing signalling pathways, such as the Hedgehog (Hh, Wnts, Notch, transforming growth factor (TGF-β, epidermal growth factor (EGF and fibroblast growth factor (FGF pathways, placing them in the wider context of development and also of cancer. These protein families induce signalling cascades responsible for tissue specification, homeostasis and maintenance. Exosomes contribute to cell-fate signal secretion, and vice versa exosome secretion can be induced by these proteins. Interestingly, exosomes can also transfer their mRNA to host cells or modulate the signalling pathways directly by the removal of downstream effector molecules from the cell. Surprisingly, much of what we know about the function of exosomes in cell determination is gathered from pathological transformed cancer cells and wound healing while data about their biogenesis and biology in normal developing and adult tissue lag behind. In this report, we will summarize some of the published literature and point to current advances and questions in this fast-developing topic. In a brief foray, we will also update and shortly discuss their potential in diagnosis and targeted cancer treatment.

  4. Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Annapina Russo

    2017-03-01

    Full Text Available Cancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR continues to pose a significant challenge in the management of cancer. In this study, we analyzed the role of human ribosomal protein uL3 (formerly rpL3 in multidrug resistance. Our studies revealed that uL3 is a key determinant of multidrug resistance in p53-mutated lung cancer cells by controlling the cell redox status. We established and characterized a multidrug resistant Calu-6 cell line. We found that uL3 down-regulation correlates positively with multidrug resistance. Restoration of the uL3 protein level re-sensitized the resistant cells to the drug by regulating the reactive oxygen species (ROS levels, glutathione content, glutamate release, and cystine uptake. Chromatin immunoprecipitation experiments and luciferase assays demonstrated that uL3 coordinated the expression of stress-response genes acting as transcriptional repressors of solute carrier family 7 member 11 (xCT and glutathione S-transferase α1 (GST-α1, independently of Nuclear factor erythroid 2-related factor 2 (Nrf2. Altogether our results describe a new function of uL3 as a regulator of oxidative stress response genes and advance our understanding of the molecular mechanisms underlying multidrug resistance in cancers.

  5. The myoepithelial cell: its role in normal mammary glands and breast cancer.

    Science.gov (United States)

    Sopel, M

    2010-02-01

    Mammary gland epithelium is composed of an inner layer of secretory cells (luminal) and an outer layer of myoepithelial cells (MEC) bordering the basal lamina which separates the epithelial layer from the extracellular matrix. Mature MECs morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. During lactation, secretory cells synthesize milk components, which are collected in alveoli and duct lumen, and transported to the nipple as a result of MEC contraction. Although the induction of MEC contraction results from oxytocin action, also other, still unknown auto/paracrine mechanisms participate in the regulation of this process. As well as milk ejection, MECs are involved in mammary gland morphogenesis in all developmental stages, modulating proliferation and differentiation of luminal cells. They take part in the formation of extracellular matrix, synthesizing its components and secreting proteinases and their inhibitors. In addition, MECs are regarded as natural cancer suppressors, stabilizing the normal structure of the mammary gland, they secrete suppressor proteins (e.g. maspin) limiting cancer growth, invasiveness, and neoangiogenesis. The majority of malignant breast cancers are derived from luminal cells, whereas neoplasms of MEC origin are the most seldom and usually benign form of breast tumours. MECs are markedly resistant to malignant transformation and they are able to suppress the transformation of neighboring luminal cells. Therefore, a deeper insight into the role of MECs in the physiology and pathology of mammary glands would allow a better understanding of cancerogenesis mechanisms and possible application of specific MEC markers in the diagnosis and therapy of breast cancer.

  6. The Role of MicroRNAs in Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Martin Pichler

    2013-07-01

    Full Text Available The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs, act as endogenous suppressors of gene expression that exert their effect by binding to the 3'-untranslated region (UTR of large target messenger RNAs (mRNAs. MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and

  7. [The role of cancer stem cells in progressive growth and resistance of ovarian cancer: true or fiction?].

    Science.gov (United States)

    Bar, Julia K; Grelewski, Piotr; Lis-Nawara, Anna; Drobnikowska, Kamila

    2015-09-20

    Growing evidence indicates that biological heterogeneity of ovarian cancer is associated with a small subpopulation of cancer cells existing within tumor tissue and defined as cancer stem cells (CSCs). This small group of ovarian cells possesses the capacity of self-renewal. Recent data revealed that progression, metastasis and relapse of ovarian cancers are related to the behavior of cancer stem cells. However, how ovarian CSCs maintain their migration properties is still unclear. The clinical relevance of CSCs has been supported by emerging evidence, showing that CSCs are resistant to conventional chemotherapy of ovarian cancer. Identification of biomarkers of ovarian cancer stem cells seems to be important for target therapy. Therapeutic strategies aimed at eliminating CSCs in ovarian cancers might extend disease survival and limit recurrence. This review will describe the current knowledge of ovarian CSCs biology and contribution of these cells to metastasis and chemoresistance of ovarian cancer as well as the possibility to use target therapy of ovarian CSCs.

  8. The role of red cell distribution width in the prognosis of patients with gastric cancer.

    Science.gov (United States)

    Yazici, Pinar; Demir, Uygar; Bozkurt, Emre; Isil, Gurhan R; Mihmanli, Mehmet

    2017-01-01

    Although the red cell distribution width (RDW) has been reported as a reliable predictor of prognosis in several types of cancer, to our knowledge the prognostic value of RDW in gastric carcinoma has not been studied, so far. We aimed to investigate the role of red cell distribution width (RDW) in predicting prognosis in gastric cancer patients. All gastric cancer patients who underwent curative surgery (n= 172, 110M/62F) over a five-year study period were evaluated. Data on demographics, preoperative RDW levels, tumor characteristics (early stage: I and II, advanced stage: IIIA-B-C), disease-free (DFS) and overall survival (OS) were retrospectively reviewed. Patients were classified as high RDW group (RDW ≥ 16, n= 62) or low RDW group (RDW < 16, n= 110). Overall mortality and postoperative 60-day mortality in both groups were 55% and 14%, respectively. A borderline significant association between RDW (0.063) and mortality was noted. Preoperative RDW levels were significantly higher in patients with short-term mortality (17.9 ± 4.3 vs. 16 ± 3.2, p= 0.015). In high RDW group, the incidence of advanced gastric cancer was significantly higher (75 vs. 51%, p= 0.002), whereas DFS (0.035) and OS (p= 0.04) were lower. The frequency of advanced cancer was high in patients with high RDWvalues. High RDW values were strongly associated with short-term mortality although only a borderline relationship with overall survival was observed.

  9. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Catherine Lynch

    2017-09-01

    Full Text Available It is known that apoptotic cells can have diverse effects on the tumor microenvironment. Emerging evidence indicates that, despite its renowned role in tumor suppression, apoptosis may also promote oncogenic evolution or posttherapeutic relapse through multiple mechanisms. These include immunomodulatory, anti-inflammatory, and trophic environmental responses to apoptosis, which drive tumor progression. Our group has introduced the term “onco-regenerative niche (ORN” to describe a conceptual network of conserved cell death-driven tissue repair and regeneration mechanisms that are hijacked in cancer. We propose that, among the key elements of the ORN are extracellular vesicles (EVs, notably those derived from apoptotic tumor cells. EVs are membrane-delimited subcellular particles, which contain multiple classes of bioactive molecules including markers of the cell from which they are derived. EVs are implicated in an increasing number of physiological and pathological contexts as mediators of local and systemic intercellular communication and detection of specific EVs may be useful in monitoring disease progression. Here, we discuss the mechanisms by which EVs produced by apoptotic tumor cells—both constitutively and as a consequence of therapy—may mediate host responsiveness to cell death in cancer. We also consider how the monitoring of such EVs and their cargoes may in the future help to improve cancer diagnosis, staging, and therapeutic efficacy.

  10. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  11. In Vitro Evidence of the Presence of Mesenchymal Stromal Cells in Cervical Cancer and Their Role in Protecting Cancer Cells from Cytotoxic T Cell Activity

    Science.gov (United States)

    Montesinos, Juan J.; Mora-García, María de L.; Mayani, Héctor; Flores-Figueroa, Eugenia; García-Rocha, Rosario; Fajardo-Orduña, Guadalupe R.; Castro-Manrreza, Marta E.; Weiss-Steider, Benny

    2013-01-01

    Mesenchymal stromal cells (MSCs) have been isolated from different tumors and it has been suggested that they support tumor growth through immunosuppression processes that favor tumor cell evasion from the immune system. To date, however, the presence of MSCs in cervical cancer (CeCa) and their possible role in tumor growth remains unknown. Herein we report on the presence of MSCs in cervical tissue, both in normal conditions (NCx-MSCs) and in CeCa (CeCa-MSCs), and described several biological properties of such cells. Our study showed similar patterns of cell surface antigen expression, but distinct differentiation potentials, when we compared both cervical MSC populations to MSCs from normal bone marrow (BM-MSCs, the gold standard). Interestingly, CeCa-MSCs were negative for the presence of human papiloma virus, indicating that these cells are not infected by such a viral agent. Also, interestingly, and in contrast to NCx-MSCs, CeCa-MSCs induced significant downregulation of surface HLA class I molecules (HLA-A*0201) on CaSki cells and other CeCa cell lines. We further observed that CeCa-MSCs inhibited antigen-specific T cell recognition of CaSki cells by cytotoxic T lymphocytes (CTLs). HLA class I downregulation on CeCa cells correlated with the production of IL-10 in cell cocultures. Importantly, this cytokine strongly suppressed recognition of CeCa cells by CTLs. In summary, this study demonstrates the presence of MSCs in CeCa and suggests that tumor-derived MSCs may provide immune protection to tumor cells by inducing downregulation of HLA class I molecules. This mechanism may have important implications in tumor growth. PMID:23656504

  12. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    Science.gov (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-07-21

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate.

  13. Role of regulatory T-cells in H. pylori-induced gastritis and gastric cancer.

    Science.gov (United States)

    Kandulski, Arne; Malfertheiner, Peter; Wex, Thomas

    2010-04-01

    The current model of gastric carcinogenesis comprises the interaction of multiple risk factors. Besides Helicobacter pylori (H. pylori) infection as the major risk factor for gastric carcinogenesis, environmental factors (e.g. high saline- or nitrosamine-containing food) and genetic susceptibility contribute to the development of gastric cancer (GC). It has been established that the topographical pattern of gastritis and its immune response are the main causes for the persistence of bacteria and the final clinical outcome. Regulatory immune cells, mostly regulatory FOXP3(+)CD4(+)CD25(+high) T-cells (Treg cells), have been identified as the major regulatory component of the adaptive immune response and involved in H. pylori-related inflammation and bacterial persistence. The functional activity of these cells is either mediated by direct cell-cell contact or by the secretion of the immune-modulating cytokines TGF-beta1 and IL-10. Based on the differentiation process, Treg cells comprise various lineages that differ in the expression of cell surface marker and pattern of secreted cytokines. Numerous studies have demonstrated important functions of Treg cells for controlling acute and chronic inflammatory processes. This paper reviews the role of Treg for gastric carcinogenesis and precursor lesions related to H. pylori.

  14. The role of microRNAs in the regulation of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Ryou-u eTakahashi

    2014-01-01

    Full Text Available Cancer stem cells (CSCs have been reported in many human tumors and are proposed to drive tumor initiation and progression. CSCs share a variety of biological properties with normal somatic stem cells such as the capacity for self-renewal, the propagation of differentiated progeny, and the expression of specific cell markers and stem cell genes. However, CSCs differ from normal stem cells in their chemoresistance and tumorigenic and metastatic activities. Despite their potential clinical importance, the regulation of CSCs at the molecular level is not well understood. MicroRNAs (miRNAs are a class of endogenous non-coding RNAs that play an important role in the regulation of several cellular, physiological, and developmental processes. Aberrant miRNA expression is associated with many human diseases including cancer. miRNAs have been implicated in the regulation of CSC properties; therefore, a better understanding of the modulation of CSC gene expression by miRNAs could aid the identification of promising biomarkers and therapeutic targets. In the present review, we summarize the major findings on the regulation of CSCs by miRNAs and discuss recent advances that have improved our understanding of the regulation of CSCs by miRNA networks and may lead to the development of miRNA therapeutics specifically targeting CSCs.

  15. Novel therapeutic clues in thyroid carcinomas: The role of targeting cancer stem cells.

    Science.gov (United States)

    Antonelli, Alessandro; La Motta, Concettina

    2017-11-01

    Thyroid carcinomas (TCs), the most common endocrine tumors, represent the eighth most common cancer diagnosed worldwide in both women and men. To treat these malignancies, several drugs are now available and a number of novel ones have been enrolling in clinical trials, addressing both oncogenic pathways in cancer cells and angiogenic pathways in tumor endothelial cells. However, their use is not devoid of serious toxicities and their efficacy is limited, being dependent on carcinoma typology and the occurrence of acquired resistance. Accordingly, it is time to recast therapeutic strategies against these types of tumors to get to newer and fully effective drugs. In this perspective, latest findings demonstrate that cancer stem cells (CSCs) represent a challenging target to strike. They possess core traits of self-renewal and differentiation, being resistant to the effects of chemotherapy and radiation and playing a key role in mediating metastasis. Therefore, basic molecular elements sustaining both development of thyroid cancer stem cells and their residence in the stemness condition represent a set of innovative and still unexplored targets to address. In this review, a thorough literature survey has been accomplished, to take stock of mechanisms governing thyroid carcinomas and to point out both their currently available treatments and the novel forthcoming ones. Pubmed, Scifinder and ClinicalTrials.gov were exploited as research applications and registry database, respectively. Original articles, reviews, and editorials published within the last ten years, as well as open clinical investigations in the field, were analyzed to suggest new exciting therapeutic opportunities for people affected by TCs. © 2017 Wiley Periodicals, Inc.

  16. New targeted treatments for non-small-cell lung cancerrole of nivolumab

    Directory of Open Access Journals (Sweden)

    Zago G

    2016-08-01

    Full Text Available Giulia Zago,1,2,* Mirte Muller,1,* Michel van den Heuvel,1 Paul Baas1 1Department of Thoracic Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek (NKI-AvL, Amsterdam, the Netherlands; 2Medical Oncology 2, Istituto Oncologico Veneto (IOV, Padova, Italy *These authors contributed equally to this work Abstract: Non-small-cell lung cancer (NSCLC is often diagnosed at an advanced stage of disease, where it is no longer amenable to curative treatment. During the last decades, the survival has only improved significantly for lung cancer patients who have tumors harboring a driver mutation. Therefore, there is a clear unmet need for effective therapies for patients with no mutation. Immunotherapy has emerged as an effective treatment for different cancer types. Nivolumab, a monoclonal inhibitory antibody against PD-1 receptor, can prolong survival of NSCLC patients, with a manageable toxicity profile. In two Phase III trials, nivolumab was compared to docetaxel in patients with, respectively, squamous (CheckMate 017 and non-squamous NSCLC (CheckMate 057. In both trials, nivolumab significantly reduced the risk of death compared to docetaxel (41% and 27% lower risk of death for squamous and non-squamous NSCLC, respectively. Therefore, nivolumab has been approved in the US and in Europe as second-line treatment for advanced NSCLC. Unfortunately, accurate predictive factors for patient selection are lacking, making it difficult to decide who will benefit and who will not. Currently, there are many ongoing trials that evaluate the efficacy of nivolumab in different settings and in combination with other agents. This paper reviews the present literature about the role of nivolumab in the treatment of NSCLC. Particular attention has been given to efficacy studies, toxicity profile, and current and emerging predictive factors. Keywords: nivolumab, advanced non-small-cell lung cancer, immunotherapy, anti-PD-1

  17. The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role.

    Science.gov (United States)

    Thuwajit, Chanitra; Ferraresi, Alessandra; Titone, Rossella; Thuwajit, Peti; Isidoro, Ciro

    2017-09-19

    Cancer and stromal cells, which include (cancer-associated) fibroblasts, adipocytes, and immune cells, constitute a mixed cellular ecosystem that dynamically influences the behavior of each component, creating conditions that ultimately favor the emergence of malignant clones. Ovarian cancer cells release cytokines that recruit and activate stromal fibroblasts and immune cells, so perpetuating a state of inflammation in the stroma that hampers the immune response and facilitates cancer survival and propagation. Further, the stroma vasculature impacts the metabolism of the cells by providing or limiting the availability of oxygen and nutrients. Autophagy, a lysosomal catabolic process with homeostatic and prosurvival functions, influences the behavior of cancer cells, affecting a variety of processes such as the survival in metabolic harsh conditions, the invasive growth, the development of immune and chemo resistance, the maintenance of stem-like properties, and dormancy. Further, autophagy is involved in the secretion and the signaling of promigratory cytokines. Cancer-associated fibroblasts can influence the actual level of autophagy in ovarian cancer cells through the secretion of pro-inflammatory cytokines and the release of autophagy-derived metabolites and substrates. Interrupting the metabolic cross-talk between cancer cells and cancer-associated fibroblasts could be an effective therapeutic strategy to arrest the progression and prevent the relapse of ovarian cancer. © 2017 Wiley Periodicals, Inc.

  18. Role of miR-100 in the radioresistance of colorectal cancer cells

    Science.gov (United States)

    Yang, Xiao-Dong; Xu, Xiao-Hui; Zhang, Shu-Yu; Wu, Yong; Xing, Chun-Gen; Ru, Gan; Xu, Hong-Tao; Cao, Jian-Ping

    2015-01-01

    The prognosis of radioresistant colorectal cancer (CRC) is generally poor. Abnormal expression of microRNAs (miRNAs) is involved in the radiosensitivity of various tumor cells as these RNAs regulate biological signaling pathways. However, radioresistance-associated miRNAs in CRC have not yet been identified. In this study, we filtered out HCT116 and CCL-244 from seven CRC cell lines that showed the highest difference in radiosensitivity in a clonogenic assay. MiRNA sequencing identified 33 differentially expressed miRNAs (13 up-regulated and 20 down-regulated) in CCL-244 and 37 in HCT116 (20 up-regulated and 17 down-regulated) cells. MiR-100 was significantly down-regulated in CCL-244 cells after X-ray irradiation but not in HCT116 cells. Quantitative real-time PCR showed that the expression of miR-100 in CRC tissues was significantly lower than that in normal tissues. Thus, miR-100 seems to be involved in the radioresistance of CCL-244 cells. MiR-100 up-regulation sensitized CCL-244 cells to X-ray irradiation, which probably led to apoptosis and DNA double-strand breaks in these. In conclusion, to our knowledge, this is the first study to show that miR-100 may play an important role in regulating the radiosensitivity of CRC, and it may act as a new clinical target for CRC radiotherapy. PMID:25973296

  19. Potential role of immunotherapy in advanced non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    de Mello RA

    2016-12-01

    Full Text Available Ramon Andrade de Mello,1–3 Ana Flávia Veloso,4 Paulo Esrom Catarina,4 Sara Nadine,5 Georgios Antoniou6 1Department of Biomedical Sciences and Medicine, University of Algarve, Faro, 2Faculty of Medicine, University of Porto, Porto, Portugal; 3Research Center, Cearense School of Oncology, Instituto do Câncer do Ceará, 4Oncology & Hematology League, School of Medicine, State University of Ceará (UECE, Fortaleza, Brazil; 5Instituto de Ciências Biomédicas Abel Salazar (ICBAS, University of Porto, Porto, Portugal; 6Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK Abstract: Immuno checkpoint inhibitors have ushered in a new era with respect to the treatment of advanced non-small-cell lung cancer. Many patients are not suitable for treatment with epidermal growth factor receptor tyrosine kinase inhibitors (eg, gefitinib, erlotinib, and afatinib or with anaplastic lymphoma kinase inhibitors (eg, crizotinib and ceritinib. As a result, anti-PD-1/PD-L1 and CTLA-4 inhibitors may play a novel role in the improvement of outcomes in a metastatic setting. The regulation of immune surveillance, immunoediting, and immunoescape mechanisms may play an interesting role in this regard either alone or in combination with current drugs. Here, we discuss advances in immunotherapy for the treatment of metastatic non-small-cell lung cancer as well as future perspectives within this framework. Keywords: immunotherapy, non-small-cell lung cancer, nivolumab, pembrolizumab, ipilimumab, clinical trials, PD1, PDL1, CTLA4

  20. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target

    Science.gov (United States)

    Hou, Yaya; Huang, Zaiju; Wang, Zehua

    2017-01-01

    Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors. PMID:28415635

  1. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target.

    Science.gov (United States)

    Wen, Yiping; Cai, Jing; Hou, Yaya; Huang, Zaiju; Wang, Zehua

    2017-06-06

    Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.

  2. The role of microRNA-1274a in the tumorigenesis of gastric cancer: Accelerating cancer cell proliferation and migration via directly targeting FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo-Jun, E-mail: wwangguojun@163.com; Liu, Guang-Hui; Ye, Yan-Wei; Fu, Yang; Zhang, Xie-Fu

    2015-04-17

    MicroRNAs (miRNAs) are a series of 18–25 nucleotides length non-coding RNAs, which play critical roles in tumorigenesis. Previous study has shown that microRNA-1274a (miR-1274a) is upregulated in human gastric cancer. However, its role in gastric cancer progression remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-1274a on gastric cancer cells. We found that miR-1274a was overexpressed in gastric cancer tissues or gastric cancer cells including HGC27, MGC803, AGS, and SGC-7901 by qRT-PCR analysis. Transfection of miR-1274a markedly promoted gastric cancer cells proliferation and migration as well as induced epithelial–mesenchymal transition (EMT) of cancer cells. Our further examination identified FOXO4 as a target of miR-1274a, which did not influence FOXO4 mRNA expression but significantly inhibited FOXO4 protein expression. Moreover, miR-1274a overexpression activated PI3K/Akt signaling and upregulated cyclin D1, MMP-2 and MMP-9 expressions. With tumor xenografts in mice models, we also showed that miR-1274a promoted tumorigenesis of gastric cancer in vivo. In all, our study demonstrated that miR-1274a prompted gastric cancer cells growth and migration through dampening FOXO4 expression thus provided a potential target for human gastric cancer therapy. - Highlights: • MiR-1274a expression was augmented in gastric cancer. • MiR-1274a promoted proliferation, migration and induced EMT in cancer cells. • MiR-1274a directly targeted FOXO4 expression. • MiR-1274a triggered PI3K/Akt signaling in cancer cells. • MiR-1274a significantly increased tumor xenografts growth.

  3. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene...... functions as well as their role in cancer and drug resistance......., encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular...

  4. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Role of immune cells in pancreatic cancer from bench to clinical application: An updated review.

    Science.gov (United States)

    Chang, Jae Hyuck; Jiang, Yongjian; Pillarisetty, Venu G

    2016-12-01

    Pancreatic cancer (PC) remains difficult to treat, despite the recent advances in various anticancer therapies. Immuno-inflammatory response is considered to be a major risk factor for the development of PC in addition to a combination of genetic background and environmental factors. Although patients with PC exhibit evidence of systemic immune dysfunction, the PC microenvironment is replete with immune cells. We searched PubMed for all relevant English language articles published up to March 2016. They included clinical trials, experimental studies, observational studies, and reviews. Trials enrolled at Clinical trial.gov were also searched. PC induces an immunosuppressive microenvironment, and intratumoral activation of immunity in PC is attenuated by inhibitory signals that limit immune effector function. Multiple types of immune responses can promote an immunosuppressive microenvironment; key regulators of the host tumor immune response are dendritic cells, natural killer cells, macrophages, myeloid derived suppressor cells, and T cells. The function of these immune cells in PC is also influenced by chemotherapeutic agents and the components in tumor microenvironment such as pancreatic stellate cells. Immunotherapy of PC employs monoclonal antibodies/effector cells generated in vitro or vaccination to stimulate antitumor response. Immune therapy in PC has failed to improve overall survival; however, combination therapies comprising immune checkpoint inhibitors and vaccines have been attempted to increase the response. A number of studies have begun to elucidate the roles of immune cell subtypes and their capacity to function or dysfunction in the tumor microenvironment of PC. It will not be long before immune therapy for PC becomes a clinical reality.

  6. Uncovering the roles of long non-coding RNAs in cancer stem cells

    Directory of Open Access Journals (Sweden)

    Xiaoxing Huang

    2017-02-01

    Full Text Available Abstract Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.

  7. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity

    Science.gov (United States)

    Wiersma, Valerie R.; Michalak, Marek; Abdullah, Trefa M.; Bremer, Edwin; Eggleton, Paul

    2015-01-01

    Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs, UV irradiation, and microbial stimuli. Once on the cell surface or in the extracellular space, the ER chaperones can take on immunogenic characteristics, as mostly described in the context of cancer, appearing as damage-associated molecular patterns recognized by the immune system. How ER chaperones relocate to the cell surface and interact with other intracellular proteins appears to influence whether a tumor cell is targeted for cell death. The relocation of ER proteins to the cell surface can be exploited to target cancer cells for elimination by immune mechanism. Here we evaluate the evidence for the different mechanisms of ER protein translocation and binding to the cell surface and how ER protein translocation can act as a signal for cancer cells to undergo killing by immunogenic cell death and other cell death pathways. The release of chaperones can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential cancer immunotherapies requires cautious monitoring, particularly in cancer patients with underlying autoimmune disease. PMID:25688334

  8. Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity

    Directory of Open Access Journals (Sweden)

    Valerie R. Wiersma

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER chaperones (e.g. calreticulin, heat shock proteins and isomerases perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g. drugs, UV irradiation and microbial stimuli. Once on the cell surface or in the extracellular space, the ER chaperones can take on immunogenic characteristics, as mostly described in the context of cancer, appearing as damage-associated molecular patterns recognized by the immune system. How ER chaperones relocate to the cell surface and interact with other intracellular proteins appears to influence whether a tumor cell is targeted for cell death. The relocation of ER proteins to the cell surface can be exploited to target cancer cells for elimination by immune mechanism. Here we evaluate the evidence for the different mechanisms of ER protein translocation and binding to the cell surface and how ER protein translocation can act as a signal for cancer cells to undergo killing by immunogenic cell death and other cell death pathways. The release of chaperones can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential cancer immunotherapies requires cautious monitoring, particularly in cancer patients with underlying autoimmune disease.

  9. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity.

    Science.gov (United States)

    Wiersma, Valerie R; Michalak, Marek; Abdullah, Trefa M; Bremer, Edwin; Eggleton, Paul

    2015-01-01

    Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs, UV irradiation, and microbial stimuli. Once on the cell surface or in the extracellular space, the ER chaperones can take on immunogenic characteristics, as mostly described in the context of cancer, appearing as damage-associated molecular patterns recognized by the immune system. How ER chaperones relocate to the cell surface and interact with other intracellular proteins appears to influence whether a tumor cell is targeted for cell death. The relocation of ER proteins to the cell surface can be exploited to target cancer cells for elimination by immune mechanism. Here we evaluate the evidence for the different mechanisms of ER protein translocation and binding to the cell surface and how ER protein translocation can act as a signal for cancer cells to undergo killing by immunogenic cell death and other cell death pathways. The release of chaperones can also exacerbate underlying autoimmune conditions, such as rheumatoid arthritis and multiple sclerosis, and the immunomodulatory role of extracellular chaperones as potential cancer immunotherapies requires cautious monitoring, particularly in cancer patients with underlying autoimmune disease.

  10. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  11. Cancer stem cells: a systems biology view of their role in prognosis and therapy.

    Science.gov (United States)

    Mertins, Susan D

    2014-04-01

    Evidence has accumulated that characterizes highly tumorigenic cancer cells residing in heterogeneous populations. The accepted term for such a subpopulation is cancer stem cells (CSCs). While many questions still remain about their precise role in the origin, progression, and drug resistance of tumors, it is clear they exist. In this review, a current understanding of the nature of CSC, their potential usefulness in prognosis, and the need to target them will be discussed. In particular, separate studies now suggest that the CSC is plastic in its phenotype, toggling between tumorigenic and nontumorigenic states depending on both intrinsic and extrinsic conditions. Because of this, a static view of gene and protein levels defined by correlations may not be sufficient to either predict disease progression or aid in the discovery and development of drugs to molecular targets leading to cures. Quantitative dynamic modeling, a bottom up systems biology approach whereby signal transduction pathways are described by differential equations, may offer a novel means to overcome the challenges of oncology today. In conclusion, the complexity of CSCs can be captured in mathematical models that may be useful for selecting molecular targets, defining drug action, and predicting sensitivity or resistance pathways for improved patient outcomes.

  12. The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells.

    Science.gov (United States)

    Shimada, Hiroshi; Satohisa, Seiro; Kohno, Takayuki; Takahashi, Syunta; Hatakeyama, Tsubasa; Konno, Takumi; Tsujiwaki, Mitsuhiro; Saito, Tsuyoshi; Kojima, Takashi

    2016-05-10

    Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a novel molecular constituent of tricellular contacts that have a barrier function for the cellular sheet. LSR recruits tricellulin (TRIC), which is the first molecular component of tricellular tight junctions. Knockdown of LSR increases cell motility and invasion of certain cancer cells. However, the behavior and the roles of LSR in endometrial cancer remain unknown. In the present study, we investigated the behavior and roles of LSR in normal and endometrial cancer cells in vivo and in vitro. In endometriosis and endometrial cancer, LSR was observed not only in the subapical region but also throughout the lateral region as well as in normal endometrial epithelial cells in the secretory phase, and LSR in the cancer was reduced in correlation with the malignancy. Knockdown of LSR by the siRNA in cells of the endometrial cancer cell line Sawano, induced cell migration, invasion and proliferation, while TRIC relocalized from the tricellular region to the bicellular region at the membrane. In Sawano cells and normal HEEs, a decrease of LSR induced by leptin and an increase of LSR induced by adiponectin and the drugs for type 2 diabetes metformin and berberine were observed via distinct signaling pathways including JAK2/STAT. In Sawano cells, metformin and berberine prevented cell migration and invasion induced by downregulation of LSR by the siRNA and leptin treatment. The dissection of the mechanism in the downregulation of endometrial LSR during obesity is important in developing new diagnostic and therapy for endometrial cancer.

  13. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Shigeo Saito

    2015-06-01

    Full Text Available Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia, cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches. Reactive oxygen species (ROS have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs. During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs. ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

  14. The Role of HPV in Head and Neck Cancer Stem Cell Formation and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mark S. Swanson

    2016-02-01

    Full Text Available The cancer stem cell (CSC theory proposes that a minority of tumor cells are capable of self-replication and tumorigenesis. It is these minority of cells that are responsible for cancer metastasis and recurrence in head and neck squamous cell cancers (HNSCC. Human papilloma virus (HPV-related cancer of the oropharynx is becoming more prevalent, which makes understanding of the relationship between HPV and CSCs more important than ever. This relationship is critical because CSC behavior can be predicted based on cell surface markers, which makes them a suitable candidate for targeted therapy. New therapies are an exciting opportunity to advance past the stalled outcomes in HNSCC that have plagued patients and clinicians for several decades.

  15. Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells.

    Science.gov (United States)

    Nickel, Annina; Stadler, Sonja C

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) is a crucial process during normal development that allows dynamic and reversible shifts between epithelial and mesenchymal cell states. Cancer cells take advantage of the complex, interrelated cellular networks that regulate EMT to promote their migratory and invasive capabilities. During the past few years, evidence has accumulated that indicates that genetic mutations and changes to epigenetic mechanisms are key drivers of EMT in cancer cells. Recent studies have begun to shed light on the epigenetic reprogramming in cancer cells that enables them to switch from a noninvasive form to an invasive, metastatic form. The authors review the current knowledge of alterations of epigenetic machinery, including DNA methylation, histone modifications, nucleosome remodeling and expression of microRNAs, associated with EMT and tumor progression of breast cancer cells. Last, existing and upcoming drug therapies targeting epigenetic regulators and their potential benefit for developing novel treatment strategies are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance

    Directory of Open Access Journals (Sweden)

    Omar Elaskalani

    2017-10-01

    Full Text Available Platelets have been demonstrated to be vital in cancer epithelial-mesenchymal transition (EMT, an important step in metastasis. Markers of EMT are associated with chemotherapy resistance. However, the association between the development of chemoresistance, EMT, and the contribution of platelets to the process, is still unclear. Here we report that platelets regulate the expression of (1 human equilibrative nucleoside transporter 1 (hENT1 and (2 cytidine deaminase (CDD, markers of gemcitabine resistance in pancreatic cancer. Human ENT1 (hENT1 is known to enable cellular uptake of gemcitabine while CDD deactivates gemcitabine. Knockdown experiments demonstrate that Slug, a mesenchymal transcriptional factor known to be upregulated during EMT, regulates the expression of hENT1 and CDD. Furthermore, we demonstrate that platelet-derived ADP and ATP regulate Slug and CDD expression in pancreatic cancer cells. Finally, we demonstrate that pancreatic cancer cells express the purinergic receptor P2Y12, an ADP receptor found mainly on platelets. Thus ticagrelor, a P2Y12 inhibitor, was used to examine the potential therapeutic effect of an ADP receptor antagonist on cancer cells. Our data indicate that ticagrelor negated the survival signals initiated in cancer cells by platelet-derived ADP and ATP. In conclusion, our results demonstrate a novel role of platelets in modulating chemoresistance in pancreatic cancer. Moreover, we propose ADP/ATP receptors as additional potential drug targets for treatment of pancreatic cancer.

  17. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  18. Role of oxidative stress in cytotoxicity of grape seed extract in human bladder cancer cells.

    Science.gov (United States)

    Raina, Komal; Tyagi, Alpna; Kumar, Dileep; Agarwal, Rajesh; Agarwal, Chapla

    2013-11-01

    In present study, we evaluated grape seed extract (GSE) efficacy against bladder cancer and associated mechanism in two different bladder cancer cell lines T24 and HTB9. A significant inhibitory effect of GSE on cancer cell viability was observed, which was due to apoptotic cell death. Cell death events were preceded by vacuolar appearance in cytoplasm, which under electron microscopy was confirmed as swollen mitochondrial organelle and autophagosomes. Through detailed in vitro studies, we established that GSE generated oxidative stress that initiated an apoptotic response as indicated by the reversal of GSE-mediated apoptosis when the cells were pre-treated with antioxidants prior to GSE. However, parallel to a strong apoptotic cell death event, GSE also caused a pro-survival autophagic event as evidenced by tracking the dynamics of LC3-II within the cells. Since the pro-death apoptotic response was stronger than the pro-survival autophagy induction within the cells, cell eventually succumbed to cellular death after GSE exposure. Together, the findings in the present study are both novel and highly significant in establishing, for the first time, that GSE-mediated oxidative stress causes a strong programmed cell death in human bladder cancer cells, suggesting and advocating the effectiveness of this non-toxic agent against this deadly malignancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Role of WISP-2/CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells.

    Science.gov (United States)

    Fritah, Asmaà; Saucier, Cécile; De Wever, Olivier; Bracke, Marc; Bièche, Ivan; Lidereau, Rosette; Gespach, Christian; Drouot, Sylvain; Redeuilh, Gérard; Sabbah, Michèle

    2008-02-01

    WISP-2/CCN5 is an estrogen-regulated member of the "connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed" (CCN) family of the cell growth and differentiation regulators. The WISP-2/CCN5 mRNA transcript is undetectable in normal human mammary cells, as well as in highly aggressive breast cancer cell lines, in contrast with its higher level in the breast cancer cell lines characterized by a more differentiated phenotype. We report here that knockdown of WISP-2/CCN5 by RNA interference in estrogen receptor alpha (ERalpha)-positive MCF-7 breast cancer cells induced an estradiol-independent growth linked to a loss of ERalpha expression and promoted epithelial-to-mesenchymal transdifferentiation. In contrast, forced expression of WISP-2/CCN5 directed MCF-7 cells toward a more differentiated phenotype. When introduced into the poorly differentiated, estrogen-independent, and invasive MDA-MB-231 breast cancer cells, WISP-2/CCN5 was able to reduce their proliferative and invasive phenotypes. In a series of ERalpha-positive tumor biopsies, we found a positive correlation between the expression of WISP-2/CCN5 and ID2, a transcriptional regulator of differentiation in normal and transformed breast cells. We propose that WISP-2/CCN5 is an important regulator involved in the maintenance of a differentiated phenotype in breast tumor epithelial cells and may play a role in tumor cell invasion and metastasis.

  20. A role for IGF-1R-targeted therapies in small-cell lung cancer?

    LENUS (Irish Health Repository)

    Gately, Kathy

    2012-02-01

    BACKGROUND: Small-cell lung cancer (SCLC) is an aggressive disease with a poor prognosis. The insulin-like growth factor-1 receptor (IGF-1R) is an autocrine growth factor and an attractive therapeutic target in many solid tumors, but particularly in lung cancer. PATIENTS AND METHODS: This study examined tumor samples from 23 patients diagnosed with SCLC, 11 resected specimens and 12 nodal biopsies obtained by mediastinoscopy, for expression of IGF-1R using the monoclonal rabbit anti-IGF-1R (clone G11, Ventana Medical Systems, Tucson, AZ) and standard immunohistochemistry (IHC). RESULTS: All 23 tumor samples expressed IGF-1R with a range of stain intensity from weak (1+) to strong (3+). Ten tumors had a score of 3+, 7 tumors 2+, and 6 tumors 1+. Patient survival data were available for all 23 patients. Two patients died < 30 days post biopsy, therefore, the intensity of anti-IGF-1R immunostaining for 21 patients was correlated to survival. Patients with 3+ immunostaining had a poorer prognosis (P = .003). The overall survival of patients who underwent surgical resection was significantly better (median survival not reached) than patients who were not resected (median survival, 7.4 months) (P = .006). CONCLUSION: IGF-1R targeted therapies may have a role in the treatment of SCLC in combination with chemotherapy or as maintenance therapy. Further studies on the clinical benefit of targeting IGF-1R in SCLC are needed.

  1. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kazuyo [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Hirohashi, Yoshihiko, E-mail: hirohash@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Kuroda, Takafumi [Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Takaya, Akari; Kubo, Terufumi; Kanaseki, Takayuki; Tsukahara, Tomohide [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Hasegawa, Tadashi [Department of Surgical Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Saito, Tsuyoshi [Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Sato, Noriyuki [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Torigoe, Toshihiko, E-mail: torigoe@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan)

    2016-04-15

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH{sup high}) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH{sup high} population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.

  2. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Malgorzata Banys

    2014-01-01

    Full Text Available Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  3. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Banys, Malgorzata, E-mail: maggybanys@yahoo.de [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany); Department of Obstetrics and Gynecology, Marienkrankenhaus Hamburg, Hamburg D-22087 (Germany); Krawczyk, Natalia; Fehm, Tanja [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany)

    2014-01-15

    Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs) in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  4. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    Science.gov (United States)

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  6. Data on the putative role of p53 in breast cancer cell adhesion: Technical information for adhesion assay

    Directory of Open Access Journals (Sweden)

    Kallirroi Voudouri

    2016-12-01

    Full Text Available In this data article, the potential role of p53 tumor suppressor gene (p53 on the attachment ability of MCF-7 breast cancer cells was investigated. In our main article, “IGF-I/ EGF and E2 signaling crosstalk through IGF-IR conduit point affect breast cancer cell adhesion” (K. Voudouri, D. Nikitovic, A. Berdiaki, D. Kletsas, N.K. Karamanos, G.N. Tzanakakis, 2016 [1], we describe the key role of IGF-IR in breast cancer cell adhesion onto fibronectin (FN. p53 tumor suppressor gene is a principal regulator of cancer cell proliferation. Various data have demonstrated an association between p53 and IGF-IR actions on cell growth through its’ putative regulation of IGF-IR expression. According to our performed experiments, p53 does not modify IGF-IR expression and does not affect basal MCF-7 cells adhesion onto FN. Moreover, technical details about the performance of adhesion assay onto the FN substrate were provided.

  7. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle.

    Science.gov (United States)

    Jafari, Samineh; Saeidnia, Soodabeh; Abdollahi, Mohammad

    2014-01-01

    Natural phenolic compounds have been considered as one of the interesting secondary metabolites for their chemopreventive and chemotherapeutic effects in cancer for a long time. These are a large and diverse family of phytochemicals classified into several subgroups such as simple phenols, lignans, phenylpropanoids, flavonoids, coumarins, etc. The antioxidant potential of phenolic compounds is almost bolded in the treatment and prevention of cancer. Due to the concerns on the diverse effects of antioxidants in cancer, differentiation and clarification of their anti-neoplastic mechanisms are necessary. An important mechanism for phenolic compounds is related to their direct effect on the cell cycle progression, which has not been discussed in detail so far. This study aims to criticize the evidence on regulatory mechanisms of phenolic compounds in the cell cycle. Recent studies indicate that phenolic compounds from several subgroups significantly inhibit the proliferation of different cancer cells. The structural diversity of these compounds influences various components involved in cell cycle regulation. Forming active metabolites and sensitizing cancerous cells to chemotherapeutic medicines are additional values of these compounds. In the recent years, many studies on neoplastic cell cultures have been carried out to investigate the mechanisms of action of these compounds but dissimilarity of in vitro systems in comparison with human body in terms of metabolism and bioavailability is a major concern. Therefore, further studies are still needed.

  8. Crucial role of interleukin-4 in the survival of colon cancer stem cells

    NARCIS (Netherlands)

    Francipane, Maria Giovanna; Alea, Mileidys Perez; Lombardo, Ylenia; Todaro, Matilde; Medema, J. P.; Stassi, Giorgio

    2008-01-01

    Colon tumors may be maintained by a rare fraction of cancer stem-like cells (CSC) that express the cell surface marker CD133. Self-renewing CSCs exhibit relatively greater resistance to clinical cytotoxic therapies and recent work suggests that this resistance may be mediated in part by an autocrine

  9. The Emerging Role of Circulating Tumor Cell Detection in Genitourinary Cancer

    NARCIS (Netherlands)

    Small, A.C.; Gong, Y.X.; Oh, W.K.; Hall, S.J.; Rijn, van C.J.M.; Galsky, M.D.

    2012-01-01

    Purpose: Circulating tumor cells are malignant cells in peripheral blood that originate from primary tumors or metastatic sites. The heterogeneous natural history and propensity for recurrence in prostate, bladder and kidney cancers are well suited for improved individualization of care using

  10. Role of proteoglycans in cell adhesion of prostate cancer cells: from review to experiment

    NARCIS (Netherlands)

    Schamhart, D. H.; Kurth, K. H.

    1997-01-01

    Development and progression of prostate cancer is a multistep process of cumulative genetic damage, acquired during a life-time. However, the altered genotype acts against an appropriate background of epigenetic control mechanisms. Several mechanisms of mitotically heritable, epigenetic control of

  11. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Peng Zou

    2016-01-01

    Full Text Available Overactive mitochondrial fission was shown to promote cell transformation and tumor growth. It remains elusive how mitochondrial quality is regulated in such conditions. Here, we show that upregulation of mitochondrial fission protein, dynamin related protein-1 (Drp1, was accompanied with increased mitochondrial biogenesis markers (PGC1α, NRF1, and Tfam in breast cancer cells. However, mitochondrial number was reduced, which was associated with lower mitochondrial oxidative capacity in breast cancer cells. This contrast might be owing to enhanced mitochondrial turnover through autophagy, because an increased population of autophagic vacuoles engulfing mitochondria was observed in the cancer cells. Consistently, BNIP3 (a mitochondrial autophagy marker and autophagic flux were significantly upregulated, indicative of augmented mitochondrial autophagy (mitophagy. The upregulation of Drp1 and BNIP3 was also observed in vivo (human breast carcinomas. Importantly, inhibition of Drp1 significantly suppressed mitochondrial autophagy, metabolic reprogramming, and cancer cell viability. Together, this study reveals coordinated increase of mitochondrial biogenesis and mitophagy in which Drp1 plays a central role regulating breast cancer cell metabolism and survival. Given the emerging evidence of PGC1α contributing to tumor growth, it will be of critical importance to target both mitochondrial biogenesis and mitophagy for effective cancer therapeutics.

  12. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Directory of Open Access Journals (Sweden)

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  13. Role of the Adjacent Stroma Cells in Prostate Cancer Development and Progression: Synergy between TGF-β and IGF Signaling

    Directory of Open Access Journals (Sweden)

    Chung Lee

    2014-01-01

    Full Text Available This review postulates the role of transforming growth factor-beta (TGF-β and insulin-like growth factor (IGF-I/IGF-II signaling in stromal cells during prostate carcinogenesis and progression. It is known that stromal cells have a reciprocal relationship to the adjacent epithelial cells in the maintenance of structural and functional integrity of the prostate. An interaction between TGF-β and IGF signaling occupies a central part in this stromal-epithelial interaction. An increase in TGF-β and IGF signaling will set off the imbalance of this relationship and will lead to cancer development. A continuous input from TGF-β and IGF in the tumor microenvironment will result in cancer progression. Understanding of these events can help prevention, diagnosis, and therapy of prostate cancer.

  14. Viruses in cancer cell plasticity: the role of hepatitis C virus in hepatocellular carcinoma.

    Science.gov (United States)

    Hibner, Urszula; Grégoire, Damien

    2015-01-01

    Viruses are considered as causative agents of a significant proportion of human cancers. While the very stringent criteria used for their classification probably lead to an underestimation, only six human viruses are currently classified as oncogenic. In this review we give a brief historical account of the discovery of oncogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure virus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogenic transformation and acquisition of stem cell phenotype. We argue that a useful way of analysing the convergent characteristics of viral infection and cancer is to examine how viruses affect the so-called cancer hallmarks. This view of infectious origin of cancer is illustrated by examples from hepatitis C infection, which is associated with a high proportion of hepatocellular carcinoma.

  15. Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines.

    Directory of Open Access Journals (Sweden)

    Sapna V Iyer

    Full Text Available BACKGROUND: Breast cancer is a complex disease which cannot be defined merely by clinical parameters like lymph node involvement and histological grade, or by routinely used biomarkers like estrogen receptor (ER, progesterone receptor (PGR and epidermal growth factor receptor 2 (HER2 in diagnosis and prognosis. Breast cancer originates from the epithelial cells. Keratins (K are cytoplasmic intermediate filament proteins of epithelial cells and changes in the expression pattern of keratins have been seen during malignant transformation in the breast. Expression of the K8/18 pair is seen in the luminal cells of the breast epithelium, and its role in prognostication of breast cancer is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have modulated K8 expression to understand the role of the K8/18 pair in three different breast epithelium derived cell lines: non-transformed MCF10A, transformed but poorly invasive MDA MB 468 and highly invasive MDA MB 435. The up-regulation of K8 in the invasive MDA MB 435 cell line resulted in a significant decrease in proliferation, motility, in-vitro invasion, tumor volume and lung metastasis. The down-regulation of K8 in MDA MB 468 resulted in a significant increase in transformation potential, motility and invasion in-vitro, while MCF10A did not show any changes in cell transformation assays. CONCLUSIONS/SIGNIFICANCE: These results indicate the role of K8/18 in modulating invasion in breast cancer -its presence correlating with less invasive phenotype and absence correlating with highly invasive, dedifferentiated phenotype. These data may have important implications for prognostication of breast cancer.

  16. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy.

    Science.gov (United States)

    Emmons, Michael F; Faião-Flores, Fernanda; Smalley, Keiran S M

    2016-12-15

    Targeted therapy has proven to be beneficial at producing significant responses in patients with a wide variety of cancers. Despite initially impressive responses, most individuals ultimately fail these therapies and show signs of drug resistance. Very few patients are ever cured. Emerging evidence suggests that treatment of cancer cells with kinase inhibitors leads a minor population of cells to undergo a phenotypic switch to a more embryonic-like state. The adoption of this state, which is analogous to an epithelial-to-mesenchymal transition, is associated with drug resistance and increased tumor aggressiveness. In this commentary we will provide a comprehensive analysis of the mechanisms that underlie the embryonic reversion that occurs on targeted cancer therapy and will review potential novel therapeutic strategies designed to eradicate the escaping cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  18. [Place and role of the pleura in non-small cell lung cancer dissemination].

    Science.gov (United States)

    Riquet, M; Rivera, C; Pricopi, C; Abdennadher, M; Arame, A; Foucault, C; Dujon, A; Le Pimpec Barthes, F

    2014-10-01

    The pleural involvement (PLI) in non-small cell lung cancer (NSCLC) has a poor prognosis, even though it might be very heterogeneous. A multicentric retrospective descriptive study was performed over 2329 patients who were operated for NSCLC between 1979 and 2010. The patients with PLI were classified in P(Parietal)PLI and V(visceral)PLI and then each subdivided : VPLI to peripheric (VPLI-P) and fissural (VPLI-F) and PPLI to mediastinal (PPLI-M) and costal (PPLI-C). Characteristics and survival were compared between the subgroups as well as with patients without PLI (WPLI, n=1439). The sex-ratio was 2.8 (males: n=1713). The PLI patients were significantly younger, with a less sex-ratio, less R0 resections (96% versus 98.7%, P=0.000076), and less N0 (60% vs 70%, Ppleura play a major role in NSCLC dissemination. Its involvement affects pN, the type of surgical resection and justifies the use of neoadjuvant treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yi-Chen Zhang

    2017-10-01

    Full Text Available Abstract The treatment paradigm of non-small cell lung cancer (NSCLC has evolved into oncogene-directed precision medicine. Identifying actionable genomic alterations is the initial step towards precision medicine. An important scientific progress in molecular profiling of NSCLC over the past decade is the shift from the traditional piecemeal fashion to massively parallel sequencing with the use of next-generation sequencing (NGS. Another technical advance is the development of liquid biopsy with great potential in providing a dynamic and comprehensive genomic profiling of NSCLC in a minimally invasive manner. The integration of NGS with liquid biopsy has been demonstrated to play emerging roles in genomic profiling of NSCLC by increasing evidences. This review summarized the potential applications of NGS-based liquid biopsy in the diagnosis and treatment of NSCLC including identifying actionable genomic alterations, tracking spatiotemporal tumor evolution, dynamically monitoring response and resistance to targeted therapies, and diagnostic value in early-stage NSCLC, and discussed emerging challenges to overcome in order to facilitate clinical translation in future.

  20. Role of radiotherapy in the treatment of renal cell cancer: updated and critical review.

    Science.gov (United States)

    Fusco, Vincenzo; Parisi, Salvatore; d'Andrea, Barbara; Troiano, Michele; Clemente, Maria Antonietta; Morelli, Franco; Caivano, Rocchina; Guglielmi, Giuseppe

    2017-06-06

    The growing incidence of renal cell carcinoma (RCC) raises many questions about the management of these patients. The late clinical presentation, the presence of locally advanced or metastatic disease at diagnosis, the difficulty of radical surgical excision, and radioresistance make it one of the more challenging tumors to treat. The primary objective of this article is to propose an updated and critical review of the role of radiotherapy (RT) in the treatment of RCC. This literature review is based on data from meta-analyses and randomized, prospective, and retrospective studies. We collected reports from 1970 to the present about preoperative RT, postoperative RT, stereotactic body RT, radiosurgery, and intraoperative RT in locally advanced renal cancer and in metastatic diseases. We emphasize the progress made in RT technology that allowed the creation of a more personalized and focused treatment with a minimum rate of complications. In the coming years, new studies will be published to confirm and increase the indications for use of RT.

  1. Clinicopathological significance and prognostic role of EZH2 expression in non-small cell lung cancer.

    Science.gov (United States)

    Kim, Nae Yu; Pyo, Jung-Soo

    2017-07-01

    The aim of this study was to investigate the clinicopathological characteristics and prognostic role of enhancer of zeste homologue 2 (EZH2) expression in non-small cell lung cancer (NSCLC). The correlation between EZH2 expression and the clinicopathological characteristics, including sex, smoking history, tumor differentiation, histologic type, tumor stage, and lymph node metastasis, was evaluated through a meta-analysis. In addition, the prognostic value of EZH2 expression was elucidated. This study included 1,932 patients with NSCLC from 11 eligible studies. The overall rate of EZH2 expression was 0.548 [95% confidence interval (CI) 0.491-0.604]. There were significant correlations between EZH2 expression and male sex and smoking history. The expression rate of EZH2 was significantly lower in adenocarcinoma than in other histologic types. Furthermore, EZH2 expression rates were higher in NSCLC with moderately and poorly differentiation and nodal disease than in well-differentiated NSCLC without nodal disease. There was a significant correlation between EZH2 expression and worse overall and disease-free survival [hazard ratio (HR) 1.938, 95% CI 1.617-2.323 and HR 1.713, 95% CI 1.366-2.149, respectively]. Subgroup analysis revealed no significant difference for the prognostic effect of EZH2 expression between histologic types or detection methods. Our data collectively suggest that EZH2 expression is significantly correlated with aggressive tumor behavior and poor prognosis in NSCLC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.

    Science.gov (United States)

    Nagasaka, Misako; Gadgeel, Shirish M

    2018-01-01

    Adjuvant platinum based chemotherapy is accepted as standard of care in stage II and III non-small cell lung cancer (NSCLC) patients and is often considered in patients with stage IB disease who have tumors ≥ 4 cm. The survival advantage is modest with approximately 5% at 5 years. Areas covered: This review article presents relevant data regarding chemotherapy use in the perioperative setting for early stage NSCLC. A literature search was performed utilizing PubMed as well as clinical trial.gov. Randomized phase III studies in this setting including adjuvant and neoadjuvant use of chemotherapy as well as ongoing trials on targeted therapy and immunotherapy are also discussed. Expert commentary: With increasing utilization of screening computed tomography scans, it is possible that the percentage of early stage NSCLC patients will increase in the coming years. Benefits of adjuvant chemotherapy in early stage NSCLC patients remain modest. There is a need to better define patients most likely to derive survival benefit from adjuvant therapy and spare patients who do not need adjuvant chemotherapy due to the toxicity of such therapy. Trials for adjuvant targeted therapy, including adjuvant EGFR-TKI trials and trials of immunotherapy drugs are ongoing and will define the role of these agents as adjuvant therapy.

  3. The secret role of microRNAs in cancer stem cell development and potential therapy: A Notch-pathway approach.

    Directory of Open Access Journals (Sweden)

    Marianna eProkopi

    2015-02-01

    Full Text Available MicroRNAs (miRNAs have been implicated in the development of some if not all cancer types and have been identified as attractive targets for prognosis, diagnosis and therapy of the disease. MiRNAs are a class of small non-coding RNAs (20-22 nucleotides in length that bind imperfectly to the 3’-untranslated region of target mRNA regulating gene expression. Aberrantly expressed miRNAs in cancer, sometimes known as oncomiRNAs, have been shown to play a major role in oncogenesis, metastasis and drug resistance. Amplification of oncomiRNAs during cancer development correlates with the silencing of tumor suppressor genes; on the other hand, down-regulation of miRNAs has also been observed in cancer and cancer stem cells (CSCs. In both cases, miRNA regulation is inversely correlated with cancer progression. Growing evidence indicates that miRNAs are also involved in the metastatic process by either suppressing or promoting metastasis-related genes leading to the reduction or activation of cancer cell migration and invasion processes. In particular, circulating miRNAs (vesicle-encapsulated or non-encapsulated have significant effects on tumorigenesis: membrane-particles, apoptotic bodies and exosomes have been described as providers of a cell-to-cell communication system transporting oncogenic miRNAs from tumors to neighboring cells and distant metastatic sites. It is hypothesized that MiRNAs control cancer development in a traditional manner, by regulating signaling pathways and factors. In addition, recent developments indicate a non-conventional mechanism of cancer regulation by stem cell reprogramming via a regulatory network consisting of miRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways, all of which are involved in controlling stem cell functions of CSCs. In this review, we focus on the role of miRNAs in the Notch pathway and how they regulate CSC self-renewal, differentiation and tumorigenesis by direct/indirect targeting of

  4. Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers.

    Science.gov (United States)

    Ohta, Tetsuo; Shimizu, Koichi; Yi, Shuangqin; Takamura, Hiroyuki; Amaya, Kohji; Kitagawa, Hirohisa; Kayahara, Masato; Ninomiya, Itasu; Fushida, Sachio; Fujimura, Takashi; Nishimura, Gen-Ichi; Miwa, Koichi

    2003-07-01

    Protease-activated receptor (PAR)-2 is a G protein-coupled receptor that is activated by trypsin. The purpose of this study was to examine PAR-2 expression and the role of trypsin in cell proliferation in human pancreatic cancer cells. All four pancreatic cancer cell lines studied, from well to undifferentiated types, AsPC-1, BxPC-3, Panc-1, and MIAPaCa-2, had significant levels of PAR-2 mRNA detected by reverse transcription-polymerase chain reaction, and showed a band of about 55 kDa corresponding to the known molecular weight of PAR-2: AsPC-1, BxPC-3 and Panc-1 showed a strong band, and MIAPaCa-2 showed a weak one. Immunocytochemically, AsPC-1, BxPC-3, and Panc-1 showed intense immunostaining for PAR-2, predominantly in the plasma membrane, while in MIAPaCa-2, immunostaining was weak. Proliferative activity of AsPC-1 cells was increased by concentrations of trypsin as low as 10 nM, and activity peaked at a concentration of 100 nM, representing almost 60% of that induced by 10% fetal bovine serum. In contrast, trypsin had no significant effect on proliferation of MIAPaCa-2 cells. These findings suggest that trypsin plays a role in the growth of PAR-2-positive pancreatic cancer cells and serves as a potent mitogen in vitro, functioning as a growth factor.

  5. Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen

    Directory of Open Access Journals (Sweden)

    Weiren Huang

    2015-01-01

    Full Text Available Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1 were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.

  6. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development

    Directory of Open Access Journals (Sweden)

    Kim YM

    2014-07-01

    Full Text Available Yong-Mi Kim,1 Michael Kahn2,3 1Children's Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics and Pathology, 2Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, 3Norris Comprehensive Cancer Research Center, University of Southern California, Los Angeles, CA, USA Abstract: Cancer stem cells (CSCs, also known as tumor initiating cells are now considered to be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. They have become a central focus in new drug development. Prospective identification, understanding the key pathways that maintain CSCs, and being able to target CSCs, particularly if the normal stem cell population could be spared, could offer an incredible therapeutic advantage. The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance of tissues and organs through their respective somatic stem cells and in the CSC/tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise to target CSCs. However, just like the sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling cascade and critically analyze therapeutic approaches at various stages of development. Keywords: beta-catenin, CBP, p300, wnt inhibition

  7. Role of the stem cell-associated intermediate filament nestin in malignant proliferation of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Zhenguang Chen

    Full Text Available BACKGROUND: Nestin is associated with neoplastic transformation, but the mechanisms by which nestin contributes to invasion and malignancy of lung cancer remain unknown. Considering that proliferation is necessary for malignant behavior, we investigated the mechanism of nestin action in association with the proliferative properties of non-small cell lung cancer (NSCLC. METHODS: Nestin expression was examined in NSCLC specimens and cell lines. Associations with clinicopathological features, including prognosis and proliferative markers, were evaluated. Effects of nestin knockdown on proliferation and the signaling pathways involved were further investigated. RESULTS: Nestin was expressed in most cancer specimens and all the tumor cell lines analyzed. High nestin expression in malignant tissue was associated with high Ki-67 or PCNA levels and poor patient outcomes. Conversely, knockdown of nestin expression led to significant inhibition of tumor cell proliferation, decreased colony forming ability, and cell cycle G1 arrest. Furthermore, nestin knockdown resulted in inhibition of Akt and GSK3β activation. CONCLUSIONS: Our data demonstrate that nestin expression in NSCLC cells is associated with poor prognosis of patients and tumor cell proliferation pathway. Downregulation of nestin efficiently inhibited lung cancer cell proliferation, which might be through affecting cell cycle arrest and Akt-GSK3β-Rb signaling pathway.

  8. Multifaceted Interpretation of Colon Cancer Stem Cells

    OpenAIRE

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-01-01

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but...

  9. Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors

    Science.gov (United States)

    Salgia, Ravi

    2014-01-01

    With the introduction of targeted agents primarily applicable to non-small cell lung cancer (NSCLC) of adenocarcinoma histology, there is a heightened unmet need in the squamous cell carcinoma population. Targeting the angiogenic fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway is among the strategies being explored in squamous NSCLC; these efforts are supported by growth-promoting effects of FGF signaling in preclinical studies (including interactions with other pathways) and observations suggesting that FGF/FGFR-related aberrations may be more common in squamous versus adenocarcinoma and other histologies. A number of different anti-FGF/FGFR approaches have shown promise in preclinical studies. Clinical trials of two multitargeted tyrosine kinase inhibitors are restricting enrollment to patients with squamous NSCLC: a phase I/II trial of nintedanib added to first-line gemcitabine/cisplatin and a phase II trial of ponatinib for previously treated advanced disease, with the latter requiring not only squamous disease but also a confirmed FGFR kinase amplification or mutation. There are several ongoing clinical trials of multitargeted agents in general NSCLC populations, including but not limited to patients with squamous disease. Other FGF/FGFR-targeted agents are in earlier clinical development. While results are awaited from these clinical investigations in squamous NSCLC and other disease settings, additional research is needed to elucidate the role of FGF/FGFR signaling in the biology of NSCLC of different histologies. PMID:24711160

  10. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir, E-mail: wsol@faf.cuni.cz

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  11. Role of Natural Killer T Cells In Immunogenic Chemotherapy for Breast Cancer

    Science.gov (United States)

    2012-09-01

    diseases, autoimmu- nity, allergic reactions , and cancer. For example, the protective anti-tumor effect of a-GalCer has been shown against melanomas...and purity was always .95%. For stimulation assays, purified cells were cultured for 20 h in complete RPMI 1640 (10% FCS, 10 U/ml penicillin

  12. Opposite prognostic roles of HIF1β and HIF2β expressions in bone metastatic clear cell renal cell cancer

    DEFF Research Database (Denmark)

    Szendroi, Attila; Szász, A. Marcell; Kardos, Magdolna

    2016-01-01

    BACKGROUND: Prognostic markers of bone metastatic clear cell renal cell cancer (ccRCC) are poorly established. We tested prognostic value of HIF1β/HIF2β and their selected target genes in primary tumors and corresponding bone metastases. RESULTS: Expression of HIF2β was lower in mRCC both at mRNA...

  13. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development.

    Science.gov (United States)

    Kim, Yong-Mi; Kahn, Michael

    Cancer stem cells (CSCs), also known as tumor initiating cells are now considered to be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. They have become a central focus in new drug development. Prospective identification, understanding the key pathways that maintain CSCs, and being able to target CSCs, particularly if the normal stem cell population could be spared, could offer an incredible therapeutic advantage. The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance of tissues and organs through their respective somatic stem cells and in the CSC/tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise to target CSCs. However, just like the sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling cascade and critically analyze therapeutic approaches at various stages of development.

  14. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    in the basal layer of the interfollicular epidermis and in the bulge region of the hair follicle play a critical role for normal tissue maintenance. In wound healing, multipotent epidermal stem cells contribute to re-epithelization. It is possible that defects in growth control of either epidermal stem cells...

  15. Mechanisms of disease: chronic inflammation and cancer in the pancreas--a potential role for pancreatic stellate cells?

    Science.gov (United States)

    Algül, Hana; Treiber, Matthias; Lesina, Marina; Schmid, Roland M

    2007-08-01

    Late diagnosis and ineffective therapeutic options mean that pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer. The identification of genetic alterations facilitated the launch of the Pancreatic Intraepithelial Neoplasm nomenclature, a standardized classification system for pancreatic duct lesions, but the factors that contribute to the development of such lesions and their progression to high-grade neoplasia remain obscure. Age, smoking, obesity and diabetes confer increased risk of PDA, and the presence of chronic pancreatitis is a consistent risk factor for pancreatic cancer. It is hypothesized that chronic inflammation generates a microenvironment that contributes to malignant transformation in the pancreas, as is known to occur in other organs. Pancreatic stellate cells (PSCs) are the main mediator of fibrogenesis during chronic pancreatitis, but their contribution to the development of PDA has not been elucidated. Data now suggest that PSCs might assume a linking role in inflammation-associated carcinogenesis through their ability to communicate with inflammatory cells, acinar cells, and pancreatic cancer cells in a complicated network of interactions. In this Review, the role of PSCs in the process of inflammation-associated carcinogenesis is discussed and new potential treatment options evaluated.

  16. The Role of Adipose-Derived Stem Cells in Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Riccardo Schweizer

    2015-01-01

    Full Text Available Conventional breast cancer extirpation involves resection of parts of or the whole gland, resulting in asymmetry and disfiguration. Given the unsatisfactory aesthetic outcomes, patients often desire postmastectomy reconstructive procedures. Autologous fat grafting has been proposed for reconstructive purposes for decades to restore form and anatomy after mastectomy. Fat has the inherent advantage of being autologous tissue and the most natural-appearing filler, but given its inconsistent engraftment and retention rates, it lacks reliability. Implementation of autologous fat grafts with cellular adjuncts, such as multipotent adipose-derived stem cells (ADSCs, has shown promising results. However, it is pertinent and critical to question whether these cells could promote any residual tumor cells to proliferate, differentiate, or metastasize or even induce de novo carcinogenesis. Thus far, preclinical and clinical study findings are discordant. A trend towards potential promotion of both breast cancer growth and invasion by ADSCs found in basic science studies was indeed not confirmed in clinical trials. Whether experimental findings eventually correlate with or will be predictive of clinical outcomes remains unclear. Herein, we aimed to concisely review current experimental findings on the interaction of mesenchymal stem cells and breast cancer, mainly focusing on ADSCs as a promising tool for regenerative medicine, and discuss the implications in clinical translation.

  17. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Theerawut eChanmee

    2015-08-01

    Full Text Available Cancer stem cells (CSCs represent a unique subpopulation of self-renewing oncogenic cells that drive cancer initiation and progression. CSCs often acquire multidrug and oxidative stress resistance and are thereby thought to be responsible for tumor recurrence following treatment and remission. Although the mechanisms responsible for CSC generation, maintenance, and expansion have become a major focus in cancer research, the molecular characteristics of CSCs remain poorly understood. The stemness and subsequent expansion of CSCs are believed to be highly influenced by changes in microenvironmental signals as well as genetic and epigenetic alterations. Hyaluronan (HA, a major component of the extracellular matrix, has recently been demonstrated to provide a favorable microenvironment for the self-renewal and maintenance of stem cells. HA directly and indirectly affects CSC self-renewal by influencing the behaviour of both cancer and stromal cells. For instance, HA in the tumor microenvironment modulates the function of tumor-associated macrophages to support CSC self-renewal, and excessive HA production promotes the acquisition of CSC signatures through epithelial-to-mesenchymal transition. The importance of HA in mediating CSC self-renewal has been strengthened by the finding that interactions between HA and its receptor, CD44, propagate the stemness of CSCs. HA-CD44 interactions evoke a wide range of signals required for CSC self-renewal and maintenance. CD44 also plays a critical role in the preservation and multidrug resistance of CSCs by transmitting survival and anti-apoptotic signals. Thus, a better understanding of the molecular mechanisms involved in HA and CD44 control of CSC stemness may help in the design of more effective therapies for cancer patients. In this review, we address the key roles of HA and CD44 in CSC self-renewal and maintenance. We also discuss the involvement of CD44 in the oxidative stress and multidrug resistance of

  18. Role of NKG2D-Expressing NK Cells and sMICA in Immune Surveillance of Advanced Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jing LIANG

    2009-01-01

    Full Text Available Background and objective NKG2D-expressing NK cells and soluble major histocompatibility complex class Ⅰ-related chain A (sMICA is one of aroused general interests in tumor research area recently. The aimof the study is to investigate the levels of NKG2D-expressing NK cells and sMICA in peripheral blood of advanced lung cancer which are remarkably related to clinical significance and analyse the role of NKG2D-expressing NK cells and sMICA in immune surveillance. Methods Flow cytometry was used to determine the percentage of NKG2D-expressing NK cells, T cell subsets, NK cells, and ELISA was used to mesure the levels of sMICA in peripheral blood of 115 advanced lung cancer patients and 50 healthy controls. Results Compared with control group, the levels of sMICA、CD8+T cells, NK cells increased, while the levels of NKG2D-expressing NK cells, CD3+ T cells, CD4+ T cells, CD4+ T/CD8+ T in experimental group decreased. NKG2D-expressing NK cells had a perfect negative correlation with sMICA (r =-0.319, P <0.05. NKG2D-expressing NK cells had positive correlation with CD4+ T cells, CD4+ T/CD8+ T and negative correlationwith CD8+ T cells (P <0.05, sMICA had negative correlation with CD4+ T cells, CD4+ T/CD8+ T and positive correlation with CD8+ T cells (P <0.05, they had no significant correlation with CD3+ T cells, NK cells respectively (P <0.05. Conclusion Accumulation of sMICA in serum may lead to the down-modulation of NKG2D-expressing NK which has been proposed to be a novel mechanism used by cancer cells to evade the tumor immunosurveillance. They may be potential indicators investigating immune functions and helpful in the evaluation of their happening and proceeding.

  19. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer.

    Science.gov (United States)

    Rabbani, Mohamad; Kanevsky, Jonathan; Kafi, Kamran; Chandelier, Florent; Giles, Francis J

    2018-02-05

    Lung cancer is the leading cause of cancer death worldwide. In up to 57% of patients, it is diagnosed at an advanced stage and the 5-year survival rate ranges between 10%-16%. There has been a significant amount of research using machine learning to generate tools using patient data to improve outcomes. This narrative review is based on research material obtained from PubMed up to Nov 2017. The search terms include "artificial intelligence," "machine learning," "lung cancer," "Nonsmall Cell Lung Cancer (NSCLC)," "diagnosis" and "treatment." Recent studies support the use of computer-aided systems and the use of radiomic features to help diagnose lung cancer earlier. Other studies have looked at machine learning (ML) methods that offer prognostic tools to doctors and help them in choosing personalized treatment options for their patients based on molecular, genetics and histological features. Combining artificial intelligence approaches into health care may serve as a beneficial tool for patients with NSCLC, and this review outlines these benefits and current shortcomings throughout the continuum of care. We present a review of the various applications of ML methods in NSCLC as it relates to improving diagnosis, treatment and outcomes. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Inhibiting the role of Skp2 suppresses cell proliferation and tumorigenesis of human gastric cancer cells via the upregulation of p27kip1.

    Science.gov (United States)

    Wen, Yanguang; Wang, Kuansong; Yang, Kaiyan

    2016-10-01

    Gastric cancer is a malignant disease of the digestive system with high rates of incidence and mortality. S‑phase kinase‑associated protein 2 (Skp2) is a novel oncogene, which has been identified to be important in tumor progression and metastasis. In order to clarify the role of Skp2 in human gastric cancer, the present study detected the expression of Skp2 in human gastric cancer tissues, and investigated the molecular mechanism of Skp2 in the progression of gastric carcinoma. The results of the initial bioinformatics analysis showed that Skp2 was significantly upregulated in 31 specimens of primary gastric cancer from a UK patient cohort, and in 10 gastric cancer lines of a side population, compared with normal gastric tissues (Pgastric cancer and 19 normal gastric tissue specimens were obtained and analyzed using western blot analysis. The positive rate of expression of Skp2 was 87.2%, indicating that the expression of Skp2 was observed in 41 specimens of the detected gastric cancer samples, whereas the positive rate of the expression of Skp2 was 5.6% in the normal gastric samples (Pgastric cancer cell lines, the defective regulation of Skp2 or presence of an Skp2 inhibitor inhibited the proliferation of BGC‑823 and MKN‑45 cells. In addition, the Skp2 inhibitor suppressed the proliferation of gastric cancer cells in a time‑ and dose‑dependent manner. Furthermore, transfection with Skp2 short hairpin (sh)RNA or treatment with SKP inhibitor C1 for 48 and 72 h led to the accumulation of p27kip1 in Hela cells. Tumorigenicity experiments involving nude mice showed that interference of the expression of Skp2 inhibited the growth of the human gastric tumor cells in the nude mice, and the tumor weights and volumes in the Skp2 shRNA group were significantly lower, compared with those in the negative control shRNA group (Pgastric cancer, and that Skp2‑mediated p27kip1 degradation contributed to the progression of gastric cancer. Abrogating the effects

  1. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  2. Role of sympathetic nerves in the establishment of metastatic breast cancer cells in bone

    Directory of Open Access Journals (Sweden)

    Florent Elefteriou

    2016-09-01

    Full Text Available The bone marrow microenvironment is characterized by its multicellular nature, and perhaps less obviously by the high mobility of multiple transient and stationary cell lineages present in this environment. The trafficking of hematopoietic and mesenchymal cells between the bone marrow and blood compartments is regulated by a number of bone marrow-derived factors. It is suspected that transformed metastatic cells “hijack” these processes to engraft into the skeleton and eventually cause the skeletal complications associated with metastatic disease. In this short review, experimental and association data supporting the contribution of a less recognized cell type of the bone marrow – the nerves of the sympathetic nervous system – to early events of the breast cancer bone metastatic process, are summarized.

  3. Resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus: role of type I interferon signaling.

    Science.gov (United States)

    Moerdyk-Schauwecker, Megan; Shah, Nirav R; Murphy, Andrea M; Hastie, Eric; Mukherjee, Pinku; Grdzelishvili, Valery Z

    2013-02-05

    Oncolytic virus (OV) therapy takes advantage of common cancer characteristics, such as defective type I interferon (IFN) signaling, to preferentially infect and kill cancer cells with viruses. Our recent study (Murphy et al., 2012. J. Virol. 86, 3073-87) found human pancreatic ductal adenocarcinoma (PDA) cells were highly heterogeneous in their permissiveness to vesicular stomatitis virus (VSV) and suggested at least some resistant cell lines retained functional type I IFN responses. Here we examine cellular responses to infection by the oncolytic VSV recombinant VSV-ΔM51-GFP by analyzing a panel of 11 human PDA cell lines for expression of 33 genes associated with type I IFN pathways. Although all cell lines sensed infection by VSV-ΔM51-GFP and most activated IFN-α and β expression, only resistant cell lines displayed constitutive high-level expression of the IFN-stimulated antiviral genes MxA and OAS. Inhibition of JAK/STAT signaling decreased levels of MxA and OAS and increased VSV infection, replication and oncolysis, further implicating IFN responses in resistance. Unlike VSV, vaccinia and herpes simplex virus infectivity and killing of PDA cells was independent of the type I IFN signaling profile, possibly because these two viruses are better equipped to evade type I IFN responses. Our study demonstrates heterogeneity in the type I IFN signaling status of PDA cells and suggests MxA and OAS as potential biomarkers for PDA resistance to VSV and other OVs sensitive to type I IFN responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer

    Science.gov (United States)

    Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros

    2014-01-01

    Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421

  5. Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Wani Gulzar

    2011-03-01

    Full Text Available Abstract Background While platinum-based chemotherapeutic agents are widely used to treat various solid tumors, the acquired platinum resistance is a major impediment in their successful treatment. Since enhanced DNA repair capacity is a major factor in conferring cisplatin resistance, targeting of DNA repair pathways is an effective stratagem for overcoming cisplatin resistance. This study was designed to delineate the role of nucleotide excision repair (NER, the principal mechanism for the removal of cisplatin-induced DNA intrastrand crosslinks, in cisplatin resistance and reveal the impact of DNA repair interference on cisplatin sensitivity in human ovarian cancer cells. Results We assessed the inherent NER efficiency of multiple matched pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines and their expression of NER-related factors at mRNA and protein levels. Our results showed that only the cisplatin-resistant ovarian cancer cell line PEO4 possessed an increased NER capacity compared to its inherently NER-inefficient parental line PEO1. Several other cisplatin-resistant cell lines, including CP70, CDDP and 2008C13, exhibited a normal and parental cell-comparable NER capacity for removing cisplatin-induced DNA intrastrand cross-links (Pt-GG. Concomitant gene expression analysis revealed discordance in mRNA and protein levels of NER factors in various ovarian cancer cell lines and NER proteins level were unrelated to the cisplatin sensitivity of these cell lines. Although knockdown of NER factors was able to compromise the NER efficiency, it only caused a minimal effect on cisplatin sensitivity. On the contrary, downregulation of BRCA2, a critical protein for homologous recombination repair (HRR, significantly enhanced the efficacy of cisplatin in killing ovarian cancer cell line PEO4. Conclusion Our studies indicate that the level of NER factors in ovarian cancer cell lines is neither a determinant of their NER capacity nor

  6. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  7. The Role of TGFβ Signaling in Squamous Cell Cancer: Lessons from Mouse Models

    Directory of Open Access Journals (Sweden)

    Adam B. Glick

    2012-01-01

    Full Text Available TGFβ1 is a member of a large growth factor family including activins/inhibins and bone morphogenic proteins (BMPs that have a potent growth regulatory and immunomodulatory functions in normal skin homeostasis, regulation of epidermal stem cells, extracellular matrix production, angiogenesis, and inflammation. TGFβ signaling is tightly regulated in normal tissues and becomes deregulated during cancer development in cutaneous SCC and many other solid tumors. Because of these diverse biological processes regulated by TGFβ1, this cytokine and its signaling pathway appear to function at multiple points during carcinogenesis with distinct effects. The mouse skin carcinogenesis model has been a useful tool to dissect the function of this pathway in cancer pathogenesis, with transgenic and null mice as well as small molecule inhibitors to alter the function of the TGFβ1 pathway and assess the effects on cancer development. This paper will review data on changes in TGFβ1 signaling in human SCC primarily HNSCC and cutaneous SCC and different mouse models that have been generated to investigate the relevance of these changes to cancer. A better understanding of the mechanisms underlying the duality of TGFβ1 action in carcinogenesis will inform potential use of this signaling pathway for targeted therapies.

  8. Stem Cell Differentiation Stage Factors and Their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes.

    Science.gov (United States)

    Biava, Pier Mario; Burigana, Fabio; Germano, Roberto; Kurian, Philip; Verzegnassi, Claudio; Vitiello, Giuseppe

    2017-09-20

    A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated re-differentiation often signifies the phenotypic reversion back to health and non-proliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer

  9. The Role of Postoperative Radiotherapy on Stage N2 Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Fangfang DU

    2009-11-01

    Full Text Available Background and objective The clinical value of postoperative radiotherapy (PORT in stage N2 nonsmall-cell lung cancer (NSCLC is controversy. The aim of this study is to analyze the efficacy of PORT in subgroup of stage N2 NSCLC, which can help clinicians to choose proper patients for PORT. Methods Clinical data of 359 patients with stage N2 NSCLC treated with radical surgery between Mar. 2000 and Jul. 2005 were retrospectively reviewed. Two hundred and seven patients received adjuvant chemotherapy and one hundred and four patients received adjuvant radiotherapy. First, the group of patients were analyzed to evaluate the factors affecting the overall survival. The all patients were divided based on tumor size and the number of lymph node metastasis station (single station or multiple station so as to evaluate the role of PORT. The endpoint was overall survival (OS and local recurrence-free survival (LRFS. Kaplan-Meier method was used to calculate the OS, LRFS and Log-rank was used to compare the difference in OS and LRFS between different groups. Results The median duration of follow-up was 2.3 years. 224 patients died. The median survival was 1.5 years and 1, 3, 5-year survival were 78%, 38% and 26%. Univariate analysis showed tumor size, the number of lymph node metastasis station and PORT were correlated with OS. Among patients, 5-year survival rates in PORT and non-PORT were 29% and 24% (P=0.047 respectively. In subgroups, PORT was related with high survival in patients with multiple station N2 compared to non-PORT: 36% vs 20% (P=0.013 and 33% vs 15% (P=0.002 in patients in patients with tumor size > 3 cm. Also, it was related with low local recurrence compared to non-PORT: 65% vs 48% (P=0.006 and 62% vs 48% (P=0.033. Conclusion PORT can improve overall survival for N2 NSCLC, especially the patients with the factors as follows: tumor size > 3 cm and multiple station N2 can benefit from PORT more or less.

  10. ROLE OF PI3K-AKT-mTOR AND Wnt SIGNALING PATHWAYS IN G1-S TRANSITION OF CELL CYCLE IN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    LAKSHMIPATHI eVADLAKONDA

    2013-04-01

    Full Text Available The PI3K–Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR is a highly deregulated pathway in cancers. There is a reciprocal relation between the Akt phosphorylation and mTOR complexes. Akt phosphorylated at T308 activates mTORC1 by inhibition of the tuberous sclerosis complex (TSC1/2, where as mTORC2 is recognized as the kinase that phosphorylates Akt at S473. Recent developments in the research on regulatory mechanisms of autophagy places mTORC1 mediated inhibition of autophagy at the central position in activation of proliferation and survival pathways in cells. Autophagy is a negative regulator of Wnt signaling pathway and the downstream effectors of Wnt signaling pathway, cyclin D1 and the c-Myc, are the key players in initiation of cell cycle and regulation of the G1-S transition in cancer cells. Production of reaction oxygen species (ROS, a common feature of a cancer cell metabolism, activates several downstream targets like the transcription factors FoxO, which play key roles in promoting the progression of cell cycle. A model is presented on the role of PI3K -Akt - mTOR and Wnt pathways in regulation of the progression of cell cycle through Go-G1-and S phases.

  11. Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells--Elucidating the Role of p53.

    Science.gov (United States)

    Sarkar, Arnab; Bhattacharjee, Shamee; Mandal, Deba Prasad

    2015-01-01

    Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.

  12. A Novel Role of Dickkopf-Related Protein 3 in Macropinocytosis in Human Bladder Cancer T24 Cells.

    Science.gov (United States)

    Tsujimura, Nonoka; Yamada, Nami O; Kuranaga, Yuki; Kumazaki, Minami; Shinohara, Haruka; Taniguchi, Kohei; Akao, Yukihiro

    2016-11-05

    Dickkopf-related protein 3 (Dkk-3) is a potential tumor suppressor reported in various cancer entities. However, we found that Dkk-3 was exceptionally upregulated in bladder cancer T24 cells. To validate the biological role of Dkk-3 other than a tumor suppressor, we examined the function of Dkk-3 in T24 cells. Gene silencing of Dkk-3 inhibited cell growth through inducing G₀/G₁ cell-cycle arrest. Furthermore, Dkk-3 knock-down caused macropinocytosis accompanied by autophagy, which were canceled in part by their inhibitors 5-( N -ethyl- N -isopropyl) amiloride (EIPA) and 3-methyladenine (3-MA). The macropinocytosis was induced by the Dkk-3 knock-down when there were sufficient extracellular nutrients. On the other hand, when the nutritional condition was poor, the autophagy was mainly induced by the Dkk-3 knock-down. These data indicated that Dkk-3 has a role in modulating macropinocytotic and autophagic pathways, a distinct function other than a Wnt antagonist.

  13. A Novel Role of Dickkopf-Related Protein 3 in Macropinocytosis in Human Bladder Cancer T24 Cells

    Directory of Open Access Journals (Sweden)

    Nonoka Tsujimura

    2016-11-01

    Full Text Available Dickkopf-related protein 3 (Dkk-3 is a potential tumor suppressor reported in various cancer entities. However, we found that Dkk-3 was exceptionally upregulated in bladder cancer T24 cells. To validate the biological role of Dkk-3 other than a tumor suppressor, we examined the function of Dkk-3 in T24 cells. Gene silencing of Dkk-3 inhibited cell growth through inducing G0/G1 cell-cycle arrest. Furthermore, Dkk-3 knock-down caused macropinocytosis accompanied by autophagy, which were canceled in part by their inhibitors 5-(N-ethyl-N-isopropyl amiloride (EIPA and 3-methyladenine (3-MA. The macropinocytosis was induced by the Dkk-3 knock-down when there were sufficient extracellular nutrients. On the other hand, when the nutritional condition was poor, the autophagy was mainly induced by the Dkk-3 knock-down. These data indicated that Dkk-3 has a role in modulating macropinocytotic and autophagic pathways, a distinct function other than a Wnt antagonist.

  14. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  15. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  16. Emerging roles of Nrf2 signal in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yijun Tian

    2016-02-01

    Full Text Available Abstract Non-small cell lung cancer (NSCLC causes considerable mortality in the world. Owing to molecular biological progress, treatments in adenocarcinoma have evolved revolutionarily while those in squamous lung cancer remain unsatisfied. Recent studies revealed high-frequency alteration of Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-like factor 2 (Keap1/Nrf2 pathway within squamous lung cancer, attracting researchers to focus on this particular pathway. In NSCLC patients, deregulated Nrf2 signal is recognized as a common feature at both DNA and protein level. Emerging associations between Nrf2 and other pathways have been elucidated. MicroRNA was also implicated in the regulation of Nrf2. Agents activating or antagonizing Nrf2 showed an effect in preclinical researches, reflecting different effects of Nrf2 during tumor initiation and progression. Prognostic evaluation demonstrated a negative impact of Nrf2 signal on NSCLC patients’ survival. Considering the importance of Nrf2 signal in NSCLC, further studies are required in the future.

  17. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.

    Science.gov (United States)

    Fumarola, Claudia; Caffarra, Cristina; La Monica, Silvia; Galetti, Maricla; Alfieri, Roberta R; Cavazzoni, Andrea; Galvani, Elena; Generali, Daniele; Petronini, Pier Giorgio; Bonelli, Mara A

    2013-08-01

    In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports

  18. Role of depression as a predictor of mortality among cancer patients after stem-cell transplantation.

    Science.gov (United States)

    Prieto, Jesús M; Atala, Jorge; Blanch, Jordi; Carreras, Enric; Rovira, Montserrat; Cirera, Esteve; Espinal, Anna; Gasto, Cristóbal

    2005-09-01

    To determine the association between depression and survival among cancer patients at 1, 3, and 5 years after stem-cell transplantation (SCT). This was a prospective cohort study of 199 hematologic cancer patients who survived longer than 90 days after SCT and who were recruited in a University-based hospital between July 1994 and August 1997. Patients received a psychiatric assessment at four consecutive time points during hospitalization for SCT, yielding a total of 781 interviews. Depression diagnoses were determined on the basis of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Eighteen (9.0%) and 17 patients (8.5%) met criteria for major and minor depression, respectively. Multivariate Cox regression models found major depression to be predictive of higher 1-year (hazard ratio [HR], 2.59; 95% CI, 1.21 to 5.53; P = .014) and 3-year mortality (HR, 2.04; 95% CI, 1.03 to 4.02; P = .041) but not 5-year mortality (HR, 1.48; 95% CI, 0.76 to 2.87; P = .249). Minor depression had no effect on any mortality outcome. Other multivariate significant predictors of higher mortality were higher regimen toxicity in the 1-, 3-, and 5-year models; older age and acute lymphoblastic leukemia in the 3- and 5-year models; chronic myelogenous leukemia in the 3-year model; and lower functional status and intermediate/higher risk status in the 5-year model. Use of peripheral-blood stem cells predicted lower mortality in the 5-year model. After adjusting for multiple factors, major depression predicted higher 1- and 3-year mortality among cancer patients after SCT, underscoring the importance of adequate diagnosis and treatment of major depression.

  19. A novel cell type-specific role of p38alpha in the control of autophagy and cell death in colorectal cancer cells.

    Science.gov (United States)

    Comes, F; Matrone, A; Lastella, P; Nico, B; Susca, F C; Bagnulo, R; Ingravallo, G; Modica, S; Lo Sasso, G; Moschetta, A; Guanti, G; Simone, C

    2007-04-01

    Cancer develops when molecular pathways that control the fine balance between proliferation, differentiation, autophagy and cell death undergo genetic deregulation. The prospects for further substantial advances in the management of colorectal cancer reside in a systematic genetic and functional dissection of these pathways in tumor cells. In an effort to evaluate the impact of p38 signaling on colorectal cancer cell fate, we treated HT29, Caco2, Hct116, LS174T and SW480 cell lines with the inhibitor SB202190 specific for p38alpha/beta kinases. We report that p38alpha is required for colorectal cancer cell homeostasis as the inhibition of its kinase function by pharmacological blockade or genetic inactivation causes cell cycle arrest, autophagy and cell death in a cell type-specific manner. Deficiency of p38alpha activity induces a tissue-restricted upregulation of the GABARAP gene, an essential component of autophagic vacuoles and autophagosomes, whereas simultaneous inhibition of autophagy significantly increases cell death by triggering apoptosis. These data identify p38alpha as a central mediator of colorectal cancer cell homeostasis and establish a rationale for the evaluation of the pharmacological manipulation of the p38alpha pathway in the treatment of colorectal cancer.

  20. Role of erlotinib in first-line and maintenance treatment of advanced non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Noemí Reguart

    2010-06-01

    Full Text Available Noemí Reguart1, Andrés Felipe Cardona2, Rafael Rosell31Medical Oncology Service, ICMHO, Hospital Clinic Barcelona, Barcelona, Spain; 2Clinical and Translational Oncology Group, Institute of Oncology, Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia; 3Medical Oncology Service, Catalan Institute of Oncology, ICO, Hospital Germans Trias i Pujol, Badalona, Barcelona, SpainAbstract: Erlotinib hydrochloride (Tarceva® is a member of a class of small molecule inhibitors that targets the tyrosine kinase domain of the epidermal growth factor receptor (EGFR, with anti-tumor activity in preclinical models. Erlotinib represents a new-generation of agents known as “targeted therapies” designed to act upon cancer cells by interfering with aberrant specific activated pathways needed for tumor growth, angiogenesis and cell survival. Since its approval in November 2004 for the treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC after the failure of at least one prior chemotherapy regimen and with a view to improving patients’ outcomes and prevent symptoms, the scientific community has evaluated the potential role of erlotinib in other scenarios such as in maintenance therapy and, in first-line setting for a selected population based on biological markers of response such as mutations of the EGFR. The convenient once-a-day pill administration and the good toxicity profile of erlotinib make it a reasonable candidate for testing in this context. This report provides a review of the role of erlotinib therapy in advanced NSCLC. It summarizes current data and perspectives of erlotinib in upfront treatment and maintenance for advanced NSCLC as well as looking at candidate biomarkers of response to these new targeted-agents.Keywords: erlotinib, tyrosine kinase inhibitors, first line, maintenance, non-small-cell lung cancer

  1. Prostate Stem Cells in the Development of Benign Prostate Hyperplasia and Prostate Cancer: Emerging Role and Concepts

    Directory of Open Access Journals (Sweden)

    Akhilesh Prajapati

    2013-01-01

    Full Text Available Benign Prostate hyperplasia (BPH and prostate cancer (PCa are the most common prostatic disorders affecting elderly men. Multiple factors including hormonal imbalance, disruption of cell proliferation, apoptosis, chronic inflammation, and aging are thought to be responsible for the pathophysiology of these diseases. Both BPH and PCa are considered to be arisen from aberrant proliferation of prostate stem cells. Recent studies on BPH and PCa have provided significant evidence for the origin of these diseases from stem cells that share characteristics with normal prostate stem cells. Aberrant changes in prostate stem cell regulatory factors may contribute to the development of BPH or PCa. Understanding these regulatory factors may provide insight into the mechanisms that convert quiescent adult prostate cells into proliferating compartments and lead to BPH or carcinoma. Ultimately, the knowledge of the unique prostate stem or stem-like cells in the pathogenesis and development of hyperplasia will facilitate the development of new therapeutic targets for BPH and PCa. In this review, we address recent progress towards understanding the putative role and complexities of stem cells in the development of BPH and PCa.

  2. Prostate stem cells in the development of benign prostate hyperplasia and prostate cancer: emerging role and concepts.

    Science.gov (United States)

    Prajapati, Akhilesh; Gupta, Sharad; Mistry, Bhavesh; Gupta, Sarita

    2013-01-01

    Benign Prostate hyperplasia (BPH) and prostate cancer (PCa) are the most common prostatic disorders affecting elderly men. Multiple factors including hormonal imbalance, disruption of cell proliferation, apoptosis, chronic inflammation, and aging are thought to be responsible for the pathophysiology of these diseases. Both BPH and PCa are considered to be arisen from aberrant proliferation of prostate stem cells. Recent studies on BPH and PCa have provided significant evidence for the origin of these diseases from stem cells that share characteristics with normal prostate stem cells. Aberrant changes in prostate stem cell regulatory factors may contribute to the development of BPH or PCa. Understanding these regulatory factors may provide insight into the mechanisms that convert quiescent adult prostate cells into proliferating compartments and lead to BPH or carcinoma. Ultimately, the knowledge of the unique prostate stem or stem-like cells in the pathogenesis and development of hyperplasia will facilitate the development of new therapeutic targets for BPH and PCa. In this review, we address recent progress towards understanding the putative role and complexities of stem cells in the development of BPH and PCa.

  3. The role of SOX-2 on the survival of patients with non-small cell lung cancer.

    Science.gov (United States)

    Shao, Wenlong; Chen, Hanzhang; He, Jianxing

    2015-07-01

    Lung cancer is the most commonly diagnosed cancer as well as the leading cause of cancer death worldwide. Observational studies on the prognostic role of SOX-2 in non-small-cell lung cancer (NSCLC) are controversial. To clarify the impact of SOX-2 in NSCLC survival, we performed this meta-analysis that included eligible studies. The combined hazard ratios and their corresponding 95% confidence intervals (95% CI) were calculated in terms of overall survival. A total of seven studies with 1,944 patients were evaluable for this meta-analysis. The studies were categorized by histology, disease stage and patient race. Our results suggested that SOX-2 overexpression had a favorable impact on survival of patients with NSCLC, the HR (95% CI) was 0.57 (0.48 to 0.65). However, highly significant heterogeneity was detected among these studies (I(2)=76.7%, P=0.000). SOX-2 overexpression indicates a favorable prognosis for patients with NSCLC.

  4. The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells.

    Science.gov (United States)

    Alam, Farheen; Mezhal, Fatima; El Hasasna, Hussain; Nair, Vidhya A; Aravind, S R; Saber Ayad, Maha; El-Serafi, Ahmed; Abdel-Rahman, Wael M

    2017-09-01

    This study aimed to analyze the expression of microRNAs in relation to p53 status in breast cancer cells and to delineate the role of Moesin in this axis. We used three isogenic breast carcinoma cell lines MCF7 (with wild-type p53), 1001 (MCF7 with mutated p53), and MCF7-E6 (MCF7 in which p53 function was disrupted). MicroRNA expression was analyzed using microarray analysis and confirmed by real-time polymerase chain reaction. The 1001 clone with mutant p53 showed 22 upregulated and 25 downregulated microRNAs. The predicted targets of these 47 microRNAs were >700 human genes belonging to interesting functional groups such as stem cell development and maintenance. The most significantly downregulated microRNAs in the p53-mutant cell line were from the miR-200 family. We focused on miR-200c which targets many transcripts involved in epithelial-to-mesenchymal transition including Moesin. We found that Moesin was expressed in 1001 but not in its p53 wild-type parental MCF7 consistent with the observed mesenchymal features in the 1001, such as vimentin positivity, E-cadherin negativity, and ZEB1 positivity in addition to the morphological changes. After Moesin silencing, the p53-mutant cells 1001 reverted from mesenchymal-to-epithelial phenotype and showed subtle reduction in migration and invasion and loss of ZEB1 and SNAIL expression. Interestingly, Moesin silencing restored the 1001 sensitivity to Doxorubicin. These results indicate that loss of miR-200c, as a consequence of p53 mutation, can upregulate Moesin oncogene and thus promote carcinogenesis. Moesin may play a role in metastasis and drug resistance of breast cancer.

  5. The role of nuclear matrix proteins binding to matrix attachment regions (Mars) in prostate cancer cell differentiation.

    Science.gov (United States)

    Barboro, Paola; Repaci, Erica; D'Arrigo, Cristina; Balbi, Cecilia

    2012-01-01

    In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.

  6. The role of nuclear matrix proteins binding to matrix attachment regions (Mars in prostate cancer cell differentiation.

    Directory of Open Access Journals (Sweden)

    Paola Barboro

    Full Text Available In tumor progression definite alterations in nuclear matrix (NM protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs. In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose polymerase (PARP and special AT-rich sequence-binding protein-1 (SATB1 along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.

  7. Lung cancer - small cell

    Science.gov (United States)

    ... carcinoma Small cell carcinoma Squamous cell carcinoma Secondhand smoke and lung cancer Normal lungs and alveoli Respiratory system Smoking hazards Bronchoscope References Horn L, Eisenberg R, ...

  8. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  9. Cancer treatments transform residual cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    Harless William W

    2011-01-01

    Full Text Available Abstract Background Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor. Presentation of the hypothesis Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1 facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2 induce residual cancer stem cell proliferation. Testing the hypothesis Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression and cancer stem cell enrichment (stem cell markers upregulated. Implications of the hypothesis Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor repair may be amenable to treatment intervention at the time it is upregulated.

  10. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okabe

    2006-12-01

    Full Text Available Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively.

  11. Integrated genomic analyses identify KDM1A's role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer.

    Science.gov (United States)

    Narayanan, Sathiya Pandi; Singh, Smriti; Gupta, Amit; Yadav, Sandhya; Singh, Shree Ram; Shukla, Sanjeev

    2015-10-28

    The histone demethylase KDM1A specifically demethylates lysine residues and its deregulation has been implicated in the initiation and progression of various cancers. However, KDM1A's molecular role and its pathological consequences, and prognostic significance in oral cancer remain less understood. In the present study, we sought to investigate the expression of KDM1A and its downstream role in oral cancer pathogenesis. By comparing mRNA expression profiles, we identified an elevated KDM1A expression in oral tumors when compared to normal oral tissues. In silico pathway prediction identified the association between KDM1A and E2F1 signaling in oral cancer. Pathway scanning, functional annotation analysis and In vitro assays showed the KDM1A's involvement in oral cancer cell proliferation and the cell cycle. Moreover, real time PCR and luciferase assays confirmed KDM1A's role in regulation of E2F1 signaling activity in oral cancer. Elevated KDM1A expression is associated with poor clinical outcome in oral cancer. Our data indicate that deregulated KDM1A expression is positively associated with proliferative phenotype of oral cancer and confers poor clinical outcome. These cumulative data suggest that KDM1A might be a potential diagnostic and therapeutic target for oral cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The role of Cancer-Testis antigens as predictive and prognostic markers in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Thomas John

    Full Text Available BACKGROUND: Cancer-Testis Antigens (CTAs are immunogenic proteins that are poor prognostic markers in non-small cell lung cancer (NSCLC. We investigated expression of CTAs in NSCLC and their association with response to chemotherapy, genetic mutations and survival. METHODS: We studied 199 patients with pathological N2 NSCLC treated with neoadjuvant chemotherapy (NAC; n = 94, post-operative observation (n = 49, adjuvant chemotherapy (n = 47 or unknown (n = 9. Immunohistochemistry for NY-ESO-1, MAGE-A and MAGE-C1 was performed. Clinicopathological features, response to neoadjuvant treatment and overall survival were correlated. DNA mutations were characterized using the Sequenom Oncocarta panel v1.0. Affymetrix data from the JBR.10 adjuvant chemotherapy study were obtained from a public repository, normalised and mapped for CTAs. RESULTS: NY-ESO-1 was expressed in 50/199 (25% samples. Expression of NY-ESO-1 in the NAC cohort was associated with significantly increased response rates (P = 0.03, but not overall survival. In the post-operative cohort, multivariate analyses identified NY-ESO-1 as an independent poor prognostic marker for those not treated with chemotherapy (HR 2.61, 95% CI 1.28-5.33; P = 0.008, whereas treatment with chemotherapy and expression of NY-ESO-1 was an independent predictor of improved survival (HR 0.267, 95% CI 0.07-0.980; P = 0.046. Similar findings for MAGE-A were seen, but did not meet statistical significance. Independent gene expression data from the JBR.10 dataset support these findings but were underpowered to demonstrate significant differences. There was no association between oncogenic mutations and CTA expression. CONCLUSIONS: NY-ESO-1 was predictive of increased response to neoadjuvant chemotherapy and benefit from adjuvant chemotherapy. Further studies investigating the relationship between these findings and immune mechanisms are warranted.

  13. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features.

    Science.gov (United States)

    Kopanja, Dragana; Pandey, Akshay; Kiefer, Megan; Wang, Zebin; Chandan, Neha; Carr, Janai R; Franks, Roberta; Yu, Dae-Yeul; Guzman, Grace; Maker, Ajay; Raychaudhuri, Pradip

    2015-08-01

    Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS. Published by Elsevier B.V.

  14. WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways.

    Science.gov (United States)

    Ji, Jiafu; Jia, Shuqin; Jia, Yongning; Ji, Ke; Hargest, Rachel; Jiang, Wen G

    2015-09-15

    It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.

  15. Invasiveness of mouse embryos to human ovarian cancer cells HO8910PM and the role of MMP-9

    Directory of Open Access Journals (Sweden)

    Ding Xiaoyan

    2012-06-01

    Full Text Available Abstract Background Our previous work found that mouse embryos could invade malignant cancer cells. In the process of implantation, embryo trophoblast cells express matrix metalloproteinases and the invasive ability of trophoblast cells is proportional to matrix metalloproteinase-9 protein expression. So the purpose of this study is to observe the effects of mouse embryos on human ovarian cancer cells in the co-culture environment in vitro and explore the possible mechanism of matrix metalloproteinase-9. Methods Several groups of human ovarian cancer cells HO8910PM were co-cultured with mouse embryos for different time duration, after which the effects of mouse embryos on morphology and growth behavior of HO8910PM were observed under the light microscope real-time or by H.E staining. Apoptosis was detected under laser confocal microscope by Annexin V-EGFP/PI staining in situ. Invasion ability of tumor cells was studied by transwell experiments. After matrix metalloproteinase 9 (MMP −9 activity was inhibited by MMP-9 Inhibitor I, the interaction between mouse embryos and human ovarian cancer cells HO8910PM was observed. Results Mouse embryos were able to invade co-cultured human ovarian cancer cell layer which extended in the bottom of the culture dish, and gradually pushed away tumor cells to form their own growth space. The number of apoptosis tumor cells surrounding the embryo increased under laser confocal microscope. After co-cultured with mouse embryos, tumor cells invasive ability was lowered compared with the control group. After MMP-9 activity was inhibited, the interaction between mouse embryos and HO8910PM cells had no significant difference compared with the normal MMP-9 activity group. Conclusion Mouse embryos were able to invade human ovarian cancer cells in vitro and form their own growth space, promote apoptosis of human ovarian cancer cells and lower their invasive ability. The mouse embryo was still able to invade human

  16. The role of Gefitinib in patients with non-small-cell lung cancer in India

    Directory of Open Access Journals (Sweden)

    Asmita Anilkumar Mehta

    2013-01-01

    Full Text Available Background: Gefitinib, an epidermal growth factor receptor-tyrosine kinase inhibitor, represents a new treatment option for patients with advanced non-small-cell lung cancer (NSCLC. We analyzed the data of patients who received Gefitinib for NSCLC in a tertiary care center in South India. Materials and Methods: Sixty-three patients with advanced NSCLC who had received Gefitinib either after failure of conventional chemotherapy or were previously not treated as they were unfit or unwilling for conventional treatment were included in the analysis. Results: The median follow-up for the cohort was 311 days (range 11-1544 days. Median time to progression was 161 (range 9-883 days. Complete and partial remission was seen in 1 (2% and 6 (9% patients, respectively, with overall response rate of 11%. Twenty-four (38% patients had stable disease. Gefitinib was well tolerated with no significant side effects. Conclusion: Gefitinib shows anti-tumor activity in pretreated or previously untreated patients with advanced NSCLC. It has a favorable toxicity profile and is well tolerated. Gefitinib should be considered as a viable therapy in patients with NSCLC.

  17. Synthesis and Pharmacophore Modelling of 2,6,9-Trisubstituted Purine Derivatives and Their Potential Role as Apoptosis-Inducing Agents in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Jeannette Calderón-Arancibia

    2015-04-01

    Full Text Available A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.

  18. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines.

    Science.gov (United States)

    Calderón-Arancibia, Jeannette; Espinosa-Bustos, Christian; Cañete-Molina, Álvaro; Tapia, Ricardo A; Faúndez, Mario; Torres, Maria Jose; Aguirre, Adam; Paulino, Margot; Salas, Cristian O

    2015-04-15

    A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.

  19. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    Science.gov (United States)

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-03

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.

  20. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM.

    Directory of Open Access Journals (Sweden)

    Seog-Young Kim

    Full Text Available There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25-8.75 Gy and survival curves were determined by colony formation. A final slope, D(0, of the survival curve for each cell line was determined to measure radiosensitivity. The D(0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy. After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM and delay of γ-H2AX foci removal (DNA strand break repair. These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.

  1. Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Filippo Lococo

    2015-08-01

    Full Text Available Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC. Epidermal growth factor receptor (EGFR is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR, which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002. Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.

  2. [The role of FOXO3a-Bim signaling in triptolide induced bladder cancer T24 cells apoptosis].

    Science.gov (United States)

    Yang, L L; Wang, X Y; Zheng, L Y; Fang, S J; Xu, M; Zhao, Z W; Ji, J S

    2017-04-18

    Objective: To investigate the role of FOXO3a-Bim signaling in triptolide induced bladder cancer T24 cells apoptosis. Methods: T24 cells were used and divided into control group, triptolide group(50 nmol/L), MK2206 group(50 nmol/L triptolide+ 5 μmol/L MK2206), FOXO3a-siRNA group(50 nmol/L triptolide+ 100 nmol/L FOXO3a-siRNA), Bim-siRNA group (50 nmol/L triptolide+ 100 nmol/L Bim-siRNA). MTT assay was used to analyze the cells growth inhibition.Annexin V/PI staining was implemented to detect cell apoptosis rate, the expression of p-Akt, Akt, p-FOXO3a, FOXO3a, Bim, Bax.Cleaved-caspase 3 was analyzed by Western blot. Results: After treatment with triptolide 25, 50, 100, 250 nmol/L, the cell growth inhibition rates at 24 hours(17%±9%, 24%±5%, 43%±8%, 61%±8%), 48 hours (20%±7%, 34%±6%, 56%±7%, 74%±5%) and 72 hours(32%±8%, 41%±7%, 69%±7%, 84%±3%) were significantly higher than control group respectively.The IC(50) at 24, 48, 72 hours were (113±10), (91±8), (68±5) nmol/L; the cell apoptosis rates at 24 hours (10%±4%, 15%±5%, 29%±8%, 46%±8%), 48 hours (16%±5%, 24%±6%, 40%±7%, 55%±9%) and 72 hours (27%±4%, 38%±5%, 50%±9%, 65%±8%) were significantly increased (Pcell inhibition rate in Triptolide group (30%±8%) was significantly higher than that in the control group (PT24 cells apoptosis through FOXO3a-Bim signaling pathway.

  3. Liver Cancer and Its Tumor Microenvironment: the Role of Mesenchymal Stromal Cells and SMADs

    NARCIS (Netherlands)

    P.Y. Hernanda (Pratika)

    2014-01-01

    markdownabstract__Abstract__ Liver cancer is one of most devastating malignancies. Hepatocellular carcinoma (HCC) accounts for >90% of primary liver malignancies and is the third leading cause of cancer-related deaths worldwide. Major risk factors for hepatocellular carcinoma include infection

  4. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    Science.gov (United States)

    2006-03-01

    mouse mammary tissue. Proc. Natl. Acad. Sci. 92, 8831-8835 (1995). 12. Folias, A. et al. BRCA1 interacts directly with the Fanconi anemia protein...germline BRCA1 mutations and an adverse outcome following breast cancer. Br J Cancer 89, 1031-1034. Hakem, R., de la Pompa, J. L., Sirard, C., Mo

  5. Role of Chemotherapy and Targeted Therapy in Early-Stage Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Gadgeel, Shirish M

    2017-01-01

    On the basis of several randomized trials and meta-analyses, adjuvant chemotherapy is the accepted standard of care for certain patients with early-stage non-small cell lung cancer (NSCLC). Patients with stage II, IIIA, or large (≥ 4 cm) IB tumors are candidates for adjuvant chemotherapy. The survival improvement with adjuvant chemotherapy is approximately 5% at 5 years, though certain trials have suggested that it can be 8% to 10%. Neoadjuvant chemotherapy also has shown a survival advantage, though the volume of data with this approach is far less than that of adjuvant chemotherapy. The combination of cisplatin and vinorelbine is the most well-studied regimen, but current consensus is to use four cycles of any of the platinum-based chemotherapy regimens commonly used as front-line therapy for patients with advanced-stage NSCLC. Trials to define biomarkers that can predict benefit from adjuvant chemotherapy have not been successful, but results of other such trials are still awaited. On the basis of the benefit observed with targeted agents in patients with advanced-stage disease and driver genetic alterations in their tumors, ongoing trials are evaluating the utility of these targeted agents as adjuvant therapy. Similarly, clinical benefit observed with checkpoint inhibitors has prompted assessment of these drugs in patients with early-stage NSCLC. It is very likely, in the future, that factors other than the anatomy of the tumor will be used to select patients with early-stage NSCLC for systemic therapy and that the choice of systemic therapy will extend beyond platinum-based chemotherapy.

  6. PI(3,4)P2 plays critical roles in the regulation of focal adhesion dynamics of MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Fukumoto, Miki; Ijuin, Takeshi; Takenawa, Tadaomi

    2017-05-01

    Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2 ) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P2 on focal adhesion dynamics in MDA-MB-231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5-trisphosphatase (PIP3 ) 5-phosphatase that generates PI(3,4)P2 , in MDA-MB-231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3-phosphatase that de-phosphorylates PIP3 and PI(3,4)P2 , induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P2 , and knockdown of Lpd, a downstream effector of PI(3,4)P2 , resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. A Modified In vitro Invasion Assay to Determine the Potential Role of Hormones, Cytokines and/or Growth Factors in Mediating Cancer Cell Invasion.

    Science.gov (United States)

    Bagati, Archis; Koch, Zethan; Bofinger, Diane; Goli, Haneesha; Weiss, Laura S; Dau, Rosie; Thomas, Megha; Zucker, Shoshanna N

    2015-04-24

    Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.

  8. Role of Radiation Therapy in the Management of Renal Cell Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Angel I.; Teh, Bin S. [Department of Radiation Oncology, The Methodist Hospital, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Department of Radiation Oncology, The Methodist Hospital, Houston, TX 77030 (United States); Amato, Robert J., E-mail: Robert.amato@uth.tmc.edu [Division of Oncology, University of Texas Health Science Center at Houston, Memorial Hermann Cancer Center, Houston, TX 77030 (United States)

    2011-10-26

    Renal cell carcinoma (RCC) is traditionally considered to be radioresistant; therefore, conventional radiotherapy (RT) fraction sizes of 1.8 to 2 Gy are thought to have little role in the management of primary RCC, especially for curative disease. In the setting of metastatic RCC, conventionally fractionated RT has been an effective palliative treatment in 50% of patients. Recent technological advances in radiation oncology have led to the clinical implementation of image-guided radiotherapy, allowing biologically potent doses to the tumors intra- and extra-cranially. As predicted by radiobiologic modeling, favorable outcomes have been observed with highly hypofractionated schemes modeled after the experience with intracranial stereotactic radiosurgery (SRS) for RCC brain metastases with reported local control rates averaging 85%. At present, both primary and metastatic RCC tumors may be successfully treated using stereotactic approaches, which utilize steep dose gradients to maximally preserve function and avoid toxicity of adjacent organs including liver, uninvolved kidney, bowel, and spinal cord regions. Future endeavors will combine stereotactic body radiation therapy (SBRT) with novel targeted therapies, such as tyrosine kinase inhibitors and targeted rapamycin (mTOR) inhibitors, to maximize both local and systemic control.

  9. Bioinformatics Analyses of the Role of Vascular Endothelial Growth Factor in Patients with Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available This study was aimed to identify the expression pattern of vascular endothelial growth factor (VEGF in non-small cell lung cancer (NSCLC and to explore its potential correlation with the progression of NSCLC.Gene expression profile GSE39345 was downloaded from the Gene Expression Omnibus database. Twenty healthy controls and 32 NSCLC samples before chemotherapy were analyzed to identify the differentially expressed genes (DEGs. Then pathway enrichment analysis of the DEGs was performed and protein-protein interaction networks were constructed. Particularly, VEGF genes and the VEGF signaling pathway were analyzed. The sub-network was constructed followed by functional enrichment analysis.Total 1666 up-regulated and 1542 down-regulated DEGs were identified. The down-regulated DEGs were mainly enriched in the pathways associated with cancer. VEGFA and VEGFB were found to be the initiating factor of VEGF signaling pathway. In addition, in the epidermal growth factor receptor (EGFR, VEGFA and VEGFB associated sub-network, kinase insert domain receptor (KDR, fibronectin 1 (FN1, transforming growth factor beta induced (TGFBI and proliferating cell nuclear antigen (PCNA were found to interact with at least two of the three hub genes. The DEGs in this sub-network were mainly enriched in Gene Ontology terms related to cell proliferation.EGFR, KDR, FN1, TGFBI and PCNA may interact with VEGFA to play important roles in NSCLC tumorigenesis. These genes and corresponding proteins may have the potential to be used as the targets for either diagnosis or treatment of patients with NSCLC.

  10. The role of KIF14 in patient-derived primary cultures of high-grade serous ovarian cancer cells.

    Science.gov (United States)

    Thériault, Brigitte L; Cybulska, Paulina; Shaw, Patricia A; Gallie, Brenda L; Bernardini, Marcus Q

    2014-12-21

    Previously, it has been shown that KIF14 mRNA is overexpressed in ovarian cancer (OvCa), regardless of histological subtype. KIF14 levels are independently predictive of poor outcome and increased rates of recurrence in serous OvCa patients. Furthermore, it has been shown that KIF14 also controls the in vivo tumorigenicity of OvCa cell lines. In this study, we evaluate the potential of KIF14 as a therapeutic target through selective inhibition of KIF14 in primary high-grade serous patient-derived OvCa cells. To assess the dependence of primary serous OvCa cultures on KIF14, protein levels in 11 prospective high grade serous ovarian cancer samples were increased (KIF14 overexpression by transfection) or decreased (anti-KIF14 shRNA) in vitro, and proliferative capacity, anchorage independence and xenograft growth were assessed. Seven of eleven samples demonstrated increased/decreased in vitro proliferation in response to KIF14 overexpression/knockdown, respectively. When examining in vitro tumorigenicity (colony formation) and in vivo growth (subcutaneous xenografts) in response to KIF14 manipulation, none of the samples demonstrated growth in soft agar (11 samples), or xenograft growth (4 samples). Although primary high-grade serous OvCa cells may depend on KIF14 for in vitro proliferation we were unable to demonstrate a role for KIF14 on tumorigenicity or develop an in vivo model for assessment. We have, however developed an effective in vitro method to evaluate the effect of target gene manipulation on the proliferative capacity of primary OvCa cultures.

  11. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  12. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  13. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Mitsuko [Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 (Japan)

    2012-07-18

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.

  14. Ovarian cancer stroma: pathophysiology and the roles in cancer development.

    Science.gov (United States)

    Furuya, Mitsuko

    2012-07-18

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.

  15. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    Science.gov (United States)

    Furuya, Mitsuko

    2012-01-01

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers. PMID:24213462

  16. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation

  17. In-vitro cytocidal effect of water on bladder cancer cells: The potential role for intraperitoneal lavage during radical cystectomy.

    Science.gov (United States)

    Taoka, Rikiya; Williams, Stephen B; Ho, Philip L; Kamat, Ashish M

    2015-01-01

    We investigate the cytocidal effect of water on bladder cancer cells. Intraperitoneal lavage with sterile water is sometimes used during radical cystectomy to lyse cancer cells that might have escaped the surgical specimen. The efficacy of this approach at the cellular level is unknown. Three bladder cancer cell lines of varying grade, RT4, TCCSUP and T24 were exposed to sterile water, and morphological changes were closely observed under microscopy. Changes of cell membrane integrity, cell viability, and cell number of re-incubated cells after water exposure were measured to determine water induced hypotonic shock. The low-grade RT4 cells started swelling immediately upon exposure to water followed by rupture within 3 minutes. The higher grade TCCSUP and T24 cells demonstrated limited hypotonic swelling with significantly less cell rupture after 10 minutes. The damage to cell membrane of RT4 cells was evident at 1 minute; only 10.0% of cells were intact at 10 minutes. On the other hand, 41.9% and 77.8% of TCCSUP and T24 cells were intact at 10 minutes, respectively. Percentage of viable cells at 10 minutes was 2.1 ± 2.3%, 2.3 ± 0.4%, and 16.1 ± 0.6% for RT4, TCCSUP, and T24, respectively. Cytocidal effect of hypotonic shock can be achieved, to varying degrees, by exposing bladder cancer cells to water for at least 10 minutes. This in vitro study may have bearing on the effects seen with intraperitoneal lavage using sterile water during radical cystectomy.

  18. Differential roles of fibroblast growth factor receptors (FGFR 1, 2 and 3 in the regulation of S115 breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Kati M Tarkkonen

    Full Text Available Fibroblast growth factors (FGFs regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.

  19. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer

    NARCIS (Netherlands)

    Bevers, R. F. M.; Kurth, K.-H.; Schamhart, D. H. J.

    2004-01-01

    Intravesical instillation of Bacillus Calmette-Guérin (BCG) is used for the treatment of superficial bladder cancer, both to reduce the recurrence rate of bladder tumour and to diminish the risk of progression. Since its first therapeutic application in 1976, major research efforts have been

  20. Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: role of PHLDA1 as an apoptosis suppressor.

    Science.gov (United States)

    Murata, Takatoshi; Sato, Tsutomu; Kamoda, Takeshi; Moriyama, Hiromitsu; Kumazawa, Yasuo; Hanada, Nobuhiro

    2014-01-15

    Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor. © 2013 Elsevier Inc. All rights reserved.

  1. Expression of Peroxisome Proferator-Activated Receptor γ (PPARγ in Human Transitional Bladder Cancer and its Role in Inducing Cell Death

    Directory of Open Access Journals (Sweden)

    You-Fei Guan

    1999-10-01

    Full Text Available The present study examined the expression and role of the thiazolidinedione (TZD-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ, in human bladder cancers. In situ hybridization shows that PPARγ mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's studied (n=11. PPARγ was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor α (RXRα, a 9-cis-retinoic acid stimulated (9-cis-RA heterodimeric partner of PPARγ, was also co-expressed in all TCCa tissues and cell lines. Treatment of the T24 bladder cancer cells with the TZD PPARγ agonist troglitazone, dramatically inhibited 3H-thymidine incorporation and induced cell death. Addition of the RXRα ligands, 9-cis-RA or LG100268, sensitized T24 bladder cancer cells to the lethal effect of troglitazone and two other PPARγ activators, ciglitazone and 15-deoxy-Δ12,14-PGJ2 (15dPGJ2. Troglitazone treatment increased expression of two cyclin-dependent kinase inhibitors, p21wAF1/CIP1 and p16INK4, reduced cyclin D1 expression, consistent with G1 arrest. Troglitazone also induced an endogenous PPARγ target gene in T24 cells, adipocyte-type fatty acid binding protein (A-FABP, the expression of which correlates with bladder cancer differentiation. In situ hybridization shows that A-FABP expression is localized to normal uroepithelial cells as well as some TCCa's. Taken together, these results demonstrate that PPARγ is expressed in human TCCa where it may play a role in regulating TCCa differentiation and survival, thereby providing a potential target for therapy of uroepithelial cancers.

  2. Role of emmprin in endometrial cancer

    Directory of Open Access Journals (Sweden)

    Nakamura Keiichiro

    2012-05-01

    Full Text Available Abstract Background Extracellular matrix metalloproteinase inducer (Emmprin/CD147 is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Enriched on the surface of many tumor cells, emmprin promotes tumor growth, invasion, metastasis and angiogenesis. We evaluated the clinical importance of emmprin and investigated its role in endometrial cancer. Methods Emmprin expression was examined in uterine normal endometrium, endometrial hyperplasia and cancer specimens by immunohistochemistry. In addition, the biological functions and inhibitory effects of an emmprin knockdown were investigated in HEC-50B and KLE endometrial cancer cell lines. Results The levels of emmprin expression were significantly increased in the endometrial cancer specimens compared with the normal endometrium and endometrial hyperplasia specimens (p p p  Conclusions The present findings suggest that low emmprin expression might be a predictor of favorable prognosis in endometrial cancer patients, and that emmprin may represent a potential therapeutic target for endometrial cancer.

  3. Review of the curative role of radiotherapy in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Damstrup, L; Poulsen, H S

    1994-09-01

    The present paper is a comprehensive review of available data concerning the role of radiotherapy as an intended curative treatment in patients with non-small cell lung cancer (NSCL). The following issues are reviewed (1) optimal dose, (2) optimal fractionation, (3) optimal treatment planning, (4) clinical results in terms of single treatment and combined treatment with either surgery or chemotherapy. In resectable NSCLC high dose radiotherapy to small localized tumours gives a 5-year survival rate of 7-38%. It is concluded that this treatment modality is appropriate for certain selected patients who refuse to have surgery, who have medical contradications for surgery, or who are of old age. It is discussed whether the treatment should be split course, continuous, hypo-og hyperfraction. A total dose of 55 Gy must be given. CT scanning should be mandatory for optimal planning and therapy. The literature does not give a conclusive answer to whether preoperative or postoperative radiotherapy is indicated. The data indicate that patients with Stage III NSCLC will benefit from a combined treatment modality in terms of chemotherapy based on high dose cisplatinum and radiotherapy. The main conclusion of the review is that many areas with randomized controlled trials are needed in order to answer the critical issue of the role of radiotherapy in the treatment of NSCLS.

  4. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  5. Understanding the Potential Role of Circulating Tumor Cells in Prostate Cancer Metastasis

    Science.gov (United States)

    2012-08-01

    ionically cross-linked hydrogels formed in situ enabled the capture, release, and FACS analysis of endothelial progenitor cells from heparinized whole blood...common anticoagulation strategies that work on the principle of calcium chelation (EDTA, citrates , etc.).19,20 Furthermore, during cell release, target...shown in red. (E) Released cells (blue bars) were found to have comparable viability (98.9% ± 0.3% vs 99.4% ± 0.6%), rates of colony formation from

  6. Basal cell cancer (image)

    Science.gov (United States)

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  7. A novel role for peptidylarginine deiminases in microvesicle release reveals therapeutic potential of PAD inhibition in sensitizing prostate cancer cells to chemotherapy

    Directory of Open Access Journals (Sweden)

    Sharad Kholia

    2015-06-01

    Full Text Available Introduction: Protein deimination, defined as the post-translational conversion of protein-bound arginine to citrulline, is carried out by a family of 5 calcium-dependent enzymes, the peptidylarginine deiminases (PADs and has been linked to various cancers. Cellular microvesicle (MV release, which is involved in cancer progression, and deimination have not been associated before. We hypothesize that elevated PAD expression, observed in cancers, causes increased MV release in cancer cells and contributes to cancer progression. Background: We have previously reported that inhibition of MV release sensitizes cancer cells to chemotherapeutic drugs. PAD2 and PAD4, the isozymes expressed in patients with malignant tumours, can be inhibited with the pan-PAD-inhibitor chloramidine (Cl-am. We sought to investigate whether Cl-am can inhibit MV release and whether this pathway could be utilized to further increase the sensitivity of cancer cells to drug-directed treatment. Methods: Prostate cancer cells (PC3 were induced to release high levels of MVs upon BzATP stimulation of P2X7 receptors. Western blotting with the pan-protein deimination antibody F95 was used to detect a range of deiminated proteins in cells stimulated to microvesiculate. Changes in deiminated proteins during microvesiculation were revealed by immunoprecipitation and immunoblotting, and mass spectrometry identified deiminated target proteins with putative roles in microvesiculation. Conclusion: We report for the first time a novel function of PADs in the biogenesis of MVs in cancer cells. Our results reveal that during the stimulation of prostate cancer cells (PC3 to microvesiculate, PAD2 and PAD4 expression levels and the deimination of cytoskeletal actin are increased. Pharmacological inhibition of PAD enzyme activity using Cl-am significantly reduced MV release and abrogated the deimination of cytoskeletal actin. We demonstrated that combined Cl-am and methotrexate (MTX treatment of

  8. The Role of Cancer Stem Cells in the Organ Tropism of Breast Cancer Metastasis: A Mechanistic Balance between the “Seed” and the “Soil”?

    Directory of Open Access Journals (Sweden)

    Jenny E. Chu

    2012-01-01

    Full Text Available Breast cancer is a prevalent disease worldwide, and the majority of deaths occur due to metastatic disease. Clinical studies have identified a specific pattern for the metastatic spread of breast cancer, termed organ tropism; where preferential secondary sites include lymph node, bone, brain, lung, and liver. A rare subpopulation of tumor cells, the cancer stem cells (CSCs, has been hypothesized to be responsible for metastatic disease and therapy resistance. Current treatments are highly ineffective against metastatic breast cancer, likely due to the innate therapy resistance of CSCs and the complex interactions that occur between cancer cells and their metastatic microenvironments. A better understanding of these interactions is essential for the development of novel therapeutic targets for metastatic disease. This paper summarizes the characteristics of breast CSCs and their potential metastatic microenvironments. Furthermore, it raises the question of the existence of a CSC niche and highlights areas for future investigation.

  9. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    Science.gov (United States)

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  10. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.

    Science.gov (United States)

    Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A

    2012-11-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.

  11. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    Science.gov (United States)

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  12. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Science.gov (United States)

    Suchanski, Jaroslaw; Tejchman, Anna; Zacharski, Maciej; Piotrowska, Aleksandra; Grzegrzolka, Jedrzej; Chodaczek, Grzegorz; Nowinska, Katarzyna; Rys, Janusz; Dziegiel, Piotr; Kieda, Claudine; Ugorski, Maciej

    2017-01-01

    In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst) overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first time, that such

  13. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Suchanski

    Full Text Available In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first

  14. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yunguang [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zheng Siyuan [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J. [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Carbone, David P. [Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zhao Zhongming, E-mail: zhongming.zhao@vanderbilt.edu [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Lu Bo, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  16. Role of Natural Killer T Cells in Immunogenic Chemotherapy for Breast Cancer

    Science.gov (United States)

    2013-09-01

    al. (2009) Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans . Blood 113(26...importance considering that  identification  of human IL‐17‐ producing  T  cells  in  healthy  donors  remains  challenging9,  despite the  fact  that...175(1):203-209. 45. Liu CP, et al. (1993) Abnormal T cell development in CD3-zeta-/- mutant mice and identification of a novel T cell population in

  17. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    Science.gov (United States)

    2007-03-01

    Kobayashi, R. & Stillman, B. Characterization of the five replication factor C genes of Saccharomyces cerevisiae . Mol. Cell Biol. 15, 4661-4671... Saccharomyces cerevisiae . Mol. Cell. Biol. 15, 4661–4671. Davila, M., Frost, A.R., Grizzle, W.E., and Chakrabarti, R. (2003). LIM kinase 1 is essential for...for supplying nutrition as well as removing waste, consistent with the observation that ANG1 causes vessel enlargement without angiogenic sprouting

  18. Role of neutral ceramidase in colon cancer.

    Science.gov (United States)

    García-Barros, Mónica; Coant, Nicolas; Kawamori, Toshihiko; Wada, Masayuki; Snider, Ashley J; Truman, Jean-Philip; Wu, Bill X; Furuya, Hideki; Clarke, Christopher J; Bialkowska, Agnieszka B; Ghaleb, Amr; Yang, Vincent W; Obeid, Lina M; Hannun, Yusuf A

    2016-12-01

    Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer. © FASEB.

  19. The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.

    Directory of Open Access Journals (Sweden)

    Keiko Muraki

    2013-03-01

    Full Text Available Telomeres distinguish chromosome ends from double-strand breaks (DSBs and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.

  20. The Role of Hesperidin in Cell Signal Transduction Pathway for the Prevention or Treatment of Cancer.

    Science.gov (United States)

    Ahmadi, A; Shadboorestan, A; Nabavi, S F; Setzer, W N; Nabavi, S M

    2015-01-01

    During past two decades, plant-derived bioactive compounds have been reported as novel therapeutic agents for prevention and/or mitigation of different human diseases such as cancer, inflammation, cardiovascular and neurodegenerative diseases. Hesperidin is known as one of the most common and bioactive constituents of Citrus (C) species which possesses multiple health-promotion effects. A plethora of scientific literature reported that hesperidin possesses in-vitro and in-vivo anticancer activities. In addition, there are numerous scientific evidences regarding the molecular mechanisms of anticancer activities of hesperidin and its aglycone, hesperetin. However, in this case, the number of comprehensive reviews on molecular mechanisms underlying the anticancer effects of hesperidin is sparse. Therefore, in this work we present a critical review of the available literature regarding the molecular mechanisms of the anticancer effects of hesperidin and its aglycone, hesperetin.

  1. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-08-01

    Full Text Available While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2, glutamate dehydrogenase 1 (GLUD1, and glutamic-oxaloacetic transaminase 2 (GOT2, to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD, phosphoribosyl pyrophosphate amidotransferase (PPAT, and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively, suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.

  2. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Abhilasha Gupta

    Full Text Available Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2 in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9, members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA. CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.

  3. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms.

    Science.gov (United States)

    Quốc Lu'o'ng, Khanh Vinh; Nguyễn, Lan Thi Hoàng

    2012-01-01

    Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin-angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.

  4. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Luong KV

    2012-12-01

    Full Text Available Khanh vinh quốc Lương, Lan Thi Hoàng NguyễnVietnamese American Medical Research Foundation, Westminster, California, USAAbstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.Keywords: β-adrenergic blocker, neoplasm, β-adrenergic antagonism, non-genomic factor

  5. The role of irreversible HER family inhibition in the treatment of patients with non-small cell lung cancer.

    Science.gov (United States)

    Kwak, Eunice

    2011-01-01

    Small-molecule tyrosine kinase inhibitors (TKIs) of the human epidermal growth factor receptor (HER) include the reversible epidermal growth factor receptor (EGFR/HER-1) inhibitors gefitinib and erlotinib. EGFR TKIs have demonstrated activity in the treatment of patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations; however, multiple mechanisms of resistance limit the benefit of these drugs. Although resistance to EGFR TKIs can be intrinsic and correlated with molecular lesions such as in Kirsten rat sarcoma viral oncogene homolog (KRAS; generally observed in a wild-type EGFR background), acquired resistance to EGFR TKIs can evolve in the setting of activating EGFR mutations, such as in the case of EGFR T790M mutations. Several irreversible inhibitors that target multiple members of the HER family simultaneously are currently in clinical development for NSCLC and may have a role in the treatment of TKI-sensitive and TKI-resistant disease. These include PF00299804, an inhibitor of EGFR/HER-1, HER-2, and HER-4, and afatinib (BIBW 2992), an inhibitor of EGFR/HER-1, HER-2, and HER-4. Results of large, randomized trials of these agents may help to determine their potential for the treatment of NSCLC.

  6. What roles do colon stem cells and gap junctions play in the left and right location of origin of colorectal cancers?

    Science.gov (United States)

    Trosko, James E; Lenz, Heinz-Josef

    2017-03-01

    This "Commentary" examines an important clinical observation that right-sided colorectal cancers appear less treatable than the left-sided cancers. The concepts of (a) the "initiation/promotion/progression" process, (b) the stem cell hypothesis, (c) the role gap junctional intercellular communication, (d) cancer cells lacking GJIC either because of the non-expression of connexin genes or of non-functional gap junction proteins, and (e) the role of the microbiome in promoting initiated colon stem cells to divide symmetrically or asymmetrically are examined to find an explanation. It has been speculated that "embryonic-like" lesions in the ascending colon are initiated stem cells, promoted via symmetrical cell division, while the polyp-type lesions in the descending colon are initiated stem cells stimulated to divide asymmetrically. To test this hypothesis, experiments could be designed to examine if right-sided lesions might express Oct4A and ABCG2 genes but not any connexin genes, whereas the left-sided lesions might express a connexin gene, but not Oct4A or the ABCG2 genes. Treatment of the right sided lesions might include transcriptional regulators, whereas the left-sided lesions would need to restore the posttranslational status of the connexin proteins.

  7. Role of osteopontin in the regulation of human bladder cancer proliferation and migration in T24 cells.

    Science.gov (United States)

    Xu, Song-Tao; Guo, Chun; Ding, Xiang; Fan, Wen-Juan; Zhang, Fu-Hua; Xu, Wan-Ling; Ma, Yong-Chao

    2015-05-01

    Osteopontin (OPN), a secreted acid glycoprotein with a variety of functions, promotes tumor proliferation, differentiation, invasion and metastasis. The aim of the current study was to investigate whether OPN may serve as a potential therapeutic target for human bladder cancer. RNA interference (RNAi) was performed to downregulate the expression of the OPN gene in T24 human bladder cancer cells. The mRNA and protein expression levels of OPN following RNAi were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the cell cycle progression, apoptosis and proliferation were investigated using by flow cytometric analysis and MTT assay. The cell invasion ability was measured using a Matrigel transwell assay. The mRNA and protein expression levels of OPN were found to be significantly downregulated following RNAi. The proliferation and invasion of T24 cells were significantly inhibited in vitro. In conclusion, RNAi‑targeting OPN may inhibit the proliferation, invasion and tumorigenicity of human bladder cancer cells. Therefore, OPN may serve as a potential therapeutic target for human bladder cancer.

  8. Role of 5-Aza-CdR in mitomycin-C chemosensitivity of T24 bladder cancer cells.

    Science.gov (United States)

    Zhang, Hui-Hui; Huang, Bo; Cao, You-Han; Li, Qing; Xu, Han-Feng

    2017-11-01

    Chemotherapeutic insensitivity is one of key obstacles to effectively treating muscle invasive bladder cancer. 5-Aza-2'-deoxycytidine (5-Aza-CdR) has been identified as a tumor suppressive agent in various types of cancer. The aim of the present study was to identify the effects of 5-Aza-CdR on the mitomycin-C (MMC) chemosensitivity of T24 bladder cancer cells and investigate the underlying mechanisms. T24 cells were treated with a combination of MMC and 5-Aza-CdR at various concentrations. The rates of proliferation and apoptosis were assessed by an MTT assay and flow cytometry, respectively. The expression of drug resistance-associated proteins, including P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1), and autophagy-associated proteins, including beclin 1, nucleoporin 62 (p62) and autophagy protein 5 (ATG5) were detected with western blotting. Treatment with 5-Aza-CdR significantly promoted the MMC chemosensitivity of T24 cells. The proliferation of T24 cells was significantly inhibited with increasing 5-Aza-CdR concentration, whereas apoptosis was significantly increased. This was associated with the decreased expression of P-gp, MRP1, beclin 1, p62 and ATG5. In conclusion, 5-Aza-CdR enhanced MMC chemosensitivity in bladder cancer T24 cells, which may be caused by the suppression of drug resistance- and autophagy-associated proteins.

  9. Focus on the potential role of ficlatuzumab in the treatment of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    D'Arcangelo M

    2013-03-01

    Full Text Available Manolo D’Arcangelo,1,2 Federico Cappuzzo2 1Cancer Center, University of Colorado, Aurora (CO, USA; 2Department of Oncology, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy Abstract: Lung cancer treatment has rapidly changed in the last few years thanks to novel insights into cancer biology. Several biomarkers and signaling pathways have been recognized as conceivable targets for treatment, and among them is the mesenchymal–epithelial transition/hepatocyte growth factor (c-MET/HGF axis. Alterations in the c-MET gene and aberrations of MET and HGF expression impact on lung cancer prognosis and are involved in resistance to epidermal growth factor receptor (EGFR inhibitors in non-small cell lung cancer (NSCLC patients harboring activating EGFR mutations. Several anti-MET and anti-HGF strategies are currently under investigation, including monoclonal antibodies. Ficlatuzumab is a monoclonal antibody directed against HGF that is currently under investigation in NSCLC. The aim of the present review is to critically review available data on HGF and ficlatuzumab in NSCLC. Keywords: non-small cell lung cancer, MET, hepatocyte growth factor, ficlatuzumab, AV-299

  10. The role of 6-phosphofructo-2-kinase (PFK-2/fructose 2,6-bisphosphatase (FBPase-2 in metabolic reprogramming of cancer cells

    Directory of Open Access Journals (Sweden)

    Kinga A. Kocemba

    2016-09-01

    Full Text Available The high rate of glucose breakdown is the fingerprint of cancer. Increased glycolysis allows tumour cells to fulfil their high energetic and biosynthetic demands. Interestingly, however, rather than metabolizing glucose in the oxidative phosphorylation pathway, cancer cells generally use glucose for aerobic glycolysis. This phenomenon is known as the Warburg effect and is considered as one of the most fundamental forms of metabolic reprogramming during cancerogenesis. Changes in the rate of glycolytic activity of cancer cells are caused mainly by the increased expression of glycolytic enzymes as a consequence of activation of oncogenes or loss of tumour suppressors. In addition, the hypoxic tumour environment also triggers upregulation of a series of genes involved in glucose metabolism. Among the metabolic enzymes that are modulated by these factors in cancer cells are the 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatases (PFKFBs, a family of bifunctional enzymes that control the levels of fructose 2,6-bisphosphate (Fru-2,6-P2, an essential activator of the glycolytic flux. Fru-2,6-P2 strongly activates glucose breakdown in glycolysis through allosteric modulation of the rate-limiting enzyme of glycolysis, phosphofructokinase-1 (PFK-1. Thus far, many studies have reported a correlation between aberrant PFKFB expression level and the grade of tumour aggressiveness, which directly indicates that these enzymes may play a crucial role in cancerogenesis. The objective of this review is to highlight the recent studies on aberrant expression of PFKFBs and its influence on cancer progression.

  11. The Role of ABC Proteins in Drug Resistant Breast Cancer Cells

    Science.gov (United States)

    2008-04-01

    KM71 harboring pPIC3.5/3′Pfmdr16HB, and KM71 harboring pPICZc/ 5′Pfmdr16HB or pPICZc/Pfmdr16HB were selected for growth on YPD medium + 100 mM zeocin...minimal glycerol medium lacking histidine, and minimal glycerol medium supplemented with 100 mM zeocin, respectively. Design and Synthesis of the...plated on either minimal dextrose or YPD supplemented with 100 mM zeocin. Isolation of Yeast Crude Membranes. Yeast cells were grown to midlog phase

  12. Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    2009-09-01

    Full Text Available Prostate cancer remains the most common malignancy among men in United States, and there is no remedy currently available for the advanced stage hormone-refractory cancer. This is partly due to the incomplete understanding of androgen-regulated proteins and their encoded functions. Whole-cell proteomes of androgen-starved and androgen-treated LNCaP cells were analyzed by semi-quantitative MudPIT ESI- ion trap MS/MS and quantitative iTRAQ MALDI- TOF MS/MS platforms, with identification of more than 1300 high-confidence proteins. An enrichment-based pathway mapping of the androgen-regulated proteomic data sets revealed a significant dysregulation of aminoacyl tRNA synthetases, indicating an increase in protein biosynthesis- a hallmark during prostate cancer progression. This observation is supported by immunoblot and transcript data from LNCaP cells, and prostate cancer tissue. Thus, data derived from multiple proteomics platforms and transcript data coupled with informatics analysis provides a deeper insight into the functional consequences of androgen action in prostate cancer.

  13. Helicobacter pylori Activates IL-6-STAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species.

    Science.gov (United States)

    Piao, Juan-Yu; Lee, Hee Geum; Kim, Su-Jung; Kim, Do-Hee; Han, Hyeong-Jun; Ngo, Hoang-Kieu-Chi; Park, Sin-Aye; Woo, Jeong-Hwa; Lee, Jeong-Sang; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2016-10-01

    Recent studies have shown that Helicobacter pylori (H. pylori) activates signal transducer and activator of transcription 3 (STAT3) that plays an important role in gastric carcinogenesis. However, the molecular mechanism underlying H. pylori-mediated STAT3 activation is still not fully understood. In this study, we investigated H. pylori-induced activation of STAT3 signaling in AGS human gastric cancer cells and the underlying mechanism. AGS cells were cocultured with H. pylori, and STAT3 activation was assessed by Western blot analysis, electrophoretic mobility shift assay and immunocytochemistry. To demonstrate the involvement of reactive oxygen species (ROS) in H. pylori-activated STAT3 signaling, the antioxidant N-acetylcysteine was utilized. The expression and production of interleukin-6 (IL-6) were measured by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. The interaction between IL-6 and IL-6 receptor (IL-6R) was determined by the immunoprecipitation assay. H. pylori activates STAT3 as evidenced by increases in phosphorylation on Tyr(705) , nuclear localization, DNA binding and transcriptional activity of this transcription factor. The nuclear translocation of STAT3 was also observed in H. pylori-inoculated mouse stomach. In the subsequent study, we found that H. pylori-induced STAT3 phosphorylation was dependent on IL-6. Notably, the increased IL-6 expression and the IL-6 and IL-6R binding were mediated by ROS produced as a consequence of H. pylori infection. H. pylori-induced STAT3 activation is mediated, at least in part, through ROS-induced upregulation of IL-6 expression. These findings provide a novel molecular mechanism responsible for H. pylori-induced gastritis and gastric carcinogenesis. © 2016 John Wiley & Sons Ltd.

  14. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  15. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  16. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation.

    Science.gov (United States)

    Vuong, Tri; Mallet, Jean-François; Ouzounova, Maria; Rahbar, Sam; Hernandez-Vargas, Hector; Herceg, Zdenko; Matar, Chantal

    2016-01-14

    Naturally occurring polyphenolic compounds from fruits, particularly from blueberries, have been reported to be significantly involved in cancer chemoprevention and chemotherapy. Biotransformation of blueberry juice by Serratia vaccinii increases its polyphenolic content and endows it with anti-inflammatory properties. This study evaluated the effect of a polyphenol-enriched blueberry preparation (PEBP) and its non-fermented counterpart (NBJ), on mammary cancer stem cell (CSC) development in in vitro, in vivo and ex vivo settings. Effects of PEBP on cell proliferation, mobility, invasion, and mammosphere formation were measured in vitro in three cell lines: murine 4T1 and human MCF7 and MDA-MB-231. Ex vivo mammosphere formation, tumor growth and metastasis observations were carried out in a BALB/c mouse model. Our research revealed that PEBP influence cellular signaling cascades of breast CSCs, regulating the activity of transcription factors and, consequently, inhibiting tumor growth in vivo by decreasing metastasis and controlling PI3K/AKT, MAPK/ERK, and STAT3 pathways, central nodes in CSC inflammatory signaling. PEBP significantly inhibited cell proliferation of 4T1, MCF-7 and MDA-MB-231. In all cell lines, PEBP reduced mammosphere formation, cell mobility and cell migration. In vivo, PEBP significantly reduced tumor development, inhibited the formation of ex vivo mammospheres, and significantly reduced lung metastasis. This study showed that polyphenol enrichment of a blueberry preparation by fermentation increases its chemopreventive potential by protecting mice against tumor development, inhibiting the formation of cancer stem cells and reducing lung metastasis. Thus, PEBP may represent a novel complementary alternative medicine therapy and a source for novel therapeutic agents against breast cancer.

  17. Role of Radiotherapy in Metastatic Non-small Cell Lung Cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Sergio L. Faria

    2014-10-01

    Full Text Available Radiotherapy has had important role in the palliation of NSCLC. Randomized trials tend to suggest that, in general, short regimens give similar palliation and toxicity compared to longer regimens. The benefit of combining chemotherapy to radiosensitize the palliative radiation treatment is an open question, but so far it has not been proved to be very useful in NSCLC. The addition of molecular targeted drugs to radiotherapy outside of approved regimens or clinical trials warrants careful consideration for every single case and probably should not be used as a routine management.Stereotactic radiosurgery (SRS and stereotactic body radiation therapy (SBRT are modern techniques being used each time more frequently in the treatment of single or oligometastases. In general, they offer good tumour control with little toxicity (with a more expensive cost compared to the traditionally fractionated radiotherapy regimens.

  18. Dr. Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy.

    Science.gov (United States)

    Strasser, A

    1999-05-17

    Cell death is a physiological process which is required for normal development and existence of multi-cellular organisms. Physiological cell death, or apoptosis, is controlled by an evolutionarily conserved mechanism. Abnormalities in this process are implicated as a cause or contributing factor in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, particularly in combination with dysregulated cell-cycle control, and can influence the response of tumour cells to anti-cancer therapy. Molecular biological and biochemical approaches are used to find missing cell-death regulators and to define signalling cascades, while experiments in genetically modified mice will identify the essential function of these molecules. Discoveries from cell death research should provide clues for designing therapies for a variety of diseases, including degenerative disorders, auto-immunity and cancer.

  19. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  20. Basal cell skin cancer

    Science.gov (United States)

    Basal cell skin cancer almost never spreads. If it is left untreated, it may spread into surrounding areas and nearby tissues and bone. In these cases, treatment can injure the appearance of the skin.

  1. The potential role of Brachyury in inducing epithelial-to-mesenchymal transition (EMT) and HIF-1α expression in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chao [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Zhang, Jingjing, E-mail: jingjingzhangzs@163.com [Department of Cancer Radiotherapy, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Fu, Jianhua [Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Ling, Feihai, E-mail: feihailingfhl@163.com [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China)

    2015-11-27

    One of transcription factors of the T-box family, Brachyury has been implicated in tumorigenesis of many types of cancers, regulating cancer cell proliferation, metastasis, invasion and epithelial-to-mesenchymal transition (EMT). However, the role of Brachyury in breast cancer cells has been scarcely reported. The present study aimed to investigate the expression and role of Brachyury in breast cancer. Brachyury expression was analyzed by qRT-PCR and Western blot. The correlations between Brachyury expression and clinicopathological factors of breast cancer were determined. Involvement of EMT stimulation and hypoxia-inducible factor-1α (HIF-1α) expression induction by Brachyury was also evaluated. Moreover, the effect of Brachyury on tumor growth and metastasis in vivo was examined in a breast tumor xenograft model. Brachyury expression was enhanced in primary breast cancer tissues and Brachyury expression was correlated with tumor stage and lymph node metastasis. Hypoxia enhanced Brachyury expression, the silencing of which blocked the modulation effect of hypoxia on E-cadherin and vimentin expression. Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling as well as accelerated cell proliferation and migration in vitro. Additionally, Brachyury accelerated breast tumor xenograft growth and increased lung metastasis in nude mice. In summary, our data confirmed that Brachyury might contribute to hypoxia-induced EMT of breast cancer and trigger HIF-1alpha expression via PTEN/Akt signaling. - Highlights: • Brachyury expression was correlated with tumor stage and lymph node metastasis. • Hypoxia enhanced Brachyury expression, which contributes to hypoxia-induced EMT. • Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling. • Brachyury accelerated tumor xenograft growth and increased lung metastasis.

  2. EGR-1/Bax Pathway Plays a Role in Vitamin E δ-Tocotrienol-induced Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Wang, Chen; Husain, Kazim; Zhang, Anying; Centeno, Barbara A.; Chen, Dung-Tsa; Tong, Zhongsheng; Sebti, Säid M.; Malafa, Mokenge P.

    2015-01-01

    The anticancer activity of δ-tocotrienol, a bioactive vitamin E present in whole grain cereals, annatto beans, and palm fruit, is strongly dependent on its effect on the induction of apoptosis. δ-Tocotrienol-induced apoptosis is associated with consistent induction in the expression of the pro-apoptotic protein Bax. The molecular mechanism by which δ-tocotrienol regulates Bax expression is unknown. We carried out a DNA microarray study that identified δ-tocotrienol induction of the zinc finger transcription factor, EGR-1, in pancreatic cancer cells. Here, we provide evidence linking δ-tocotrienol-induced apoptosis in pancreatic cancer cells to EGR-1 regulation of Bax expression. Forced expression of EGR-1 induces Bax expression and apoptosis in pancreatic cancer cells. In contrast, knockdown of δ-tocotrienol-induced EGR-1 by small interfering RNA attenuated δ-tocotrienol-induced Bax expression and reduced δ-tocotrienol-induced apoptosis. Further analyses showed that de novo protein synthesis was not required for δ-tocotrienol-induced EGR-1 expression, suggesting a direct effect of δ-tocotrienol on EGR-1 expression. Furthermore, a ChIP assay demonstrated that EGR-1 binds to the Bax gene promoter. Finally, δ-tocotrienol treatment induced Bax expression and activated EGR-1 in the pancreatic neoplastic cells of the PDX-Cre Kras genetically engineered model of pancreatic cancer. Our study provides the first evidence for EGR-1 as a direct target of vitamin E δ-tocotrienol, suggesting that EGR-1 may act as a pro-apoptotic factor in pancreatic cancer cells via induction of Bax. PMID:25997867

  3. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro.

    Science.gov (United States)

    Bilim, Vladimir; Kasahara, Takashi; Hara, Noboru; Takahashi, Kota; Tomita, Yoshihiko

    2003-01-01

    XIAP directly inhibits executor caspases, making it the most downstream antiapoptotic molecule. Here, we examined the expression and function of XIAP in normal urothelium and TCC. We also examined the therapeutic effect of xiap AS PODN on the cell cycle and apoptosis of multidrug-resistant T24 bladder cancer cells. XIAP was moderately expressed in normal transitional epithelium with prominent expression on the superficial layer cells. Seventy-nine of 108 (73.15%) tumor samples were positive for XIAP protein, but XIAP positivity was not correlated with tumor stage or grade. Moreover, 4 bladder cancer cell lines (SCaBER, HT1376, T24 and RT4) expressed similar levels of XIAP. xiap AS PODN dose-dependently reduced the XIAP protein level and induced apoptosis, leading to decreased cell viability by 87%. Combined administration with doxorubicin resulted in marked cytotoxicity due to escalation of apoptosis. Overexpression of XIAP in T24 cells resulted in a modest but statistically significant (p TCC, and endogenous XIAP levels are sufficient to protect cells from apoptosis. Our results suggest that XIAP may play an important role early in human TCC carcinogenesis. xiap AS may be a candidate for use as a cancer therapy for overcoming drug resistance in highly malignant TCC. Copyright 2002 Wiley-Liss, Inc.

  4. Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    J Dinesh Kumar

    Full Text Available Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs compared with adjacent tissue myofibroblasts (ATMs. The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.

  5. NK Cells and Virus-Related Cancers

    OpenAIRE

    Mishra, Rabinarayan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2014-01-01

    Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.

  6. Role of JNK Activation and Mitochondrial Bax Translocation in Allicin-Induced Apoptosis in Human Ovarian Cancer SKOV3 Cells

    Directory of Open Access Journals (Sweden)

    Ling Xu

    2014-01-01

    Full Text Available Background. Allicin, the major component of freshly crushed garlic, is one of the most biologically active compounds of garlic; it has been reported to induce apoptosis in cancer cells; however, the mechanism by which allicin exerts its apoptotic effects is not fully understood. The aim of the present study was to further elucidate the apoptotic pathways induced by allicin in the human ovarian cancer cell line SKOV3. Methods. Cell proliferation and apoptosis were measured by cell-counting assay and flow cytometry analysis. Activation of the signaling pathway was screened by human phospho-kinase array analysis, and the activated pathway and its related proteins were further confirmed by western blot analysis. Results. Allicin induced SKOV3 cell apoptosis and JNK phosphorylation in a time- and dose-dependent manner, but these were significantly blocked by SP600125 (an inhibitor of JNK. The findings suggest that JNK phosphorylation is related to the action of allicin on SKOV3 cells. Furthermore, JNK activation induced Bcl-2 family activation, triggered mitochondria-mediated signaling pathways, and led to the translocation of a considerable amount of Bax and cytochrome c release. Conclusions. JNK activation and mitochondrial Bax translocation are involved in allicin-induced apoptosis in SKOV3 cells. Our data input new insights to the literature of allicin-induced apoptosis.

  7. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    Directory of Open Access Journals (Sweden)

    Mitsuko Furuya

    2012-07-01

    Full Text Available Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.

  8. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  9. The Key Role of Mitochondrial Apoptotic Pathway in the Cytotoxic Effect of Mushroom Extracts on Cancer Cells.

    Science.gov (United States)

    Han, Mei; Ling, Ming-Tat; Chen, Jiezhong

    2015-01-01

    Mushroom extracts have been extensively studied for their medicinal effects. They can stimulate immune responses and thus have been explored in cancer treatment. Recently, it has also been shown that some mushroom extracts can produce direct cytotoxic effect on cancer cells. In this review, we summarize the cytotoxic effect of mushroom extracts in cancer treatment revealed by both in vitro and in vivo studies. We also summarize the current understanding of the mechanisms associated with such an effect with an emphasis on the mitochondrial apoptotic pathway. The recent finding that mushroom extracts have direct cytotoxic effects supplements their known immune stimulating effects. Thus, novel anticancer agents based on new findings from mushroom extracts may soon be added to the present pool of anticancer drugs. Specifically, we propose that nanodelivery of the bioactive compounds of mushroom extracts to mitochondria will further increase their potential treatment efficacy.

  10. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  11. Role of lymphangiogenesis in lung cancer.

    Directory of Open Access Journals (Sweden)

    Renata Jankowska

    2010-02-01

    Full Text Available Lung cancer represents one of the most frequent causes of death due to neoplastic disease in Poland and around the world. The high mortality which accompany neoplastic diseases used to be ascribed mainly to dissemination of cancerous cells. Studies on animal models suggest that tumour lymphangiogenesis represents the principal factor in the process of metastases formation. Lymphangiogenesis involves a process of formation of new lymphatic vessels from already existing lymphatic capillaries. Lymphangiogenesis is stimulated by vascular endothelial growth factors (VEGF and other, recently reported factors, such as, e.g., cyclooxygenase 2, fibroblast growth factor 2, angiopoetin-1 and the insulin-resembling growth factor. In lymphangiogenesis a key role is played by neutropilin 2 or podoplanin and this promoted development of studies on lymphangiogenesis. Activation of VEGF-C/VEGF-D/VEGFR-3 axis increases motility and invasiveness of neoplastic cells, promotes development of metastases in several types of tumours such as, e.g., lung cancer, mammary carcinoma, cancers of the neck, prostate and large intestine. In recent years lymphangiogenesis provided topic of many studies. A positive correlation was detected between expressions of VEGF-C/D and VEGFR-3 in non-small cell lung cancer. In patients with lung cancer with high expression of VEGF-C a markedly abbreviated survival was noted. Positive correlation was detected between expression of VEGF-C and VEGF-D on one hand and expression of LYVE-1 on the other in sentinel lymph nodes with metastases of neoplastic cells in patients with non-small cell lung cancer. Also, high density of lymphatic vessels and high density of intraneoplastic microvessels proved to be independent poor prognostic indices in patients with non-small cell lung cancer. Extensive hope is linked to studies on inhibitors of lymphangiogenesis, which may improve results of treatment also in tumour patients.

  12. Characterization of adult α- and β-globin elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against oxidative insults.

    Directory of Open Access Journals (Sweden)

    Xiaolei Li

    Full Text Available OBJECTIVES: Hemoglobin (Hgb is the main oxygen and carbon dioxide carrier in cells of erythroid lineage and is responsible for oxygen delivery to the respiring tissues of the body. However, Hgb is also expressed in nonerythroid cells. In the present study, the expression of Hgb in human uterine cervix carcinoma cells and its role in cervical cancer were investigated. METHODOLOGY: The expression level of Hgb in cervical cancer tissues was assessed by quantitative reverse transcriptase-PCR (qRT-PCR. We applied multiple methods, such as RT-PCR, immunoblotting, and immunohistochemical analysis, to confirm Hgb expression in cervical cancer cells. The effects of ectopic expression of Hgb and Hgb mutants on oxidative stress and cell viability were investigated by cellular reactive oxygen species (ROS analysis and lactate dehydrogenase (LDH array, respectively. Both Annexin V staining assay by flow cytometry and caspase-3 activity assay were used, respectively, to evaluate cell apoptosis. RESULTS: qRT-PCR analysis showed that Hgb-α- (HBA1 and Hgb-β-globin (HBB gene expression was significantly higher in cervical carcinoma than in normal cervical tissues, whereas the expression of hematopoietic transcription factors and erythrocyte specific marker genes was not increased. Immunostaining experiments confirmed the expression of Hgb in cancer cells of the uterine cervix. Hgb mRNA and protein were also detected in the human cervical carcinoma cell lines SiHa and CaSki, and Hgb expression was up-regulated by hydrogen peroxide-induced oxidative stress. Importantly, ectopic expression of wild type HBA1/HBB or HBA1, rather than mutants HBA1(H88R/HBB(H93R unable to bind hemo, suppressed oxidative stress and improved cell viability. CONCLUSIONS: The present findings show for the first time that Hgb is expressed in cervical carcinoma cells and may act as an antioxidant, attenuating oxidative stress-induced damage in cervical cancer cells. These data provide a

  13. Characterization of Adult α- and β-Globin Elevated by Hydrogen Peroxide in Cervical Cancer Cells That Play A Cytoprotective Role Against Oxidative Insults

    Science.gov (United States)

    Mei, Qian; Fu, Xiaobing; Han, Weidong

    2013-01-01

    Objectives Hemoglobin (Hgb) is the main oxygen and carbon dioxide carrier in cells of erythroid lineage and is responsible for oxygen delivery to the respiring tissues of the body. However, Hgb is also expressed in nonerythroid cells. In the present study, the expression of Hgb in human uterine cervix carcinoma cells and its role in cervical cancer were investigated. Methodology The expression level of Hgb in cervical cancer tissues was assessed by quantitative reverse transcriptase-PCR (qRT-PCR). We applied multiple methods, such as RT-PCR, immunoblotting, and immunohistochemical analysis, to confirm Hgb expression in cervical cancer cells. The effects of ectopic expression of Hgb and Hgb mutants on oxidative stress and cell viability were investigated by cellular reactive oxygen species (ROS) analysis and lactate dehydrogenase (LDH) array, respectively. Both Annexin V staining assay by flow cytometry and caspase-3 activity assay were used, respectively, to evaluate cell apoptosis. Results qRT-PCR analysis showed that Hgb-α- (HBA1) and Hgb-β-globin (HBB) gene expression was significantly higher in cervical carcinoma than in normal cervical tissues, whereas the expression of hematopoietic transcription factors and erythrocyte specific marker genes was not increased. Immunostaining experiments confirmed the expression of Hgb in cancer cells of the uterine cervix. Hgb mRNA and protein were also detected in the human cervical carcinoma cell lines SiHa and CaSki, and Hgb expression was up-regulated by hydrogen peroxide-induced oxidative stress. Importantly, ectopic expression of wild type HBA1/HBB or HBA1, rather than mutants HBA1H88R/HBBH93R unable to bind hemo, suppressed oxidative stress and improved cell viability. Conclusions The present findings show for the first time that Hgb is expressed in cervical carcinoma cells and may act as an antioxidant, attenuating oxidative stress-induced damage in cervical cancer cells. These data provide a significant impact not

  14. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  15. BDNF is associated with SFRP1 expression in luminal and basal-like breast cancer cell lines and primary breast cancer tissues: a novel role in tumor suppression?

    Directory of Open Access Journals (Sweden)

    Laura Huth

    Full Text Available Secreted frizzled related protein 1 (SFRP1 functions as an important inhibitor of the Wnt pathway and is a known tumor suppressor gene, which is epigenetically silenced in a variety of tumors e.g. in breast cancer. However, it is still unclear how SFRP1 exactly affects the Wnt pathway. Our aim was to decipher SFRP1 involvement in biochemical signaling in dependency of different breast cancer subtypes and to identify novel SFRP1-regulated genes. We generated SFRP1 over-expressing in vitro breast cancer models, reflecting the two major subtypes by using basal-like BT20 and luminal-like HER2-positive SKBR3 cells. DNA microarray expression profiling of these models revealed that SFRP1 expression potentially modulates Bone morphogenetic protein- and Smoothened signaling (p<0.01, in addition to the known impact on Wnt signaling. Importantly, further statistical analysis revealed that in dependency of the cancer subtype model SFRP1 may affect the canonical and non-canonical Wnt pathway (p<0.01, respectively. While SFRP1 re-expression generally mediated distinct patterns of transcriptionally induced or repressed genes in BT20 and SKBR3 cells, brain derived neurotrophic factor (BDNF was identified as a SFRP1 induced gene in both cell lines. Although BDNF has been postulated as a putative oncogene, the co-regulation with SFRP1 indicates a potential suppressive function in breast cancer. Indeed, a positive correlation between SFRP1 and BDNF protein expression could be shown (p<0.001 in primary breast cancer samples. Moreover, TCGA dataset based analysis clearly underscores that BDNF mRNA is down-regulated in primary breast cancer samples predicting a poor prognosis of these patients. In line, we functionally provide evidence that stable BDNF re-expression in basal-like BT20 breast cancer cells blocks tumor cell proliferation. Hence, our results suggest that BDNF might rather mediate suppressive than promoting function in human breast cancer whose mode of

  16. The regulatory role of nickel on H3K27 demethylase JMJD3 in kidney cancer cells.

    Science.gov (United States)

    Guo, Xiaoqiang; Zhang, Yanmin; Zhang, Qiang; Fa, Pingping; Gui, Yaoting; Gao, Guoquan; Cai, Zhiming

    2016-07-01

    Nickel compounds are an important class of environmental pollutants and carcinogens. Chronic exposure to nickel compounds has been connected with increased risks of numerous cancers, including lung and kidney cancers. But the precise mechanism by which nickel compounds exert their carcinogenic properties is not completely understood. In this study, kidney cancer cells namely human embryonic kidney 293-containing SV40 large T-antigen (HEK293T) and 786-0 were incubated with various concentrations of nickel chloride for 24 h before analysing the expression of three histone H3K27 methylation-modifying enzymes and H3K27me3 using quantitative real-time polymerase chain reaction, Western blot and immunofluorescence analyses. Our results showed that incubation of nickel chloride upregulated the expression of H3K27me3 demethylase jumonji domain-containing protein 3 (JMJD3) in kidney cancer cells, which was accompanied by the reduction in the protein level of H3K27me3. Enhanced demethylation of H3K27me3 may represent a novel mechanism underlying the carcinogenicity of nickel compounds. © The Author(s) 2014.

  17. Sensitization of Cervical Cancer Cells to Cisplatin by Genistein: The Role of NFB and Akt/mTOR Signaling Pathways

    Directory of Open Access Journals (Sweden)

    K. Sahin

    2012-01-01

    Full Text Available Cervical cancer is among the top causes of death from cancer in women. Cisplatin-based chemotherapy has been shown to improve survival; however, cisplatin treatment is associated with toxicity to healthy cells. Genistein has been used as an adjunct to chemotherapy to enhance the activity of chemotherapeutic agents without causing increased toxicity. The present study was designed to investigate the effect of genistein (25 μM on antitumor activity of cisplatin (250 nM on HeLa cervical cancer cells. We have examined the alterations in expression of NF-B, p-mTOR, p-p70S6K1, p-4E-BP1, and p-Akt protein levels in response to treatment. The combination of 25 μM genistein with 250 nM cisplatin resulted in significantly greater growth inhibition (. Genistein enhanced the antitumor activity of cisplatin and reduced the expression of NF-B, p-mTOR, p-p70S6K1, p-4E-BP1, and p-Akt. The results in the present study suggest that genistein could enhance the activity of cisplatin via inhibition of NF-κB and Akt/mTOR pathways. Genistein is a promising nontoxic nutritional agent that may enhance treatment outcome in cervical cancer patients when given concomitantly with cisplatin. Clinical trials of genistein and cisplatin combination are warranted to test this hypothesis.

  18. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Directory of Open Access Journals (Sweden)

    Thomas W.J. Lennard

    2011-04-01

    Full Text Available In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP, have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC, combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  19. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  20. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  1. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532

    OpenAIRE

    Wardi, Layal; Alaaeddine, Nada; Raad, Issam; Sarkis, Riad; Serhal, Rim; Khalil, Charbel; Hilal, George

    2014-01-01

    Background Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In ...

  2. Colorectal cancer cell lines made resistant to SN38-and Oxaliplatin: Roles of altered ion transporter function in resistance?

    DEFF Research Database (Denmark)

    Sandra, Christensen; Jensen, Niels Frank; Stoeckel, Johanne Danmark

    2013-01-01

    Colorectal cancer (CRC) is the 3rd most common cancer globally, with 5year survival rates of ~50%. Response rates to standard treatments (irinotecan (SN38) or Oxaliplatin (Oxp)) are 31–56% and drug resistance is a major problem. Thus, we established in vitro CRC models to investigate SN38 and Oxp...... resistance in HCT-116, HT-29 and LoVo cells. Microarray analysis and qPCR validation showed that mRNA expression of glutamate transporters SLC1A1 and SLC1A3 were markedly altered in resistant cells. Remarkably, mRNA levels of SLC1A3 were increased by ~40-and ~2500-fold in SN38-and Oxp-resistant HT29 cells......, respectively. Studies are ongoing to assess glutamate uptake in parental and resistant CRC cells and the effect of inhibition/knockdown of SLC1A1 and -3 on SN38- and Oxp resistance. In conclusion, SN38-and Oxp-resistance in CRC cells is associated with SLC1A1 and -3 dysregulation. As these transporters have...

  3. Potential Roles of GLUT12 for Glucose Sensing and Cellular Migration in MCF-7 Human Breast Cancer Cells Under High Glucose Conditions.

    Science.gov (United States)

    Matsui, Chihiro; Takatani-Nakase, Tomoka; Maeda, Sachie; Nakase, Ikuhiko; Takahashi, Koichi

    2017-12-01

    Recent reports have indicated that hyperglycaemia is associated with breast cancer progression. High glucose conditions corresponding to hyperglycaemia significantly promote migration of MCF-7 human breast cancer cells, however, little is known about the mechanisms of glucose sensing for the acquisition of migratory properties by MCF-7 cells. This study investigated glucose sensing and mediation, which are responsible for the high motility of MCF-7 cells. We evaluated the migration of MCF-7 cells cultured in high glucose-containing medium and essential regulatory factors from the perspective of the glucose transport system. We demonstrated that glucose transporter 12 (GLUT12) protein level increased in MCF-7 cells and co-localized with actin organization under high glucose conditions. Moreover, GLUT12-knockdown completely abrogated high glucose-induced migration, indicating that GLUT12 functionally participates in sensing high glucose concentrations. GLUT12 plays a critical role in the model of breast cancer progression through high glucose concentrations. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Personalized treatment strategies for non-small-cell lung cancer in Chinese patients: the role of crizotinib

    Directory of Open Access Journals (Sweden)

    Niu FY

    2015-05-01

    Full Text Available Fei-Yu Niu,1,2 Yi-Long Wu2 1Graduate School, Southern Medical University, Guangzhou, People’s Republic of China; 2Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China Abstract: Anaplastic lymphoma kinase (ALK rearrangement is an oncogene targeted with approved drugs second to epidermal growth factor receptor (EGFR in lung cancer. Crizotinib was developed and introduced into clinical practice rapidly and successfully after the discovery of ALK rearrangement in non-small-cell lung cancer. Chinese and other Asian patients treated with crizotinib seem to have lower toxicity and higher efficacy compared with other ethnicities. Crizotinib showed potent antitumor activity and manageable toxicity in mesenchymal–epithelial transition factor (c-Met/ROS1-positive non-small-cell lung cancer patients, but prospective clinical trials are still needed to confirm its efficacy and safety. Crizotinib appears to be effective against tumors originating from various organs that harbor ALK abnormalities. In the near future, we would classify the tumors by their genetic information beyond organs, such as ALKoma, EGFRoma, and RAFoma, and a single compound could be used for many different types of cancer in different organs. The major challenge of the widespread use of crizotinib in clinical practice is establishing convenient diagnostic techniques for the detection of ALK/c-Met/ROS1. In the present study, we reviewed the application of crizotinib in Chinese patients. Keywords: NSCLC, crizotinib, ALK, c-Met, ROS1

  5. The prognostic role of sex, race, and human papillomavirus in oropharyngeal and nonoropharyngeal head and neck squamous cell cancer.

    Science.gov (United States)

    Fakhry, Carole; Westra, William H; Wang, Steven J; van Zante, Annemieke; Zhang, Yuehan; Rettig, Eleni; Yin, Linda X; Ryan, William R; Ha, Patrick K; Wentz, Alicia; Koch, Wayne; Richmon, Jeremy D; Eisele, David W; D'Souza, Gypsyamber

    2017-05-01

    Human papillomavirus (HPV) is a well-established prognostic marker for oropharyngeal squamous cell cancer (OPSCC). Because of the limited numbers of women and nonwhites in studies to date, sex and racial/ethnic differences in prognosis have not been well explored. In this study, survival differences were explored by the tumor HPV status among 1) patients with OPSCCs by sex and race and 2) patients with nonoropharyngeal (non-OP) head and neck squamous cell cancers (HNSCCs). This retrospective, multi-institution study included OPSCCs and non-OP HNSCCs of the oral cavity, larynx, and nasopharynx diagnosed from 1995 to 2012. Race/ethnicity was categorized as white non-Hispanic, black non-Hispanic, Asian non-Hispanic, and Hispanic of any race. Tumors were centrally tested for p16 overexpression and the presence of HPV by HPV16 DNA and high-risk HPV E6/E7 messenger RNA in situ hybridization. Kaplan-Meier and Cox proportional hazards models were used to evaluate overall survival (OS). The study population included 239 patients with OPSCC and 621 patients with non-OP HNSCC with a median follow-up time of 3.5 years. After adjustments for the tumor HPV status, age, current tobacco use, and stage, the risk of death was lower for women versus men with OPSCC (adjusted hazard ratio, 0.55; P = .04). The results were similar with p16. In contrast, for non-OP HNSCCs, HPV positivity, p16 positivity, and sex were not associated with OS. For OPSCC, there are differences in survival by sex, even after the tumor HPV status has been taken into account. For non-OP HNSCC, the HPV status and the p16 status are not of prognostic significance. Cancer 2017;123:1566-1575. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  7. The role of prophylactic cranial irradiation in regionally advanced non-small cell lung cancer. A Southwest Oncology Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, V.W.; Griffin, B.R.; Livingston, R.B. (Univ. of Washington, Seattle (USA))

    1989-10-01

    Lung cancer is the most common malignant disease in the United States. Only the few tumors detected very early are curable, but there has been some progress in the management of more advanced non-small cell lung cancer, particularly in regionally inoperable disease. Prevention of central nervous system relapse is an important issue in this group of patients because brain metastases ultimately develop in 20% to 25% of them. Seventy-three patients with regionally advanced non-small cell lung cancer were entered into a Phase II trial of neutron chest radiotherapy sandwiched between four cycles of chemotherapy including cisplatin, vinblastine, and mitomycin C. Prophylactic cranial irradiation was administered concurrently with chest radiotherapy (3000 cGy in 10 fractions in 15 patients; 3600 cGy in 18 fractions in the remaining 50 patients). Patients underwent computed tomographic scan of the brain before treatment and every 3 months after treatment. The initial overall response rate was 79%, but 65 of the 73 patients have subsequently died of recurrent disease. Median follow-up is 9 months for all 73 patients and 26 months for eight long-term survivors. No patient who completed the prophylactic cranial irradiation program had clinical or radiologic brain metastases. Toxic reactions to prophylactic cranial irradiation included reversible alopecia in all patients, progressive dementia in one patient, and possible optic neuritis in one patient. Both of these patients received 300 cGy per fraction of irradiation. The use of prophylactic cranial irradiation has been controversial, but its safety and efficacy in this trial supports its application in a group of patients at high risk for central nervous system relapse. Further evaluation of prophylactic cranial irradiation in clinical trials for regionally advanced non-small cell lung cancer is warranted.

  8. Novel Roles of c-Met in the Survival of Renal Cancer Cells through the Regulation of HO-1 and PD-L1 Expression*

    Science.gov (United States)

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K.; Freeman, Gordon; Pal, Soumitro

    2015-01-01

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1. PMID:25645920

  9. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

    Science.gov (United States)

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K; Freeman, Gordon; Pal, Soumitro

    2015-03-27

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The role of cancer vaccines following autologous stem cell rescue in breast and ovarian cancer patients: experience with the STn-KLH vaccine (Theratope).

    Science.gov (United States)

    Holmberg, Leona A; Oparin, Dimitri V; Gooley, Ted; Sandmaier, Brenda M

    2003-02-01

    The success of high-dose chemotherapy followed by autologous stem-cell rescue as treatment for breast and ovarian cancer is limited by a high incidence of relapse. After autologous transplantation, patients are likely to have a low tumor burden and thus would be more likely to respond immunologically to a cancer vaccine. Sialyl-Tn (STn) is a carbohydrate associated with the MUC1 mucin on breast and ovarian cancer and is an ideal candidate for vaccine immunotherapy. Sialyl-Tn-keyhole limpet hemocyanin (STn-KLH) vaccine (Theratope) incorporates a synthetic STn antigen that mimics the unique tumor-associated STn carbohydrate and is designed to stimulate tumor antigen-specific immune responses in patients with mucin-expressing tumors. Between 1995 and 2000, 70 patients (16 with stage II/III breast cancer, 17 with stage III/IV ovarian cancer, and 37 with stage IV breast cancer) were treated with 2 different formulations of STn-KLH. Toxicity, outcome, and immune response data are reported. STn-KLH was well-tolerated with minimal toxicity. The most common side effects were indurations and erythema at the sites of injections. Humoral and cellular responses were elicited in the majority of patients. Overall, these data indicate that post-autologous transplant patients are able to mount an effective immune response to vaccine immunotherapy with minimal side effects, and that vaccine immunotherapy may be a useful addition to high-dose chemotherapy regimens.

  11. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro – evaluation towards understanding breast cancer cell bone metastasis

    Directory of Open Access Journals (Sweden)

    Du William

    2012-08-01

    Full Text Available Abstract Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14, and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling

  12. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro - evaluation towards understanding breast cancer cell bone metastasis.

    Science.gov (United States)

    Du, William Weidong; Fang, Ling; Yang, Weining; Sheng, Wang; Zhang, Yaou; Seth, Arun; Yang, Burton B; Yee, Albert J

    2012-08-03

    Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP) staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM) inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP) activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14), and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling. G3 expressing MC3T3-E1 cells showed inhibited cell

  13. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro – evaluation towards understanding breast cancer cell bone metastasis

    Science.gov (United States)

    2012-01-01

    Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP) staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM) inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP) activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14), and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling. G3 expressing MC3T3-E1

  14. Inflammation and cancer: role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thaís Santana Gastardelo

    Full Text Available The anti-inflammatory protein annexin A1 (ANXA1 has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA1(2-26 (annexin A1 N-terminal-derived peptide, Boc2 (antagonist of FPR and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA1(2-26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA1(2-26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth

  15. Inflammation and Cancer: Role of Annexin A1 and FPR2/ALX in Proliferation and Metastasis in Human Laryngeal Squamous Cell Carcinoma

    Science.gov (United States)

    Gastardelo, Thaís Santana; Cunha, Bianca Rodrigues; Raposo, Luís Sérgio; Maniglia, José Victor; Cury, Patrícia Maluf; Lisoni, Flávia Cristina Rodrigues; Tajara, Eloiza Helena; Oliani, Sonia Maria

    2014-01-01

    The anti-inflammatory protein annexin A1 (ANXA1) has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX) in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA12–26 (annexin A1 N-terminal-derived peptide), Boc2 (antagonist of FPR) and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA12–26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA12–26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth and

  16. Prognostic role of PIK3CA mutations of cell-free DNA in early-stage triple negative breast cancer.

    Science.gov (United States)

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Inao, Toko; Sueta, Aiko; Fujiwara, Saori; Omoto, Yoko; Iwase, Hirotaka

    2015-11-01

    PIK3CA is an oncogene that encodes the p110α component of phosphatidylinositol 3-kinase (PI3K); it is the second most frequently mutated gene following the TP53 gene. In the clinical setting, PIK3CA mutations may have favorable prognostic value for hormone receptor-positive breast cancer patients and, during the past few years, PIK3CA mutations of cell-free DNA (cfDNA) have attracted attention as a potential noninvasive biomarker of cancer. However, there are few reports on the clinical implications of PIK3CA mutations for TNBC patients. We investigated the PIK3CA major mutation status of cfDNA as a noninvasive biomarker of cancer using droplet digital polymerase chain reaction (ddPCR), which has high level sensitivity and specificity for cancer mutation, in early-stage 49 triple negative breast cancer (TNBC) patients. A total of 12 (24.4%) of 49 patients had PIK3CA mutations of cfDNA. In a median follow up of 54.4 months, the presence of PIK3CA mutations of cfDNA had significant impacts on relapse-free survival (RFS; P = 0.0072) and breast cancer-specific survival (BCSS; P = 0.016), according to the log-lank test. In a Cox proportional hazards model, the presence of PIK3CA mutations of cfDNA had significant prognostic value in the univariate and multivariate analysis. Additionally, the presence of PIK3CA mutations of cfDNA was significantly correlated with positive androgen receptor phosphorylated form depending on PI3K signaling pathway (pAR) which is independent favorable prognostic factors of TNBC. We demonstrated that the presence of PIK3CA major mutations of cfDNA could be a discriminatory predictor of RFS and BCSS in early-stage TNBC patients and it was associated with PI3K pathway-dependent AR phosphorylation. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  17. Dual role of LRRC8A-containing transporters on cisplatin resistance in human ovarian cancer cells

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Dam, Celina Støving; Stürup, Stefan

    2016-01-01

    component of volume sensitive channels for organic osmolytes (VSOAC) and volume regulated anion channels (VRAC), which are activated during the apoptotic process. Here we illustrate that cisplatin resistance in human ovarian cancer cells (A2780) correlates with a reduced expression of LRRC8A and copper...... transporter receptor 1 (CTR1), as well as a concomitant increased expression of copper-transporting P-type ATPases (ATP7A/ATP7B). We also find that cisplatin (Pt) accumulation correlates with LRRC8A protein expression and channel activity, i.e., the cellular Pt content is high when VSOAC is activated...... expression in cisplatin-resistant A2780 cells ensures cell survival through limitation in cisplatin accumulation and a concomitant reduction in osmolytes loss via VSOAC/VRAC and hence instigation of the apoptotic process....

  18. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  19. The role of iodine and delta-iodolactone in growth and apoptosis of malignant thyroid epithelial cells and breast cancer cells.

    Science.gov (United States)

    Gärtner, Roland; Rank, Petra; Ander, Birgit

    2010-01-01

    As we previously demonstrated, the inhibitory effect of iodine on thyroid cell growth is mediated by iodolactones, especially 6-iodo-5-hydroxy-eicosatrienoic acid (delta-iodolactone). In this communication we compare the effect of iodide, molecular iodine and delta-iodolactone on growth inhibition and apoptosis on three human thyroid carcinoma cell lines (B-CPAP cells, FTC-133 cells and 8505C cells) as well as on human breast cancer cells (MCF 7). Thyroid carcinoma cells were cultured in Dulbecco's modified Eagle's medium (DMEM) and MCF 7 cells in Rowswell Park Memorial Institute (RPMI) culture medium, both containing 10% (v/v) Fetal Calf Serum (FCS), until they were confluent. Around 2000 cells were then distributed in 12-well plates and grown for 48 h in either DMEM (thyroid cancer cells) or in RPMI medium (MCF 7 cells) both containing 5% FCS. Thereafter, different concentrations of iodide, iodine or delta-iodolactone were added for 24 h. Growth rate was estimated by cell counting in a Coulter Counter adapted for epithelial cells. Apoptosis was determined by a mitochondrial potential assay. The growth rate of B-CPAP cells was unaffected by iodide, but was reduced by high concentreations of molecular iodine (100 and 500 microM). However, delta-iodolactone significantly reduced cell proliferation already with low concentrations (5 microM and 10 microM) and further in a dose-dependent manner up to 82%. FTC-133 and 8505C cells were unaffected by iodide, iodine or delta-iodolactone. In contrast, in MCF 7 cells, molecular iodine (100 microM) inhibited growth from 100% to 83% but delta-iodolactone (1, 5 and 10 microM) dose-dependently decreased growth rate from 100% to 82% and 62%, respectively. The inhibition of growth was through apoptosis, and not necrosis, as the amount of apoptotic cells corresponded to the growth inhibition. delta-Iotaodolactone seems to be the main iodocompound which can inhibit growth and induce apoptosis in B-CPAP cells as well as in MCF 7

  20. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival.

    Science.gov (United States)

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  1. Stem cells in prostate cancer.

    Science.gov (United States)

    Mateo, Francesca; Fernandez, Pedro L; Thomson, Timothy M

    2013-06-01

    Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.

  2. Pregnancy and its role in breast cancer

    Directory of Open Access Journals (Sweden)

    Filipe Correia Martins

    2011-12-01

    Full Text Available Early full-term pregnancy is the only recognized factor able to prevent breast cancer. There are several hypotheses to explain the mechanisms of this protection, namely an altered hormonal milieu, a differentiation process or a switch in stem cell properties. To explore them, authors have been using animal models, mainly in rodents. Hormonal administration with estrogen and progesterone was the most widely used process to mimic the mammary changes during pregnancy. We have recently proposed that this enigmatic protective role of a full-term birth in breast cancer is carried out by tumor inhibition mediated by differentiated mammary epithelial cells. This explanation may give a new perspective of breast cancer prevention and treatment.

  3. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45.

    Science.gov (United States)

    Zhang, Hai-hong; Cai, Ai-zhen; Wei, Xue-ming; Ding, Li; Li, Feng-zhi; Zheng, Ai-ming; Dai, Da-jiang; Huang, Rong-rong; Cao, Hou-jun; Zhou, Hai-yang; Wang, Jian-mei; Wang, Xue-jing; Shi, Wei; Zhu, Heng; Yuan, Xiao-ying; Chen, Lin

    2013-03-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many kinds of cell lines and tissues have demonstrated the presence of SP cells, including several gastric cancer cell lines. This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45. We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells. This study found that the SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness-related gene expression profiles, including OCT-4, SOX-2, NANOG, CD44, and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2, were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Western blot was used to show the difference of protein expression between SP and MP cells. Both results show that there was significantly higher protein expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells show higher tumorigenesis tendency than MP cells. These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  4. Chemotactic and proangiogenic role of calcium sensing receptor is linked to secretion of multiple cytokines and growth factors in breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Hernández-Bedolla, Marco Antonio; Carretero-Ortega, Jorge; Valadez-Sánchez, Margarita; Vázquez-Prado, José; Reyes-Cruz, Guadalupe

    2015-01-01

    Breast cancer metastasis to the bone, potentially facilitated by chemotactic and angiogenic cytokines, contributes to a dramatic osteolytic effect associated with this invasive behavior. Based on the intrinsic ability of calcium sensing receptor (CaSR) to control hormonal secretion and considering its expression in the breast, we hypothesized that CaSR plays a chemotactic and proangiogenic role in highly invasive MDA-MB-231 breast cancer cells by promoting secretion of multiple cytokines. In this study, we show that MDA-MB-231 cells stimulated with R-568 calcimimetic and extracellular calcium secreted multiple cytokines and growth factors that induced endothelial cell migration and in vitro angiogenesis. These effects were dependent on the activity of CaSR as demonstrated by the inhibitory effect of either anti-CaSR blocking monoclonal antibodies or calcilytic NPS-2143. Moreover, CaSR knockdown prevented the proangiogenic effect of CaSR agonists. Importantly, CaSR promoted secretion of pleiotropic molecules like GM-CSF, EGF, MDC/CCL22, FGF-4 and IGFBP2, all known to be chemotactic mediators with putative angiogenic factor properties. In contrast, constitutive secretion of IL-6 and β-NGF was attenuated by CaSR. In the case of normal mammary cells, secretion of IL-6 was stimulated by CaSR, whereas a constitutive secretion of RANTES, Angiogenin and Oncostatin M was attenuated by this receptor. Taken together, our results indicate that an altered secretion of chemotactic and proangiogenic cytokines in breast cancer cells is modulated by CaSR, which can be considered a potential target in the therapy of metastatic breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Squamous cell skin cancer

    Science.gov (United States)

    ... squamous cell cancer include: Having light-colored skin, blue or green eyes, or blond or red hair Long-term, daily sun exposure (such as in people who work outside) Many severe sunburns early in life Older age Having had many x-rays Chemical exposure A weakened immune system, especially in ...

  6. Role of MiR-3619-5p in β-Catenin-Mediated Non-Small Cell Lung Cancer Growth and Invasion

    Directory of Open Access Journals (Sweden)

    Xuecai Niu

    2015-10-01

    Full Text Available Background/Aims: The malignancy of non-small cell lung cancer (NSCLC is largely due to its fast growth and invasion. WNT/β-catenin signaling plays a critical role in regulating NSCLC carcinogenesis. Hence, suppression of β-catenin signal transduction in NSCLC cells may improve the therapeutic outcome. Methods: We analyzed the levels of β-catenin and miR-3619-5p in NSCLC specimens, compared to paired non-tumor normal lung tissue (NT. We did Bioinformatics analyses on the binding sites of 3'-UTR of β-catenin mRNA by miR-3619-5p. We modified the levels of miR-3619-5p in NSCLC cells and examined their effects on β-catenin levels, and on the growth and invasion of NSCLC cells in an MTT assay and a transwell cell migration assay, respectively. Results: NSCLC specimens had significant higher levels of β-catenin, and significantly lower levels of miR-3619-5p, compared to NT. The levels of β-catenin and miR-3619-5p were inversely correlated in NSCLC specimens. Bioinformatics analyses showed that miR-3619-5p bound to 3'-UTR of β-catenin mRNA in NSCLC cells to inhibit its translation. Overexpression of miR-3619-5p decreased β-catenin protein, while depletion of miR-3619-5p increased β-catenin protein in NSCLC cells, without altering β-catenin mRNA levels. Overexpression of miR-3619-5p in NSCLC cells inhibited cell growth and invasion, while depletion of miR-3619-5p in NSCLC lines increased cell growth and invasion. Conclusion: Our data demonstrate a previously unappreciated role for miR-3619-5p in suppression of β-catenin-mediated cancer growth and invasion in NSCLC cells, and highlight miR-3619-5p as a novel cancer suppressor in NSCLC.

  7. Role of lysosomes in cancer therapy

    Directory of Open Access Journals (Sweden)

    Halaby R

    2015-09-01

    Full Text Available Reginald Halaby Department of Biology, Montclair State University, Montclair, NJ, USA Abstract: Lysosomes are acidic organelles that are involved in cellular digestion by endocytosis, phagocytosis, and autophagy. They contain more than 50 hydrolases that are capable of degrading all macromolecules. There is accumulating evidence that lysosomal enzymes can provoke apoptotic cell death. This has important implications for cancer, where proapoptotic genes are mutated and antiapoptotic genes are often overexpressed leading to chemoresistance. Lysosomes play a dual role in cancer development depending on their subcellular localization. When they are located extracellularly they can promote invasion, angiogenesis, and metastasis. However, when they are located intracellularly they can trigger apoptosis by leaking into the cytosol. In this review, we examine the pathways by which lysosomes can evoke both apoptosis and tumorigenesis. Although cancer cells have defects in their apoptotic machinery, they can still undergo lysosomal cell death. We offer several strategies to explain how targeting lysosomes can serve as a putative model for the development of novel anticancer agents. Furthermore, we propose that lysosomal cell death is an effective treatment against apoptosis-resistant cancer cells and thus holds great potential as a therapeutic strategy for circumventing apoptosis deficiency in tumors. Keywords: cathepsins, lysosomal membrane permeability, apoptosis, chemoresistance 

  8. Teriflunomide (Leflunomide Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Numsen Hail, Jr

    2010-06-01

    Full Text Available Teriflunomide (TFN is an inhibitor of de novo pyrimidine synthesis and the active metabolite of leflunomide. Leflunomide is prescribed to patients worldwide as an immunomodulatory and anti-inflammatory disease-modifying prodrug. Leflunomide inhibited the growth of human prostate cancer xenographs in mice, and leflunomide or TFN promoted cytostasis and/or apoptosis in cultured cells. These findings suggest that TFN could be useful in prostate cancer chemoprevention. We investigated the possible mechanistic aspects of this tenet by characterizing the effects of TFN using premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. TFN promoted a dose- and time-dependent cytostasis or apoptosis induction in these cells. The cytostatic effects of TFN, which were reversible but not by the presence of excess uridine in the culture medium, included diminished cellular uridine levels, an inhibition in oxygen consumption, a suppression of reactive oxygen species (ROS generation, S-phase cell cycle arrest, and a conspicuous reduction in the size and number of the nucleoli in the nuclei of these cells. Conversely, TFN's apoptogenic effects were characteristic of catastrophic mitochondrial disruption (i.e., a dissipation of mitochondrial inner transmembrane potential, enhanced ROS production, mitochondrial cytochrome c release, and cytoplasmic vacuolization and followed by DNA fragmentation. The respiration-deficient derivatives of the DU-145 cells, which are also uridine auxotrophs, were markedly resistant to the cytostatic and apoptotic effects of TFN, implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiration competent cells. These mechanistic findings advocate a role for TFN and mitochondrial bioenergetics in prostate cancer chemoprevention.

  9. Staurosporine increases toxicity of gemcitabine in non-small cell lung cancer cells: role of protein kinase C, deoxycytidine kinase and ribonucleotide reductase

    NARCIS (Netherlands)

    Sigmond, Jennifer; Bergman, Andries M.; Leon, Leticia G.; Loves, Willem J. P.; Hoebe, Eveline K.; Peters, Godefridus J.

    2010-01-01

    Gemcitabine, a deoxycytidine analog, active against non-small cell lung cancer, is phosphorylated by deoxycytidine kinase (dCK) to active nucleotides. Earlier, we found increased sensitivity to gemcitabine in P-glycoprotein (SW-2R160) and multidrug resistance-associated protein (SW-2R120),

  10. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  11. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α.

    Science.gov (United States)

    Schöning, Jennifer Petra; Monteiro, Michael; Gu, Wenyi

    2017-02-01

    Chemotherapy resistance is a major contributor to poor treatment responses and tumour relapse, the development of which has been strongly linked to the action of cancer stem cells (CSCs). Mounting evidence suggests that CSCs are reliant on low oxygen conditions and hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) to maintain their stem cell features. Research in the last decade has begun to clarify the functional differences between the two HIFα subtypes (HIFαs). Here, we review and discuss these differences in relation to CSC-associated drug resistance. Both HIFαs contribute to CSC survival but play different roles -HIF1α being more responsible for survival functions and HIF2α for stemness traits such as self-renewal - and are sensitive to different degrees of hypoxia. Failure to account for physiologically relevant oxygen concentrations in many studies may influence the current understanding of the roles of HIFαs. We also discuss how hypoxia and HIFαs contribute to CSC drug resistance via promotion of ABC drug transporters Breast cancer resistance protein (BCRP), MDR1, and MRP1 and through maintenance of quiescence. Additionally, we explore the PI3K/AKT cell survival pathway that may support refractory cancer by promoting CSCs and activating both HIF1α and HIF2α. Accordingly, HIF1α and HIF2α inhibition, potentially via PI3K/AKT inhibitors, could reduce chemotherapy resistance and prevent cancer relapse. © 2016 John Wiley & Sons Australia, Ltd.

  12. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    , vinculin and FAK synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Finally, the knowledge of the mechanical properties of invasive and non-invasive cells could provide a source for future drug developments to inhibit formation of metastases. This special section also includes two papers from the group of Martin Herrmann, a research paper and a review paper. The research paper by Janko et al deals with the cooperative binding of Annexin A5 to phosphatidylserines on apoptotic cell membranes [6]. This could not alone serve as an 'eat me' signal for macrophages as healthy cells also express Annexin A5 on their cell surface. The authors suggest that the cooperative binding is altered and subsequently the fluidity of Annexin A5 on the membrane. Together this may serve as a signal for phagocytic cells to eat apoptotic cells and leave healthy ones untouched. The paper by Biermann et al reviews the role of biophysical signals in the clearance of apoptotic cells [7]. In addition to the acto-myosin cytoskeleton, the keratin network seems to play a role in cancer research. The paper from the Beil and the Marti group demonstrates that microrheology is a valuable tool to determine the viscoelastic properties of polymer networks such as the keratin network in cells and an arbitrary in vitro network [8]. They describe how the topology of the keratin network affects the overall mechanical behavior of cells. It seems that the field of physical oncology will continue to grow in the future and more research will address the mechanical properties of cancer cells and whole tissues. Biophysical methods will need to be further improved and adapted to the needs of cancer research. References [1] Coughlin M F and Fredberg J J 2013 Phys. Biol. 10 065001 [2] Krause M, te Riet J and Wolf K 2013 Phys. Biol. 10 065002 [3] Munn L L 2013 Phys. Biol. 10 065003 [4] Bordeleau F, Tang L N and Reinhart-King C A 2013 Phys. Biol. 10 065004 [5

  13. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells.

    Science.gov (United States)

    Fong, Yao; Wu, Chang-Yi; Chang, Kuo-Feng; Chen, Bing-Hung; Chou, Wan-Ju; Tseng, Chih-Hua; Chen, Yen-Chun; Wang, Hui-Min David; Chen, Yeh-Long; Chiu, Chien-Chih

    2017-01-01

    2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden's chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the

  14. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  15. Differential effect of grape seed extract against human non-small-cell lung cancer cells: the role of reactive oxygen species and apoptosis induction.

    Science.gov (United States)

    Tyagi, Alpna; Raina, Komal; Gangar, Subhash; Kaur, Manjinder; Agarwal, Rajesh; Agarwal, Chapla

    2013-01-01

    The present study examines grape seed extract (GSE) efficacy against a series of non-small-cell lung cancer (NSCLC) cell lines that differ in their Kras and p53 status to establish GSE potential as a cytotoxic agent against a wide range of lung cancer cells. GSE suppressed growth and induced apoptotic death in NSCLC cells irrespective of their k-Ras status, with more sensitivity toward H460 and H322 (wt k-Ras) than A549 and H1299 cells (mutated k-Ras). Mechanistic studies in A549 and H460 cells, selected, based on comparative efficacy of GSE at higher and lower doses, respectively, showed that apoptotic death involves cytochrome c release associated caspases 9 and 3 activation, and poly (ADP-ribosyl) polymerase cleavage, strong phosphorylation of ERK1/2 and JNK1/2, downregulation of cell survival proteins, and upregulated proapoptotic Bak expression. Importantly, GSE treatment caused a strong superoxide radical-associated oxidative stress, significantly decreased intracellular reduced glutathione levels, suggesting, for the first time, the involvement of GSE-caused oxidative stress in its apoptotic inducing activity in these cells. Because GSE is a widely-consumed dietary agent with no known untoward effects, our results support future studies to establish GSE efficacy and usefulness against NSCLC control.

  16. The Role of Vaginal Brachytherapy in the Treatment of Surgical Stage I Papillary Serous or Clear Cell Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Barney, Brandon M., E-mail: barney.brandon@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mariani, Andrea; Dowdy, Sean C.; Bakkum-Gamez, Jamie N. [Division of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota (United States); Haddock, Michael G. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2013-01-01

    Objectives: The optimal adjuvant therapy for International Federation of Gynecology and Obstetrics (FIGO) stage I papillary serous (UPSC) or clear cell (CC) endometrial cancer is unknown. We report on the largest single-institution experience using adjuvant high-dose-rate vaginal brachytherapy (VBT) for surgically staged women with FIGO stage I UPSC or CC endometrial cancer. Methods and Materials: From 1998-2011, 103 women with FIGO 2009 stage I UPSC (n=74), CC (n=21), or mixed UPSC/CC (n=8) endometrial cancer underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy followed by adjuvant high-dose-rate VBT. Nearly all patients (n=98, 95%) also underwent extended lymph node dissection of pelvic and paraortic lymph nodes. All VBT was performed with a vaginal cylinder, treating to a dose of 2100 cGy in 3 fractions. Thirty-five patients (34%) also received adjuvant chemotherapy. Results: At a median follow-up time of 36 months (range, 1-146 months), 2 patients had experienced vaginal recurrence, and the 5-year Kaplan Meier estimate of vaginal recurrence was 3%. The rates of isolated pelvic recurrence, locoregional recurrence (vaginal + pelvic), and extrapelvic recurrence (including intraabdominal) were similarly low, with 5-year Kaplan-Meier estimates of 4%, 7%, and 10%, respectively. The estimated 5-year overall survival was 84%. On univariate analysis, delivery of chemotherapy did not affect recurrence or survival. Conclusions: VBT is effective at preventing vaginal relapse in women with surgical stage I UPSC or CC endometrial cancer. In this cohort of patients who underwent comprehensive surgical staging, the risk of isolated pelvic or extrapelvic relapse was low, implying that more extensive adjuvant radiation therapy is likely unnecessary.

  17. The role of cell cycle progression for the apoptosis of cancer cells induced by palladium(II)-saccharinate complexes of terpyridine.

    Science.gov (United States)

    Kacar, Omer; Cevatemre, Buse; Hatipoglu, Ibrahim; Arda, Nazli; Ulukaya, Engin; Yilmaz, Veysel T; Acilan, Ceyda

    2017-03-15

    Palladium complexes are potent and less toxic molecules in comparison to other metal based agents. Here, we characterized two palladium(II) saccharinate complexes with terpyridine for their cell cycle specificity. Cells were arrested at G1, G1/S boundary or mitosis using mimosine, double-Thymidine block, aphidicolin, nocodazole or colcemid, and evaluated based on morphology and flow cytometry. Synchronized cells were treated with the Pd(II) complexes, and viability was measured via MTT assay. While treatment of arrested cells with the Pd(II) complexes resulted in no significant change in cell death in HCT-116 and MDA-MB-231 cells, HeLa cells were more sensitive in S/G1. The main form of cell death was found to be apoptosis. Pd(II) complexes appear to be cell-cycle non-specific, while cell line dependent differences may be observed. Cells die through apoptosis regardless of the cell cycle stage, which makes these complexes more promising as anti-cancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alcohol and Cancer Stem Cells

    OpenAIRE

    Mei Xu; Jia Luo

    2017-01-01

    Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and ...

  19. The role of enoyl-CoA hydratase short chain 1 and peroxiredoxin 3 in PP2-induced apoptosis in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Liu, Xiang; Feng, Renqing; Du, Liying

    2010-07-16

    We show that 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) induces apoptosis and down-regulates the expression of enoyl-CoA hydratase short chain 1 (ECHS1) and peroxiredoxin 3 (PRDX3) in human breast cancer MCF-7 cells. The decrease of ECHS1 and PRDX3 was validated by Western blot and quantitative real-time reverse transcription-PCR in MCF-7 and other carcinoma cells. Knockdown and over-expression of ECHS1 and/or PRDX3 further supported the key role of ECHS1 and PRDX3 in regulation of PP2-induced apoptosis. These results suggest a possible apoptotic pathway whereby down-regulation of ECHS1 and PRDX3 potentiates PP2-induced apoptosis in MCF-7 cells. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. The Role of HDAC6 in Cancer

    Directory of Open Access Journals (Sweden)

    Grace I. Aldana-Masangkay

    2011-01-01

    Full Text Available Histone deacetylase 6 (HDAC6, a member of the HDAC family whose major substrate is α-tubulin, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. Overexpression of HDAC6 correlates with tumorigenesis and improved survival; therefore, HDAC6 may be used as a marker for prognosis. Previous work demonstrated that in multiple myeloma cells, inhibition of HDAC6 results in apoptosis. Furthermore, HDAC6 is required for the activation of heat-shock factor 1 (HSF1, an activator of heat-shock protein encoding genes (HSPs and CYLD, a cylindromatosis tumor suppressor gene. HDAC6 contributes to cancer metastasis since its upregulation increases cell motility in breast cancer MCF-7 cells and its interaction with cortactin regulates motility. HDAC6 also affects transcription and translation by regulating the heat-shock protein 90 (Hsp90 and stress granules (SGs, respectively. This review will discuss the role of HDAC6 in the pathogenesis and treatment of cancer.

  1. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  2. Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide.

    Science.gov (United States)

    Wang, Xi; Gao, Ping; Long, Min; Lin, Fang; Wei, Jun-Xia; Ren, Ji-Hong; Yan, Lin; He, Ting; Han, Yuan; Zhang, Hui-Zhong

    2011-12-01

    Arsenic trioxide (As2O3), a component of traditional Chinese medicine, has been used successfully for the treatment of acute promyelocytic leukemia (APL), and As2O3 is of potential therapeutic value for the treatment of other promyelocytic malignancies and some solid tumors including breast cancer. However, the precise molecular mechanisms through which As2O3 induces cell cycle arrest and apoptosis in solid tumors have not been clearly understood. The goal of our study is to gain insight into the general biological processes and molecular functions that are altered by As2O3 treatment in MCF-7 breast cancer cells and to identify the key signaling processes that are involved in the regulation of these physiological effects. In the present study, MCF-7 cells were treated with 5 μM As2O3, and the differential gene expression was then analyzed by DNA microarray. The results showed that As2O3 treatment changed the expression level of several genes that involved in cell cycle regulation, signal transduction, and apoptosis. Notably, As2O3 treatment increased the mRNA and protein levels of the cell cycle inhibitory proteins, p21 and p27. Interestingly, knocking down p21 or p27 individually did not alter As2O3-induced apoptosis and cell cycle arrest; however, the simultaneous down-regulation of both p21 and p27 resulted in attenuating of G1, G2/M arrest and reduction in apoptosis, thus indicating that p21 and p27 as the primary molecular targets of As2O3 against breast cancer. Overall, our results provide new insights into As2O3-related signaling activities, which may facilitate the development of As2O3-based anticancer strategies and/or combination therapies against solid tumors.

  3. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  4. Paradoxical roles of dual oxidases in cancer biology.

    Science.gov (United States)

    Little, Andrew C; Sulovari, Arvis; Danyal, Karamatullah; Heppner, David E; Seward, David J; van der Vliet, Albert

    2017-09-01

    Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cancer Stem Cells and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sheetal Dyall

    2010-01-01

    Full Text Available The cancer stem cell hypothesis is becoming more widely accepted as a model for carcinogenesis. Tumours are heterogeneous both at the molecular and cellular level, containing a small population of cells that possess highly tumourigenic “stem-cell” properties. Cancer stem cells (CSCs, or tumour-initiating cells, have the ability to self-renew, generate xenografts reminiscent of the primary tumour that they were derived from, and are chemoresistant. The characterisation of the CSC population within a tumour that drives its growth could provide novel target therapeutics against these cells specifically, eradicating the cancer completely. There have been several reports describing the isolation of putative cancer stem cell populations in several cancers; however, no defined set of markers has been identified that conclusively characterises “stem-like” cancer cells. This paper highlights the current experimental approaches that have been used in the field and discusses their limitations, with specific emphasis on the identification and characterisation of the CSC population in epithelial ovarian cancer.

  6. Role of Local Ablative Therapy in Patients with Oligometastatic and Oligoprogressive Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Kim, Chul; Hoang, Chuong D; Kesarwala, Aparna H; Schrump, David S; Guha, Udayan; Rajan, Arun

    2017-02-01

    Because of an improved understanding of lung cancer biology and improvement in systemic treatment, an oligometastatic state in which metastatic disease is present at a limited number of anatomic sites is being increasingly recognized. An oligoprogressive state, which is a similar but distinct entity, refers to disease progression at a limited number of anatomic sites, with continued response or stable disease at other sites of disease. Such an oligoprogressive state is best described in patients with NSCLC treated with molecular targeted therapy. Possible explanations for development of the oligoprogressive state include the presence of underlying clonal heterogeneity and extrinsic selection pressure due to the use of targeted therapy. Traditionally, local ablative therapy (LAT) has been limited to symptom palliation in patients with advanced NSCLC, but the presence of oligometastatic or oligoprogressive disease provides a unique opportunity to evaluate the role of LAT such as surgery, radiation therapy, radiofrequency ablation, or cryoablation. There is increasing evidence to support the clinical benefit of LAT in patients with NSCLC with limited metastatic disease and in selected individuals in whom resistance to targeted therapies develops. In the latter instance, adequate treatment of drug-resistant clones by LAT could potentially help in avoiding switching systemic therapy prematurely. This review focuses on the biology of oligometastatic and oligoprogressive NSCLC and describes the role of LAT in the treatment of these conditions. Published by Elsevier Inc.

  7. The role of mast cells in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Swetha Gudiseva

    2017-03-01

    Full Text Available The mast cells are initial effective lineage in both humoral and adaptive immunity. They are ubiquitous in skin, mucosa, and in function. They contain biologically essential and dynamic mediators in healthy and harmful conditions of tissue. Mast cell malfunctioning could be attributed to various chronic allergic diseases. Considerately, emerging evidence of mast cell involvement in various cancers shows them to have both positive and negative roles in tumour growth. It mostly indulges in tumour progression and metastasis via angiogenesis, extracellular matrix degradation, and mitogenic activity in the tumour microenvironment. The current paper reviewed research papers on mast cells in oral squamous cell carcinoma through the PubMed database from 1980 to the present date. The present paper is an attempt to summarise the research reports on the role of mast cells in oral squamous cell carcinoma. Further to this note, this paper also outlines the role of mast cells in normal physiological processes and tumour biology.

  8. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  9. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  10. Epigenetics of solid cancer stem cells.

    Science.gov (United States)

    Mishra, Alok; Verma, Mukesh

    2012-01-01

    Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

  11. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  12. The role of senescent cells in ageing

    NARCIS (Netherlands)

    Deursen, J.M.A. van

    2014-01-01

    Cellular senescence has historically been viewed as an irreversible cell-cycle arrest mechanism that acts to protect against cancer, but recent discoveries have extended its known role to complex biological processes such as development, tissue repair, ageing and age-related disorders. New insights

  13. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  14. Cytotoxicity of Pomegranate Polyphenolics in Breast Cancer Cells in Vitro and Vivo - Potential Role of miRNA-27a and miRNA-155 in Cell Survival and Inflammation

    Science.gov (United States)

    Banerjee, Nivedita; Talcott, Stephen; Safe, Stephen; Mertens –Talcott, Susanne U

    2012-01-01

    Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast-tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol 3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract. Pg extract (2.5–50 µg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1. In summary the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an

  15. Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-Proliferative Effects of Dietary Flavonoid—‘Ashwagandha’ in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ravikumar Aalinkeel

    2010-01-01

    Full Text Available Phytochemicals are dietary phytoestrogens that may play a role in prostate cancer prevention. Forty percent of Americans use complementary and alternative medicines (CAM for disease prevention and therapy. Ashwagandha (Withania somnifera contains flavonoids and active ingredients like alkaloids and steroidal lactones which are called ‘Withanolides’. We hypothesize that the immunomodulatory and anti-inflammatory properties of Ashwagandha might contribute to its overall effectiveness as an anti-carcinogenic agent. The goal of our study was gain insight into the general biological and molecular functions and immunomodulatory processes that are altered as a result of Ashwagandha treatment in prostate cancer cells, and to identify the key signaling mechanisms that are involved in the regulation of these physiological effects using genomic microarray analysis in conjunction with quantitative real-time PCR and western blot analysis. Ashwagandha treatment significantly downregulated the gene and protein expression of proinflammatory cytokines IL-6, IL-1β, chemokine IL-8, Hsp70 and STAT-2, while a reciprocal upregulation was observed in gene and protein expression of p38 MAPK, PI3K, caspase 6, Cyclin D and c-myc. Furthermore, Ashwagandha treatment significantly modulated the JAK-STAT pathway which regulates both the apoptosis process as well as the MAP kinase signaling. These studies outline several functionally important classes of genes, which are associated with immune response, signal transduction, cell signaling, transcriptional regulation, apoptosis and cell cycle regulation and provide insight into the molecular signaling mechanisms that are modulated by Ashwagandha, thereby highlighting the use of this bioflavanoid as effective chemopreventive agent relevant to prostate cancer progression.

  16. Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-'Ashwagandha' in Prostate Cancer Cells.

    Science.gov (United States)

    Aalinkeel, Ravikumar; Hu, Zihua; Nair, Bindukumar B; Sykes, Donald E; Reynolds, Jessica L; Mahajan, Supriya D; Schwartz, Stanley A

    2010-06-01

    Phytochemicals are dietary phytoestrogens that may play a role in prostate cancer prevention. Forty percent of Americans use complementary and alternative medicines (CAM) for disease prevention and therapy. Ashwagandha (Withania somnifera) contains flavonoids and active ingredients like alkaloids and steroidal lactones which are called 'Withanolides'. We hypothesize that the immunomodulatory and anti-inflammatory properties of Ashwagandha might contribute to its overall effectiveness as an anti-carcinogenic agent. The goal of our study was gain insight into the general biological and molecular functions and immunomodulatory processes that are altered as a result of Ashwagandha treatment in prostate cancer cells, and to identify the key signaling mechanisms that are involved in the regulation of these physiological effects using genomic microarray analysis in conjunction with quantitative real-time PCR and western blot analysis. Ashwagandha treatment significantly downregulated the gene and protein expression of proinflammatory cytokines IL-6, IL-1β, chemokine IL-8, Hsp70 and STAT-2, while a reciprocal upregulation was observed in gene and protein expression of p38 MAPK, PI3K, caspase 6, Cyclin D and c-myc. Furthermore, Ashwagandha treatment significantly modulated the JAK-STAT pathway which regulates both the apoptosis process as well as the MAP kinase signaling. These studies outline several functionally important classes of genes, which are associated with immune response, signal transduction, cell signaling, transcriptional regulation, apoptosis and cell cycle regulation and provide insight into the molecular signaling mechanisms that are modulated by Ashwagandha, thereby highlighting the use of this bioflavanoid as effective chemopreventive agent relevant to prostate cancer progression.

  17. Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid—‘Ashwagandha’ in Prostate Cancer Cells

    Science.gov (United States)

    Aalinkeel, Ravikumar; Hu, Zihua; Nair, Bindukumar B.; Sykes, Donald E.; Reynolds, Jessica L.; Schwartz, Stanley A.

    2010-01-01

    Phytochemicals are dietary phytoestrogens that may play a role in prostate cancer prevention. Forty percent of Americans use complementary and alternative medicines (CAM) for disease prevention and therapy. Ashwagandha (Withania somnifera) contains flavonoids and active ingredients like alkaloids and steroidal lactones which are called ‘Withanolides’. We hypothesize that the immunomodulatory and anti-inflammatory properties of Ashwagandha might contribute to its overall effectiveness as an anti-carcinogenic agent. The goal of our study was gain insight into the general biological and molecular functions and immunomodulatory processes that are altered as a result of Ashwagandha treatment in prostate cancer cells, and to identify the key signaling mechanisms that are involved in the regulation of these physiological effects using genomic microarray analysis in conjunction with quantitative real-time PCR and western blot analysis. Ashwagandha treatment significantly downregulated the gene and protein expression of proinflammatory cytokines IL-6, IL-1β, chemokine IL-8, Hsp70 and STAT-2, while a reciprocal upregulation was observed in gene and protein expression of p38 MAPK, PI3K, caspase 6, Cyclin D and c-myc. Furthermore, Ashwagandha treatment significantly modulated the JAK-STAT pathway which regulates both the apoptosis process as well as the MAP kinase signaling. These studies outline several functionally important classes of genes, which are associated with immune response, signal transduction, cell signaling, transcriptional regulation, apoptosis and cell cycle regulation and provide insight into the molecular signaling mechanisms that are modulated by Ashwagandha, thereby highlighting the use of this bioflavanoid as effective chemopreventive agent relevant to prostate cancer progression. PMID:18955307

  18. Proteoglycans and their roles in brain cancer.

    Science.gov (United States)

    Wade, Anna; Robinson, Aaron E; Engler, Jane R; Petritsch, Claudia; James, C David; Phillips, Joanna J

    2013-05-01

    Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. Role of ERCC1 variants in response to chemotherapy and clinical outcome of advanced non-small cell lung cancer.

    Science.gov (United States)

    Huang, Shao-jun; Wang, Yu-fei; Jin, Zhi-yong; Sun, Jia-yang; Guo, Zhan-lin

    2014-05-01

    Excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum-F (XPF) in the nucleotide excision repair pathway have been effectively repairing DNA damage induced by chemotherapeutic agents. We conducted a cohort study to assess the associations of ERCC1 and XPF polymorphisms with response to platinum-based chemotherapy and clinical outcome of non-small-cell lung cancer (NSCLC). One hundred eighty-seven NSCLC cases treated with platinum-based chemotherapy were prospectively analyzed. The predictive value of four SNPs in ERCC1 and two SNPs in XPF in patient's response and survival related to platinum-based chemotherapy were analyzed using χ(2) tests, Kaplan-Meier method, log-rank test, and Cox proportional hazards regression. The overall chemotherapy response rate for treatment was 51.18%. One hundred eighty-seven patients were followed up, and the median survival time is 17.6 months (ranged from 1 to 50 months). A total of 106 patients (56.68%) died from NSCLC during the follow-up period. Carriers of the rs3212986 AA and A allele had a borderline significantly lower response rate to the chemotherapy. In the Cox proportional hazards model, patients carrying the ERCC1 rs3212986 AA genotype were significantly associated with increased risk of death from NSCLC when compared with those with CC genotype as a reference variable. This study reported that variants in ERCC1 can be used as a prognostic maker to platinum-based chemotherapy in NSCLC patients.

  20. The role of thymidylate synthase in non-small cell lung cancer treated with pemetrexed continuation maintenance therapy.

    Science.gov (United States)

    Yang, Min; Fan, Wei-Fei; Pu, Xiao-Lin; Meng, Li-Juan; Wang, Jun

    2017-04-01

    Pemetrexed continuation maintenance therapy has been proven to be beneficial for patients with advanced non-squamous non-small cell lung cancer (NSCLC). However, the eligibility criteria for maintenance treatment are too simple. This study sought to evaluate thymidylate synthase (TS) as a predicting biomarker for pemetrexed continuation maintenance treatment in NSCLC. Specimens were collected from 87 patients treated with pemetrexed continuation maintenance therapy before and after four-cycle induction chemotherapy. Real-time quantitative PCR was used to detect TS expression in tissues. The TS expression level was correlated with characteristic clinical data, radiographic response, progression-free time (PFS) and overall survival (OS). Low total TS expression (<8.47) was associated with improved PFS (median: 4.7 months vs. 3.5 months, p = 0.034) and improved OS (time from random assignment: 16.4 months vs. 11.7 months, p = 0.026; time from induction: 19.7 months vs. 14.8 months, p = 0.022). Our results indicate that in NSCLC patients treated with pemetrexed continuation maintenance therapy, low TS expression is associated with improved PFS and OS.

  1. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  3. Emerging role of nivolumab in the management of patients with non-small-cell lung cancer: current data and future perspectives

    Directory of Open Access Journals (Sweden)

    Feld E

    2017-07-01

    Full Text Available Emily Feld, Leora Horn Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Abstract: Immune-checkpoint inhibitors have become valuable therapies in the treatment of patients with non-small-cell lung cancer (NSCLC. Recent clinical trials have shown promising results with regard to efficacy and toxicity profiles of these agents compared to cytotoxic chemotherapy. Nivolumab was one of the first immune-checkpoint inhibitors to demonstrate clinical activity in patients with NSCLC, and is currently approved in the US for treatment of patients with advanced squamous and nonsquamous NSCLC who have progressed on or after platinum-based chemotherapy. This review provides an update on nivolumab’s pharmacology, safety, and efficacy, as established by the CheckMate trials. We also discuss specific applications and strategies for the use of nivolumab in NSCLC patients, as well as predictive biomarkers and their role in treatment selection. Keywords: nivolumab, non-small-cell lung cancer, immune-checkpoint inhibitor, PD1 

  4. Role of chromosomal instability in cancer progression.

    Science.gov (United States)

    McClelland, Sarah E

    2017-09-01

    Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability. © 2017 Society for Endocrinology.

  5. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  6. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy.

    Science.gov (United States)

    Shi, Yin; Tan, Shi-Hao; Ng, Shukie; Zhou, Jing; Yang, Na-Di; Koo, Gi-Bang; McMahon, Kerrie-Ann; Parton, Robert G; Hill, Michelle M; Del Pozo, Miguel A; Kim, You-Sun; Shen, Han-Ming

    2015-01-01

    CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.

  7. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  8. The role of GAGE cancer/testis antigen in metastasis

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Terp, Mikkel Green; Hansen, Malene Bredahl

    2016-01-01

    with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. METHODS: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell......) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. CONCLUSIONS: These results suggest that GAGE proteins per se do not support metastasis and that further...

  9. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  10. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  11. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  12. Prognostic and predictive role of FOXP3 positive tumor infiltrating lymphocytes (TILs in curatively resected non small cell lung cancer other than stage IA

    Directory of Open Access Journals (Sweden)

    Fatih Kose

    2017-12-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality and responsible for 1.6 million deaths per year through world-wide. Surgical resection with negative margin combined with the adjuvant therapy [except for stage IA and IB (<4 cm] is the Standard treatment for early-stage Non-small cell lung cancer (NSCLC. Early-stage NSCLC, however, has relapse rate over 40% mostly at distant sites. Therefore, high relapse rate necessitates urgent novel biomarker for these patients. In this study, we aim to evaluate the predictive and prognostic role of FOXP3+ Treg cells along with well defined Clinicohistopathological factors in early-stage non-small cell lung cancer (NSCLC. FOXP3 expression in tumor infiltrating lymphocytes (TIL was examined by immunohistochemical staining from resected early-stage 48 NSCLC patients. Data of patients and FOXP3 expression status along with common clinicohistopathological prognostic factors were evaluated retrospectively. Median age of patients was 62 years-old (range 43–78. Mean follow-up, median overall survival (OS, and disease-free survival (DFS were 49, 49 and 30 months, respectively. FOXP3 expression was positive in 23 (47.9% patients. Adjuvant chemotherapy (4 cycles of cisplatin-vinorelbine was given to 16 patients (33.3% at physician discretion. Patients with a FOXP3 expression of 25% or higher significantly lower OS and DFS when compared with patients with a FOXP3 staining lower than 25% with p-value of 0.016 and 0.032, respectively. In the patients with high FOXP3 expression, platin-based adjuvant chemotherapy had showed a detrimental effect on DFS and OS. These results suggest that FOXP3 expression may be used as useful prognostic biomarker in resected NSCLC. Our findings also suggest that resected NSCLC patients with FOXP3 expression of 25% or higher staining intensity may not get any benefit even disfavor from adjuvant platin chemotherapy.

  13. Interactions between αv-Integrin and HER2 and Their Role in the Invasive Phenotype of Breast Cancer Cells In Vitro and in Rat Brain.

    Science.gov (United States)

    Lal, Sangeet; Kersch, Cymon; Beeson, Kathleen A; Wu, Y Jeffrey; Muldoon, Leslie L; Neuwelt, Edward A

    2015-01-01

    We tested the hypothesis that αv-integrin and the human epidermal growth factor receptor type 2 (HER2) interact with each other in brain trophic metastatic breast cancer cells and influence their invasive phenotype. Clones of MDA-MB231BR human breast cancer cells with stable knock down of αv-integrin in combination with high or low levels of HER2 were created. The interactions of these two proteins and their combined effect on cell migration and invasion were investigated in vitro and in vivo. Knockdown of αv-integrin in MDA-MB231BR clones altered the actin cytoskeleton and cell morphology. HER2 co-precipitated with αv-integrin in three breast cancer cell lines in vitro, suggesting they complex in cells. Knockdown of αv-integrin altered HER2 localization from its normal membrane position to a predominantly lysosomal localization. When αv-integrin expression was decreased by 69-93% in HER2-expressing cells, cellular motility was significantly reduced. Deficiency of both αv-integrin and HER2 decreased cellular migration and invasion by almost 90% compared to cells expressing both proteins (Pcancer cells and may regulate HER2 localization. The combined impacts of αv-integrin and HER2 influence the invasive phenotype of breast cancer cells. Targeting αv-integrin in HER2-positive breast cancer may slow growth and decrease infiltration in the normal brain.

  14. Mechanotransduction in cancer stem cells.

    Science.gov (United States)

    Hao, Jin; Zhang, Yueling; Ye, Rui; Zheng, Yingcheng; Zhao, Zhihe; Li, Juan

    2013-09-01

    The cancer stem cell (CSC) concept, which arose about a decade ago, proposes that tumor growth is sustained by a subpopulation of highly malignant cells. These cells, termed CSCs, are capable of extensive self-renewal that contributes to metastasis and treatment resistance. Therefore, therapeutic strategies that target CSCs should be developed for improving outcomes of cancer patients. Recent progress has highlighted the importance of physical properties of the extracellular matrix and mechanotransduction pathway in cancer cells during cancer development. On the other hand, the significance of CXCR1, an upstream signal of FAK/PI3K/Akt has been revealed in CSCs. FAK/PI3K/Akt is a key signal mediator in mechanotransduction pathway. Therefore, mechanotransduction could be a new target for CSCs, and would be an innovative way to treat cancer by inhibiting FAK/PI3K/Akt. © 2013 International Federation for Cell Biology.

  15. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics.

    Science.gov (United States)

    She, Jun-Jun; Zhang, Peng-Ge; Wang, Xuan; Che, Xiang-Ming; Wang, Zi-Ming

    2012-09-07

    To investigate whether the side population (SP) cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer. We analyzed the presence of SP cells in different human gastric carcinoma cell lines, and then isolated and identified the SP cells from the KATO III human gastric cancer cell line by flow cytometry. The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays. The related genes were determined by reverse transcription polymerase chain reaction. To compare tumorigenic ability, SP and non-side population (NSP) cells from the KATO III human gastric cancer cell line were subcutaneously injected into nude mice. SP cells from the total population accounted for 0.57% in KATO III, 1.04% in Hs-746T, and 0.02% in AGS (CRL-1739). SP cells could grow clonally and have self-renewal capability in conditioned media. The expression of ABCG2, MDRI, Bmi-1 and Oct-4 was different between SP and NSP cells. However, there was no apparent difference between SP and NSP cells when they were injected into nude mice. SP cells have some cancer stem cell-like characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  16. Role of Caveolin 1, E-Cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells

    DEFF Research Database (Denmark)

    Selga, Elisabet; Morales Torres, Christina; Noé, Véronique

    2008-01-01

    ABSTRACT: BACKGROUND: Methotrexate is one of the earliest cytotoxic drugs used in cancer therapy, and despite the isolation of multiple other folate antagonists, methotrexate maintains its significant role as a treatment for different types of cancer and other disorders. The usefulness of treatme...

  17. High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor

    DEFF Research Database (Denmark)

    Lathia, Justin D; Li, Meizhang; Sinyuk, Maksim

    2014-01-01

    Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow cyto...

  18. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment....... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  19. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  20. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  1. Cancer stem cells: the challenges ahead

    NARCIS (Netherlands)

    Medema, Jan Paul

    2013-01-01

    Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this

  2. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  3. Characterization of the Role of Breast Tumor Kinase (BRK) in Breast Cancer Cells Non-responsive to EGFR-targeted Agents

    National Research Council Canada - National Science Library

    Nimnual, Anjaruwee

    2006-01-01

    .... PI-3 kinase/AKT pathway mediates EGF-induced cell growth and survival and is involved in cellular resistance to anti-cancer drugs/AKT pathway is regulated by multiple activators downregulation...

  4. The Role of PPARs in Cancer

    Directory of Open Access Journals (Sweden)

    Keisuke Tachibana

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. PPAR is mainly expressed in the liver, where it activates fatty acid catabolism. PPAR activators have been used to treat dyslipidemia, causing a reduction in plasma triglyceride and elevation of high-density lipoprotein cholesterol. PPAR is expressed ubiquitously and is implicated in fatty acid oxidation and keratinocyte differentiation. PPAR activators have been proposed for the treatment of metabolic disease. PPAR2 is expressed exclusively in adipose tissue and plays a pivotal role in adipocyte differentiation. PPAR is involved in glucose metabolism through the improvement of insulin sensitivity and represents a potential therapeutic target of type 2 diabetes. Thus PPARs are molecular targets for the development of drugs treating metabolic syndrome. However, PPARs also play a role in the regulation of cancer cell growth. Here, we review the function of PPARs in tumor growth.

  5. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems.

    Science.gov (United States)

    Li, Jibin; Wang, Ying; Zhang, Wei; Huang, Yuehua; Hein, Kristin; Hidalgo, Ismael J

    2012-11-01

    Membrane transporters can play a clinically important role in drug absorption and disposition; Caco-2 and Madin-Darby canine kidney (MDCK) cells are the most widely used in vitro models for studying the functions of these transporters and associated drug interactions. Transport studies using these cell models are mostly focused on apical transporters, whereas basolateral drug transport processes are largely ignored. However, for some hydrophilic drugs, a basolateral uptake transporter may be required for drugs to enter cells before they can interact with apical efflux transporters. The objective of this study was to evaluate potential differences in drug transport across Caco-2 and MDCK basolateral membrane that could cause discrepancy in the identification of efflux transporter substrates and to elucidate the underlying factors that may cause such differences, using rosuvastatin as a model substrate. Bidirectional transport results in Caco-2 and breast cancer resistance protein-MDCK cells demonstrated the necessity of an uptake transporter at the basolateral membrane for rosuvastatin. Kinetic study revealed saturable and nonsaturable processes for rosuvastatin uptake across the Caco-2 basolateral membrane, with the saturable process encompassing >75% of overall rosuvastatin basolateral uptake at concentrations below the K(m) (4.2 μM). Furthermore, rosuvastatin basolateral transport exhibited cis-inhibition and trans-stimulation phenomena, indicating a facilitated diffusion mechanism. This basolateral transporter appeared to be a prerequisite for rosuvastatin and perhaps for other hydrophilic substrates to interact with apical efflux transporters. Deficit of such a basolateral transporter in certain cell models may lead to false-negative results when screening drug interactions with apical efflux transporters.

  6. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  7. Lgr5-Positive Cells are Cancer-Stem-Cell-Like Cells in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhongli Wang

    2015-07-01

    Full Text Available Background/Aims: Effective treatment of gastric cancer (GC requires better understanding of the molecular regulation of its carcinogenesis. Identification of cancer stem cells (CSCs in GC appears to be a critical question. Methods: We analyzed Lgr5 expression in GC specimen. We used an adeno-associated virus (AAV that carries diphtheria toxin fragment A (DTA under the control of Lgr5 promoter (AAV-pLgr5-DTA to transduce human GC cells. The growth of GC cells with/without depletion of Lgr5-positive cells was studied in vitro in an MTT assay, and in vivo by analyzing bioluminescence levels. Results: A portion of GC cells in the resected specimen expressed Lgr5. GC cells that formed tumor spheres expressed high Lgr5. Selective depletion of Lgr5-positive GC cells resulted in significant growth inhibition of GC cells in vitro and in vivo. Conclusion: Lgr5-positive cells may be CSCs-like cells in GC and may play a pivotal role in the tumorigenesis of GC. Treating Lgr5-positive GC cells may substantially improve the therapeutic outcome.

  8. Differential Processing of Cyclin E Variants in Normal vs Tumor cells and their Role in Breast Cancer Oncogenesis

    National Research Council Canada - National Science Library

    McGahren, Mollianne

    2003-01-01

    ... and S. This commits the cell to complete one round of cell division. Previous findings by this laboratory have found that overexpression of cyclin E and the presence of lower molecular weight isoforms (LMW...

  9. Differential Processing of Cyclin E Variants in Normal Versus Tumor Cells and Their Role in Breast Cancer Oncogenesis

    National Research Council Canada - National Science Library

    McGahren, Mollianne

    2002-01-01

    ... and S. This commits the cell to complete one round of cell division. Previous findings by this laboratory have found that overexpression of cyclin E and the presence of lower molecular weight isoforms (LMW...

  10. Dual Roles of METCAM in the Progression of Different Cancers

    Directory of Open Access Journals (Sweden)

    Guang-Jer Wu

    2012-01-01

    Full Text Available METCAM, an integral membrane cell adhesion molecule (CAM in the Ig-like gene superfamily, is capable of performing typical functions of CAMs, such as mediating cell-cell and cell-extracellular interactions, crosstalk with intracellular signaling pathways, and modulating social behaviors of cells. METCAM is expressed in about nine normal cells/tissues. Aberrant expression of METCAM has been associated with the progression of several epithelial tumors. Further in vitro and in vivo studies show that METCAM plays a dual role in the progression of different tumors. It can promote the malignant progression of several tumors. On the other hand, it can suppress the malignant progression of other tumors. We suggest that the role of METCAM in the progression of different cancer types may be modulated by different intrinsic factors present in different cancer cells and also in different stromal microenvironment. Many possible mechanisms mediated by this CAM during early tumor development and metastasis are suggested.

  11. Role of the Ink4a/Arf tumor suppressors in cerebellar development, stem cells and cancer

    NARCIS (Netherlands)

    Valk-Lingbeek, Merel Esmée

    2005-01-01

    In order to take proper cell fate decisions, cells have to guide their biochemical machinery through the appropriate decisions in both differentiation and proliferation. Especially for stem cells such decisions are critical as they have the capacity to self-renew, i.e. give rise to new daughter stem

  12. Characterising Castrate Tolerant Prostate Cancer Cells

    OpenAIRE

    ASHLEE KATE CLARK

    2017-01-01

    Prostate cancer is a prevalent disease in aging males. This thesis explores prostate cancer cells that escape current therapy and give rise to end-stage disease. Using sophisticated experimental approaches, this important cancer cell population was identified and characterised in human prostate cancer tissues.  Our discoveries will eventually lead to improved cancer treatments for men with prostate cancer.

  13. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  14. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    OpenAIRE

    Mitsuko Furuya

    2012-01-01

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in m...

  15. The Role of AR- and VDR-Modulated miRNAs in Sensitization of Prostate Cancer Cells to Therapy

    Science.gov (United States)

    2012-10-01

    GMNN) or synergistically ( CCNA2 , CDC20, CCNB2, Survivin/BIRC5, GADD45G, E2F1, ITPR1, BRCA1). Genes that are known to modulate the cell cycle ( CCNA2 ...changes in the mRNA levels of cell cycle regulators. CCNA2 , GMNN, CDC20 and CCNB2 transcript levels were measured over a 72 h time course in LNCaP cells ...been rigorously evaluated (48). The cells express wild type AR and are positive for PSA, PCA3, PSCA (prostate stem cell antigen), PSMA (prostate

  16. Prognostic role of patient gender in limited-disease small-cell lung cancer treated with chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Roengvoraphoj, Olarn; Eze, Chukwuka; Niyazi, Maximilian; Li, Minglun; Belka, Claus; Manapov, Farkhad [LMU Munich, Department of Radiation Oncology, Munich (Germany); Hildebrandt, Guido [University of Rostock, Department of Radiation Oncology, Rostock (Germany); Fietkau, Rainer [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany)

    2017-02-15

    Previous studies have demonstrated that female gender could be a prognostic factor in limited-disease (LD) small-cell lung cancer (SCLC), but the correlation between patient gender and survival parameters remains unclear. Data from 179 LD SCLC patients treated with definitive chemoradiotherapy (CRT) were reviewed. Influence of patient gender on time to progression (TTP), local control (LC), brain metastasis-free (BMFS), distant metastasis-free (DMFS) and overall survival (OS) was analysed. Definitive CRT was completed by 179 (110 men/69 women) patients. Of these, 68 (38%; 34 men/34 women) patients were treated in concurrent and 111 (62%; 76 men/35 women) in sequential mode. Prophylactic cranial irradiation (PCI) was subsequently applied in 70 (39%; 36 men/34 women) patients with partial or complete response after CRT. Median OS was 20 (95% confidence interval [CI] 10-22) and 14 (95% CI 10-18) months in female and male patients, respectively (p = 0.021). In subgroups defined by remission status (complete and partial response) after CRT, an OS benefit for females compared to males was also detected. There was no correlation between patient gender and TTP, LC or DMFS, and no difference in OS in the female and male subgroups treated with PCI. The incidence of metachronous brain metastases (BMs) in the male and female subgroups differed significantly (40/110 men vs. 18/69 women, p = 0.03). Also, mean BMFS was significantly longer in women (p = 0.023). Patient gender also significantly correlated with OS on multivariate analysis after adjustment for other prognostic factors (p = 0.04, HR 1.38, 95% CI 1.08-1.92). In this heterogeneous LD SCLC patient cohort treated with definitive CRT, female gender was significantly associated with longer BMFS and OS, as well as with a lower incidence of metachronous brain failure. (orig.) [German] Studien haben gezeigt, dass weibliches Geschlecht ein prognostischer Faktor beim kleinzelligen Lungenkarzinom (SCLC) im Stadium &apos

  17. Role of tumor markers and mutations in cells and pancreatic juice in the diagnosis of pancreatic cancer

    NARCIS (Netherlands)

    Tascilar, M.; Caspers, E.; Sturm, P. D.; Goggins, M.; Hruban, R. H.; Offerhaus, G. J.

    1999-01-01

    Unresectability at the time of presentation is the most important reason for the poor survival rate of pancreatic carcinoma. Molecular-based tests might improve the early detection of pancreatic cancer at a time when surgical resection is still an option for cure. The literature was reviewed

  18. Using Human Stem Cells to Study the Role of the Stroma in the Initiation of Prostate Cancer

    Science.gov (United States)

    2011-03-01

    prostatic tumour stroma and hormonal carcinogenesis. The Innovative Minds in Prostate Cancer Today (IMPacT) Conference, Orlando, Florida , USA. (Poster...2001 Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia , and in primary

  19. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Georgia Kontostathi

    2017-01-01

    Full Text Available Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+, HeLa (HPV18+, C33A (HPV−, and HCK1T (normal. Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3 and peroxiredoxin-2 (PRDX2 overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR is a prominent feature of cervical carcinogenesis.

  20. Ectopic expression of the ATP synthase β subunit on the membrane of PC-3M cells supports its potential role in prostate cancer metastasis.

    Science.gov (United States)

    Li, Wei; Li, Yulin; Li, Gaiyun; Zhou, Zilong; Chang, Xiaona; Xia, Yang; Dong, Xinjie; Liu, Zhijing; Ren, Bo; Liu, Wei; Li, Yilei

    2017-04-01

    Metastatic prostate cancer is associated with high mortality rates. Identification of metastasis-related proteins may facilitate the development of novel therapies for the treatment of metastatic disease. In the present study, we aimed to identify prostate cancer metastasis-associated membrane proteins. We developed a phage-displayed 7-mer peptide library to screen the target peptides that were specifically bound to PC-3M cells with subtractive panning from normal prostate cells and PC-3 prostate cancer cells. A novel short peptide (B04) was found to have high affinity to highly metastatic PC-3M cells. ATP synthase β subunit (ATP5B) was then identified as a binding partner of B04 on the PC-3M cell surface. ATP5B was expressed on the PC-3M cell membrane and on highly malignant human prostate cancer specimens, as shown using multiple methodologies. Furthermore, ATP5B-positive gold particles were detected on the cellular and mitochondrial membranes by immunoelectromicroscopy. These results implied the possibility that ATP5B may translocate from the inner mitochondrial membrane to the outer surface of PC-3M cells. Additional analysis showed that incubation of B04 with PC-3M cells reduced the detection of ATP5B by western blotting and flow cytometry and significantly inhibited the proliferation, invasion and metastasis of PC-3M cells. In conclusion, ATP5B, as a binding partner of a metastasis-related short peptide (B04) on prostate cancer cells, is involved in promoting prostate cancer metastasis. In conclusion, ATP5B may be a promising biomarker and therapeutic target for highly metastatic malignancies.

  1. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532.

    Science.gov (United States)

    Wardi, Layal; Alaaeddine, Nada; Raad, Issam; Sarkis, Riad; Serhal, Rim; Khalil, Charbel; Hilal, George

    2014-01-01

    Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In this study, we investigated the effect of GR on telomerase activity and on the efficacy of its inhibition by BIBR 1532. Breast cancer MDA-MB 231 and MCF-7 cells were cultured in DMEM (Dulbecco's modified eagle's media) with 0, 1 or 4.5 g/l of glucose. The telomerase activity was measured via quantitative Real-Time PCR, and the two telomerase subunits were semi-quantified by RT-PCR. Proliferation test and mitochondrial metabolism were assessed via tetrazolium salt reduction and cell counts; apoptosis was assessed via caspase-3 quantification and flow cytometry. A decrease in the telomerase activity of more than 75% was associated with a significant reduction in the mRNA expression of its catalytic subunit hTERT (Reverse Transcriptase) and a decrease in the mitochondrial metabolism by more than 80% under restricted glucose conditions. In addition, GR increased the effect of BIBR 1532. Glucose deprivation induces apoptosis via BIBR 1532-mediated telomerase inhibition in triple negative breast cancer cells, as assessed by caspase-3 measurements and Annexin analysis. Taken together, our results suggest that the effect of BIBR 1532 is potentiated by GR to induce triple negative breast cancer cell death.

  2. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  3. Central role of RET in thyroid cancer.

    Science.gov (United States)

    Santoro, Massimo; Carlomagno, Francesca

    2013-12-01

    RET (rearranged during transfection) is a receptor tyrosine kinase involved in the development of neural crest derived cell lineages, kidney, and male germ cells. Different human cancers, including papillary and medullary thyroid carcinomas, lung adenocarcinomas, and myeloproliferative disorders display gain-of-function mutations in RET. Accordingly, RET protein has become a promising molecular target for cancer treatment.

  4. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  5. A novel role for 3, 4-dichloropropionanilide (DCPA in the inhibition of prostate cancer cell migration, proliferation, and hypoxia-inducible factor 1alpha expression

    Directory of Open Access Journals (Sweden)

    Schafer Rosana

    2006-08-01

    Full Text Available Abstract Background The amide class compound, 3, 4-dichloropropionanilide (DCPA is known to affect multiple signaling pathways in lymphocyte and macrophage including the inhibition of NF-κB ability. However, little is known about the effect of DCPA in cancer cells. Hypoxia-inducible factor 1 (HIF-1 regulates the expression of many genes including vascular endothelial growth factor (VEGF, heme oxygenase 1, inducible nitric oxide synthase, aldolase, enolase, and lactate dehydrogenase A. HIF-1 expression is associated with tumorigenesis and angiogenesis. Methods We used Transwell assay to study cell migration, and used immunoblotting to study specific protein expression in the cells. Results In this report, we demonstrate that DCPA inhibited the migration and proliferation of DU145 and PC-3 prostate cancer cells induced by serum, insulin, and insulin-like growth factor I (IGF-I. We found that DCPA inhibited HIF-1 expression in a subunit-specific manner in these cancer cell lines induced by serum and growth factors, and decreased HIF-1α expression by affecting its protein stability. Conclusion DCPA can inhibit prostate cancer cell migration, proliferation, and HIF-1α expression, suggesting that DCPA could be potentially used for therapeutic purpose for prostate cancer in the future.

  6. A novel activating role of SRC and STAT3 on HGF transcription in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Elliott Bruce E

    2007-10-01

    Full Text Available Abstract We have previously determined that the HGF promoter can be transactivated by a combination of activated Src and wild-type Stat3 in the mouse breast cell lines HC11 and SP1. To determine if this pathway is of relevance for the human disease, a series of human breast and other human cells lines were examined, and the status of key proteins in these cells determined. All of the human breast cell lines exhibited strong transactivation by a combination of activated Src and Stat3. This activation was dependent on a Stat3 recognition element present at nt-95. The exception was the ErbB2 over-expressing cell line SK-BR-3 where Stat3 alone could transactivate HGF though Src augmented this effect. Increased phosphorylation of Stat3 tyrosine 705 was also observed in this line. Analysis of three ovarian cell lines revealed that Src/Stat3 expression was not able to activate the HGF promoter in two of these lines (SKOV3 and IOSE-80PC. Src/Stat3 expression did activate HGF transcription in OVCAR3 cells, but this effect was not mediated by the Stat3 site at nt-95. Stat3 phosphorylation at tyrosine 705 was observed in IOSE-80PC cells, but was insufficient to allow for activation of the HGF promoter. Human kidney (HEK293 and cervical carcinoma (HeLa cells were also not Src/Stat3 permissive, despite high levels of Stat3 phospho-Y705. These results suggest that human breast cells are a uniquely permissive environment for HGF transactivation by Src/Stat3 which may allow for the inappropriate activation of HGF transcription during the early stages of breast transformation. This could lead to paracrine or autocrine activation of the Met receptor in breast carcinoma cells.

  7. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  8. Role of the nervous system in cancer metastasis.

    Science.gov (United States)

    Li, Sha; Sun, Yanlai; Gao, Dongwei

    2013-04-01

    The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.

  9. On the Sulfation and Methylation of Catecholestrogens in Human Mammary Epithelial Cells and Breast Cancer Cells

    National Research Council Canada - National Science Library

    Hui, Ying; Yasuda, Shin; Liu, Ming-Yih; Wu, Yi-yong; Liu, Ming-Cheh

    2008-01-01

    .... The present study was designed to examine the role of sulfation in the metabolism of CEs. MCF-7 breast cancer cells and MCF 10A human mammary epithelial cells were metabolically labeled with [35S...

  10. The role of inflammation in kidney cancer.

    Science.gov (United States)

    de Vivar Chevez, Antonio Roma; Finke, James; Bukowski, Ronald

    2014-01-01

    Renal cell carcinoma (RCC) constitutes more than 90 % of primary kidney tumors with the development of metastatic disease in the lung, bone, liver, and brain. Clear-cell RCC (CCRCC) is the most common histologic form of sporadic kidney cancer where the majority of tumors have inactivation of the von Hippel-Lindau (VHL) tumor-suppressor gene resulting in the accumulation of hypoxia-inducible factor (HIF) leading to dysregulation of cell growth and angiogenesis. Understanding of the genetic changes in RCC and the downstream events have led to the development of tyrosine kinase inhibitors (TKI) that target HIF-regulated proteins which currently represents front-line therapy for metastatic disease although resistance develops in most patients overtime. Despite the fact that RCC is an immunogenic tumor, there is mounting evidence that immune cells and inflammatory pathways can enhance tumor growth and immune escape. However, recent studies are beginning to uncover the mechanisms of immune escape in RCC, and the role inflammatory immune cells and cytokines play is this process. These new findings have led to renewed interest in the use of immunotherapy for the treatment of this disease that includes strategies to regulate inflammatory responses. Here, we will discuss the different inflammatory signaling pathways (e.g., VHL, hypoxia, TNF-α, STAT, and TGF-β) and the downstream transcription factors, cytokines, and chemokines involved in tumor development, and disease progression. This will include assessment of the role inflammatory molecules (e.g., pVHL, TGFb, IL6, select chemokines/chemokine receptors) play in promoting cell transformation, survival, proliferation of tumor cells, and metastasis derived from in vitro and in vivo studies. Included is a section on how select inflammatory cells (TAM, MDSC, and neutrophils) promote tumor evasion of immune cells. We also provide examples of molecules/cells that correlate negatively (CXCL12, CXCR4, and MMP, neutrophils, and

  11. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis.

    Science.gov (United States)

    Dai, Jin; Ji, Yanli; Wang, Wei; Kim, Donghern; Fai, Leonard Yenwong; Wang, Lei; Luo, Jia; Zhang, Zhuo

    2017-09-15

    Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The roles of cellular nanomechanics in cancer.

    Science.gov (United States)

    Yallapu, Murali M; Katti, Kalpana S; Katti, Dinesh R; Mishra, Sanjay R; Khan, Sheema; Jaggi, Meena; Chauhan, Subhash C

    2015-01-01

    The biomechanical properties of cells and tissues may be instrumental in increasing our understanding of cellular behavior and cellular manifestations of diseases such as cancer. Nanomechanical properties can offer clinical translation of therapies beyond what are currently employed. Nanomechanical properties, often measured by nanoindentation methods using atomic force microscopy, may identify morphological variations, cellular binding forces, and surface adhesion behaviors that efficiently differentiate normal cells and cancer cells. The aim of this review is to examine current research involving the general use of atomic force microscopy/nanoindentation in measuring cellular nanomechanics; various factors and instrumental conditions that influence the nanomechanical properties of cells; and implementation of nanoindentation methods to distinguish cancer cells from normal cells or tissues. Applying these fundamental nanomechanical properties to current discoveries in clinical treatment may result in greater efficiency in diagnosis, treatment, and prevention of cancer, which ultimately can change the lives of patients. © 2014 Wiley Periodicals, Inc.

  13. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1 Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1 Cells.

    Directory of Open Access Journals (Sweden)

    Misako Haraguchi

    Full Text Available Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT. During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  14. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    Science.gov (United States)

    2010-01-01

    high levels of NT receptor NTS1 and gave growth responses to NT at concentra- tions near to postprandial blood levels in humans [27]. These and other...that are compensated by increased glycolysis. In order to address this idea, we examined the effects of FLAVs in cells deprived of glucose . Quiescent...cells were withdrawn from glucose for 1.5 hrs in order to put more demand on metabolic systems. However, this did not compromise their ability to

  15. Role of epigenomics in ovarian and endometrial cancers.

    Science.gov (United States)

    Balch, Curtis; Matei, Daniela E; Huang, Tim H-M; Nephew, Kenneth P

    2010-06-01

    Ovarian cancer is the most lethal gynecologic malignancy and while constituting only 3% of all female cancers, it causes 14,600 deaths in the USA annually. Endometrial cancer, the most diagnosed and second-most fatal gynecologic cancer, afflicts over 40,000 US women annually, causing an estimated 7780 deaths in 2009. In both advanced ovarian and endometrial carcinomas, the majority of initially therapy-responsive tumors eventually evolve to a fully drug-resistant phenotype. In addition to genetic mutations, epigenetic anomalies are frequent in both gynecologic malignancies, including aberrant DNA methylation, atypical histone modifications and dysregulated expression of distinct microRNAs, resulting in altered gene-expression patterns favoring cell survival. In this article, we summarize the most recent hypotheses regarding the role of epigenetics in ovarian and endometrial cancers, including a possible role in tumor 'stemness' and also evaluate the possible therapeutic benefits of reversal of these oncogenic chromatin aberrations.

  16. The complexity of the complicity of mast cells in cancer.

    Science.gov (United States)

    Nechushtan, Hovav

    2010-05-01

    Mast cells are evolutionarly ancient cells of the immune cells which can secrete a variety of effector molecules. Animal and pathologic studies suggest that mast cells may promote tumor growth in some cancer types but may act in an opposite manner in others. In several mouse models a critical role of mast cells for tumor promotion was demonstrated. In humans mast cells are dependent upon the tyrosine kinase receptor c-Kit. This receptor is inhibited by many of the new anti-cancer tyrosine kinase inhibitors including Pazopanib, Imatinib and Masitinib. These drugs probably ablate some tumor mast cells, in addition to their other known antitumor effects. Understanding the complex roles of mast cells in cancer should aid in understanding mechanisms of current tyrosine kinase inhibitors, and the development of innovative anti-cancer therapies. 2009 Elsevier Ltd. All rights reserved.

  17. Role of Reactive Oxygen Species and Nitric Oxide in Mediating Chemotherapeutic Drug Induced Bystander Response in Human Cancer Cells Exposed In-Vitro

    OpenAIRE

    Chinnadurai, Mani; Rao, Bhavna S; Deepika, Ramasamy; Paul, Solomon F.D.; Venkatachalam, Perumal

    2012-01-01

    Background The intention of cancer chemotherapy is to control the growth of cancer cells using chemical agents. However, the occurrence of second malignancies has raised concerns, leading to re-evaluation of the current strategy in use for chemotherapeutic agents. Although the mechanisms involved in second malignancy remain ambiguous, therapeutic-agent-induced non-DNA targeted effects like bystander response and genomic instability cannot be eliminated completely. Hence, Bleomycin (BLM) and N...

  18. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion.

    LENUS (Irish Health Repository)

    Cooke, Niamh M

    2015-09-09

    Platelet-cancer cell interactions play a key role in successful haematogenous metastasis. Disseminated malignancy is the leading cause of death among ovarian cancer patients. It is unknown why different ovarian cancers have different metastatic phenotypes. To investigate if platelet-cancer cell interactions play a role, we characterized the response of ovarian cancer cell lines to platelets both functionally and at a molecular level.

  19. The Roles of MicroRNAs in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryou-u [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Miyazaki, Hiroaki [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555 (Japan); Ochiya, Takahiro, E-mail: tochiya@ncc.go.jp [Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2015-04-09

    MicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide, non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. In various cancers, miRNAs play important roles in tumor initiation, drug resistance and metastasis. Recent studies reported that miRNAs could also be secreted via small endosome-derived vesicles called exosomes, which are derived from multiple cell types, including dendritic cells, lymphocytes, and tumor cells. Exosomal miRNAs play an important role in cell-to-cell communication and have been investigated as prognostic and diagnostic biomarkers. In this review, we summarize the major findings related to the functions of miRNAs in breast cancer, which is the most frequent cancer in women, and discuss the potential clinical uses of miRNAs, including their roles as therapeutic targets and diagnostic markers.

  20. From gametogenesis and stem cells to cancer: common metabolic themes.

    Science.gov (United States)

    Pereira, Sandro L; Rodrigues, Ana Sofia; Sousa, Maria Inês; Correia, Marcelo; Perestrelo, Tânia; Ramalho-Santos, João

    2014-01-01

    Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  1. Transcriptional profiling of human breast cancer cells cultured under microgravity conditions revealed the key role of genetic gravity sensors previously detected in Drosophila melanogaster

    Science.gov (United States)

    Valdivia-Silva, Julio E.; Lavan, David; Diego Orihuela-Tacuri, M.; Sanabria, Gabriela

    2016-07-01

    Currently, studies in Drosophila melanogaster has shown emerging evidence that microgravity stimuli can be detected at the genetic level. Analysis of the transcriptome in the pupal stage of the fruit flies under microgravity conditions versus ground controls has suggested the presence of a few candidate genes as "gravity sensors" which are experimentally validated. Additionally, several studies have shown that microgravity causes inhibitory effects in different types of cancer cells, although the genes involved and responsible for these effects are still unknown. Here, we demonstrate that the genes suggested as the sensors of gravitational waves in Drosophila melanogaster and their human counterpart (orthologous genes) are highly involved in carcinogenesis, proliferation, anti-apoptotic signals, invasiveness, and metastatic potential of breast cancer cell tumors. The transcriptome analyses suggested that the observed inhibitory effect in cancer cells could be due to changes in the genetic expression of these candidates. These results encourage the possibility of new therapeutic targets managed together and not in isolation.

  2. Overexpression of L1 cell adhesion molecule correlates with aggressive tumor progression of patients with breast cancer and promotes motility of breast cancer cells

    OpenAIRE

    Zhang, Jian; Yang, Fei; Ding, Yong; Zhen, Linlin; Han, Xuedong; Jiao, Feng; Tang, Jinhai

    2015-01-01

    Background and purpose: L1 cell adhesion molecule (L1CAM) has been observed to be aberrantly expressed and implicated in progression of several types of human cancers. However, its roles in breast cancer have not been fully elucidated. In this study, we aimed to investigate the clinical significance of L1CAM in human breast cancer and to validate whether it participates in cancer cell migration and invasion. Methods: Immunohistochemical analysis of 100 breast cancer and matched non-cancerous ...

  3. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  4. Role of KCNMA1 in breast cancer.

    Directory of Open Access Journals (Sweden)

    Martin Oeggerli

    Full Text Available KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca(2+-activated (BK potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3-7%. We performed an extensive analysis on breast cancer tissue microarrays (TMA of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.

  5. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity

    NARCIS (Netherlands)

    Wiersma, Valerie; Michalak, Marek; Abdullah, Trefa M; Bremer, Edwin; Eggleton, Paul

    2015-01-01

    Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs,

  6. Role of PARP-1 in prostate cancer.

    Science.gov (United States)

    Deshmukh, Dhanraj; Qiu, Yun

    2015-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is an enzyme that catalyzes the covalent attachment of polymers of ADP-ribose (PAR) moieties on itself and its target proteins. PARP1 activity is frequently deregulated in various cancers and therefore it has emerged as a new drug target for cancer therapy. The role of PARP-1 in DNA repair has been well documented and BRCA mutations are implicated for determining the sensitivity to PARP inhibitors. Recent studies also point to a role of PARP-1 in transcription regulation which may contribute to oncogenic signaling and cancer progression. Given that efficacy of PARP inhibitors are also seen in patients not harboring BRCA mutations, some other mechanisms might also be involved. In the present review, we highlight the mechanisms by which PARP-1 regulates gene expression in prostate cancer and provide an overview of the ongoing clinical trials using PARP inhibitors in various cancers including prostate cancer.

  7. Oncogene-directed alterations in cancer cell metabolism.

    Science.gov (United States)

    Nagarajan, Arvindhan; Malvi, Parmanand; Wajapeyee, Narendra

    2016-07-01

    Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.

  8. Role of bacterial infections in pancreatic cancer

    OpenAIRE

    Michaud, Dominique S.

    2013-01-01

    Established risk factors for pancreatic cancer, including tobacco smoking, chronic pancreatitis, obesity and type 2 diabetes, collectively account for less than half of all pancreatic cancer cases. Inflammation plays a key role in pancreatic carcinogenesis, but it is unclear what causes local inflammation, other than pancreatitis. Epidemiological data suggest that Helicobacter pylori may be a risk factor for pancreatic cancer, and more recently, data suggest that periodontal disease, and Porp...

  9. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H.; Boersma-van Ek, Wytske; Terstappen, Leon W. M. M.; Groen, Harry J. M.; Timens, Wim; Kruyt, Frank A. E.; Hiltermann, T. Jeroen N.

    2016-01-01

    The prognostic value of markers of cancer stem cells and epithelial to mesenchymal transition in small cell lung cancer is not known. We retrospectively studied these markers in the biopsy tissue of patients with small cell lung cancer and correlated them with overall survival and the strongest

  10. The Role of Stereotactic Ablative Radiotherapy for Early-Stage and Oligometastatic Non-small Cell Lung Cancer: Evidence for Changing Paradigms

    Science.gov (United States)

    Dahele, Max

    2011-01-01

    A compelling body of non-randomized evidence has established stereotactic ablative lung radiotherapy (SABR) as a standard of care for medically inoperable patients with peripheral early-stage non-small cell lung cancer (NSCLC). This convenient outpatient therapy, which is typically delivered in 3-8 fractions, is also well tolerated by elderly and frail patients, makes efficient use of resources and is feasible using standard commercial equipment. The introduction of lung SABR into large populations has led to an increased utilization of radiotherapy, a reduction in the proportion of untreated patients and an increase in overall survival. In selected patients, the same ablative technology can now achieve durable local control of NSCLC metastases in a variety of common locations including the adrenal glands, bone, brain, and liver. At the same time as this, advances in prognostic molecular markers and targeted systemic therapies mean that there is now a subgroup of patients with stage IV NSCLC and a median survival of around 2 years. This creates opportunities for new trials that incorporate SABR and patient-specific systemic strategies. This selective mini-review focuses on the emerging role of SABR in patients with early-stage and oligometastatic NSCLC. PMID:21811422

  11. Role of salvage stereotactic body radiation therapy in post-surgical loco-regional recurrence in a selected population of non-small cell lung cancer patients.

    Science.gov (United States)

    Agolli, Linda; Valeriani, Maurizio; Carnevale, Alessia; Falco, Teresa; Bracci, Stefano; De Sanctis, Vitaliana; Minniti, Giuseppe; Enrici, Riccardo Maurizi; Osti, Mattia Falchetto

    2015-03-01

    This is a retrospective analysis of a selected series of high-risk non-small cell lung cancer (NSCLC) patients with post-surgical loco-regional relapse treated with salvage stereotactic body radiotherapy (SBRT). Outcome and toxicity profiles were assessed. Twenty-eight patients (unfit for surgery or systemic therapy) with 30 lesions underwent salvage SBRT as an alternative therapy because of advanced age, co-morbid conditions or no response obtained from other treatments. Complete and partial responses were 16% and 70%, respectively. Local progression was observed in 3 patients. Regional relapse occurred in 5 patients. Distant progression occurred in 10 patients. The 2-year overall survival (OS) and disease-free survival (DFS) were 57.5% and 36.6%, respectively. Radiation acute pneumonitis occurred as follows: three patients developed grade 1, two patients experienced grade 2 and one patient experienced grade 3 toxicity. Stereotactic body radiotherapy could have an alternative role in isolated loco-regional relapse in patients unfit or resistant to other therapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression.

    Science.gov (United States)

    Englinger, Bernhard; Lötsch, Daniela; Pirker, Christine; Mohr, Thomas; van Schoonhoven, Sushilla; Boidol, Bernd; Lardeau, Charles-Hugues; Spitzwieser, Melanie; Szabó, Pál; Heffeter, Petra; Lang, Irene; Cichna-Markl, Margit; Grasl-Kraupp, Bettina; Marian, Brigitte; Grusch, Michael; Kubicek, Stefan; Szakács, Gergely; Berger, Walter

    2016-08-02

    Genomically amplified fibroblast growth factor receptor 1 (FGFR1) is an oncogenic driver in defined lung cancer subgroups and predicts sensibility against FGFR1 inhibitors in this patient cohort. The FGFR inhibitor nintedanib has recently been approved for treatment of lung adenocarcinoma and is currently evaluated for small cell lung cancer (SCLC). However, tumor recurrence due to development of nintedanib resistance might occur. Hence, we aimed at characterizing the molecular mechanisms underlying acquired nintedanib resistance in FGFR1-driven lung cancer. Chronic nintedanib exposure of the FGFR1-driven SCLC cell line DMS114 (DMS114/NIN) but not of two NSCLC cell lines induced massive overexpression of the multidrug-resistance transporter ABCB1. Indeed, we proved nintedanib to be both substrate and modulator of ABCB1-mediated efflux. Importantly, the oncogenic FGFR1 signaling axis remained active in DMS114/NIN cells while bioinformatic analyses suggested hyperactivation of the endothelin-A receptor (ETAR) signaling axis. Indeed, ETAR inhibition resensitized DMS114/NIN cells against nintedanib by downregulation of ABCB1 expression. PKC and downstream NFκB were identified as major downstream players in ETAR-mediated ABCB1 hyperactivation. Summarizing, ABCB1 needs to be considered as a factor underlying nintedanib resistance. Combination approaches with ETAR antagonists or switching to non-ABCB1 substrate FGFR inhibitors represent innovative strategies to manage nintedanib resistance in lung cancer.

  13. Tumor-derived exosomes and their role in cancer progression

    Science.gov (United States)

    Whiteside, Theresa L

    2017-01-01

    Tumor cells actively produce, release and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon the contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as non-invasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  14. Lung cancer brain metastases – the role of neurosurgery

    Directory of Open Access Journals (Sweden)

    V. A. Aleshin

    2016-01-01

    Full Text Available Lung cancer is mostly common occurring oncological disease in the developed countries. Currently lung cancers are subdivided into nonsmall-cell (adenocarcinoma, large-cell, squamous cell and small-cell. The difference in the clinical and morphological picture leads to the necessity of choosing therapeutic approaches to patients of various groups.Lung cancer should be referred to encephalotropic diseases since metastatic lesion of the central nervous system is sufficiently common complication. Successes of complex treatment of primary tumor result in increase of total longlivety currently ther is ageing of patients suffering lung cancer. These factors increase the risk of metastatic lesions of the brain.Interest to the problem of neurosurgical treatment of patients suffering lung cancer is determined by frequency of lesion, varicosity of morphological variants of the disease, requiring various algorithms of treatment and diagnosis.The main role of neurosurgical intervention in cerebral metastases of lung cancer consist in creation of the paled of carrying out combined therapy. Ideally, a neurosurgical operation should be carried out with clearcut observance of oncological principles of ablasty.Adequate comprehensive approach to treatment or patients with cerebral metastases of various forms of lung cancer with the developed of optimal tactics of and stages of treatment would make it possible to increase duration and quality of life of patients.

  15. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    Science.gov (United States)

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  16. Short Communication: Studying the Role of Smart Flare Gold Nano Particles in Studying Micro RNA and Oncogene Differential Expression in Prostate Cancer Cell Lines.

    Science.gov (United States)

    Banerjee, Hirendra; Joyner, Jamel; Stevenson, Monet; Kaha, William; Krauss, Christopher; Hodges, Sasha; Santos, Eduardo; Worthington, Myla; Rousch, Jeffferey; Payne, Gloria; Manglik, Vinod; Banerjee, Narendra; Morris, Brianna; Bell, Dayton; Mandal, Santosh

    2017-01-01

    Nano technology is a cutting edge science which is now effectively used in the field of cancer biology. Smart Flare gold nanoparticles are now used often for differential gene expression analysis. In this manuscript we are reporting the use of micro RNA miR 146a and onco gene EZH2 Smart Flare probes to study their expression in different prostate cancer cell lines and the effect of novel Rhenium compounds on these genes using a flow cytometer and a Fluorescence microscope. Our results showed this novel nanotechnology can be effectively used in cancer biology to successfully detect the effect of novel drugs on oncogenes and could be a very useful tool for next generation of cancer researchers.

  17. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. The role of circadian regulation in cancer.

    Science.gov (United States)

    Gery, S; Koeffler, H P

    2007-01-01

    Proper circadian regulation is essential for the well being of the organism, and disruption of circadian rhythms is associated with pathological conditions including cancer. In mammals, the core clock genes, Per1 and Per2, are key regulators of circadian rhythms both in the central clock in the hypothalamous and in peripheral tissues. Recent findings revealed molecular links between Per genes and cellular components that control fundamental cellular processes such as cell division and DNA damage. New data also shed light on mechanisms by which circadian oscillators operate in peripheral organs to influence tissue-dependent metabolic and hormonal pathways. Circadian cycles are linked to basic cellular functions, as well as to tissue-specific processes through the control of gene expression and protein interactions. By controlling global networks such as chromatin remolding and protein families, which themselves regulate a broad range of cellular functions, circadian regulation impinges upon almost all major physiological pathways. These molecular insights illustrate how disregulation of circadian rhythms might influence the susceptibility to cancer development and provide further support for the emerging role of circadian genes in tumor suppression.

  19. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation. Copyright © 2013 Wiley Periodicals

  20. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  1. Protease-activated receptors – biology and role in cancer

    Directory of Open Access Journals (Sweden)

    Dominika Hempel

    2016-07-01

    Full Text Available The fact that blood coagulation disorders may accompany malignant disease is well established. However, many studies have shown that components of the haemostatic system may also elicit signaling leading to cancer developement and progression. The potential mechanism by which coagulation factors play a role in cancer invasion is not completely understood, but one hypothesis is that protease-activated receptors (PARs play a prominent role. PARs are transmembrane G-protein-coupled receptors (GPCRs that are activated by a unique proteolytic mechanism. They have important functions in haemostasis and inflammation but may also be implicated in cancer cell progression. Thrombin, tissue factor (TF and matrix metalloproteinases (MMPs are the main activators of these receptors. The mechanism of persistent activation of PARs was also described in cancer cells. Here, we discuss the physiological and pathological role of PARs with a particular focus on PARs’ contribution to cancer biology. We also present therapeutic options tailored specifically to inhibition of PAR-induced signalling in cancer patients.

  2. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness.

    Science.gov (United States)

    Wang, Xin; Jung, Youn-Sang; Jun, Sohee; Lee, Sunhye; Wang, Wenqi; Schneider, Andrea; Sun Oh, Young; Lin, Steven H; Park, Bum-Joon; Chen, Junjie; Keyomarsi, Khandan; Park, Jae-Il

    2016-02-04

    Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness.

  3. Type 3 deiodinase: role in cancer growth, stemness and metabolism

    Directory of Open Access Journals (Sweden)

    Domenico eCiavardelli

    2014-12-01

    Full Text Available Deiodinases are selenoenzymes that catalyze thyroid hormones (THs activation (type 1 and type 2, D1 and D2 respectively or inactivation (type 3, D3. THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper we review recent advances in the role of D3 in cancer growth, stemness and metabolic phenotype. In particular we focus on the main signalling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.

  4. Viral oncogenesis and its role in nonmelanoma skin cancer.

    LENUS (Irish Health Repository)

    Tuttleton Arron, S

    2011-06-01

    In recent years, the contribution of viruses to cutaneous oncogenesis has steadily gained recognition. The archetype is human herpesvirus 8, which is well established as the causative agent in Kaposi sarcoma. Other viruses believed to play a role in nonmelanoma skin cancer include human papillomavirus and the recently described Merkel cell polyomavirus. We review the mechanisms by which these three viruses interact with the host cell, ultraviolet radiation and immunosuppression to result in carcinogenesis.

  5. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The role of MicroRNAs expression in laryngeal cancer

    Science.gov (United States)

    2015-01-01

    MicroRNAs (miRs, miRs) is a class of small non-coding RNAs, which posttranscriptionally regulate gene expression. Deregulated miRs are frequently obseved in patients with laryngeal cancer. In addition, numerous studies have showed miRs play significant roles in the pathogenesis of laryngeal cancer through regulating tumor cell proliferation, metastasis, invasion and apoptosis. miR can play either an oncogenic or tumor suppressive role in laryngeal cancer. In our review, we summarize the recent researches on laryngeal cancer-associated miRs, focusing on their role in the pathogenesis of laryngeal cancer. As changes in the levels of specific miRs in tissues or serum associate with diagnosis and prognosis of patients, we will also discuss the potential use of miRs in laryngeal cancer diagnosis and prognosis. Furthermore, supplementation of oncomiRs or inhibition of tumor suppressive miRs in vivo may be future therapeutic strategy for laryngeal cancer. PMID:26079642

  7. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  8. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  9. Tumor-Stroma Crosstalk in Bone Tissue: The Osteoclastogenic Potential of a Breast Cancer Cell Line in a Co-Culture System and the Role of EGFR Inhibition.

    Science.gov (United States)

    Mercatali, Laura; La Manna, Federico; Miserocchi, Giacomo; Liverani, Chiara; De Vita, Alessandro; Spadazzi, Chiara; Bongiovanni, Alberto; Recine, Federica; Amadori, Dino; Ghetti, Martina; Ibrahim, Toni

    2017-07-29

    Although bone metastases represent a major challenge in the natural history of breast cancer (BC), the complex interactions involved have hindered the development of robust in vitro models. The aim of this work is the development of a preclinical model of cancer and bone stromal cells to mimic the bone microenvironment. We studied the effects on osteoclastogenesis of BC cells and Mesenchymal stem cells (MSC) cultured alone or in combination. We also analyzed: (a) whether the blockade of the Epithelial Growth Factor Receptor (EGFR) pathway modified their influence on monocytes towards differentiation, and (b) the efficacy of bone-targeted therapy on osteoclasts. We evaluated the osteoclastogenesis modulation of human peripheral blood monocytes (PBMC) indirectly induced by the conditioned medium (CM) of the human BC cell line SCP2, cultured singly or with MSC. Osteoclastogenesis was evaluated by TRAP analysis. The effect of the EGFR blockade was assessed by treating the cells with gefitinib, and analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western Blot (WB). We observed that SCP2 co-cultured with MSC increased the differentiation of PBMC. This effect was underpinned upon pre-treatment of the co-culture with gefitinib. Co-culture of SCP2 with MSC increased the expression of both the bone-related marker Receptor Activator of Nuclear Factor κB (RANK) and EGFR in BC cells. These upregulations were not affected by the EGFR blockade. The effects of the CM obtained by the cells treated with gefitinib in combination with the treatment of the preosteoclasts with the bone-targeted agents and everolimus enhanced the inhibition of the osteoclastogenesis. Finally, we developed a fully human co-culture system of BC cells and bone progenitor cells. We observed that the interaction of MSC with cancer cells induced in the latter molecular changes and a higher power of inducing osteoclastogenesis. We found that blocking EGFR signaling

  10. Do soy isoflavones lower cholesterol, inhibit atherosclerosis, and play a role in cancer prevention?

    Science.gov (United States)

    Arliss, Rebecca M; Biermann, Carol A

    2002-10-01

    This article is designed to help nursing professionals advise patients about the role of soy in the prevention and treatment of heart disease, breast cancer, and prostate cancer. Soy protein lowers total cholesterol, low-density lipoprotein cholesterol, and triglycerides in humans and inhibits atherosclerosis in animals. In cell culture studies and animal research, the soy isoflavone genistein offers protection from breast cancer and prostate cancer because it prevents cancer initiation, slows promotion, and impedes cancer progression. This article synthesizes the current research concerning soy phytoestrogens and the prevention and treatment of heart disease, breast cancer, and prostate cancer. Nursing professionals may use this information when counseling patients.

  11. Cancer Stem Cells Accountability in Progression of Head and Neck Squamous Cell Carcinoma: The Most Recent Trends!

    Directory of Open Access Journals (Sweden)

    Samapika Routray

    2014-01-01

    Full Text Available Cancer stem cells (CSCs play a major role in local recurrence and metastatic spread in head and neck squamous cell carcinomas (HNSCC. Evidence suggests that cancer stem cells are resistant to conventional therapy. So the emerging concepts of the role of cancer stem cells in the pathobiology of HNSCC should be understood carefully to be able to create new paradigms in treatment plans.

  12. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Manuela Schwegler

    2015-01-01

    Full Text Available Background. In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. Methods. The phenomenon of one cell being internalized into another, which we refer to as “cell-in-cell event,” was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. Results. Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm2. Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients’ survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (p=0.008. Conclusion. Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies.

  13. Stromal cells in tumor microenvironment and breast cancer.

    Science.gov (United States)

    Mao, Yan; Keller, Evan T; Garfield, David H; Shen, Kunwei; Wang, Jianhua

    2013-06-01

    Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.

  14. Stroma Cells in Tumor Microenvironment and Breast Cancer

    Science.gov (United States)

    Mao, Yan; Keller, Evan T.; Garfield, David H.; Shen, Kunwei; Wang, Jianhua

    2015-01-01

    Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment. PMID:23114846

  15. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene–Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Xiayu Wu

    2016-06-01

    Full Text Available Folate-mediated one-carbon metabolism (FMOCM is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6 is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT, methionine synthase reductase (MTRR, and methionine synthase (MS, in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV. To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene–nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN and PCR-restriction fragment length polymorphism (PCR-RFLP techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state. SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer.

  16. The role of the tumor stroma in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ben eDavidson

    2014-05-01

    Full Text Available The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells and leukocytes, is growingly perceived to be a major contributor to the pathogenesis and disease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic proteins and signaling molecules, and express surface receptors and respond to stimuli initiated in the tumor cells to establish a bi-directional communication network in the microenvironment to promote tumor cell invasion and metastasis. Many of these molecules are candidates for targeted therapy and the cancer stroma has been recently regarded as target for biological intervention. This review provides an overview of the biology and clinical role of the stroma in ovarian cancer.

  17. The role of the tumor stroma in ovarian cancer.

    Science.gov (United States)

    Davidson, Ben; Trope, Claes G; Reich, Reuven

    2014-01-01

    The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells, and leukocytes, is growingly perceived to be a major contributor to the pathogenesis and disease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic proteins, and signaling molecules, and express surface receptors and respond to stimuli initiated in the tumor cells to establish a bi-directional communication network in the microenvironment to promote tumor cell invasion and metastasis. Many of these molecules are candidates for targeted therapy and the cancer stroma has been recently regarded as target for biological intervention. This review provides an overview of the biology and clinical role of the stroma in ovarian cancer.

  18. The Role of the Tumor Stroma in Ovarian Cancer

    Science.gov (United States)

    Davidson, Ben; Trope, Claes G.; Reich, Reuven

    2014-01-01

    The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells, and leukocytes, is growingly perceived to be a major contributor to the pathogenesis and disease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic proteins, and signaling molecules, and express surface receptors and respond to stimuli initiated in the tumor cells to establish a bi-directional communication network in the microenvironment to promote tumor cell invasion and metastasis. Many of these molecules are candidates for targeted therapy and the cancer stroma has been recently regarded as target for biological intervention. This review provides an overview of the biology and clinical role of the stroma in ovarian cancer. PMID:24860785

  19. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    Science.gov (United States)

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  20. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P.

    Science.gov (United States)

    Huang, Bin; Huang, Yi Jun; Yao, Zhi Jun; Chen, Xu; Guo, Sheng Jie; Mao, Xiao Peng; Wang, Dao Hu; Chen, Jun Xing; Qiu, Shao Peng

    2013-01-01

    Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells as compared with other four cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  1. Breast cancer circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Maria Joao Carvalho

    2011-12-01

    Full Text Available Metastasization of breast cancer involves various mechanisms responsible for progression from invasive lesion to dissemination in distant organs. Regional lymph node metastasization was considered an initial step in this process, but it is now recognized that hematogenous dissemination is a deviation from lymphatic circulation. The detection of circulating tumor cells (CTC is an aim in several oncology areas. For this purpose, several techniques have been used to detect CTC, including the use of antibodies and techniques with nucleic acids. This study reviews the published studies considering the detection of breast cancer CTC. There are focused the difficulties in identifying a CTC in a heterogeneous population, the handling of the sample, criteria of positivity, analytical techniques, and specific markers. There are systematized various specific markers of breast cancer cells also the problems with false positive results. Finally, we hypothesize clinical applications either as a prognostic marker or as a therapeutic response monitor.

  2. Role of epigenetics in cancer health disparities.

    Science.gov (United States)

    Mohammed, Sulma I; Springfield, Sanya; Das, Rina

    2012-01-01

    Cancer disparities in incidence and death rates exist among various racial and ethnic groups. These disparities are thought to be due to socioeconomic status, culture, diet, stress, the environment, and biology. Biological functions, such as epigenetic processes, are affected by all these causal factors and extend throughout the life course. Epigenetic processes, in particular DNA methylation, may play a role in the induction of phenotypes with increased cancer risk due to exposure to these multiple factors. DNA methylation is known to cause changes in gene expression of key regulatory genes in cancer. There are limited studies in which epigenetic changes have been explored to address cancer disparities in various racial and ethnic populations. These few studies have reported significant epigenetic differences in various racial and ethnic groups that could account for the differences seen in tumor initiation, progression, aggressiveness, and outcome of these cancers. Genes differentially methylated among these racially and ethnically diverse populations were involved in important cellular functions, such as tumor growth, tumor suppression, hormone receptors, and genes involved in tumor metastasis. Epigenetic research with the advancement in technology has helped identify biomarkers, therapeutic targets, and understand cancer causation in the general population. Unfortunately, these advances in technology have not been applied to explore the basis for cancer health disparities. More research in epigenetics is needed that will enhance our understanding of the determinants of cancer across various diverse populations and ultimately reduce cancer health disparities.

  3. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang

    2013-01-01

    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal...

  4. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  5. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Donatella D’Eliseo

    2016-01-01

    Full Text Available Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.

  6. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  7. Roles of Copper-Binding Proteins in Breast Cancer.

    Science.gov (United States)

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  8. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  9. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  10. Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90% inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern

  11. The Role of c-Myc and miRNAs on EMT and the TGF-betaSwitch in Primary Intermediate Basal Cells Isolated From Prostate Cancer

    Science.gov (United States)

    2013-03-01

    thank Drs. Mauricio Reginato, Chris Sell, Claudio Torres, Alessandro Fatatis, Gregg Johannes and Peter Lelkes for their helpful discussions and...Morel AP, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888. 59. Carter BS, et al...Drs. Mauricio Reginato, Chris Sell, Claudio Torres, Alessandro Fatatis and Gregg Johannes for their helpful discussions and reagents. Supported by

  12. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  13. Isolation and characterization of spheroid cells from the HT29 colon cancer cell line.

    Science.gov (United States)

    Fan, Xinlan; Ouyang, Nengyong; Teng, Hong; Yao, Herui

    2011-10-01

    Colorectal cancer stem cells (Cr-CSCs) are involved in the growth of colon cancer, but their specific role in tumor biology, including metastasis, is still unclear. Currently, methods for sorting Cr-CSCs are based on the expression of surface markers (e.g., CD133(+), CD44(+), and aldehyde dehydrogenase 1 (ALDH1(+))); however, the specificity of these markers for Cr-CSCs is uncertain. This study aimed to develop more effective ways of isolating and purifying Cr-CSCs. Suspension culture was used for isolation of Cr-CSCs. And spheroid cells were performed by side population technology, and the putative molecular marker analysis of colorectal cancer stem cell. Migration assay and chemoresistance experiment were conducted between the adherent cells and spheroid cells. HT29 colon cancer cells grew well in suspension culture. The percentage of CD44(+) cancer cell of spheroid cells was 68 times higher than that of adherent cells (89.5% vs. 1.3%), but there was no obvious difference in the percentage of CD133(+) cells (6.25% vs. 5.6%). Moreover, it is worth noting that the percent of CD133 (+)/CD44(+) cells remarkably rose (from 0.6% to 5.4%). The expression of ALDH1 was markedly increased (7.5% vs. 20.5%) for the spheroid cells than the adherent cells. The side population within the spheroid population dramatically increased from 0.2% to 6.3%. The resistance of spheroid cells to 5-FU was higher than that of adherent cells, as was their ability to migrate in the presence of SDF-1α. Suspension culture is an effective approach for enriching Cr-CSCs and can provide an inexhaustible supply of genetically stable colon cancer stem cells for targeted Cr-CSC studies. Spheroid cell models also enable the study of colon cancer chemoresistance and metastasis and may help to elucidate the role of cancer stem cells in colon cancer.

  14. [Role of conventional pulmonary function tests and stair climbing test in the prediction of postoperative cardiopulmonary complications in non-small cell lung cancer patients after surgery].

    Science.gov (United States)

    Dong, Jingsi; Mao, Yousheng; Yan, Shaoping; Cheng, Guiyu; Sun, Kelin; Liu, Xiangyang; Fang, Dekang; Li, Jian; Wang, Yonggang; Zhang, Zhirong

    2014-01-01

    To evaluate and compare the value of stair climbing tests and conventional pulmonary function tests in the prediction of postoperative cardiopulmonary complications in non-small cell lung cancer patients underwent surgery. From April 1, 2010 to Jan. 30, 2012, a total of 162 patients with thoracic carcinoma underwent stair climbing test (SCT) and conventional pulmonary function tests (PFT) preoperatively. The correlation of postoperative cardiopulmonary complications with the SCT and PFT parameters were analyzed retrospectively using chi-square test, independent sample t test and binary logistic regression analysis. Of the 162 patients, 19 without operation were excluded, due to an advanced stage (9 cases), poor cardiopulmonary function (5 cases), rejecting operation (4 cases) and exploration alone (1 case). 143 cases were eligible and evaluated eventually. Forty-one of the 143 patients (28.7%) had postoperative cardiopulmonary complications, but no death occurred. The patients were stratified into groups based on the time of stair climbing 5 stories (18.36 m, t, climbing test (climbing test (ΔP, climbing test is a safe, simple and low-cost method to evaluate the cardiopulmonary function preoperatively. It can predict the occurrence of postoperative cardiopulmonary complications in non-small cell lung cancer patients. Conventional pulmonary function tests and stair-climbing test can be recommended to be routinely performed in all patients with non-small cell lung cancer before thoracic surgery.

  15. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Nan Zheng

    2015-07-01

    Full Text Available The estrogen receptor alpha (ERα has been proven to be one of the most important therapeutic targets in breast cancer over the last 30 years. Previous studies pointed out that a natural flavonoid, silibinin, induced apoptosis in human breast cancer MCF-7 cells. In the present study we report that exposure of MCF-7 cells to silibinin led to cell death through the down-regulation of