WorldWideScience

Sample records for cancer cells restricts

  1. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction

    Science.gov (United States)

    Zhao, Ende; Maj, Tomasz; Kryczek, Ilona; Li, Wei; Wu, Ke; Zhao, Lili; Wei, Shuang; Crespo, Joel; Wan, Shanshan; Vatan, Linda; Szeliga, Wojciech; Shao, Irene; Wang, Yin; Liu, Yan; Varambally, Sooryanarayana; Chinnaiyan, Arul M.; Welling, Theodore H.; Marquez, Victor E.; Kotarski, Jan; Wang, Hongbo; Wang, Zehua; Zhang, Yi; Liu, Rebecca; Wang, Guobin; Zou, Weiping

    2015-01-01

    Aerobic glycolysis regulates T cell function. However, if and how primary cancer alters T cell glycolytic metabolism and affects tumor immunity remains a question in cancer patients. Here we report that ovarian cancers imposed glucose restriction on T cells and dampened their function via maintaining high expression of microRNA101 and microRNA26a, which constrained expression of the methyltransferase EZH2. EZH2 activated the Notch pathway by suppressing Notch repressors, Numb and Fbxw7, via H3K27me3, and consequently stimulated T cell polyfunctional cytokine expression and promoted their survival via Bcl-2 signaling. Moreover, human shRNA-knockdown-EZH2-deficient T cells elicited poor anti-tumor immunity. EZH2+CD8+ T cells were associated with improved cancer patient survival. Together, the data unveil a novel metabolic target and mechanism of cancer immune evasion. PMID:26523864

  2. Selective amino acid restriction therapy (SAART): a non-pharmacological strategy against all types of cancer cells.

    Science.gov (United States)

    López-Lázaro, Miguel

    2015-01-01

    Metastasis will continue to be an incurable disease for most patients until we develop highly selective anticancer therapies. The development of these therapies requires finding and exploiting major differences between cancer cells and normal cells. Although the sum of the many DNA alterations of cancer cells makes up such a major difference, there is currently no way of exploiting these alterations as a whole. Here I propose a non-pharmacological strategy to selectively kill any type of cancer cell, including cancer stem cells, by exploiting their complete set of DNA alterations. It is based on creating challenging environmental conditions that only cells with undamaged DNAs can overcome. Cell survival requires continuous protein synthesis, which in turn requires adequate levels of 20 amino acids (AAs). If we temporarily restrict specific AAs and keep high levels of others whose deficit triggers proteolysis, we will force cells to activate a variety of genetic programs to obtain adequate levels of each of the 20 proteinogenic AAs. Because cancer cells have an extremely altered DNA that has evolved under particular environmental conditions, they may be unable to activate the genetic programs required to adapt to and survive the new environment. Cancer patients may be successfully treated with a protein-free artificial diet in which the levels of specific AAs are manipulated. Practical considerations for testing and implementing this cheap and universal anticancer strategy are discussed.

  3. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532

    OpenAIRE

    Wardi, Layal; Alaaeddine, Nada; Raad, Issam; Sarkis, Riad; Serhal, Rim; Khalil, Charbel; Hilal, George

    2014-01-01

    Background Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In ...

  4. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier...

  5. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  6. Extra-Low-Frequency Magnetic Fields alter Cancer Cells through Metabolic Restriction

    CERN Document Server

    Li, Ying

    2012-01-01

    Background: Biological effects of extra-low-frequency (ELF) magnetic fields (MF) have lacked a credible mechanism of interaction between MFs and living material. Objectives: Examine the effect of ELF-MFs on cancer cells. Methods: Five cancer cell lines were exposed to ELF-MFs within the range of 0.025 to 5 microT, and the cells were examined for karyotype changes after 6 days. Results: All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-response. Constant MF exposures for three weeks allow a rising return to the baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again capable of inducing karyotype contractions. Our data suggests that the karyotype contractions are caused by MF interference with mitochondria's ATP synthase (ATPS), compensated by the action of AMP-activated Protein Kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resisti...

  7. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    Science.gov (United States)

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  8. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.

    Science.gov (United States)

    Xu, Yilin; Gao, Xin D; Lee, Jae-Hyung; Huang, Huilin; Tan, Haiyan; Ahn, Jaegyoon; Reinke, Lauren M; Peter, Marcus E; Feng, Yue; Gius, David; Siziopikou, Kalliopi P; Peng, Junmin; Xiao, Xinshu; Cheng, Chonghui

    2014-06-01

    Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFβ signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFβ-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program. © 2014 Xu et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532.

    Science.gov (United States)

    Wardi, Layal; Alaaeddine, Nada; Raad, Issam; Sarkis, Riad; Serhal, Rim; Khalil, Charbel; Hilal, George

    2014-01-01

    Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In this study, we investigated the effect of GR on telomerase activity and on the efficacy of its inhibition by BIBR 1532. Breast cancer MDA-MB 231 and MCF-7 cells were cultured in DMEM (Dulbecco's modified eagle's media) with 0, 1 or 4.5 g/l of glucose. The telomerase activity was measured via quantitative Real-Time PCR, and the two telomerase subunits were semi-quantified by RT-PCR. Proliferation test and mitochondrial metabolism were assessed via tetrazolium salt reduction and cell counts; apoptosis was assessed via caspase-3 quantification and flow cytometry. A decrease in the telomerase activity of more than 75% was associated with a significant reduction in the mRNA expression of its catalytic subunit hTERT (Reverse Transcriptase) and a decrease in the mitochondrial metabolism by more than 80% under restricted glucose conditions. In addition, GR increased the effect of BIBR 1532. Glucose deprivation induces apoptosis via BIBR 1532-mediated telomerase inhibition in triple negative breast cancer cells, as assessed by caspase-3 measurements and Annexin analysis. Taken together, our results suggest that the effect of BIBR 1532 is potentiated by GR to induce triple negative breast cancer cell death.

  10. Pregnane × Receptor (PXR expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation

    Directory of Open Access Journals (Sweden)

    Lumbroso Serge

    2010-03-01

    Full Text Available Abstract Background Clinical efficacy of chemotherapy in colorectal cancer is subjected to broad inter-individual variations leading to the inability to predict outcome and toxicity. The topoisomerase I inhibitor irinotecan (CPT-11 is worldwide approved for the treatment of metastatic colorectal cancer and undergoes extensive peripheral and tumoral metabolism. PXR is a xenoreceptor activated by many drugs and environmental compounds regulating the expression of drug metabolism and transport genes in detoxification organs such as liver and gastrointestinal tract. Considering the metabolic pathway of irinotecan and the tissue distribution of Pregnane × Receptor (PXR, we hypothesized that PXR could play a key role in colon cancer cell response to irinotecan. Results PXR mRNA expression was quantified by RT-quantitative PCR in a panel of 14 colon tumor samples and their matched normal tissues. PXR expression was modulated in human colorectal cancer cells LS174T, SW480 and SW620 by transfection and siRNA strategies. Cellular response to irinotecan and its active metabolic SN38 was assessed by cell viability assays, HPLC metabolic profiles and mRNA quantification of PXR target genes. We showed that PXR was strongly expressed in colon tumor samples and displayed a great variability of expression. Expression of hPXR in human colorectal cancer cells led to a marked chemoresistance to the active metabolite SN38 correlated with PXR expression level. Metabolic profiles of SN38 showed a strong enhancement of SN38 glucuronidation to the inactive SN38G metabolite in PXR-expressing cells, correlated with an increase of UDPglucuronosyl transferases UGT1A1, UGT1A9 and UGT1A10 mRNAs. Inhibition of PXR expression by lentivirus-mediated shRNA, led to SN38 chemoresistance reversion concomitantly to a decrease of UGT1A1 expression and SN38 glucuronidation. Similarly, PXR mRNA expression levels correlated to UGT1A subfamily expression in human colon tumor biopsies

  11. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Johansen, L E; Nielsen, O

    2006-01-01

    The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription......, whereas little is known about GAGE expression at the protein level. To evaluate the potential of GAGE proteins as targets for cancer-specific immunotherapy, we studied the expression of these proteins in normal and malignant cells/tissues using a novel panel of monoclonal antibodies. Immunohistochemical...... analysis of more than 250 cancer specimens demonstrated that GAGE proteins were frequently expressed in numerous cancer types and correlated with the expression of the cancer testis antigens MAGE-A1 and NY-ESO-1. Significant intercellular and subcellular differences in GAGE protein levels were observed...

  12. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  13. Annual Fasting; the Early Calories Restriction for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Solat Eslami

    2012-12-01

    Full Text Available Essentially, people’s diet and nutritional status has been changed substantially worldwide and several lines of evidence suggest that these changes are to the detriment of their health. Additionally, it has been well documented that unhealthy diet especially the fast foods, untraditional foods or bad-eating-habits influence the human gut microbiome. The gut microbiota shapes immune responses during human life and affects his/her metabolomic profiles. Furthermore, many studies highlight the molecular pathways that mediate host and symbiont interactions that regulate proper immune function and prevention of cancer in the body. Intriguingly, if cancer forms in a human body due to the weakness of immune system in detriment of microbiome, the removal of cancer stem cells can be carried out through early Calories Restriction with Annual Fasting (AF before tumor development or progress. Besides, fasting can b balance the gut microbiome for enhancement of immune system against cancer formation.

  14. Annual fasting; the early calories restriction for cancer prevention.

    Science.gov (United States)

    Eslami, Solat; Barzgari, Zahra; Saliani, Negar; Saeedi, Nazli; Barzegari, Abolfazl

    2012-01-01

    Essentially, people's diet and nutritional status has been changed substantially worldwide and several lines of evidence suggest that these changes are to the detriment of their health. Additionally, it has been well documented that unhealthy diet especially the fast foods, untraditional foods or bad-eating-habits influence the human gut microbiome. The gut microbiota shapes immune responses during human life and affects his/her metabolomic profiles. Furthermore, many studies highlight the molecular pathways that mediate host and symbiont interactions that regulate proper immune function and prevention of cancer in the body. Intriguingly, if cancer forms in a human body due to the weakness of immune system in detriment of microbiome, the removal of cancer stem cells can be carried out through early Calories Restriction with Annual Fasting (AF) before tumor development or progress. Besides, fasting can balance the gut microbiome for enhancement of immune system against cancer formation.

  15. Energy restriction and the prevention of breast cancer.

    Science.gov (United States)

    Harvie, Michelle; Howell, Anthony

    2012-05-01

    Energy restriction (ER) to control weight is a potential strategy for breast cancer prevention. The protective effects of habitual continuous energy restriction (CER) and weight loss on breast tumour formation have been conclusively demonstrated in animal studies over the past 100 years, and more recently in women using data from observational studies and bariatric surgery. Intermittent energy restriction (IER) and intermittent fasting (IF) are possible alternative preventative approaches which may be easier for individuals to undertake and possibly more effective than standard CER. Here, we summarise the available data on CER, IER and IF with special emphasis on their potential for breast cancer prevention. In animals, IER is superior or equivalent to CER with the exception of carcinogen-induced tumour models when initiated soon after carcinogen exposure. There are no human data on IER and breast cancer risk, but three studies demonstrated IER and CER to be equivalent for weight loss. IF regimens also reduce mammary tumour formation in animal models and also led to weight loss in human subjects, but have not been directly compared with CER. Animal and some human data suggest that both IER and IF may differ mechanistically compared with CER and may bring about greater reduction in hepatic and visceral fat stores, insulin-like growth factor 1 (IGF-1) levels and cell proliferation, and increased insulin sensitivity and adiponectin levels. Although IER and IF were first studied 65 years ago, we conclude that further studies are required to assess their values compared with CER.

  16. Weight cycling and cancer: weighing the evidence of intermittent caloric restriction and cancer risk.

    Science.gov (United States)

    Thompson, Henry J; McTiernan, Anne

    2011-11-01

    Overweight and obese individuals frequently restrict caloric intake to lose weight. The resultant weight loss, however, typically is followed by an equal or greater weight gain, a phenomenon called weight cycling. Most attention to weight cycling has focused on identifying its detrimental effects, but preclinical experiments indicating that intermittent caloric restriction or fasting can reduce cancer risk have raised interest in potential benefits of weight cycling. Although hypothesized adverse effects of weight cycling on energy metabolism remain largely unsubstantiated, there is also a lack of epidemiologic evidence that intentional weight loss followed by regain of weight affects chronic-disease risk. In the limited studies of weight cycling and cancer, no independent effect on postmenopausal breast cancer but a modest enhancement of risk for renal cell carcinoma, endometrial cancer, and non-Hodgkin's lymphoma have been reported. An effect of either intermittent caloric restriction or fasting in protecting against cancer is not supported by the majority of rodent carcinogenesis experiments. Collectively, the data argue against weight cycling and indicate that the objective of energy balance-based approaches to reduce cancer risk should be to strive to prevent adult weight gain and maintain body weight within the normal range defined by body mass index.

  17. Comparative study on the immunogenicity between an HLA-A24-restricted cytotoxic T-cell epitope derived from survivin and that from its splice variant survivin-2B in oral cancer patients

    Directory of Open Access Journals (Sweden)

    Yamaguchi Akira

    2009-01-01

    Full Text Available Abstract Background We previously reported an HLA-A24-restricted cytotoxic T-cell epitope, Survivin-2B80-88, derived from a splice variant of survivin, survivin-2B. In this report, we show a novel HLA-A24-restricted T-cell epitope, Survivin-C58, derived from a wild type survivin, and compared their immunogenicity in oral cancer patients. Methods By stimulating peripheral blood lymphocytes of HLA-A24-positive cancer patients with Survivin-C58 peptide in vitro, the peptide-specific CTLs were induced. In order to compare the immunogenic potential between C58 peptide and 2B80-88 peptide, peripheral blood T-cells from thirteen HLA-A24-positive oral cancer patients were stimulated with either or both of these two peptides. Results Survivin-2B80-88 peptide-specific CTLs were induced from four patients, and C58 peptide-specific CTLs were induced from three out of eight patients with over stage II progression. The CTLs exerted cytotoxicity against HLA-A24-positive tumor cells. In contrast, CTL induction failed from a healthy volunteer and all four patients with cancer stage I. Conclusion It was indicated that a splicing variant-derived peptide and wild type survivin-derived peptide might have a comparable potency of CTL induction, and survivin targeting immunotherapy using survivin-2B80-88 and C58 peptide cocktail should be suitable for HLA-A24+ oral cancer patients.

  18. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide.

    Science.gov (United States)

    Eikawa, Shingo; Kakimi, Kazuhiro; Isobe, Midori; Kuzushima, Kiyotaka; Luescher, Immanuel; Ohue, Yoshihiro; Ikeuchi, Kazuhiro; Uenaka, Akiko; Nishikawa, Hiroyoshi; Udono, Heiichiro; Oka, Mikio; Nakayama, Eiichi

    2013-01-15

    Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response. Copyright © 2012 UICC.

  19. Selection of restriction endonucleases using artificial cells.

    Science.gov (United States)

    Zheng, Yu; Roberts, Richard J

    2007-01-01

    We describe in this article an in vitro system for the selection of restriction endonucleases using artificial cells. The artificial cells are generated in the form of a water-in-oil emulsion by in vitro compartmentalization. Each aqueous compartment contains a reconstituted transcription/translation mix along with the dispersed DNA templates. In the compartments containing endonuclease genes, an endonuclease expressed in vitro cleaves its own DNA template adjacent to the gene, leaving a sticky end. The pooled DNA templates are then ligated to an adaptor with a compatible end. The endonuclease genes are then enriched by adaptor-specific PCR on the ligation mix. We demonstrate that the system can achieve at least 100-fold enrichment in a single round of selection. It is sensitive enough to enrich an active endonuclease gene from a 1:10(5) model library in 2-3 rounds of selection. Finally, we describe experiments where we selected endonuclease genes directly from a bacterial genomic DNA source in three rounds of selections: the known PstI gene from Providencia stuartii and the new TspMI gene from Thermus sp. manalii. This method provides a unique tool for cloning restriction endonuclease genes and has many other potential applications.

  20. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis

    Science.gov (United States)

    Yeom, Chang-Hwan; Lee, Gunsup; Park, Jin-Hee; Yu, Jaelim; Park, Seyeon; Yi, Sang-Yeop; Lee, Hye Ree; Hong, Young Seon; Yang, Joosung; Lee, Sukchan

    2009-01-01

    To test the carcinostatic effects of ascorbic acid, we challenged the mice of seven experimental groups with 1.7 × 10-4 mol high dose concentration ascorbic acid after intraperitoneal administrating them with sarcoma S-180 cells. The survival rate was increased by 20% in the group that received high dose concentration ascorbic acid, compared to the control. The highest survival rate was observed in the group in which 1.7 × 10-4 mol ascorbic acid had been continuously injected before and after the induction of cancer cells, rather than just after the induction of cancer cells. The expression of three angiogenesis-related genes was inhibited by 0.3 times in bFGF, 7 times in VEGF and 4 times in MMP2 of the groups with higher survival rates. Biopsy Results, gene expression studies, and wound healing analysis in vivo and in vitro suggested that the carcinostatic effect induced by high dose concentration ascorbic acid occurred through inhibition of angiogenesis. PMID:19671184

  1. Fasting and Caloric Restriction in Cancer Prevention and Treatment.

    Science.gov (United States)

    Brandhorst, Sebastian; Longo, Valter D

    Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.

  2. Calorie Restriction, Stem Cells, and Rejuvenation Approach

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Nasihun

    2017-03-01

    Full Text Available Aging may be defined as the time-dependent deterioration in function of an organism associated with or responsible for the increase in susceptibility to disease and probability of death with advancing age (Harman, 1981; Cefalu, 2011. Generally, the aging organisms are characterized by both biochemical and functional declines. Declining of basal metabolism rates, protein turnover, glucose tolerance, reproductive capacity, telomere shortening, and oxidative phosphorylation are related to the biochemical. Whilst, lung expansion volume, renal glomerular and tubular capacities, cardiovascular performance, musculoskeletal system, nerve conduction velocity, endocrine and exocrine systems, immunological defenses, and sensory systems are associated with the physiological declining (Baynes and Dominiczak, 2015. Some evidences indicated that, although members of a species develop into adults in the same way, even genetically similar or identical individuals, raised in identical conditions and eating identical food, but they may age differently (Baynes and Dominiczak, 2015. These aging differences are attributable to the life style particularly calorie and dietary restriction intakes, reactive oxygen species (ROS production, and thus its implication on severity of damage, repair capacity, and error accumulation in cellular genetic material (Baynes and Dominiczak, 2015; Mihaylova et al., 2014; Mazzoccoli et al., 2014. Therefore, in molecular terms, aging can be defined as a decline of the homeostatic mechanisms that ensure the function of cells, tissues, and organs systems (Mazzoccoli et al., 2014. Accordingly, if the homeostatic mechanism can be repaired, the result is rejuvenation.

  3. Tetherin restricts productive HIV-1 cell-to-cell transmission.

    Directory of Open Access Journals (Sweden)

    Nicoletta Casartelli

    2010-06-01

    Full Text Available The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24 impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or DeltaVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of DeltaVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.

  4. Physical activity, energy restriction, and the risk of pancreatic cancer: Prospective study in the Netherlands

    NARCIS (Netherlands)

    Heinen, M.M.; Verhage, B.A.J.; Goldbohm, R.A.; Lumey, L.H.; Brandt, P.A. van den

    2011-01-01

    Background: Because of their influence on insulin concentrations, we hypothesized that both physical activity and energy restriction may reduce the risk of pancreatic cancer. Objective: We examined the associations between physical activity, proxies for energy restriction, and pancreatic cancer

  5. Gastric Cancer After Restrictive Bariatric Surgery: A Clinical Pitfall.

    Science.gov (United States)

    Scozzari, Gitana; Balmativola, Davide; Trapani, Renza; Toppino, Mauro; Morino, Mario

    2014-08-01

    Although vertical banded gastroplasty is rarely performed at present, most bariatric surgery departments continue to follow up patients who underwent this procedure in the past few decades. In view of this, it is advisable for bariatric and general surgeons to know how to diagnose the very rare event of the development of a gastric cancer after this restrictive procedure. In this report, 2 cases of gastric cancer occurring years after vertical banded gastroplasty are presented, and clinical presentation and diagnostic difficulties are discussed. © The Author(s) 2013.

  6. Lung cancer - small cell

    Science.gov (United States)

    ... carcinoma Small cell carcinoma Squamous cell carcinoma Secondhand smoke and lung cancer Normal lungs and alveoli Respiratory system Smoking hazards Bronchoscope References Horn L, Eisenberg R, ...

  7. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  8. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection

    Science.gov (United States)

    Lawler, Clara; Tan, Cindy S. E.; Simas, J. Pedro

    2016-01-01

    ABSTRACT Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection. PMID:27466430

  9. Restricting carbohydrates to fight head and neck cancer-is this realistic?

    Science.gov (United States)

    Klement, Rainer J

    2014-09-01

    Head and neck cancers (HNCs) are aggressive tumors that typically demonstrate a high glycolytic rate, which results in resistance to cytotoxic therapy and poor prognosis. Due to their location these tumors specifically impair food intake and quality of life, so that prevention of weight loss through nutrition support becomes an important treatment goal. Dietary restriction of carbohydrates (CHOs) and their replacement with fat, mostly in form of a ketogenic diet (KD), have been suggested to accommodate for both the altered tumor cell metabolism and cancer-associated weight loss. In this review, I present three specific rationales for CHO restriction and nutritional ketosis as supportive treatment options for the HNC patient. These are (1) targeting the origin and specific aspects of tumor glycolysis; (2) protecting normal tissue from but sensitizing tumor tissue to radiation- and chemotherapy induced cell kill; (3) supporting body and muscle mass maintenance. While most of these benefits of CHO restriction apply to cancer in general, specific aspects of implementation are discussed in relation to HNC patients. While CHO restriction seems feasible in HNC patients the available evidence indicates that its role may extend beyond fighting malnutrition to fighting HNC itself.

  10. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  11. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  12. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  13. Weight Cycling and Cancer: Weighing the Evidence of Intermittent Caloric Restriction and Cancer Risk

    OpenAIRE

    Henry J. Thompson; McTiernan, Anne

    2011-01-01

    Overweight and obese individuals frequently restrict caloric intake to lose weight. The resultant weight loss, however, typically is followed by an equal or greater weight gain, a phenomenon called weight cycling. Most attention to weight cycling has focused on identifying its detrimental effects, but preclinical experiments indicating that intermittent caloric restriction or fasting can reduce cancer risk have raised interest in potential benefits of weight cycling. Although hypothesized adv...

  14. Basal cell cancer (image)

    Science.gov (United States)

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  15. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients.

    Science.gov (United States)

    Lee, C; Longo, V D

    2011-07-28

    The dietary recommendation for cancer patients receiving chemotherapy, as described by the American Cancer Society, is to increase calorie and protein intake. Yet, in simple organisms, mice, and humans, fasting--no calorie intake--induces a wide range of changes associated with cellular protection, which would be difficult to achieve even with a cocktail of potent drugs. In mammals, the protective effect of fasting is mediated, in part, by an over 50% reduction in glucose and insulin-like growth factor 1 (IGF-I) levels. Because proto-oncogenes function as key negative regulators of the protective changes induced by fasting, cells expressing oncogenes, and therefore the great majority of cancer cells, should not respond to the protective signals generated by fasting, promoting the differential protection (differential stress resistance) of normal and cancer cells. Preliminary reports indicate that fasting for up to 5 days followed by a normal diet, may also protect patients against chemotherapy without causing chronic weight loss. By contrast, the long-term 20 to 40% restriction in calorie intake (dietary restriction, DR), whose effects on cancer progression have been studied extensively for decades, requires weeks-months to be effective, causes much more modest changes in glucose and/or IGF-I levels, and promotes chronic weight loss in both rodents and humans. In this study, we review the basic as well as clinical studies on fasting, cellular protection and chemotherapy resistance, and compare them to those on DR and cancer treatment. Although additional pre-clinical and clinical studies are necessary, fasting has the potential to be translated into effective clinical interventions for the protection of patients and the improvement of therapeutic index.

  17. Dietary Methionine Restriction: Novel Treatment for Hormone Independent Prostate Cancer

    National Research Council Canada - National Science Library

    Epner, Daniel

    2003-01-01

    .... We used Southern blot analysis with methylation-sensitive restriction enzymes, western blot analysis, and RT-PCR to determine whether methionine restriction restored expression of growth inhibitory...

  18. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    Directory of Open Access Journals (Sweden)

    Zhou Weihua

    2007-02-01

    Full Text Available Abstract Background Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal®, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A and a human malignant glioma (U87-MG. Methods Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal® was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal® on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. Results KetoCal® administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal® diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate levels. Tumor microvessel density was less in the calorically restricted KetoCal® groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid Co

  19. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer.

    Science.gov (United States)

    Zhou, Weihua; Mukherjee, Purna; Kiebish, Michael A; Markis, William T; Mantis, John G; Seyfried, Thomas N

    2007-02-21

    Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. KetoCal administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal diet reduced plasma glucose levels while elevating plasma ketone body (beta-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, beta-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal

  20. Restrictive versus liberal transfusion strategy for red blood cell transfusion

    DEFF Research Database (Denmark)

    Holst, Lars B; Petersen, Marie W; Haase, Nicolai

    2015-01-01

    OBJECTIVE: To compare the benefit and harm of restrictive versus liberal transfusion strategies to guide red blood cell transfusions. DESIGN: Systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. DATA SOURCES: Cochrane central register of controlled...... differences with 95% confidence intervals. RESULTS: 31 trials totalling 9813 randomised patients were included. The proportion of patients receiving red blood cells (relative risk 0.54, 95% confidence interval 0.47 to 0.63, 8923 patients, 24 trials) and the number of red blood cell units transfused (mean...... were associated with a reduction in the number of red blood cell units transfused and number of patients being transfused, but mortality, overall morbidity, and myocardial infarction seemed to be unaltered. Restrictive transfusion strategies are safe in most clinical settings. Liberal transfusion...

  1. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  2. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Directory of Open Access Journals (Sweden)

    Manisha Juneja

    2017-06-01

    Full Text Available MACC1 (Metastasis Associated in Colon Cancer 1 is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC. However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  3. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Science.gov (United States)

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  4. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  5. Basal cell skin cancer

    Science.gov (United States)

    Basal cell skin cancer almost never spreads. If it is left untreated, it may spread into surrounding areas and nearby tissues and bone. In these cases, treatment can injure the appearance of the skin.

  6. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    Science.gov (United States)

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  7. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  8. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet.

    Science.gov (United States)

    Seyfried, B Thomas N; Kiebish, Michael; Marsh, Jeremy; Mukherjee, Purna

    2009-09-01

    Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect), malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (beta-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  9. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  10. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells

    National Research Council Canada - National Science Library

    Chen, Xiuxu; Gumperz, Jenny E

    2006-01-01

    CD1d-restricted natural killer T cells (NKT cells) are a unique subpopulation of T lymphocytes that have been shown to be able to promote potent anti-tumor responses in a number of different murine (mouse...

  11. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. When less may be more: calorie restriction and response to cancer therapy.

    Science.gov (United States)

    O'Flanagan, Ciara H; Smith, Laura A; McDonell, Shannon B; Hursting, Stephen D

    2017-05-24

    Calorie restriction (CR) extends lifespan and has been shown to reduce age-related diseases including cancer, diabetes, and cardiovascular and neurodegenerative diseases in experimental models. Recent translational studies have tested the potential of CR or CR mimetics as adjuvant therapies to enhance the efficacy of chemotherapy, radiation therapy, and novel immunotherapies. Chronic CR is challenging to employ in cancer patients, and therefore intermittent fasting, CR mimetic drugs, or alternative diets (such as a ketogenic diet), may be more suitable. Intermittent fasting has been shown to enhance treatment with both chemotherapy and radiation therapy. CR and fasting elicit different responses in normal and cancer cells, and reduce certain side effects of cytotoxic therapy. Findings from preclinical studies of CR mimetic drugs and other dietary interventions, such as the ketogenic diet, are promising for improving the efficacy of anticancer therapies and reducing the side effects of cytotoxic treatments. Current and future clinical studies will inform on which cancers, and at which stage of the cancer process, CR, fasting, or CR mimetic regimens will prove most effective.

  13. Restriction spectrum imaging improves MRI-based prostate cancer detection.

    Science.gov (United States)

    McCammack, Kevin C; Schenker-Ahmed, Natalie M; White, Nathan S; Best, Shaun R; Marks, Robert M; Heimbigner, Jared; Kane, Christopher J; Parsons, J Kellogg; Kuperman, Joshua M; Bartsch, Hauke; Desikan, Rahul S; Rakow-Penner, Rebecca A; Liss, Michael A; Margolis, Daniel J A; Raman, Steven S; Shabaik, Ahmed; Dale, Anders M; Karow, David S

    2016-05-01

    To compare the diagnostic performance of restriction spectrum imaging (RSI), with that of conventional multi-parametric (MP) magnetic resonance imaging (MRI) for prostate cancer (PCa) detection in a blinded reader-based format. Three readers independently evaluated 100 patients (67 with proven PCa) who underwent MP-MRI and RSI within 6 months of systematic biopsy (N = 67; 23 with targeting performed) or prostatectomy (N = 33). Imaging was performed at 3 Tesla using a phased-array coil. Readers used a five-point scale estimating the likelihood of PCa present in each prostate sextant. Evaluation was performed in two separate sessions, first using conventional MP-MRI alone then immediately with MP-MRI and RSI in the same session. Four weeks later, another scoring session used RSI and T2-weighted imaging (T2WI) without conventional diffusion-weighted or dynamic contrast-enhanced imaging. Reader interpretations were then compared to prostatectomy data or biopsy results. Receiver operating characteristic curves were performed, with area under the curve (AUC) used to compare across groups. MP-MRI with RSI achieved higher AUCs compared to MP-MRI alone for identifying high-grade (Gleason score greater than or equal to 4 + 3=7) PCa (0.78 vs. 0.70 at the sextant level; P sextant level). With hemigland analysis, high-grade disease results were similar when comparing RSI + T2WI with MP-MRI, although with greater AUCs compared to the sextant analysis (0.80 vs. 0.79). Including RSI with MP-MRI improves PCa detection compared to MP-MRI alone, and RSI with T2WI achieves similar PCa detection as MP-MRI.

  14. Restrictive versus liberal transfusion strategy for red blood cell transfusion

    DEFF Research Database (Denmark)

    Holst, Lars B; Petersen, Marie W; Haase, Nicolai

    2015-01-01

    titles and abstracts of trials identified, and relevant trials were evaluated in full text for eligibility. Two reviewers then independently extracted data on methods, interventions, outcomes, and risk of bias from included trials. random effects models were used to estimate risk ratios and mean...... differences with 95% confidence intervals. RESULTS: 31 trials totalling 9813 randomised patients were included. The proportion of patients receiving red blood cells (relative risk 0.54, 95% confidence interval 0.47 to 0.63, 8923 patients, 24 trials) and the number of red blood cell units transfused (mean...... were associated with a reduction in the number of red blood cell units transfused and number of patients being transfused, but mortality, overall morbidity, and myocardial infarction seemed to be unaltered. Restrictive transfusion strategies are safe in most clinical settings. Liberal transfusion...

  15. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Shao

    Full Text Available Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3, a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min. While A20(FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL villin-Cre APC(min/+ mice contain far greater numbers and larger colonic polyps than control APC(min mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.

  16. Squamous cell skin cancer

    Science.gov (United States)

    ... squamous cell cancer include: Having light-colored skin, blue or green eyes, or blond or red hair Long-term, daily sun exposure (such as in people who work outside) Many severe sunburns early in life Older age Having had many x-rays Chemical exposure A weakened immune system, especially in ...

  17. The Unique Cardiomyopathy with Restrictive Physiology of Sickle Cell Disease

    Science.gov (United States)

    Niss, Omar; Quinn, Charles T.; Lane, Adam; Daily, Joshua; Khoury, Philip R.; Bakeer, Nihal; Kimball, Thomas R.; Towbin, Jeffrey A.; Malik, Punam; Taylor, Michael D.

    2015-01-01

    Objective To identify a unifying cardiac pathophysiology that explains the cardiac pathology in SCD. Background Cardiopulmonary complications, the leading cause of adult mortality in sickle cell disease (SCD), are associated with heart chamber dilation, diastolic dysfunction, elevated tricuspid regurgitant jet velocity (TRV) and pulmonary hypertension (PH). However, no unifying cardiac pathophysiology has been identified to explain these findings. Methods In a two-part study, we first examined SCD patients who underwent screening echocardiography during steady state at our institution. We then conducted a meta-analysis of cardiac studies in SCD. Results In the 134 SCD patients studied (median age 11 years), a significant enlargement of the left atrial volume was present (z-score 3.1, P=0.002), shortening fraction (SF) was normal (37.6 ± 4.7%), and lateral and septal ratios of mitral velocity to early diastolic velocity of the mitral annulus (E/e′) were severely abnormal in 8% and 14% of patients, respectively, indicating impaired diastolic function. Both TRV and lateral E/e′ correlated with enlarged left atrial volume in SCD (P=0.003 and P=0.006, respectively). Meta-analysis of 68 studies confirmed significant left atrial diameter enlargement in SCD patients compared to controls, evidence of diastolic dysfunction and enlarged left ventricular end-diastolic dimension with normal SF. The majority of patients with catheter-confirmed PH had mild pulmonary venous hypertension consistent with restrictive cardiac physiology. Conclusions Patients with SCD have a unique cardiomyopathy with restrictive physiology that is superimposed on hyperdynamic physiology, and is characterized by diastolic dysfunction, left atrial dilation and normal systolic function. This results in mild, secondary, pulmonary venous hypertension and elevated TRV. Sudden death is common in other forms of restrictive cardiomyopathy. Our finding of this unique restrictive cardiomyopathy may explain

  18. Glucose Restriction Combined with Autophagy Inhibition and Chemotherapy in HCT 116 Spheroids Decreases Cell Clonogenicity and Viability Regulated by Tumor Suppressor Genes.

    Science.gov (United States)

    Schroll, Monica M; LaBonia, Gabriel J; Ludwig, Katelyn R; Hummon, Amanda B

    2017-08-04

    Drug resistance is a prevalent phenomenon that decreases the efficacy of cancer treatments and contributes to cancer progression and metastasis. Weakening drug-resistant cancer cells prior to chemotherapy is a potential strategy to combat chemoresistance. One approach to damage resistant cancer cells is modulation of nutritional intake. The combination of nutrient restriction with targeted compound treatment results in pronounced molecular changes. This study provides valuable information about augmenting existing chemotherapeutic regimes with simultaneous glucose restriction and autophagy inhibition in colorectal cancer cells. In this study, we explore the chemical pathways that drive the cellular response to nutrient restriction, autophagy inhibition, and the chemotherapy irinotecan using global quantitative proteomics and imaging mass spectrometry. We determined that significant pathways were altered including autophagy and metabolism via glycolysis, gluconeogenesis, and sucrose degradation. We also found that period circadian clock 2 (PER2), a tumor suppressor protein, was significantly up-regulated only when glucose was restricted with autophagy inhibition and chemotherapy. The upstream regulators of these differentially regulated pathways were determined to have implications in cancer, showing an increase in tumor suppressor proteins and a decrease in nuclear protein 1 (NUPR1) an important protein in chemoresistance. We also evaluated the phenotypic response of these cells and discovered autophagy inhibition and chemotherapy treatment increased apoptosis and decreased cell clonogenicity and viability. When glucose restriction was combined with autophagy inhibition and chemotherapy, all of the phenotypic results were intensified. In sum, our results indicate that glucose metabolism is of great importance in the ability of cancer cells to survive chemotherapy. By weakening cancer cells with glucose restriction and autophagy inhibition prior to chemotherapy

  19. Alcohol and Cancer Stem Cells

    OpenAIRE

    Mei Xu; Jia Luo

    2017-01-01

    Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and ...

  20. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  1. HLA-Restricted CTL That Are Specific for the Immune Checkpoint Ligand PD-L1 Occur with High Frequency in Cancer Patients

    DEFF Research Database (Denmark)

    Munir, Shamaila; Andersen, Gitte Holmen; Met, Özcan

    2013-01-01

    PD-L1 (CD274) contributes to functional exhaustion of T cells and limits immune responses in patients with cancer. In this study, we report the identification of an human leukocyte antigen (HLA)-A2-restricted epitope from PD-L1, and we describe natural, cytolytic T-cell reactivity against PD-L1...

  2. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system.

    Science.gov (United States)

    Morozova, Natalia; Sabantsev, Anton; Bogdanova, Ekaterina; Fedorova, Yana; Maikova, Anna; Vedyaykin, Alexey; Rodic, Andjela; Djordjevic, Marko; Khodorkovskii, Mikhail; Severinov, Konstantin

    2016-01-29

    Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. HLA-restricted NY-ESO-1 peptide immunotherapy for metastatic castration resistant prostate cancer.

    Science.gov (United States)

    Sonpavde, Guru; Wang, Mingjun; Peterson, Leif E; Wang, Helen Y; Joe, Teresa; Mims, Martha P; Kadmon, Dov; Ittmann, Michael M; Wheeler, Thomas M; Gee, Adrian P; Wang, Rong-Fu; Hayes, Teresa G

    2014-04-01

    Given the immunogenicity of NY-ESO-1 peptides in prostate cancer, a phase I clinical trial was designed to evaluate HLA class-I and class-II restricted NY-ESO-1 peptides in metastatic castration-resistant prostate cancer (mCRPC). Patients with progressive mCRPC, Zubrod Performance Status ≤2, PSA ≥10 ng/ml who had appropriate HLA class I (A2) and class II haplotypes (DR4, DP4) were eligible. Three groups with 3 patients each received the vaccine subcutaneously every 2 weeks for 6 doses. Group 1 received a peptide presented by an HLA class I haplotype (HLA-A2), Group 2 with a peptide presented by HLA class II haplotype (DR4, DP4), and Group 3 with peptides presented by both Class I and II haplotypes. Androgen-deprivation was continued. Owing to a myocardial infarction, the protocol was amended to omit the use of GM-CSF. Fourteen patients were evaluable for toxicities and 9 received all 6 doses and were evaluable for efficacy. One death from myocardial infarction following GM-CSF occurred in a patient with generalized myalgias. After omitting GM-CSF, no grade >2 toxicities were observed. Among 9 patients evaluable for efficacy, the median PSA doubling time pre-therapy and during therapy were 3.1 and 4.92 months, respectively. NY-ESO-1 specific T-cell response observed by ELISPOT appeared more frequent in docetaxel-naïve patients (4 of 4) than docetaxel-pretreated patients (2 of 5). In men with mCRPC, individualized HLA class-I and/or class-II restricted NY-ESO-1 peptides were tolerable, appeared to slow PSA doubling time and yielded antigen-specific T-cell responses more often in chemonaïve patients.

  4. Cancer Stem Cells and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sheetal Dyall

    2010-01-01

    Full Text Available The cancer stem cell hypothesis is becoming more widely accepted as a model for carcinogenesis. Tumours are heterogeneous both at the molecular and cellular level, containing a small population of cells that possess highly tumourigenic “stem-cell” properties. Cancer stem cells (CSCs, or tumour-initiating cells, have the ability to self-renew, generate xenografts reminiscent of the primary tumour that they were derived from, and are chemoresistant. The characterisation of the CSC population within a tumour that drives its growth could provide novel target therapeutics against these cells specifically, eradicating the cancer completely. There have been several reports describing the isolation of putative cancer stem cell populations in several cancers; however, no defined set of markers has been identified that conclusively characterises “stem-like” cancer cells. This paper highlights the current experimental approaches that have been used in the field and discusses their limitations, with specific emphasis on the identification and characterisation of the CSC population in epithelial ovarian cancer.

  5. Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?

    Science.gov (United States)

    Seyfried, Thomas N; Marsh, Jeremy; Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna

    2012-07-01

    Malignant brain cancer persists as a major disease of morbidity and mortality. The failure to recognize brain cancer as a disease of energy metabolism has contributed in large part to the failure in management. As long as brain tumor cells have access to glucose and glutamine, the disease will progress. The current standard of care provides brain tumors with access to glucose and glutamine. The high fat low carbohydrate ketogenic diet (KD) will target glucose availability and possibly that of glutamine when administered in carefully restricted amounts to reduce total caloric intake and circulating levels of glucose. The restricted KD (RKD) targets major signaling pathways associated with glucose and glutamine metabolism including the IGF-1/PI3K/Akt/Hif pathway. The RKD is anti-angiogenic, anti-invasive, anti-inflammatory, and pro-apoptotic when evaluated in mice with malignant brain cancer. The therapeutic efficacy of the restricted KD can be enhanced when combined with drugs that also target glucose and glutamine. Therapeutic efficacy of the RKD was also seen against malignant gliomas in human case reports. Hence, the RKD can be an effective non-toxic therapeutic option to the current standard of care for inhibiting the growth and invasive properties of malignant brain cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Severe Caloric Restriction in Adolescence and Incidence of Breast Cancer

    National Research Council Canada - National Science Library

    Michels, Karin B; Ekbom, Anders

    2004-01-01

    ...; use of the Swedish Inpatient Registry and the Swedish Cancer Registry Subjects 7303 women who were treated for anorexia nervosa requiring hospitalization between 1965 and 1998 Main Outcome Measure...

  7. Cancer treatments transform residual cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    Harless William W

    2011-01-01

    Full Text Available Abstract Background Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor. Presentation of the hypothesis Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1 facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2 induce residual cancer stem cell proliferation. Testing the hypothesis Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression and cancer stem cell enrichment (stem cell markers upregulated. Implications of the hypothesis Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor repair may be amenable to treatment intervention at the time it is upregulated.

  8. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  9. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  10. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  12. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  13. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  14. Effect of North Carolina's restriction on teenage driver cell phone use two years after implementation.

    Science.gov (United States)

    Goodwin, Arthur H; O'Brien, Natalie P; Foss, Robert D

    2012-09-01

    A majority of states now restrict teenagers from using a mobile communication device while driving. The effect of these restrictions is largely unknown. In a previous study, we found North Carolina's teenage driver cell phone restriction had little influence on young driver behavior four months after the law took effect (Foss et al., 2009). The goal of the present study was to examine the longer-term effect of North Carolina's cell phone restriction. It was expected that compliance with the restriction would increase, as awareness of the restriction grew over time. Teenagers were observed at high schools in North Carolina approximately two years after the law was implemented. Observations were also conducted in South Carolina, which did not have a cell phone restriction. In both states, there was a broad decrease in cell phone use. A logistic regression analysis showed the decrease in cell phone use did not significantly differ between the two states. Although hand-held cell phone use decreased, there was an increase in the likelihood that drivers in North Carolina were observed physically manipulating a phone. Finally, a mail survey of teenagers in North Carolina showed awareness for the cell phone restriction now stands at 78% among licensed teens. Overall, the findings suggest North Carolina's cell phone restriction has had no long-term effect on the behavior of teenage drivers. Moreover, it appears many teenage drivers may be shifting from talking on a phone to texting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. When less may be more: calorie restriction and response to cancer therapy

    OpenAIRE

    O?Flanagan, Ciara H.; Smith, Laura A.; McDonell, Shannon B.; Hursting, Stephen D.

    2017-01-01

    Calorie restriction (CR) extends lifespan and has been shown to reduce age-related diseases including cancer, diabetes, and cardiovascular and neurodegenerative diseases in experimental models. Recent translational studies have tested the potential of CR or CR mimetics as adjuvant therapies to enhance the efficacy of chemotherapy, radiation therapy, and novel immunotherapies. Chronic CR is challenging to employ in cancer patients, and therefore intermittent fasting, CR mimetic drugs, or alter...

  16. Fiber mediated receptor masking in non-infected bystander cells restricts adenovirus cell killing effect but promotes adenovirus host co-existence.

    Directory of Open Access Journals (Sweden)

    Johan Rebetz

    Full Text Available The basic concept of conditionally replicating adenoviruses (CRAD as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI, and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses.

  17. Mechanotransduction in cancer stem cells.

    Science.gov (United States)

    Hao, Jin; Zhang, Yueling; Ye, Rui; Zheng, Yingcheng; Zhao, Zhihe; Li, Juan

    2013-09-01

    The cancer stem cell (CSC) concept, which arose about a decade ago, proposes that tumor growth is sustained by a subpopulation of highly malignant cells. These cells, termed CSCs, are capable of extensive self-renewal that contributes to metastasis and treatment resistance. Therefore, therapeutic strategies that target CSCs should be developed for improving outcomes of cancer patients. Recent progress has highlighted the importance of physical properties of the extracellular matrix and mechanotransduction pathway in cancer cells during cancer development. On the other hand, the significance of CXCR1, an upstream signal of FAK/PI3K/Akt has been revealed in CSCs. FAK/PI3K/Akt is a key signal mediator in mechanotransduction pathway. Therefore, mechanotransduction could be a new target for CSCs, and would be an innovative way to treat cancer by inhibiting FAK/PI3K/Akt. © 2013 International Federation for Cell Biology.

  18. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  19. Energy restriction during childhood and early adulthood and ovarian cancer risk

    NARCIS (Netherlands)

    Schouten, L.J.; Dijk, B.A.C. van; Lumey, L.; Goldbohm, R.A.; Brandt, P.A. van den

    2011-01-01

    Dietary energy restriction may protect against cancer. In parts of the Netherlands, mostly in larger cities, periods of chronically impaired nutrition and even severe famine (Hunger Winter 1944-1945) existed during the 1930s and World War II (1940-1945). We studied the association between energy

  20. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis: e115147

    National Research Council Canada - National Science Library

    Mengmeng Lv; Xingya Zhu; Hao Wang; Feng Wang; Wenxian Guan

    2014-01-01

      Background The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments...

  1. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing

    OpenAIRE

    1983-01-01

    We examined the ability of a set of cloned chicken ovalbumin (cOVA)- specific, Id-restricted, T cell hybridomas to produce interleukin-2 in response to cOVA presented by the Ia+ B cell lymphoma line, A20-2J. Although viable A20-2J cells presented native, denatured, and fragmented cOVA more or less equally well, A20-2J cells that were glutaraldehyde-fixed could present only enzymatically or chemically fragmented cOVA. These results suggest that antigen fragmentation may be both necessary and s...

  2. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  3. Why drivers use cell phones and support legislation to restrict this practice : research brief.

    Science.gov (United States)

    2017-04-01

    Following previous research, drivers reported using cell phones : for benefits such as getting work done. The hypocrisy of using : cell phones while advocating restrictions appears to stem from : differences in the perceived safety risks of self vs. ...

  4. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    Science.gov (United States)

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Multifaceted Interpretation of Colon Cancer Stem Cells

    OpenAIRE

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-01-01

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but...

  6. Targeting leukemia by CD1c-restricted T cells specific for a novel lipid antigen.

    Science.gov (United States)

    Lepore, Marco; de Lalla, Claudia; Mori, Lucia; Dellabona, Paolo; De Libero, Gennaro; Casorati, Giulia

    2015-03-01

    A subset of CD1c-restricted T lymphocytes exhibits strong reactivity against leukemia cells. These T cells recognize methyl-lysophosphatidic acid (mLPA), a novel lipid antigen produced by acute leukemia cells. Considering that CD1c-restricted T cells display efficacious anti-leukemia activities in a mouse model, this lipid antigen thus represents a novel target in the immunotherapy of hematological malignancies.

  7. Energy restriction during childhood and early adulthood and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Leo J Schouten

    Full Text Available Dietary energy restriction may protect against cancer. In parts of The Netherlands, mostly in larger cities, periods of chronically impaired nutrition and even severe famine (Hunger Winter 1944-1945 existed during the 1930s and World War II (1940-1945. We studied the association between energy restriction during childhood and early adulthood on the risk of ovarian cancer later in life. In 1986, the Netherlands Cohort Study was initiated. A self-administered questionnaire on dietary habits and other cancer risk factors was completed by 62,573 women aged 55-69 years at baseline. Follow-up for cancer was established by record linkage to the Netherlands Cancer Registry. After 16.3 years of follow-up, 364 invasive epithelial ovarian cancer cases and 2220 subcohort members (sampled from the total cohort directly after baseline with complete information confounders were available for case-cohort analyses. In multivariable analysis, ovarian cancer risk was lower for participants with an unemployed father during the 1930s (Hazard Ratio (HR, 0.70; 95% Confidence Interval (CI, 0.47-1.06 compared to participants with an employed father as well as for participants living in a city during World War II (HR, 0.69; 95% CI, 0.54-0.90 compared to participants living in the country-side. Residence in a Western City during the famine (Hunger Winter was not associated with a decreased risk. Our results show a relation between proxy variables for modest energy restriction over a longer period of time during childhood or early adulthood and a reduced ovarian cancer risk.

  8. Energy Restriction during Childhood and Early Adulthood and Ovarian Cancer Risk

    Science.gov (United States)

    Schouten, Leo J.; van Dijk, Boukje A. C.; Lumey, L. H.; Goldbohm, R. Alexandra; van den Brandt, Piet A.

    2011-01-01

    Dietary energy restriction may protect against cancer. In parts of the Netherlands, mostly in larger cities, periods of chronically impaired nutrition and even severe famine (Hunger Winter 1944–1945) existed during the 1930s and World War II (1940–1945). We studied the association between energy restriction during childhood and early adulthood on the risk of ovarian cancer later in life. In 1986, the Netherlands Cohort Study was initiated. A self-administered questionnaire on dietary habits and other cancer risk factors was completed by 62,573 women aged 55–69 years at baseline. Follow-up for cancer was established by record linkage to the Netherlands Cancer Registry. After 16.3 years of follow-up, 364 invasive epithelial ovarian cancer cases and 2220 subcohort members (sampled from the total cohort directly after baseline) with complete information confounders were available for case-cohort analyses. In multivariable analysis, ovarian cancer risk was lower for participants with an unemployed father during the 1930s (Hazard Ratio (HR), 0.70; 95% Confidence Interval (CI), 0.47–1.06) compared to participants with an employed father as well as for participants living in a city during World War II (HR, 0.69; 95% CI, 0.54–0.90) compared to participants living in the country-side. Residence in a Western City during the famine (Hunger Winter) was not associated with a decreased risk. Our results show a relation between proxy variables for modest energy restriction over a longer period of time during childhood or early adulthood and a reduced ovarian cancer risk. PMID:22132180

  9. Characterising Castrate Tolerant Prostate Cancer Cells

    OpenAIRE

    ASHLEE KATE CLARK

    2017-01-01

    Prostate cancer is a prevalent disease in aging males. This thesis explores prostate cancer cells that escape current therapy and give rise to end-stage disease. Using sophisticated experimental approaches, this important cancer cell population was identified and characterised in human prostate cancer tissues.  Our discoveries will eventually lead to improved cancer treatments for men with prostate cancer.

  10. Tetherin restricts direct cell-to-cell infection of HIV-1

    Directory of Open Access Journals (Sweden)

    Bar-Magen Tamara

    2010-12-01

    Full Text Available Abstract Background Tetherin (BST-2/CD317/HM1.24 is an interferon (IFN-inducible factor of the innate immune system, recently shown to exert antiviral activity against HIV-1 and other enveloped viruses by tethering nascent viral particles to the cell surface, thereby inhibiting viral release. In HIV-1 infection, the viral protein U (Vpu counteracts this antiviral action by down-modulating tetherin from the cell surface. Viral dissemination between T-cells can occur via cell-free transmission or the more efficient direct cell-to-cell route through lipid raft-rich virological synapses, to which tetherin localizes. Results We established a flow cytometry-based co-culture assay to distinguish viral transfer from viral transmission and investigated the influence of tetherin on cell-to-cell spread of HIV-1. Sup-T1 cells inducible for tetherin expression were used to examine the impact of effector and target cell tetherin expression on virus transfer and transmission. Using this assay, we showed that tetherin inhibits direct cell-to-cell virus transfer and transmission. Viral Vpu promoted viral transmission from tetherin-expressing cells by down-modulating tetherin from the effector cell surface. Further, we showed that tetherin on the target cell promotes viral transfer and transmission. Viral infectivity in itself was not affected by tetherin. Conclusion In addition to inhibiting viral release, tetherin also inhibits direct cell-to-cell spread. Viral protein Vpu counteracts this restriction, outweighing its possible cost of fitness in cell-to-cell transmission. The differential role of tetherin in effector and target cells suggest a role for tetherin in cell-cell contacts and virological synapses.

  11. Smoking Restrictions Among Households of Childhood and Young Adult Cancer Survivors: Implications for Tobacco Control Efforts

    Science.gov (United States)

    Puleo, Elaine; Emmons, Karen; de Moor, Janet S.; Ford, Jennifer S.

    2013-01-01

    Purpose This study assessed the prevalence of smoking restrictions among households of survivors of childhood and young adult cancer who smoke. It also examined the relationship between home smoking restrictions and motivation to quit smoking, as well as other smoking, psychosocial, and environmental factors. Methods Participants included 374 smokers who were childhood or young adult cancer survivors (between the ages of 18 and 55 years) recruited from five cancer centers to participate in a randomized smoking cessation trial. Survivors completed baseline measures about the smoking restrictions in their households, their smoking behavior, and related psychological and environmental factors, which are the focus of the current manuscript. Results Almost 54% of survivors reported that smoking was prohibited in their households. Living with a nonsmoking partner, having a strict smoking policy at work, and not being nicotine dependent all increased the likelihood of having a total home smoking ban. Participants who were older, smoked more cigarettes per day over the prior week, and received prior chemotherapy were less likely to reside in households that adopted total bans. Conclusion Findings suggest that socio-environmental factors and current smoking behaviors are associated with complete smoking restrictions in the homes of survivors. These factors should be considered when communicating with survivors about the importance of establishing strict smoking policies in their private residences. PMID:23610739

  12. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  13. Calcium wave signaling in cancer cells

    Science.gov (United States)

    PARKASH, JAI; ASOTRA, KAMLESH

    2010-01-01

    Ca2+ functions as an important signaling messenger right from beginning of the life to final moment of the end of the life. Ca2+ is needed at several steps of the cell cycle such as early G1, at the G1/S, and G2/M transitions. The Ca2+ signals in the form of time-dependent changes in intracellular Ca2+ concentrations, [Ca2+]i, are presented as brief spikes organized into regenerative Ca2+ waves. Ca2+-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca2+ oscillations arise from Ca2+ waves initiated locally, it results in stochastic oscillations because although each cell has many IP3Rs and Ca2+ ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP3Rs due to steep Ca2+ concentration gradients. The specific Ca2+ signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca2+ oscillations and decoded again at a later stage. Since Ca2+ channels or pumps involved in regulating Ca2+ signaling pathways show altered expression in cancer, one can target these Ca2+ channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca2+ wave patterns in carcinogenesis and lead to development of newer technologies based on Ca2+ waves for the diagnosis and therapy of cancer. PMID:20875431

  14. Characterization of a single peptide derived from cytochrome P4501B1 that elicits spontaneous human leukocyte antigen (HLA)-A1 as well as HLA-B35 restricted CD8 T-cell responses in cancer patients

    DEFF Research Database (Denmark)

    Kvistborg, P.; Hadrup, S.R.; Andersen, M.H.

    2008-01-01

    . Interestingly, the peptide binds to both human Leukocyte antigen (HLA)-A1 and HLA-B35. Hence, peripheral blood lymphocytes from a total of 49 cancer patients (25 melanoma, 13 RCC, and 11 breast cancer; 41 HLA-A1 positive, 8 HLA-B35 positive) were analyzed for reactivity taking advantage of the EliSpot assay...... presenting the peptide on the surface. The characterized CYP240 peptide presented herein opens the avenue for more broader recruitment of patients in vaccination trials targeting CYB1B1. (C) 2008 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved...

  15. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H.; Boersma-van Ek, Wytske; Terstappen, Leon W. M. M.; Groen, Harry J. M.; Timens, Wim; Kruyt, Frank A. E.; Hiltermann, T. Jeroen N.

    2016-01-01

    The prognostic value of markers of cancer stem cells and epithelial to mesenchymal transition in small cell lung cancer is not known. We retrospectively studied these markers in the biopsy tissue of patients with small cell lung cancer and correlated them with overall survival and the strongest

  16. Why drivers use cell phones and support legislation to restrict this practice.

    Science.gov (United States)

    2017-04-01

    A study was conducted to investigate why people talk on a cell phone while driving and why they also support legislation to restrict this practice. Participants completed a survey about their driving attitudes, abilities, and behaviors, and performed...

  17. Partial association of restriction polymorphism of the ligand binding domain of human androgen receptor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Mohamed Hessien

    2016-04-01

    Conclusion: Our results indicate that the loss of the restriction integrity in the C-terminal part (exons: 7 and 8 of the LBD is associated with the progression of benign prostatic hyperplasia to prostate cancer.

  18. MR1-restricted Valpha19i T cells: a second population recognizing lipid antigens?

    Science.gov (United States)

    Schümann, Jens; De Libero, Gennaro

    2007-07-01

    There is increasing evidence that T cells recognizing lipid antigens contribute to the immunological regulation of different disease conditions including autoimmunity. The best-known subset is CD1d-restricted lipid-reactive T cells characterized by the expression of an invariant TCRalpha chain. Much less is known about the biology of another invariant T cell subset, which is restricted to the MHC class I-like molecule MR1. A beneficial role of MR1-restricted T cells has been suggested in a mouse EAE model. However, the nature of antigens that can be presented by MR1 to this invariant T cell subset remained largely unclear. An article in this issue of the European Journal of Immunology presents strong indications that derivatives of alpha-mannosyl ceramide (alpha-ManCer), i.e. glycolipids, can serve as ligands for MR1-restricted invariant T cells. In addition to that, the structure of the alpha-ManCer sphingosine chain influences the Th1-Th2 polarization of the cytokine response. These important new findings will foster further research on the identity of physiological ligands for MR1-restricted T cells and on their relation with immunoregulation. See accompanying article: (http://dx.doi.org/10.1002/eji.200636689).

  19. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    Science.gov (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  20. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  1. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  2. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  3. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  4. Sleep restriction increases white blood cells, mainly neutrophil count, in young healthy men: A pilot study

    Directory of Open Access Journals (Sweden)

    Karim Zouaoui Boudjeltia

    2008-12-01

    Full Text Available Karim Zouaoui Boudjeltia2, Brice Faraut1,2, Patricia Stenuit1, Maria José Esposito1,2, Michal Dyzma1,2, Dany Brohée2, Jean Ducobu2, Michel Vanhaeverbeek2, Myriam Kerkhofs1,21Sleep Laboratory; 2Laboratory of Experimental Medicine (ULB 222 Unit, CHU de Charleroi Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, BelgiumObjectives: This study examines the effects of sleep restricted to four hours for three consecutive nights on blood parameters, known to be associated with cardiovascular risk, in young healthy men.Material and methods: Eight young healthy men (age 24.5 ± 3.3 years were studied in the sleep restricted group. Nine young healthy men (age 24 ± 2 years were included in the control group and spent the days and nights in the sleep lab, while sleeping eight hours/night. One baseline night was followed by three nights of sleep restriction to four hours and by one recovery night of eight hours. Blood samplings were performed after the baseline night and after the third night of sleep restriction or without restriction for the control group.Results: A significant increase in white blood cells (WBC (5.79 ± 1.05 vs. 6.89 ± 1.31 103 cell/µl, p = 0.03, and neutrophils (3.17 ± 0.69 vs 4.24 ± 0.97 103 cell/µl, p = 0.01 was observed after the third night of sleep restriction. Other blood parameters were not affected. No significant variation was observed in the control group.Conclusion: Sleep restriction affected WBC count, mainly neutrophils, considered as risk factor for cardiovascular disease. Stress induced by the short term sleep restriction could be involved in this observation.Keywords: sleep restriction, men, cardiovascular risk, cholesterol, neutrophils

  5. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Science.gov (United States)

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  6. Extrachromosomal recombination substrates recapitulate beyond 12/23 restricted VDJ recombination in nonlymphoid cells.

    Science.gov (United States)

    Jung, David; Bassing, Craig H; Fugmann, Sebastian D; Cheng, Hwei-Ling; Schatz, David G; Alt, Frederick W

    2003-01-01

    V(D)J recombination occurs efficiently only between gene segments flanked by recombination signals (RSs) containing 12 and 23 base pair spacers (the 12/23 rule). A further limitation "beyond the 12/23 rule" (B12/23) exists at the TCRbeta locus and ensures Dbeta usage. Herein, we show that extrachromosomal V(D)J recombination substrates recapitulate B12/23 restriction in nonlymphoid cells. We further demonstrate that the Vbeta coding flank, the 12-RS heptamer/nonamer, and the 23-RS spacer each can significantly influence B12/23 restriction. Finally, purified core RAG1 and RAG2 proteins (together with HMG2) also reproduce B12/23 restriction in a cell-free system. Our findings indicate that B12/23 restriction of V(D)J recombination is cemented at the level of interactions between the RAG proteins and TCRbeta RS sequences.

  7. Breast cancer circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Maria Joao Carvalho

    2011-12-01

    Full Text Available Metastasization of breast cancer involves various mechanisms responsible for progression from invasive lesion to dissemination in distant organs. Regional lymph node metastasization was considered an initial step in this process, but it is now recognized that hematogenous dissemination is a deviation from lymphatic circulation. The detection of circulating tumor cells (CTC is an aim in several oncology areas. For this purpose, several techniques have been used to detect CTC, including the use of antibodies and techniques with nucleic acids. This study reviews the published studies considering the detection of breast cancer CTC. There are focused the difficulties in identifying a CTC in a heterogeneous population, the handling of the sample, criteria of positivity, analytical techniques, and specific markers. There are systematized various specific markers of breast cancer cells also the problems with false positive results. Finally, we hypothesize clinical applications either as a prognostic marker or as a therapeutic response monitor.

  8. Sleep restriction by forced activity reduces hippocampal cell proliferation

    NARCIS (Netherlands)

    Roman, Viktor; Van der Borght, K; Leemburg, SA; Van der Zee, EA; Meerlo, P

    2005-01-01

    Mounting evidence suggests that sleep loss negatively affects learning and memory processes through disruption of hippocampal function. In the present study, we examined whether sleep loss alters the generation, differentiation, and survival of new cells in the dentate gyrus. Rats were sleep

  9. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  10. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  11. Stem cells in prostate cancer.

    Science.gov (United States)

    Mateo, Francesca; Fernandez, Pedro L; Thomson, Timothy M

    2013-06-01

    Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.

  12. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, M.M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, Leonardus Wendelinus Mathias Marie; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.N.J.

    2016-01-01

    Background Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and

  13. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  14. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  15. Is there a role for carbohydrate restriction in the treatment and prevention of cancer?

    Directory of Open Access Journals (Sweden)

    Klement Rainer J

    2011-10-01

    Full Text Available Abstract Over the last years, evidence has accumulated suggesting that by systematically reducing the amount of dietary carbohydrates (CHOs one could suppress, or at least delay, the emergence of cancer, and that proliferation of already existing tumor cells could be slowed down. This hypothesis is supported by the association between modern chronic diseases like the metabolic syndrome and the risk of developing or dying from cancer. CHOs or glucose, to which more complex carbohydrates are ultimately digested, can have direct and indirect effects on tumor cell proliferation: first, contrary to normal cells, most malignant cells depend on steady glucose availability in the blood for their energy and biomass generating demands and are not able to metabolize significant amounts of fatty acids or ketone bodies due to mitochondrial dysfunction. Second, high insulin and insulin-like growth factor (IGF-1 levels resulting from chronic ingestion of CHO-rich Western diet meals, can directly promote tumor cell proliferation via the insulin/IGF1 signaling pathway. Third, ketone bodies that are elevated when insulin and blood glucose levels are low, have been found to negatively affect proliferation of different malignant cells in vitro or not to be usable by tumor cells for metabolic demands, and a multitude of mouse models have shown anti-tumorigenic properties of very low CHO ketogenic diets. In addition, many cancer patients exhibit an altered glucose metabolism characterized by insulin resistance and may profit from an increased protein and fat intake. In this review, we address the possible beneficial effects of low CHO diets on cancer prevention and treatment. Emphasis will be placed on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.

  16. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  17. CD1d- and MR1-restricted T Cells in Sepsis

    Directory of Open Access Journals (Sweden)

    Peter A. Szabo

    2015-08-01

    Full Text Available Dysregulated immune responses to infection such as those encountered in sepsis can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT cells, variant NKT (vNKT cells and mucosa-associated invariant T (MAIT cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by MHC-related protein 1 (MR1, which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early, hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area.

  18. Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis.

    Science.gov (United States)

    Someya, Shinichi; Yamasoba, Tatsuya; Weindruch, Richard; Prolla, Tomas A; Tanokura, Masaru

    2007-10-01

    Presbycusis is characterized by an age-related progressive decline of auditory function, and arises mainly from the degeneration of hair cells or spiral ganglion (SG) cells in the cochlea. Here we show that caloric restriction suppresses apoptotic cell death in the mouse cochlea and prevents late onset of presbycusis. Calorie restricted (CR) mice, which maintained body weight at the same level as that of young control (YC) mice, retained normal hearing and showed no cochlear degeneration. CR mice also showed a significant reduction in the number of TUNEL-positive cells and cleaved caspase-3-positive cells relative to middle-age control (MC) mice. Microarray analysis revealed that CR down-regulated the expression of 24 apoptotic genes, including Bak and Bim. Taken together, our findings suggest that loss of critical cells through apoptosis is an important mechanism of presbycusis in mammals, and that CR can retard this process by suppressing apoptosis in the inner ear tissue.

  19. A metabolic link between the urea cycle and cancer cell proliferation

    OpenAIRE

    Nagamani, Sandesh C.S.; Erez, Ayelet

    2016-01-01

    Clinical observations in citrullinemia type I, an inborn error of metabolism, led us to explore the benefits of somatic ASS1 silencing in cancer. We found that downregulation of ASS1 results in preferential utilization of its substrate, aspartate, for pyrimidine synthesis to support cell proliferation. Reducing aspartate availability for pyrimidine synthesis restricted cancerous proliferation.

  20. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  1. Cancer Stem Cells and the Ontogeny of Lung Cancer

    OpenAIRE

    Peacock, Craig D.; Watkins, D. Neil

    2008-01-01

    Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth, survival, and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramou...

  2. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  3. Bioinformatic identification and characterization of human endothelial cell-restricted genes

    Directory of Open Access Journals (Sweden)

    Keskin Derin B

    2010-05-01

    Full Text Available Abstract Background In this study, we used a systematic bioinformatics analysis approach to elucidate genes that exhibit an endothelial cell (EC restricted expression pattern, and began to define their regulation, tissue distribution, and potential biological role. Results Using a high throughput microarray platform, a primary set of 1,191 transcripts that are enriched in different primary ECs compared to non-ECs was identified (LCB >3, FDR Conclusion The study provides an initial catalogue of EC-restricted genes most of which are ubiquitously expressed in different endothelial cells.

  4. Cancer stem cells: the theory and perspectives in cancer therapy.

    Science.gov (United States)

    Gil, Justyna; Stembalska, Agnieszka; Pesz, Karolina A; Sasiadek, Maria M

    2008-01-01

    The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour's ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The 'niche' hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.

  5. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases

    Directory of Open Access Journals (Sweden)

    Lauren J. Howson

    2015-06-01

    Full Text Available MR1-restricted MAIT cells recognize vitamin B metabolites, which are generated by a broad range of bacteria, from Escherichia coli to Mycobacterium tuberculosis and BCG. MAIT cells have been described as innate sensors of infection as they accumulate early in infected tissues. MAIT cells maintain an activated phenotype throughout the course of infections, secrete inflammatory cytokines and have the potential to directly kill infected cells, playing an important role in shaping the host response. In this review, we will discuss the current knowledge regarding the molecular mechanisms that underline MAIT cells activation in sterile and non-sterile inflammatory conditions.

  6. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis

    OpenAIRE

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-01-01

    Background Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. Material/Methods Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2...

  7. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  8. An artificial restriction DNA cutter for site-selective gene insertion in human cells.

    Science.gov (United States)

    Ito, Kenichiro; Shigi, Narumi; Komiyama, Makoto

    2013-08-04

    With the use of a chemistry-based artificial restriction DNA cutter (combination of Ce(IV)-EDTA and a pair of pcPNA), both an antibiotic-resistance gene and a fluorescent reporter protein gene were incorporated into the targeted site through homologous recombination in human cells.

  9. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  10. Kidney stem cells in development, regeneration and cancer.

    Science.gov (United States)

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors. Copyright © 2014. Published by Elsevier Ltd.

  11. The Immunology of CD1- and MR1-Restricted T Cells.

    Science.gov (United States)

    Mori, Lucia; Lepore, Marco; De Libero, Gennaro

    2016-05-20

    CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.

  12. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  13. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  14. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Béatrice Cambien

    Full Text Available Increased CCL5 levels are markers of an unfavourable outcome in patients with melanoma, breast, cervical, prostate, gastric or pancreatic cancer. Here, we have assessed the role played by CCL5/CCR5 interactions in the development of colon cancer. To do so, we have examined a number of human colorectal carcinoma clinical specimens and found CCL5 and its receptors over-expressed within primary as well as liver and pulmonary metastases of patients compared to healthy tissues. In vitro, CCL5 increased the growth and migratory responses of colon cancer cells from both human and mouse origins. In addition, systemic treatment of mice with CCL5-directed antibodies reduced the extent of development of subcutaneous colon tumors, of liver metastases and of peritoneal carcinosis. Consistently, we found increased numbers of CD45-immunoreactive cells within the stroma of the remaining lesions as well as at the interface with the healthy tissue. In contrast, selective targeting of CCR5 through administration of TAK-779, a CCR5 antagonist, only partially compromised colon cancer progression. Furthermore, CCL5 neutralization rendered the tumors more sensitive to a PDGFRβ-directed strategy in mice, this combination regimen offering the greatest protection against liver metastases and suppressing macroscopic peritoneal carcinosis. Collectively, our data demonstrate the involvement of CCL5 in the pathogenesis of colorectal carcinoma and point to its potential value as a therapeutic target.

  15. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Directory of Open Access Journals (Sweden)

    Felicite K. Noubissi

    2016-09-01

    Full Text Available Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

  16. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Wei ZHAO

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  17. Genome modifications in plant cells by custom-made restriction enzymes.

    Science.gov (United States)

    Tzfira, Tzvi; Weinthal, Dan; Marton, Ira; Zeevi, Vardit; Zuker, Amir; Vainstein, Alexander

    2012-05-01

    Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  18. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  19. SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1

    Science.gov (United States)

    Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru

    2012-01-01

    H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566

  20. Initiation and Maintenance of Gastric Cancer: A Focus on CD44 Variant Isoforms and Cancer Stem CellsSummary

    Directory of Open Access Journals (Sweden)

    Yana Zavros

    2017-07-01

    Full Text Available Gastric cancer is the third most common cause of cancer-related death. Although the incidence of gastric cancer in the United States is relatively low, it remains significantly higher in some countries, including Japan and Korea. Interactions between cancer stem cells and the tumor microenvironment can have a substantial impact on tumor characteristics and contribute to heterogeneity. The mechanisms responsible for maintaining malignant cancer stem cells within the tumor microenvironment in human gastric cancer are largely unknown. Tumor cell and genetic heterogeneity contribute to either de novo intrinsic or the therapy-induced emergence of drug-resistant clones and eventual tumor recurrence. Although chemotherapy often is capable of inducing cell death in tumors, many cancer patients experience recurrence because of failure to effectively target the cancer stem cells, which are believed to be key tumor-initiating cells. Among the population of stem cells within the stomach that may be targeted during chronic Helicobacter pylori infection and altered into tumor-initiating cells are those cells marked by the cluster-of-differentiation (CD44 cell surface receptor. CD44 variable isoforms (CD44v have been implicated as key players in malignant transformation whereby their expression is highly restricted and specific, unlike the canonical CD44 standard isoform. Overall, CD44v, in particular CD44v9, are believed to mark the gastric cancer cells that contribute to increased resistance for chemotherapy- or radiation-induced cell death. This review focuses on the following: the alteration of the gastric stem cell during bacterial infection, and the role of CD44v in the initiation, maintenance, and growth of tumors associated with gastric cancer. Keywords: Helicobacter pylori, CD44v9, CD44v6, Inflammation

  1. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells.

    Directory of Open Access Journals (Sweden)

    Jay E Johnson

    Full Text Available A methionine-restricted diet robustly improves healthspan in key model organisms. For example, methionine restriction reduces age-related pathologies and extends lifespan up to 45% in rodents. However, the mechanisms underlying these benefits remain largely unknown. We tested whether the yeast chronological aging assay could model the benefits of methionine restriction, and found that this intervention extends lifespan when enforced by either dietary or genetic approaches, and furthermore, that the observed lifespan extension is due primarily to reduced acid accumulation. In addition, methionine restriction-induced lifespan extension requires the activity of the retrograde response, which regulates nuclear gene expression in response to changes in mitochondrial function. Consistent with an involvement of stress-responsive retrograde signaling, we also found that methionine-restricted yeast are more stress tolerant than control cells. Prompted by these findings in yeast, we tested the effects of genetic methionine restriction on the stress tolerance and replicative lifespans of cultured mouse and human fibroblasts. We found that such methionine-restricted mammalian cells are resistant to numerous cytotoxic stresses, and are substantially longer-lived than control cells. In addition, similar to yeast, the extended lifespan of methionine-restricted mammalian cells is associated with NFκB-mediated retrograde signaling. Overall, our data suggest that improved stress tolerance and extension of replicative lifespan may contribute to the improved healthspan observed in methionine-restricted rodents, and also support the possibility that manipulation of the pathways engaged by methionine restriction may improve healthspan in humans.

  2. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  3. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    Science.gov (United States)

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  4. Ovarian Cancer Stem Cells: A New Target for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Qinglei Zhan

    2013-01-01

    Full Text Available Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.

  5. Cancer stem cell targeted therapy: progress amid controversies

    Science.gov (United States)

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  6. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  7. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  8. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  9. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells.

    Science.gov (United States)

    Ko, Seongyeol; Gu, Min Jeong; Kim, Cheol Gyun; Kye, Yoon Chul; Lim, Younggap; Lee, Ji Eun; Park, Byung-Chul; Chu, Hyuk; Han, Seung Hyun; Yun, Cheol-Heui

    2017-10-01

    Porcine epidemic diarrhea virus (PEDV) invades porcine intestinal epithelial cells (IECs) and causes diarrhea and dehydration in pigs. In the present study, we showed a suppression of PEDV infection in porcine jejunum intestinal epithelial cells (IPEC-J2) by an increase in autophagy. Autophagy was activated by rapamycin at a dose that does not affect cell viability and tight junction permeability. The induction of autophagy was examined by LC3I/LC3II conversion. To confirm the autophagic-flux (entire autophagy pathway), autophagolysosomes were examined by an immunofluorescence assay. Pre-treatment with rapamycin significantly restricted not only a 1 h infection but also a longer infection (24 h) with PEDV, while this effect disappeared when autophagy was blocked. Co-localization of PEDV and autophagosomes suggests that PEDV could be a target of autophagy. Moreover, alleviation of PEDV-induced cell death in IPEC-J2 cells pretreated with rapamycin demonstrates a protective effect of rapamycin against PEDV-induced epithelial cell death. Collectively, the present study suggests an early prevention against PEDV infection in IPEC-J2 cells via autophagy that might be an effective strategy for the restriction of PEDV, and opens up the possibility of the use of rapamycin in vivo as an effective prophylactic and prevention treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells

    Science.gov (United States)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo

    2017-11-01

    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  11. The therapeutic implications of plasticity of the cancer stem cell phenotype.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    2010-12-01

    Full Text Available The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.

  12. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Molecular Biology of Liver Cancer Stem Cells

    National Research Council Canada - National Science Library

    Oishi, Naoki; Yamashita, Taro; Kaneko, Shuichi

    2014-01-01

    .... The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased...

  14. Cancer Stem Cells: Repair Gone Awry?

    Directory of Open Access Journals (Sweden)

    Fatima Rangwala

    2011-01-01

    Full Text Available Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh, that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors.

  15. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line.

    Directory of Open Access Journals (Sweden)

    Yanxing Han

    2008-07-01

    Full Text Available Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s. Further characterization of this novel gene product(s will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1.

  16. NK Cells and Virus-Related Cancers

    OpenAIRE

    Mishra, Rabinarayan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2014-01-01

    Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.

  17. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics ......, help us both in the identification and characterization of cancer stem cells and in the further development of therapeutic strategies including tissue engineering...

  18. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  19. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  20. Short-term effects of a teenage driver cell phone restriction.

    Science.gov (United States)

    Foss, Robert D; Goodwin, Arthur H; McCartt, Anne T; Hellinga, Laurie A

    2009-05-01

    On December 1, 2006, North Carolina began prohibiting use of any mobile communication device by drivers younger than 18. The current study examined the effects of the law on teenage drivers' cell phone use. Teenage drivers were observed at high schools in North Carolina 1-2 months before and approximately 5 months after the law took effect. The proportion of teenagers using cell phones did not change significantly (11.0% before the law took effect, 11.8% after). Cell phone use among teenage drivers at high schools in South Carolina, an adjacent state without a teenage driver phone ban, was stable at about 13%. Interviews were conducted with parents and teenagers in North Carolina both before and after the law took effect. In post-law interviews, teenagers were more likely than parents to say they knew about the cell phone restriction (64% vs. 39%), but support for the ban was greater among parents (95% vs. 74%). Only 22% of teenagers and 13% of parents believed the law was being enforced fairly often or a lot. Although the proportion of teenagers who reported using phones while driving declined somewhat following the law, about half admitted they used their phones, if they had driven, on the day prior to the interview. Overall, the findings suggest that North Carolina's cell phone restriction had little to no effect on teenage drivers' use of cell phones shortly after the law took effect.

  1. Distinct cell stress responses induced by ATP restriction in quiescent human fibroblasts

    Directory of Open Access Journals (Sweden)

    Nirupama Yalamanchili

    2016-10-01

    Full Text Available Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated transcription factors and altered transcription factor subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.

  2. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  3. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  4. Betulinic Acid Kills Colon Cancer Stem Cells

    NARCIS (Netherlands)

    Potze, Lisette; Di Franco, Simone; Kessler, Jan H.; Stassi, Giorgio; Medema, Jan Paul

    2016-01-01

    Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad

  5. Blinded Anonymization: a method for evaluating cancer prevention programs under restrictive data protection regulations.

    Science.gov (United States)

    Bartholomäus, Sebastian; Hense, Hans Werner; Heidinger, Oliver

    2015-01-01

    Evaluating cancer prevention programs requires collecting and linking data on a case specific level from multiple sources of the healthcare system. Therefore, one has to comply with data protection regulations which are restrictive in Germany and will likely become stricter in Europe in general. To facilitate the mortality evaluation of the German mammography screening program, with more than 10 Million eligible women, we developed a method that does not require written individual consent and is compliant to existing privacy regulations. Our setup is composed of different data owners, a data collection center (DCC) and an evaluation center (EC). Each data owner uses a dedicated software that preprocesses plain-text personal identifiers (IDAT) and plaintext evaluation data (EDAT) in such a way that only irreversibly encrypted record assignment numbers (RAN) and pre-aggregated, reversibly encrypted EDAT are transmitted to the DCC. The DCC uses the RANs to perform a probabilistic record linkage which is based on an established and evaluated algorithm. For potentially identifying attributes within the EDAT ('quasi-identifiers'), we developed a novel process, named 'blinded anonymization'. It allows selecting a specific generalization from the pre-processed and encrypted attribute aggregations, to create a new data set with assured k-anonymity, without using any plain-text information. The anonymized data is transferred to the EC where the EDAT is decrypted and used for evaluation. Our concept was approved by German data protection authorities. We implemented a prototype and tested it with more than 1.5 Million simulated records, containing realistically distributed IDAT. The core processes worked well with regard to performance parameters. We created different generalizations and calculated the respective suppression rates. We discuss modalities, implications and limitations for large data sets in the cancer registry domain, as well as approaches for further

  6. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  7. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  8. Of germ cells, trophoblasts, and cancer stem cells.

    Science.gov (United States)

    Burleigh, Angela R

    2008-12-01

    The trophoblastic theory of cancer, proposed in the early 1900s by Dr John Beard, may not initially seem relevant to current cancer models and treatments. However, the underpinnings of this theory are remarkably similar to those of the cancer stem cell (CSC) theory. Beard noticed that a significant fraction of germ cells never reach their final destination as they migrate during embryonic development from the hindgut to the germinal ridge. In certain situations, upon aberrant stimulation, these vagrant germ cells are able to generate tumors. Simplistically, the CSC theory surmises that a small population of tumorigenic cells exists, which initiate and maintain tumors, and these cells have a likely origin in normal stem cells. Both these theories are based on the potential of a single primitive cell to form a tumor. This has a major implication for cancer therapy, in that only a small percentage of cells need to be targeted to ablate a tumor.

  9. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice.

    Science.gov (United States)

    Buschemeyer, W Cooper; Klink, Joseph C; Mavropoulos, John C; Poulton, Susan H; Demark-Wahnefried, Wendy; Hursting, Stephen D; Cohen, Pinchas; Hwang, David; Johnson, Tracy L; Freedland, Stephen J

    2010-07-01

    Caloric restriction (CR) delays cancer growth in animals, though translation to humans is difficult. We hypothesized intermittent fasting (i.e., intermittent extreme CR), may be better tolerated and prolong survival of prostate cancer (CaP) bearing mice. We conducted a pilot study by injecting 105 male individually-housed SCID mice with LAPC-4 cells. When tumors reached 200 mm(3), 15 mice/group were randomized to one of seven diets and sacrificed when tumors reached 1,500 mm(3): Group 1: ad libitum 7 days/week; Group 2: fasted 1 day/week and ad libitum 6 days/week; Group 3: fasted 1 day/week and fed 6 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 4: 14% CR 7 days/week; Group 5: fasted 2 days/week and ad libitum 5 days/week; Group 6: fasted 2 day/week and fed 5 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 7: 28% CR 7 days/week. Sera from mice at sacrifice were analyzed for IGF-axis hormones. There were no significant differences in survival among any groups. However, relative to Group 1, there were non-significant trends for improved survival for Groups 3 (HR 0.65, P = 0.26), 5 (0.60, P = 0.18), 6 (HR 0.59, P = 0.16), and 7 (P = 0.59, P = 0.17). Relative to Group 1, body weights and IGF-1 levels were significantly lower in Groups 6 and 7. This exploratory study found non-significant trends toward improved survival with some intermittent fasting regimens, in the absence of weight loss. Larger appropriately powered studies to detect modest, but clinically important differences are necessary to confirm these findings.

  10. Single Cell Characterization of Prostate Cancer Circulating Tumor Cells

    Science.gov (United States)

    2011-08-01

    CTCs from patient blood, a single T24 bladder and LNCaP prostate cancer cells, a pool of 8 prostate CTCs, and one leukocyte isolated from the blood...amplify 66% of mRNA pool from a single cell. Clustering analysis does differentiate CTCs from LNCaP and T24 bladder cell lines (Figure 4). At present we...profiles could distinguish a CTC from prostate cancer cell line LNCaP and T24 bladder cancer cell line.  There was intra and inter patient heterogeneity

  11. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  12. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  13. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  14. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Science.gov (United States)

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  15. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mengmeng Lv

    Full Text Available The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies.Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction.Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI of 0.20 (0.12, 0.34 relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer.Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  16. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines.

    Science.gov (United States)

    Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E

    2013-01-01

    To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.

  17. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Directory of Open Access Journals (Sweden)

    Thomas W.J. Lennard

    2011-04-01

    Full Text Available In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP, have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC, combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  18. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  19. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease.

    Science.gov (United States)

    Kumari, Namita; Ammosova, Tatiana; Diaz, Sharmin; Lin, Xionghao; Niu, Xiaomei; Ivanov, Andrey; Jerebtsova, Marina; Dhawan, Subhash; Oneal, Patricia; Nekhai, Sergei

    2016-12-27

    The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

  20. Cisplatin induces differentiation of breast cancer cells.

    Science.gov (United States)

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.

  1. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  2. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells.

    Science.gov (United States)

    Chang, Ted H-T; Kunasegaran, Kamini; Tarulli, Gerard A; De Silva, Duvini; Voorhoeve, P Mathijs; Pietersen, Alexandra M

    2014-01-07

    Parity-identified mammary epithelial cells (PI-MECs) are an interesting cellular subset because they survive involution and are a presumptive target for transformation by human epidermal growth factor receptor 2 (HER2)/neu in mammary tumors. Depending on the type of assay, PI-MECs have been designated lobule-restricted progenitors or multipotent stem/progenitor cells. PI-MECs were reported to be part of the basal population of mammary epithelium based on flow cytometry. We investigated the cellular identity and lineage potential of PI-MECs in intact mammary glands. We performed a quantitative and qualitative analysis of the contribution of PI-MECs to mammary epithelial cell lineages in pregnant and involuted mammary glands by immunohistochemistry, fluorescence-activated cells sorting (FACS), and quantitative polymerase chain reaction. PI-MECs were labeled by the activation of Whey Acidic Protein (WAP)-Cre during pregnancy that results in permanent expression of yellow fluorescent protein. After involution, PI-MECs are present exclusively in the luminal layer of mammary ducts. During pregnancy, PI-MECs contribute to the luminal layer but not the basal layer of alveolar lobules. Strikingly, whereas all luminal estrogen receptor (ER)-negative cells in an alveolus can be derived from PI-MECs, the alveolar ER-positive cells are unlabeled and reminiscent of Notch2-traced L cells. Notably, we observed a significant population of unlabeled alveolar progenitors that resemble PI-MECs based on transcriptional and histological analysis. Our demonstration that PI-MECs are luminal cells underscores that not only basal cells display multi-lineage potential in transplantation assays. However, the lineage potential of PI-MECs in unperturbed mammary glands is remarkably restricted to luminal ER-negative cells of the secretory alveolar lineage. The identification of an unlabeled but functionally similar population of luminal alveolar progenitor cells raises the question of whether PI

  3. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  4. A combination of epitope prediction and molecular docking allows for good identification of MHC class I restricted T-cell epitopes.

    Science.gov (United States)

    Zhang, Xue Wu

    2013-08-01

    In silico identification of T-cell epitopes is emerging as a new methodology for the study of epitope-based vaccines against viruses and cancer. In order to improve accuracy of prediction, we designed a novel approach, using epitope prediction methods in combination with molecular docking techniques, to identify MHC class I restricted T-cell epitopes. Analysis of the HIV-1 p24 protein and influenza virus matrix protein revealed that the present approach is effective, yielding prediction accuracy of over 80% with respect to experimental data. Subsequently, we applied such a method for prediction of T-cell epitopes in SARS coronavirus (SARS-CoV) S, N and M proteins. Based on available experimental data, the prediction accuracy is up to 90% for S protein. We suggest the use of epitope prediction methods in combination with 3D structural modelling of peptide-MHC-TCR complex to identify MHC class I restricted T-cell epitopes for use in epitope based vaccines like HIV and human cancers, which should provide a valuable step forward for the design of better vaccines and may provide in depth understanding about activation of T-cell epitopes by MHC binding peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, B; Holck, Susanne; Christensen, Ib Jarle

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  6. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However...

  7. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  8. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  10. Lipid degradation promotes prostate cancer cell survival

    Science.gov (United States)

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Lau, Chung Ho; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J.; Takhar, Mandeep; Heemers, Hannelore V.; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L.; Clarke, Noel; Swinnen, Johan V.; Keun, Hector C.; Rekvig, Ole P.; Mills, Ian G.

    2017-01-01

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. PMID:28415728

  11. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45.

    Science.gov (United States)

    Zhang, Hai-hong; Cai, Ai-zhen; Wei, Xue-ming; Ding, Li; Li, Feng-zhi; Zheng, Ai-ming; Dai, Da-jiang; Huang, Rong-rong; Cao, Hou-jun; Zhou, Hai-yang; Wang, Jian-mei; Wang, Xue-jing; Shi, Wei; Zhu, Heng; Yuan, Xiao-ying; Chen, Lin

    2013-03-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many kinds of cell lines and tissues have demonstrated the presence of SP cells, including several gastric cancer cell lines. This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45. We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells. This study found that the SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness-related gene expression profiles, including OCT-4, SOX-2, NANOG, CD44, and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2, were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Western blot was used to show the difference of protein expression between SP and MP cells. Both results show that there was significantly higher protein expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells show higher tumorigenesis tendency than MP cells. These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  12. Caloric Restriction in Treating Patients With Stage 0-I Breast Cancer Undergoing Surgery and Radiation Therapy

    Science.gov (United States)

    2017-09-25

    Ductal Breast Carcinoma in Situ; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer

  13. DSCAM Promotes Refinement in the Mouse Retina through Cell Death and Restriction of Exploring Dendrites

    Science.gov (United States)

    Li, Shuai; Sukeena, Joshua M.; Simmons, Aaron B.; Hansen, Ethan J.; Nuhn, Renee E.; Samuels, Ivy S.

    2015-01-01

    In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections. PMID:25855178

  14. Mislocalization of the exitatory amino-acid transporters (EAATs in human astrocytoma and non-astrocytoma cancer cells: effect of the cell confluence

    Directory of Open Access Journals (Sweden)

    Varini Karine

    2012-02-01

    Full Text Available Abstract Background Astrocytomas are cancers of the brain in which high levels of extracellular glutamate plays a critical role in tumor growth and resistance to conventional treatments. This is due for part to a decrease in the activity of the glutamate transporters, i.e. the Excitatory Amino Acid Transporters or EAATs, in relation to their nuclear mislocalization in astrocytoma cells. Although non-astrocytoma cancers express EAATs, the localization of EAATs and the handling of L-glutamate in that case have not been investigated. Methods We looked at the cellular localization and activity of EAATs in human astrocytoma and non-astrocytoma cancer cells by immunofluorescence, cell fractionation and L-glutamate transport studies. Results We demonstrated that the nuclear mislocalization of EAATs was not restricted to astrocytoma and happened in all sub-confluent non-astrocytoma cancer cells we tested. In addition, we found that cell-cell contact caused the relocalization of EAATs from the nuclei to the plasma membrane in all human cancer cells tested, except astrocytoma. Conclusions Taken together, our results demonstrated that the mislocalization of the EAATs and its associated altered handling of glutamate are not restricted to astrocytomas but were also found in human non-astrocytoma cancers. Importantly, we found that a cell contact-dependent signal caused the relocalization of EAATs at the plasma membrane at least in human non-astrocytoma cancer cells, resulting in the correction of the altered transport of glutamate in such cancer cells but not in astrocytoma.

  15. PrPC from stem cells to cancer

    Directory of Open Access Journals (Sweden)

    Séverine eMartin-Lannerée

    2014-09-01

    Full Text Available The cellular prion protein PrPC was initially discovered as the normal counterpart of the pathological scrapie prion protein PrPSc, the main component of the infectious agent of Transmissible Spongiform Encephalopathies. While clues as to the physiological function of this ubiquitous protein were greatly anticipated from the development of knock-out animals, PrP-null mice turned out to be viable and to develop without major phenotypic abnormalities. Notwithstanding, the discovery that hematopoietic stem cells from PrP-null mice have impaired long-term repopulating potential has set the stage for investigating into the role of PrPC in stem cell biology. A wealth of data have now exemplified that PrPC is expressed in distinct types of stem cells and regulates their self-renewal as well as their differentiation potential. A role for PrPC in the fate restriction of embryonic stem cells has further been proposed. Paralleling these observations, an overexpression of PrPC has been documented in various types of tumours. In line with the contribution of PrPC to stemness and to the proliferation of cancer cells, PrPC was recently found to be enriched in subpopulations of tumour-initiating cells. In the present review, we summarize the current knowledge of the role played by PrPC in stem cell biology and discuss how the subversion of its function may contribute to cancer progression.

  16. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Germana Castelli

    2017-09-01

    Full Text Available Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (iCCA. Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV infection (frequent in Asia and Africa, hepatitis C virus (HCV, chronic alcohol abuse, or metabolic syndrome (frequent in Western countries. In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47; the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.

  17. SSX2-4 expression in early-stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Greve, K B V; Pøhl, M; Olsen, K E

    2014-01-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies...... was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC....

  18. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

    DEFF Research Database (Denmark)

    Gold, Marielle C.; McLaren, James E.; Reistetter, Joseph A.

    2015-01-01

    Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)-like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage...... as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line...... with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped...

  19. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

    DEFF Research Database (Denmark)

    Gold, Marielle C.; McLaren, James E.; Reistetter, Joseph A.

    2014-01-01

    Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)-like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage...... as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line...... with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped...

  20. Artificial restriction DNA cutters to promote homologous recombination in human cells.

    Science.gov (United States)

    Katada, Hitoshi; Komiyama, Makoto

    2011-02-01

    Homologous recombination is almost the only way to modify the genome in a predetermined fashion, despite its quite low frequency in mammalian cells. It has been already reported that the frequency of this biological process can be notably increased by inducing a double strand break (DSB) at target site. This article presents completely chemistry-based artificial restriction DNA cutter (ARCUT) for the promotion of homologous recombination in human cells. This cutter is composed of Ce(IV)/EDTA complex (molecular scissors) and two strands of peptide nucleic acid (PNA), and contains no proteins. Its scission site in the genome is determined simply by Watson-Crick rule so that ARCUT for desired homologous recombination is easily and straightforwardly designed and synthesized. The site-specificity of the scission is high enough to cut human genome at one target site. The DSB induced by this cutter is satisfactorily recognized by the repair system in human cells and promotes the targeted homologous recombination.

  1. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann

    2009-01-01

    The glycosphingolipid sulfatide (SO(3)-3Galbeta1Cer) is a demonstrated ligand for a subset of CD1d-restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide...... is a mixture of sulfatide isoforms, i.e. sulfatide molecules with different long-chain bases and fatty acid chain lengths and saturation. Here, we demonstrate that sulfatide-specific CD1d-restricted murine NKT hybridomas recognized several different sulfatide isoforms. These included the physiologically...... isoforms by a CD1d-restricted NKT-cell clone, and suggest that sulfatide, a major component of the myelin sheet and pancreatic beta-cells, is one of several natural ligands for type II CD1d-restricted NKT cells....

  2. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  3. P44/WDR77 restricts the sensitivity of proliferating cells to TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Pengfei [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gao, Shen [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gu, Zhongping [Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Huang, Tao [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Wang, Zhengxin, E-mail: zhenwang@mdanderson.org [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-07-18

    Highlights: • P44/WDR77 causes proliferating cells to become non-responsive to TGFβ signaling. • P44/WDR77 down-regulates TβRII and TβR2 expression. • P44/WDR77 down-regulated TGFβ signaling correlates with lung tumorigenesis. - Abstract: We previously reported that a novel WD-40 domain-containing protein, p44/WDR77, drives quiescent epithelial cells to re-enter the cell cycle and plays an essential role for growth of lung and prostate cancer cells. Transforming growth factor beta (TGFβ) signaling is important in the maintenance of non-transformed cells in the quiescent or slowly cycling stage. However, both non-transformed proliferating cells and human cancer cells are non-responsive to endogenous TGFβ signaling. The mechanism by which proliferating cells become refractory to TGFβ inhibition is not well established. Here, we found that silencing p44/WDR77 increased cellular sensitivity to TGFβ signaling and that this was inversely correlated with decreased cell proliferation. Smad2 or 3 phosphorylation, TGFβ-mediated transcription, and TGFβ2 and TGFβ receptor type II (TβRII) expression were dramatically induced by silencing of p44/WDR77. These data support the hypothesis that p44/WDR77 down-regulates the expression of the TGFβ ligand and its receptor, thereby leading to a cellular non-response to TGFβ signaling. Finally, we found that p44/WDR77 expression was correlated with cell proliferation and decreased TGFβ signaling during lung tumorigenesis. Together, these results suggest that p44/WDR77 expression causes the non-sensitivity of proliferating cells to TGFβ signaling, thereby contributing to cellular proliferation during lung tumorigenesis.

  4. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology

    Science.gov (United States)

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N.; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T.; Taylor, Michael D.; Purevjav, Enkhsaikhan; Aronow, Bruce J.; Towbin, Jeffrey A.; Malik, Punam

    2016-01-01

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  6. Ebola virus mediated infectivity is restricted in canine and feline cells.

    Science.gov (United States)

    Han, Ziying; Bart, Stephen M; Ruthel, Gordon; Vande Burgt, Nathan H; Haines, Kathleen M; Volk, Susan W; Vite, Charles H; Freedman, Bruce D; Bates, Paul; Harty, Ronald N

    2016-01-01

    Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  8. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  9. MHC CLASS-II-RESTRICTED T-CELL HYBRIDOMAS RECOGNIZING THE NUCLEOCAPSID PROTEIN OF AVIAN CORONAVIUS IBV

    NARCIS (Netherlands)

    BOOTS, AMH; VANLIEROP, MJ; KUSTERS, JG; VANKOOTEN, PJS; VANDERZELIST, BAM; HENSEN, EJ; Boots, Annemieke

    Mice were immunized with purified infectious bronchitis virus (IBV), strain M41. Spleen cells, expanded in vitro by stimulation with M41, were immortalized by fusion to obtain T-cell hybridomas, and two major histocompatability complex (MHC) class II (I-E)-restricted T-cell hybridomas were selected

  10. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  11. Melanocytes: Target Cells of an HLA-C*06:02-Restricted Autoimmune Response in Psoriasis.

    Science.gov (United States)

    Prinz, Jörg Christoph

    2017-10-01

    HLA-C*06:02 is the main psoriasis risk allele. By the unbiased analysis of a Vα3S1/Vβ13S1 T-cell receptor from pathogenic psoriatic CD8+ T cells, we had recently proven that HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation in psoriasis and identified ADAMTSL5 as a melanocyte autoantigen. We concluded that psoriasis is based on a melanocyte-specific immune response and that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. Understanding this pathway, however, requires more detailed explanation. It is based on the fact that an HLA class I-restricted autoreactive CD8+ T-cell response must be directed against a particular target cell type, because HLA class I molecules present peptide antigens generated from cytoplasmic (i.e., intracellular) proteins. This review summarizes the findings on the melanocyte-specific autoimmune response in the context of the immune mechanisms related to HLA function and T-cell receptor-antigen recognition. Identifying melanocytes as target cells of the psoriatic immune response now explains psoriasis as a primary autoimmune skin disease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  12. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    Science.gov (United States)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  13. Cementum attachment protein manifestation is restricted to the mineralized tissue forming cells of the periodontium

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Kana, I.; Pitaru, S. [Tel Aviv Univ., Dept. of Oral Biology, Goldschleger School of dental Medicine (Israel); Savion, N. [Tel Aviv Univ., Goldschleger Eye Research Inst. (Israel); Narayanan, A.S. [Univ. of Washington, Dept. of Pathology, Faculty of Medicine (United States)

    1998-08-01

    The mechanisms that regulate cementogenesis are mainly unknown. A specific cementum attachment protein (CAP) has been recently partially characterized and found to be more efficient in supporting the attachment of alveolar bone cells (ABC) and periodontal ligament cells (PLC) than that of gingival fibroblasts (GF). The purpose of this study was to determine the capacity of human periodontal-derived cells to bind an express CAP and to relate these properties to their capacity to express alkaline phosphatase (AlP) and form mineralized tissue (MTF). ABC, PLC and GF were tested. Human stromal bone marrow cells (SBMC) and a cementoma-derived cell line (CC) served as controls. CAP binding was determined using {sup 125}I-CAP. The amount of MTF was assessed by alizarin red staining and image analysis determination of the amount of red-stained material. AlP and CAP expression were examined by histochemistry and immuno-chemistry, respectively. The highest expression of CAP was observed in CC, followed by PLC and ABC in decreasing order, whereas SBMC and GF did not express CAP, SBMC manifested the highest CAP binding capacity followed by CC, ABC, PLC and GF. MTF and AlP manifestation were greatest in SBMC, followed by ABC, PLC and CC. Collectively, the results indicate that CAP binding and secretion are not linked and that CAP manifestation is restricted to periodontal derived cell lineages with the potential of forming mineralized tissues. (au) 39 refs.

  14. Alterations of calcium homeostasis in cancer cells.

    Science.gov (United States)

    Marchi, Saverio; Pinton, Paolo

    2016-08-01

    Typical hallmarks of cancer include programmed cell death evasion, uncontrolled cell growth, invasion, and metastasis. Changes in intracellular Ca(2+) levels can modulate signaling pathways that control a broad range of cellular events, including those important to tumorigenesis and cancer progression. Here we discuss how known molecular mediators of cellular Ca(2+) homeostasis impact tumor dynamics and how deregulation of major oncogenes and tumor suppressors is tightly associated with Ca(2+) signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Lgr5-Positive Cells are Cancer-Stem-Cell-Like Cells in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhongli Wang

    2015-07-01

    Full Text Available Background/Aims: Effective treatment of gastric cancer (GC requires better understanding of the molecular regulation of its carcinogenesis. Identification of cancer stem cells (CSCs in GC appears to be a critical question. Methods: We analyzed Lgr5 expression in GC specimen. We used an adeno-associated virus (AAV that carries diphtheria toxin fragment A (DTA under the control of Lgr5 promoter (AAV-pLgr5-DTA to transduce human GC cells. The growth of GC cells with/without depletion of Lgr5-positive cells was studied in vitro in an MTT assay, and in vivo by analyzing bioluminescence levels. Results: A portion of GC cells in the resected specimen expressed Lgr5. GC cells that formed tumor spheres expressed high Lgr5. Selective depletion of Lgr5-positive GC cells resulted in significant growth inhibition of GC cells in vitro and in vivo. Conclusion: Lgr5-positive cells may be CSCs-like cells in GC and may play a pivotal role in the tumorigenesis of GC. Treating Lgr5-positive GC cells may substantially improve the therapeutic outcome.

  16. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Science.gov (United States)

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  17. Escargot Restricts Niche Cell to Stem Cell Conversion in the Drosophila Testis

    Directory of Open Access Journals (Sweden)

    Justin Voog

    2014-05-01

    Full Text Available Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behavior. Somatic hub cells in the Drosophila testis regulate the behavior of cyst stem cells (CySCs and germline stem cells (GSCs and are a primary component of the testis stem cell niche. The shutoff (shof mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg. Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the corepressor C-terminal binding protein (CtBP, which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo.

  18. Epigenetics of solid cancer stem cells.

    Science.gov (United States)

    Mishra, Alok; Verma, Mukesh

    2012-01-01

    Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

  19. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    2011-01-01

    Full Text Available Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  20. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  1. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  2. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  3. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  4. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our under...

  5. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our understanding of ...

  6. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  7. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Gao, Quanli; Geng, Li; Kvalheim, Gunnar; Gaudernack, Gustav; Suo, Zhenhe

    2009-01-01

    Side population (SP) cells may enrich stem-like cells in many normal and malignant tissues. However, SP method application has drawn special attention to the field of stem cell research, and the existence of SP cells in cell culture is being debated, most probably because different cell lines require different technical modifications, especially when cell staining is considered. In this study, the authors aimed to disclose whether the hoechst33342 staining required extensive optimization for identifying SP cells in the human ovarian cancer cell line OVCAR-3. After systematic evaluations, it was found that only 2.5 microg/mL hoechst33342 staining of the cells for 60 min could get an ideal SP population, which accounted for 0.9% of the whole cell population. The sorted SP cells showed significantly higher colony formation efficiency than the non-side population (NSP) cells, and only the SP cells could form holoclones. Real-time PCR disclosed that SP cells expressed higher levels of "stemness" gene Oct3/4 than the NSP cells did, indicating that the SP cells might harbor cancer stem cells in this cell line. The results highlight the necessity of SP method optimization in cell studies, and the SP cells in this cell line merit further studies when cancer stem cell identification and isolation are considered.

  8. Cancer stem cells and their implication in breast cancer.

    Science.gov (United States)

    Carrasco, E; Alvarez, Pablo J; Prados, José; Melguizo, Consolación; Rama, Ana R; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2014-07-01

    The cancer stem cell (CSC) hypothesis on the origin of cancer has recently gained considerable support. CSCs are tumour cells with the capacity for self-renewal and differentiation that direct the origin and progression of the disease and may be responsible for relapse, metastasis and treatment failures. This article reviews breast CSCs (BCSCs) phenotyping, clinical implications and clinical trials focused on BCSCs in breast cancer. Relevant studies were found through PubMed and Clinicaltrials.gov databases. Cancer stem cells are identified and isolated using membrane and cell activity markers; in the case of BCSCs, these are CD44(+) /CD24(low/-) and show aldehyde dehydrogenase activity, alongside their capacity to grow and form mammospheres. The presence of stem cell properties is associated with a worse outcome. Hence, these cells have important clinical implications, and elucidation of the mechanisms underlying their activity will allow the development of novel effective therapies and diagnostic instruments, improving the prognosis of these patients. Standard treatments are directed against the tumour mass and do not eliminate CSCs. There is therefore a need for specific anti-CSC therapies, and numerous authors are investigating new targets to this end, as reported in this review. It is also necessary for clinical trials to be undertaken to allow this new knowledge to be applied in the clinical setting. However, there have been few trials on anti-BCSCs therapies to date. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    OpenAIRE

    Halliday A Idikio

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...

  10. A novel cell type-specific role of p38alpha in the control of autophagy and cell death in colorectal cancer cells.

    Science.gov (United States)

    Comes, F; Matrone, A; Lastella, P; Nico, B; Susca, F C; Bagnulo, R; Ingravallo, G; Modica, S; Lo Sasso, G; Moschetta, A; Guanti, G; Simone, C

    2007-04-01

    Cancer develops when molecular pathways that control the fine balance between proliferation, differentiation, autophagy and cell death undergo genetic deregulation. The prospects for further substantial advances in the management of colorectal cancer reside in a systematic genetic and functional dissection of these pathways in tumor cells. In an effort to evaluate the impact of p38 signaling on colorectal cancer cell fate, we treated HT29, Caco2, Hct116, LS174T and SW480 cell lines with the inhibitor SB202190 specific for p38alpha/beta kinases. We report that p38alpha is required for colorectal cancer cell homeostasis as the inhibition of its kinase function by pharmacological blockade or genetic inactivation causes cell cycle arrest, autophagy and cell death in a cell type-specific manner. Deficiency of p38alpha activity induces a tissue-restricted upregulation of the GABARAP gene, an essential component of autophagic vacuoles and autophagosomes, whereas simultaneous inhibition of autophagy significantly increases cell death by triggering apoptosis. These data identify p38alpha as a central mediator of colorectal cancer cell homeostasis and establish a rationale for the evaluation of the pharmacological manipulation of the p38alpha pathway in the treatment of colorectal cancer.

  11. Cell Phones and Cancer Risk

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... interagency program headquartered at the National Institute of Environmental Health Sciences (NIEHS), which is part of the ...

  12. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  13. Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging.

    Science.gov (United States)

    Huang, Yu; Agrawal, Basheal; Clark, Paul A; Williams, Justin C; Kuo, John S

    2011-12-23

    In the last 40 years, the United States invested over 200 billion dollars on cancer research, resulting in only a 5% decrease in death rate. A major obstacle for improving patient outcomes is the poor understanding of mechanisms underlying cellular migration associated with aggressive cancer cell invasion, metastasis and therapeutic resistance. Glioblastoma Multiforme (GBM), the most prevalent primary malignant adult brain tumor, exemplifies this difficulty. Despite standard surgery, radiation and chemotherapies, patient median survival is only fifteen months, due to aggressive GBM infiltration into adjacent brain and rapid cancer recurrence. The interactions of aberrant cell migratory mechanisms and the tumor microenvironment likely differentiate cancer from normal cells. Therefore, improving therapeutic approaches for GBM require a better understanding of cancer cell migration mechanisms. Recent work suggests that a small subpopulation of cells within GBM, the brain tumor stem cell (BTSC), may be responsible for therapeutic resistance and recurrence. Mechanisms underlying BTSC migratory capacity are only starting to be characterized. Due to a limitation in visual inspection and geometrical manipulation, conventional migration assays are restricted to quantifying overall cell populations. In contrast, microfluidic devices permit single cell analysis because of compatibility with modern microscopy and control over micro-environment. We present a method for detailed characterization of BTSC migration using compartmentalizing microfluidic devices. These PDMS-made devices cast the tissue culture environment into three connected compartments: seeding chamber, receiving chamber and bridging microchannels. We tailored the device such that both chambers hold sufficient media to support viable BTSC for 4-5 days without media exchange. Highly mobile BTSCs initially introduced into the seeding chamber are isolated after migration though bridging microchannels to the parallel

  14. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  15. The therapeutic promise of the cancer stem cell concept

    National Research Council Canada - National Science Library

    Frank, Natasha Y; Schatton, Tobias; Frank, Markus H

    2010-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation...

  16. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. Copyright © 2010 AACR.

  17. The NANIVID: a new device for cancer cell migration studies

    Science.gov (United States)

    Raja, Waseem K.; Cady, Nathaniel C.; Castracane, James; Gligorijevic, Bojana; van Rheenen, Jacobus W.; Condeelis, John S.

    2008-02-01

    Cancerous tumors are dynamic microenvironments that require unique analytical tools for their study. Better understanding of tumor microenvironments may reveal mechanisms behind tumor progression and generate new strategies for diagnostic marker development, which can be used routinely in histopathological analysis. Previous studies have shown that cell invasion and intravasation are related to metastatic potential and have linked these activities to gene expression patterns seen in migratory and invasive tumor cells in vivo. Existing analytical methods for tumor microenvironments include collection of tumor cells through a catheter needle loaded with a chemical or protein attractant (chemoattractant). This method has some limitations and restrictions, including time constraints of cell collection, long term anesthetization, and in vivo imaging inside the catheter. In this study, a novel implantable device was designed to replace the catheter-based method. The 1.5mm x 0.5mm x 0.24mm device is designed to controllably release chemoattractants for stimulation of tumor cell migration and subsequent cell capture. Devices were fabricated using standard microfabrication techniques and have been shown to mediate controlled release of bovine serum albumin (BSA) and epidermal growth factor (EGF). Optically transparent indium tin oxide (ITO) electrodes have been incorporated into the device for impedance-based measurement of cell density and have been shown to be compatible with in vivo multi-photon imaging of cell migration.

  18. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    Science.gov (United States)

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  19. Liver cancer stem cells as an important target in liver cancer therapies.

    Science.gov (United States)

    Zou, Gang-Ming

    2010-02-01

    Hepatic cancer is one of most common cause of cancer-related death. Hepato-epithelial cancers are believed to originate from the malignant transformation of liver-resident stem/progenitor cells. Liver cancer stem cells have been characterized recently and the phenotype of liver cancer stem cells has been defined as CD133+ CD44+ cancer cells. Recently, it has been also demonstrated about the relevance of targeting liver cancer stem cells, due to cancer stem cells are related to cancer metastasis. These advances no doubt to bring the new strategy in liver cancer treatment and control in this disease. This review describes the current status and progress about cancer stem cell research in liver and discuss of the implications of these studies in new liver cancer treatment strategies.

  20. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection

    Science.gov (United States)

    Fan, Ying; Mok, Chris Ka-Pun; Chan, Michael Chi Wai; Zhang, Yang; Nal, Béatrice; Kien, François; Bruzzone, Roberto; Sanyal, Sumana

    2017-01-01

    To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection. PMID:28130444

  1. Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation.

    Science.gov (United States)

    Zhao, Sida; Zhao, Youshan; Guo, Juan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2017-03-06

    The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells.

  2. Cells as delivery vehicles for cancer therapeutics.

    Science.gov (United States)

    Basel, Matthew T; Shrestha, Tej B; Bossmann, Stefan H; Troyer, Deryl L

    2014-05-01

    Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.

  3. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  4. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  5. IL-4-mediated drug resistance in colon cancer stem cells

    NARCIS (Netherlands)

    Todaro, Matilde; Perez Alea, Mileidys; Scopelliti, Alessandro; Medema, Jan Paul; Stassi, Giorgio

    2008-01-01

    Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently

  6. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  7. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature.

    Science.gov (United States)

    Wooldridge, Linda

    2013-01-01

    Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 10(6) peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8(+) T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of "length-matched" CD8(+) T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique "peptide recognition signature" (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8(+) T-cell immunity and elucidating mechanisms which underlie CD8(+) T-cell mediated disease.

  8. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature

    Science.gov (United States)

    Wooldridge, Linda

    2013-01-01

    Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 106 peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8+ T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of “length-matched” CD8+ T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique “peptide recognition signature” (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8+ T-cell immunity and elucidating mechanisms which underlie CD8+ T-cell mediated disease. PMID:23888160

  9. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer

    OpenAIRE

    Paret, Claudia; Simon, Petra; Vormbrock, Kirsten; Bender, Christian; K?lsch, Anne; Breitkreuz, Andrea; Yildiz, ?zlem; Omokoko, Tana; Hubich-Rau, Stefanie; Hartmann, Christoph; H?cker, Sabine; Wagner, Meike; Roldan, Diana Barea; Selmi, Abderaouf; T?reci, ?zlem

    2015-01-01

    Triple-negative breast cancer (TNBC) is a high medical need disease with limited treatment options. CD8+ T cell-mediated immunotherapy may represent an attractive approach to address TNBC. The objectives of this study were to assess the expression of CXorf61 in TNBCs and healthy tissues and to evaluate its capability to induce T cell responses. We show by transcriptional profiling of a broad comprehensive set of normal human tissue that CXorf61 expression is strictly restricted to testis. 53%...

  10. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  11. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  12. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... immunology approach is applied. Via in silico screening of the protein sequences, 415 peptides were predicted as HLA-A*0201 and HLA-B*0702 binders. Subsequent in vitro binding analysis in a MHC ELISA platform confirmed binding for 147 of the 415 predicted binders. The 147 peptides were evaluated for T cell...

  13. Mild Lung Restriction in Breast Cancer Patients After Hypofractionated and Conventional Radiation Therapy: A 3-Year Follow-Up

    Energy Technology Data Exchange (ETDEWEB)

    Verbanck, Sylvia, E-mail: sylvia.verbanck@uzbrussel.be [Respiratory Division, University Hospital UZ Brussel, Brussels (Belgium); Hanon, Shane; Schuermans, Daniel [Respiratory Division, University Hospital UZ Brussel, Brussels (Belgium); Van Parijs, Hilde; Vinh-Hung, Vincent; Miedema, Geertje; Verellen, Dirk; Storme, Guy [Department of Radiotherapy, University Hospital UZ Brussel, Brussels (Belgium); Fontaine, Christel; Lamote, Jan [Department of Senology and Oncologic Surgery, University Hospital UZ Brussel, Brussels (Belgium); De Ridder, Mark [Department of Radiotherapy, University Hospital UZ Brussel, Brussels (Belgium); Vincken, Walter [Respiratory Division, University Hospital UZ Brussel, Brussels (Belgium)

    2016-07-01

    Purpose: To assess the effect of radiation therapy on lung function over the course of 3 years. Methods and Materials: Evolution of restrictive and obstructive lung function parameters was investigated in 108 breast cancer participants in a randomized, controlled trial comparing conventional radiation therapy (CR) and hypofractionated tomotherapy (TT) (age at inclusion ranging 32-81 years). Spirometry, plethysmography, and hemoglobin-corrected diffusing capacity were assessed at baseline and after 3 months and 1, 2, and 3 years. Natural aging was accounted for by considering all lung function parameters in terms of percent predicted values using the most recent reference values for women aged up to 80 years. Results: In the patients with negligible history of respiratory disease or smoking (n=77), the greatest rate of functional decline was observed during the initial 3 months, this acute decrease being more marked in the CR versus the TT arm. During the remainder of the 3-year follow-up period, values (in terms of percent predicted) were maintained (diffusing capacity) or continued to decline at a slower rate (forced vital capacity). However, the average decline of the restrictive lung function parameters over a 3-year period did not exceed 9% predicted in either the TT or the CR arm. Obstructive lung function parameters remained unaffected throughout. Including also the 31 patients with a history of respiratory disease or more than 10 pack-years showed a very similar restrictive pattern. Conclusions: In women with breast cancer, both conventional radiation therapy and hypofractionated tomotherapy induce small but consistent restrictive lung patterns over the course of a 3-year period, irrespective of baseline respiratory status or smoking history. The fastest rate of lung function decline generally occurred in the first 3 months.

  14. Phenotypic Heterogeneity of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Aurelio Lorico

    2011-01-01

    Full Text Available Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006, and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006. The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005, has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et al., 2006 has suggested that current anticancer drugs, which inhibit bulk replicating cancer cells, may not effectively inhibit CSC. The clinical relevance of targeting CSC-associated genes is supported by several recent studies, including CD44 targeting for treatment of acute myeloid leukemia (Jin et al., 2006, CD24 targeting for treatment of colon and pancreatic cancer (Sagiv et al., 2008, and CD133 targeting for hepatocellular and gastric cancer (Smith et al., 2008. One promising approach is to target CSC survival signaling pathways, where leukemia stem cell research has already made some progress (Mikkola et al., 2010.

  15. Cbl enforces Vav1 dependence and a restricted pathway of T cell development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Chiang

    Full Text Available Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl, an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1⁻/⁻Cbl⁻/⁻ DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.

  16. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  17. Cancer stem cells in the development of liver cancer

    Science.gov (United States)

    Yamashita, Taro; Wang, Xin Wei

    2013-01-01

    Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs. PMID:23635789

  18. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... regulation. There was no indication of differences in cell proliferative characteristics between the different NCAM-transfected and the control transfected cells as determined by flow cytometric DNA analysis, suggesting an increased cell loss as the reason for decreased in vivo growth rate of the NCAM...

  19. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  20. with esophageal squamous cell cancer

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-02-01

    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT. Material and methods : From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results : The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS and local-regional control (LRC were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010, according to univariate analysis. The 5-year OS (LRC was 37.3% (58.6% for patients aged 70-74 years and 14.5% (47.9% for patients aged > 74 years (p = 0.010 and p = 0.038. In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]. From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6% patients experienced fistula and 15 (7.9% experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027, higher NBT dose/fraction (20-25 Gy/5 fractions, and higher total dose (> 66 Gy. Conclusions : The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients.

  1. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  2. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  3. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  5. Dendritic cell immunotherapy in uterine cancer.

    Science.gov (United States)

    Coosemans, An; Tuyaerts, Sandra; Vanderstraeten, Anke; Vergote, Ignace; Amant, Frédéric; Van Gool, Stefaan W

    2014-01-01

    Uterine cancer is the most common pelvic gynecological malignancy. Uterine sarcomas and relapsed uterine carcinomas have limited treatment options. The search for new therapies is urgent. Dendritic cell (DC) immunotherapy holds much promise, though has been poorly explored in uterine cancer. This commentary gives an insight in existing DC immunotherapy studies in uterine cancer and summarizes the possibilities and the importance of the loading of tumor antigens onto DC and their subsequent maturation. However, the sole application of DC immunotherapy to target uterine cancer will be insufficient because of tumor-induced immunosuppression, which will hamper the establishment of an effective anti-tumor immune response. The authors give an overview on the limited existing immunosuppressive data and propose a novel approach on DC immunotherapy in uterine cancer.

  6. Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm.

    Science.gov (United States)

    Richardson, Sarah L; Swietach, Pawel

    2016-10-25

    During capillary transit, red blood cells (RBCs) must exchange large quantities of CO 2 and O 2 in typically less than one second, but the degree to which this is rate-limited by diffusion through cytoplasm is not known. Gas diffusivity is intuitively assumed to be fast and this would imply that the intracellular path-length, defined by RBC shape, is not a factor that could meaningfully compromise physiology. Here, we evaluated CO 2 diffusivity (D CO2 ) in RBCs and related our results to cell shape. D CO2 inside RBCs was determined by fluorescence imaging of [H + ] dynamics in cells under superfusion. This method is based on the principle that H + diffusion is facilitated by CO 2 /HCO 3 - buffer and thus provides a read-out of D CO2 . By imaging the spread of H + ions from a photochemically-activated source (6-nitroveratraldehyde), D CO2 in human RBCs was calculated to be only 5% of the rate in water. Measurements on RBCs containing different hemoglobin concentrations demonstrated a halving of D CO2 with every 75 g/L increase in mean corpuscular hemoglobin concentration (MCHC). Thus, to compensate for highly-restricted cytoplasmic diffusion, RBC thickness must be reduced as appropriate for its MCHC. This can explain the inverse relationship between MCHC and RBC thickness determined from >250 animal species.

  7. Dormancy activation mechanism of oral cavity cancer stem cells.

    Science.gov (United States)

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  8. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only...experience in ovary research (ovarian physiology , oogonial stem cells) to work on this project. We also ! 5! obtained approval of our animal

  9. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  10. The evolving cancer stem cell paradigm: implications in veterinary oncology.

    Science.gov (United States)

    Pang, Lisa Y; Argyle, David J

    2015-08-01

    The existence of subpopulations of cells in cancer with increased tumour-initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics formed the basis of the cancer stem cell model. Some tumours have since been viewed as aberrant tissues with a unidirectional hierarchical structure consisting of cancer stem cells at the apex, driving tumour growth, metastasis and relapse after therapy. Here, recent developments in cancer stem cell research are reviewed with a focus on tumour heterogeneity, cellular plasticity and cancer stem cell reprogramming. The impact of these findings on the cancer stem cell model is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fine-Tuned and Cell-Cycle-Restricted Expression of Fusogenic Protein Syncytin-2 Maintains Functional Placental Syncytia

    Directory of Open Access Journals (Sweden)

    Xiaoyin Lu

    2017-10-01

    Full Text Available Summary: Many types of multinucleated cells (syncytia generated by cell-cell fusion are post-mitotic, but it remains unclear how this state is maintained and why. Here, we utilized the fluorescent ubiquitination-based cell-cycle indicator (Fucci reporter system to show that human placental trophoblast cells were all in the G0 phase before they fuse. Expression of the fusogenic protein (fusogen Syncytin-2 was confined to G0 cells. Overexpression of Syncytin-2 in cycling cells overrode the cell-cycle restriction and enabled fusion of cells in the S/G2/M phases but resulted in the unstable syncytia retaining mitotic features. The Syncytin-2-induced syncytia were functionally compromised with respect to pathogen defense and hormone secretion. We found that, during trophoblast fusion, the cell-cycle inhibitor p21 interacted with the GCM1 transcription factor, and this complex bound to the promoter of Syncytin-2 and promoted its transcription. These findings demonstrate that G0-restricted Syncytin-2 expression is a prerequisite for development of functional post-mitotic syncytia. : Lu et al. demonstrate that G0-phase-restricted fusogenic protein Syncytin-2 is essential for maintenance of functional human placental syncytia. Overexpression of Syncytin-2 overrides cell-cycle restriction and results in functionally compromised syncytia carrying mitotic features. p21 coordinates with transcription factor GCM1 to regulate Syncytin-2 transcription to guarantee appropriate human trophoblast fusion. Keywords: cell fusion, fusogenic protein, syncytin, cell cycle, p21, placenta

  12. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics.

    Science.gov (United States)

    She, Jun-Jun; Zhang, Peng-Ge; Wang, Xuan; Che, Xiang-Ming; Wang, Zi-Ming

    2012-09-07

    To investigate whether the side population (SP) cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer. We analyzed the presence of SP cells in different human gastric carcinoma cell lines, and then isolated and identified the SP cells from the KATO III human gastric cancer cell line by flow cytometry. The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays. The related genes were determined by reverse transcription polymerase chain reaction. To compare tumorigenic ability, SP and non-side population (NSP) cells from the KATO III human gastric cancer cell line were subcutaneously injected into nude mice. SP cells from the total population accounted for 0.57% in KATO III, 1.04% in Hs-746T, and 0.02% in AGS (CRL-1739). SP cells could grow clonally and have self-renewal capability in conditioned media. The expression of ABCG2, MDRI, Bmi-1 and Oct-4 was different between SP and NSP cells. However, there was no apparent difference between SP and NSP cells when they were injected into nude mice. SP cells have some cancer stem cell-like characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  13. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells.

    Science.gov (United States)

    Debeb, Bisrat G; Zhang, Xiaomei; Krishnamurthy, Savitri; Gao, Hui; Cohen, Evan; Li, Li; Rodriguez, Angel A; Landis, Melissa D; Lucci, Anthony; Ueno, Naoto T; Robertson, Fredika; Xu, Wei; Lacerda, Lara; Buchholz, Thomas A; Cristofanilli, Massimo; Reuben, James M; Lewis, Michael T; Woodward, Wendy A

    2010-07-08

    Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced by serial xenograft passages through transplantation. Herein we fully characterize cancer stem cell-like features in 293T human embryonic kidney cells. 293T cells can be readily cultured and passaged as spheres in serum-free stem cell promoting culture conditions. Cells cultured in vitro as three-dimensional spheres (3D) were shown to contain higher ALDH1 and CD44+/CD24- population compared to monolayer cells. These cells were also resistant to radiation and upregulate stem cell survival signaling including beta-catenin, Notch1 and Survivin in response to radiation. Moreover, 3D spheres generated from the 293T cells have increased expression of mesenchymal genes including vimentin, n-cadherin, zeb1, snail and slug as well as pro-metastatic genes RhoC, Tenascin C and MTA1. In addition, microRNAs implicated in self-renewal and metastases were markedly reduced in 3D spheres. 293T cells exhibit a cancer stem cell-like phenotype when cultured as 3D spheres and represent an important research tool for studying the molecular and biological mechanisms of cancer stem cells and for testing and developing novel targets for cancer therapy.

  14. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    Science.gov (United States)

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  15. Stemness is Derived from Thyroid Cancer Cells

    Science.gov (United States)

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  16. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  17. Fetal adrenal demedullation lowers circulating norepinephrine and attenuates growth restriction but not reduction of endocrine cell mass in an ovine model of intrauterine growth restriction.

    Science.gov (United States)

    Davis, Melissa A; Macko, Antoni R; Steyn, Leah V; Anderson, Miranda J; Limesand, Sean W

    2015-01-09

    Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses.

  18. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  19. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  20. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts

    Directory of Open Access Journals (Sweden)

    Norashikin Zakaria

    2017-05-01

    Full Text Available Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC, which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.

  1. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  2. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Tsaur, Igor; Juengel, Eva; Borgmann, Hendrik; Nelson, Karen; Thomas, Christian; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2016-02-15

    Despite impressive survival benefits from new agents to treat metastasized prostate cancer (PCa), progressive drug resistance hinders long-term response and restricts the efficacy of subsequent therapy. Due to reported antitumor activity of amygdalin and growing popularity for complementary and alternative medicine the potential of this natural, widely used substance to exert antineoplastic effects on prostate cancer cells has been assessed. LNCaP (castration-sensitive), DU-145 and PC3 cells (castration-resistant) were exposed to different concentrations of amygdalin for 24h or 2weeks. Cell growth was measured by the MTT test, clonal formation by the clonogenic assay. Flow cytometry served to investigate apoptosis and cell cycle phases. Cell cycle regulating proteins and the mTOR-akt signaling axis were analyzed by western blotting. Amygdalin dose-dependently diminished tumor cell growth with maximum effects at 10mg/ml. Apoptosis of PC3 and LNCaP but not of DU-145 cells was reduced, whereas colony formation was suppressed in all cell lines. A decrease in the number of G2/M- and S-phase cells along with an elevated number of G0/G1-phase cells was recorded. The cell cycle proteins cdk 1, cdk 2 and cdk 4 as well as cyclin A, cyclin B and cyclin D3 were modulated by amygdalin after both 24h and 2weeks. Distinct effects on p19 and p27 expression and on Akt, Rictor and Raptor activation became evident only after 2weeks. Amygdalin exhibits significant antitumor activity in both castration-sensitive and castration-resistant PCa cell lines and merits further evaluation for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    Science.gov (United States)

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Innate immune cells in inflammation and cancer.

    Science.gov (United States)

    Nowarski, Roni; Gagliani, Nicola; Huber, Samuel; Flavell, Richard A

    2013-08-01

    The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development. ©2013 AACR.

  5. Cancer stem cells: a minor cancer subpopulation that redefines global cancer features

    Directory of Open Access Journals (Sweden)

    Heiko eEnderling

    2013-04-01

    Full Text Available In recent years cancer stem cells (CSCs have been hypothesized to comprise only a minor subpopulation in solid tumors that drives tumor initiation, development and metastasis; the so-called cancer stem cell hypothesis. While a seemingly trivial statement about numbers, much is put at stake. If true, the conclusions of many studies of cancer cell populations could be challenged, as the bulk assay methods upon which they depend have, by and large, taken for granted the notion that a ‘typical’ cell of the population possesses the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the CSC hypothesis, populations enriched for so-called ‘tumor-initiating’ cells have demonstrated a corresponding increase in tumorigenicity as measured by dilution assay, although estimates have varied widely as to what the fractional contribution of tumor-initiating cells is in any given population. Some have taken this variability to suggest the CSC fraction may be nearly 100% after all, countering the CSC hypothesis, and that there are simply assay-dependent error rates in our ability to ‘reconfirm’ CSC status at the cell level. To explore this controversy more quantitatively, we developed a simple theoretical model of cancer stem cell-driven tumor growth dynamics. Assuming CSC and non-stem cancer cell subpopulations coexist to some degree, we evaluated the impact of an environmentally-dependent cancer stem cell symmetric division probability and a non-stem cancer cell proliferation capacity on tumor progression and morphology. Our model predicts, as expected, that the frequency of CSC divisions that are symmetric highly influences the frequency of CSCs in the population, but goes on to predict the two frequencies can be widely divergent, and that spatial constraints will tend to increase the CSC fraction over time.

  6. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  7. Sphingosine 1-Phosphate and Cancer: Lessons from Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kid Törnquist

    2013-05-01

    Full Text Available Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P, have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK, i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.

  8. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse

    Directory of Open Access Journals (Sweden)

    Blanchet Fabien P

    2013-01-01

    Full Text Available Abstract Background Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24 potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. Results We now report that BST-2/tetherin expression in myeloid (myDC and monocyte-derived dendritic cells (DC can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α–matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs in both immature DC and IFN-α–matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. Conclusions In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.

  9. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  10. Interleukin-10-regulated tumour tolerance in non-small cell lung cancer.

    Science.gov (United States)

    Vahl, Julius Malte; Friedrich, Juliane; Mittler, Susanne; Trump, Sonja; Heim, Lisanne; Kachler, Katerina; Balabko, Liubov; Fuhrich, Nicole; Geppert, Carol-Immanuel; Trufa, Denis Iulian; Sopel, Nina; Rieker, Ralf; Sirbu, Horia; Finotto, Susetta

    2017-11-21

    Lung cancer is the most life-threatening cancer type worldwide. Treatment options include surgery, radio- and chemotherapy, as well as the use of immunomodulatory antibodies. Interleukin (IL)-10 is an immunosuppressive cytokine involved in tumour immune escape. Immunohistochemistry (IHC) on human lung surgery tissue as well as human tumour cell line cultures, FACS analysis, real-time PCR and experimental lung cancer. Here we discovered a positive correlation between IL-10 and IL-10 receptor (IL-10R) expression in the lung with tumour diameter in patients with lung cancer (non-small cell lung cancer), the most life-threatening cancer type worldwide. IL-10 and IL-10R were found induced in cells surrounding the lung tumour cells, and IL-10R was mainly expressed on the surface of Foxp-3 + T-regulatory lymphocytes infiltrating the tumour of these patients where its expression inversely correlated with programmed cell death 1. These findings were confirmed in translational studies. In a human lung adenocarcinoma cell line, IL-10R was found induced under metabolic restrictions present during tumour growth, whereby IL-10 inhibited PDL1 and tumour cell apoptosis. These new findings suggest that IL-10 counteracts IFN-γ effects on PD1/PDL1 pathway, resulting in possible resistance of the tumour to anti-PD1/PDL1 immunotherapy.

  11. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  12. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  13. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per

    2015-01-01

    and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4(+) T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response...... to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4(+) T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response showed a trend...

  14. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  15. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma

    DEFF Research Database (Denmark)

    Posey, Avery D; Schwab, Robert D; Boesteanu, Alina C

    2016-01-01

    Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens...... with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer......-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T...

  16. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-lei [Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Lu, Fan-zhen [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Shen, Xiao-Yong, E-mail: shengxiaoyong_sh@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Wu, Yun, E-mail: WuYun_hd@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Zhao, Li-ting [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China)

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  17. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  18. HLA-E-restricted cross-recognition of allogeneic endothelial cells by CMV-associated CD8 T cells: a potential risk factor following transplantation.

    Directory of Open Access Journals (Sweden)

    Mathilde Allard

    Full Text Available Although association between CMV infection and allograft rejection is well admitted, the precise mechanisms involved remain uncertain. Here, we report the characterization of an alloreactive HLA-E-restricted CD8 T cell population that was detected in the PBL of a kidney transplant patient after its CMV conversion. This monoclonal CD8 T cell population represents a sizable fraction in the blood (3% of PBL and is characterized by an effector-memory phenotype and the expression of multiple NK receptors. Interestingly, these unconventional T cells display HLA-E-dependent reactivity against peptides derived from the leader sequences of both various HCMV-UL40 and allogeneic classical HLA-I molecules. Consequently, while HLA-E-restricted CD8 T cells have potential to contribute to the control of CMV infection in vivo, they may also directly mediate graft rejection through recognition of peptides derived from allogeneic HLA-I molecules on graft cells. Therefore, as HLA-E expression in nonlymphoid organs is mainly restricted to endothelial cells, we investigated the reactivity of this HLA-E-restricted T cell population towards allogeneic endothelial cells. We clearly demonstrated that CMV-associated HLA-E-restricted T cells efficiently recognized and killed allogeneic endothelial cells in vitro. Moreover, our data indicate that this alloreactivity is tightly regulated by NK receptors, especially by inhibitory KIR2DL2 that strongly prevents TCR-induced activation through recognition of HLA-C molecules. Hence, a better evaluation of the role of CMV-associated HLA-E-restricted T cells in transplantation and of the impact of HLA-genotype, especially HLA-C, on their alloreactivity may determine whether they indeed represent a risk factor following organ transplantation.

  19. HLA-E-Restricted Cross-Recognition of Allogeneic Endothelial Cells by CMV-Associated CD8 T Cells: A Potential Risk Factor following Transplantation

    Science.gov (United States)

    Allard, Mathilde; Tonnerre, Pierre; Nedellec, Steven; Oger, Romain; Morice, Alexis; Guilloux, Yannick; Houssaint, Elisabeth; Charreau, Béatrice; Gervois, Nadine

    2012-01-01

    Although association between CMV infection and allograft rejection is well admitted, the precise mechanisms involved remain uncertain. Here, we report the characterization of an alloreactive HLA-E-restricted CD8 T cell population that was detected in the PBL of a kidney transplant patient after its CMV conversion. This monoclonal CD8 T cell population represents a sizable fraction in the blood (3% of PBL) and is characterized by an effector-memory phenotype and the expression of multiple NK receptors. Interestingly, these unconventional T cells display HLA-E-dependent reactivity against peptides derived from the leader sequences of both various HCMV-UL40 and allogeneic classical HLA-I molecules. Consequently, while HLA-E-restricted CD8 T cells have potential to contribute to the control of CMV infection in vivo, they may also directly mediate graft rejection through recognition of peptides derived from allogeneic HLA-I molecules on graft cells. Therefore, as HLA-E expression in nonlymphoid organs is mainly restricted to endothelial cells, we investigated the reactivity of this HLA-E-restricted T cell population towards allogeneic endothelial cells. We clearly demonstrated that CMV-associated HLA-E-restricted T cells efficiently recognized and killed allogeneic endothelial cells in vitro. Moreover, our data indicate that this alloreactivity is tightly regulated by NK receptors, especially by inhibitory KIR2DL2 that strongly prevents TCR-induced activation through recognition of HLA-C molecules. Hence, a better evaluation of the role of CMV-associated HLA-E-restricted T cells in transplantation and of the impact of HLA-genotype, especially HLA-C, on their alloreactivity may determine whether they indeed represent a risk factor following organ transplantation. PMID:23226431

  20. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    OpenAIRE

    Kanada, Masamitsu; Zhang, Jinyan; Libo YAN; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility re...

  1. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC).

    Science.gov (United States)

    Schmeel, Leonard Christopher; Schmeel, Frederic Carsten; Coch, Christoph; Schmidt-Wolf, Ingo G H

    2015-05-01

    Cytokine-induced killer (CIK) cells represent an exceptional T cell population uniting a T cell and natural killer cell like phenotype in their terminally differentiated CD3(+)CD56(+) subset, which features non-MHC-restricted tumor-killing activity. CIK cells are expandable from peripheral blood mononuclear cells and mature following the addition of certain cytokines. CIK cells have provided encouraging results in initial clinical studies and revealed synergistic antitumor effects when combined with standard therapeutic procedures. Therefore, we established the international registry on CIK cells in order to collect and evaluate data about clinical trials using CIK cells for the treatment of cancer patients. Moreover, our registry is expected to set new standards on the reporting of results from clinical trials using CIK cells. Clinical responses, overall survival (OS), adverse reactions and immunologic effects were analyzed in 45 studies present in our database. These studies investigated 22 different tumor entities altogether enrolling 2,729 patients. A mean response rate of 39 % and significantly increased OS, accompanied by an improved quality of life, were reported. Interestingly, side effects of CIK cell treatment were minor. Mild fevers, chills, headache and fatigue were, however, seen regularly after CIK cell infusion. Moreover, CIK cells revealed numerous immunologic effects such as changes in T cell subsets, tumor markers, cytokine secretion and HBV viral load. Due to their easy availability and potent antitumor activity, CIK cells emerged as a promising immunotherapy approach in oncology and may gain major importance on the prognosis of cancer.

  2. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... is feasible and safe in Guinea-Bissau and that it is possible to redirect T cell immunity with CAF01-adjuvanted HIV-1 peptide vaccine during untreated HIV-1 infection in some patients. However, relatively few preexisting and vaccine-induced HIV-1 T cell responses to CD8 T cell epitopes were detected against...

  3. Quantified analysis of histological components and architectural patterns of gleason grades in apparent diffusion coefficient restricted areas upon diffusion weighted MRI for peripheral or transition zone cancer locations.

    Science.gov (United States)

    Helfrich, Olivier; Puech, Philippe; Betrouni, Nacim; Pinçon, Claire; Ouzzane, Adil; Rizk, Jérome; Marcq, Gauthier; Randazzo, Marco; Durand, Matthieu; Lakroum, Said; Leroy, Xavier; Villers, Arnauld

    2017-12-01

    To quantify and compare the histological components and architectural patterns of Gleason grades in cancerous areas with restriction on apparent diffusion coefficient (ADC) maps. Twelve consecutive cases with 14 separate ADC restriction areas, positive for cancer in the peripheral zone (PZ) and transition zone (TZ) were included. All had 3 Tesla MRI and radical prostatectomy. Ten regions of interest (ROIs) within and outside the 14 ADC restriction areas positive for cancer were selected. For each ROI, we performed quantitative analysis of (a) prostate benign and malignant histological component surface ratios, including stroma, glands, epithelium, lumen, cellular nuclei; (b) percent of Gleason grades and measures of ADC values. Means of histological components according to ADC restriction for cancerous area were compared with analyses of variance with repeated measures. Independent predictors of the probability of cancer were median epithelium/ROI ratio (P = 0.001) and nuclei/ROI ratio (P = 0.03). Independent predictors of the probability of ADC restriction were malignant glands/ROI and luminal space/ROI (P histological components for the comparison of true positive and false negative (P Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1786-1796. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    abrogated by small interfering RNA to PTEN, indicating PTEN-dependence. Using FACS analysis , we showed that GEN induced cell cycle arrest at G0-G1 phase...isolated from WT (PND 100) and Tg (PND75) mice. The percentage of mammary SCs was quantified by Fluorescence activated cell sorting analysis of...fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms underlying their presumed anti-tumor activities

  5. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  6. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and. L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquid-.

  7. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    1998-01-01

    Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  8. Cancer stem cells: the challenges ahead

    NARCIS (Netherlands)

    Medema, Jan Paul

    2013-01-01

    Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this

  9. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  10. DNA repair of cancer stem cells

    National Research Council Canada - National Science Library

    Mathews, Lesley A; Cabarcas, Stephanie M; Hurt, Elaine M

    2013-01-01

    ... leukemia by John E. Dick from the University of Toronto. The heterogeneity of human leukemia and the presence of stem cells in cancer was further translated into solid tumors by Al-Hajj et al. when they published a provocative paper in Proceedings of the National Academy of Sciences discussing the ability to distinguish tumorigenic (tumor-initi...

  11. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  12. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Host cell restriction factors that limit transcription and replication of human papillomavirus.

    Science.gov (United States)

    Porter, Samuel S; Stepp, Wesley H; Stamos, James D; McBride, Alison A

    2017-03-02

    The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle. Published by Elsevier B.V.

  14. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  15. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  16. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  17. Preformed purified peptide/major histocompatibility class I complexes are potent stimulators of class I-restricted T cell hybridomas

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Ortiz-Navarrete, V

    1994-01-01

    A panel of antigen-specific, major histocompatibility complex class I-restricted T cell hybridomas has been generated to examine the capacity of peptide/class I complexes to stimulate T cells at the molecular level. Peptide/class I complexes were generated in detergent solution, purified...... and quantitated. Latex particles were subsequently coated with known amounts of preformed complexes and used to stimulate the T cell hybridomas. Stimulation was specific, i.e. only the appropriate peptide/class I combination were stimulatory, and quite sensitive, i.e. as little as 300 complexes per bead could...... expression, suggesting that antigen-specific stimulation of class I-restricted T cell hybridomas, as assessed by IL-2 release, does not depend on CD8....

  18. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer.

    Science.gov (United States)

    Paret, Claudia; Simon, Petra; Vormbrock, Kirsten; Bender, Christian; Kölsch, Anne; Breitkreuz, Andrea; Yildiz, Özlem; Omokoko, Tana; Hubich-Rau, Stefanie; Hartmann, Christoph; Häcker, Sabine; Wagner, Meike; Roldan, Diana Barea; Selmi, Abderaouf; Türeci, Özlem; Sahin, Ugur

    2015-09-22

    Triple-negative breast cancer (TNBC) is a high medical need disease with limited treatment options. CD8+ T cell-mediated immunotherapy may represent an attractive approach to address TNBC. The objectives of this study were to assess the expression of CXorf61 in TNBCs and healthy tissues and to evaluate its capability to induce T cell responses. We show by transcriptional profiling of a broad comprehensive set of normal human tissue that CXorf61 expression is strictly restricted to testis. 53% of TNBC patients express this antigen in at least 30% of their tumor cells. In CXorf61-negative breast cancer cell lines CXorf61 expression is activated by treatment with the hypomethylating agent 5-aza-2'-deoxycytidine. By vaccination of HLA-A*02-transgenic mice with CXorf61 encoding RNA we obtained high frequencies of CXorf61-specific T cells. Cloning and characterization of T cell receptors (TCRs) from responding T cells resulted in the identification of the two HLA-A*0201-restricted T cell epitopes CXorf6166-74 and CXorf6179-87. Furthermore, by in vitro priming of human CD8+ T cells derived from a healthy donor recognizing CXorf6166-74 we were able to induce a strong antigen-specific immune response and clone a human TCR recognizing this epitope. In summary, our data confirms this antigen as promising target for T cell based therapies.

  19. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Science.gov (United States)

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  20. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  1. Levobuipivacaine-Induced Dissemination of A549 Lung Cancer Cells.

    Science.gov (United States)

    Chan, Shun-Ming; Lin, Bo-Feng; Wong, Chih-Shung; Chuang, Wen-Ting; Chou, Yu-Ting; Wu, Zhi-Fu

    2017-08-17

    While anaesthetics are frequently used on cancer patients during surgical procedures, their consequence on cancer progression remains to be elucidated. In this study, we sought to investigate the influence of local anesthetics on lung cancer cell dissemination in vitro and in vivo. A549 human non-small lung cancer cells were treated with various local anaesthetics including ropivacaine, lidocaine, levobupivacaine and bupivacaine. Cell barrier property was assessed using an electric cell-substrate impedance sensing (ECIS) system. The epithelial-to-mesenchymal transition (EMT) of treated cells was studied by immunofluorescence staining. In vitro and in vivo cancer cell dissemination were investigated.Gene expression microarray and quantitative real-time PCR (qrt-PCR) assays were used to identify the genes responsible for levobupivacaine-mediated cancer cell dissemination.The results illustrated that only levobupivacaine induced EMT in the treated cells and also caused the dissemination of cancer cells in vitro. In addition, after intravenous injection, levobupivacaine encouraged cancer cell dissemination in vivo. Gene expression microarray, qrt-PCR and immunoblotting revealed that after levobupivacaine treatment, the hypoxia-inducible factor (HIF)- 2α gene was upregulated in cancer cells. Our findings suggest that levobupivacaine may induce A549 lung cancer cell dissemination both in vitro and in vivo. More specifically, HIF-2α signaling possibly contributes to levobupivacaine-mediated A549 lung cancer cell dissemination.

  2. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hereditary kidney cancer (renal cell cancer) syndromes include von Hippel-Lindau disease, hereditary leiomyomatosis and renal cell cancer, Birt-Hogg-Dubé syndrome, and hereditary papillary renal carcinoma. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  3. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  4. The impact of database restriction on pharmacovigilance signal detection of selected cancer therapies.

    Science.gov (United States)

    Hauben, Manfred; Hung, Eric; Wood, Jennifer; Soitkar, Amit; Reshef, Daniel

    2017-05-01

    The aim of this study was to investigate whether database restriction can improve oncology drug pharmacovigilance signal detection performance. We used spontaneous adverse event (AE) reports in the United States (US) Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Positive control (PC) drug medical concept (DMC) pairs were selected from safety information not included in the product's first label but subsequently added as label changes. These medical concepts (MCs) were mapped to the Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (PTs) used in FAERS to code AEs. Negative controls (NC) were MCs with circumscribed PTs not included in the corresponding US package insert (USPI). We calculated shrinkage-adjusted observed-to-expected (O/E) reporting frequencies for the aforementioned drug-PT pairs. We also formulated an adjudication framework to calculate performance at the MC level. Performance metrics [sensitivity, specificity, positive and negative predictive value (PPV, NPV), signal/noise (S/N), F and Matthews correlation coefficient (MCC)] were calculated for each analysis and compared. The PC reference set consisted of 11 drugs, 487 PTs, 27 MCs, 37 drug-MC combinations and 638 drug-event combinations (DECs). The NC reference set consisted of 11 drugs, 9 PTs, 5 MCs, 40 drug-MC combinations and 67 DECs. Most drug-event pairs were not highlighted by either analysis. A small percentage of signals of disproportionate reporting were lost, more noise than signal, with no gains. Specificity and PPV improved whereas sensitivity, NPV, F and MCC decreased, but all changes were small relative to the decrease in sensitivity. The overall S/N improved. This oncology drug restricted analysis improved the S/N ratio, removing proportionately more noise than signal, but with significant credible signal loss. Without broader experience and a calculus of costs and utilities of correct versus incorrect classifications in

  5. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment

    Directory of Open Access Journals (Sweden)

    Rui V. Simões

    2015-08-01

    Full Text Available Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells, leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1 provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2 lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.

  6. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  7. Transduction of a novel HLA-DRB1*04:05-restricted, WT1-specific TCR gene into human CD4+ T cells confers killing activity against human leukemia cells.

    Science.gov (United States)

    Katsuhara, Akiko; Fujiki, Fumihiro; Aoyama, Nao; Tanii, Satoe; Morimoto, Soyoko; Oka, Yoshihiro; Tsuboi, Akihiro; Nakajima, Hiroko; Kondo, Kenta; Tatsumi, Naoya; Nakata, Jun; Nakae, Yoshiki; Takashima, Satoshi; Nishida, Sumiyuki; Hosen, Naoki; Sogo, Shinji; Oji, Yusuke; Sugiyama, Haruo

    2015-03-01

    Wilms' tumor gene 1 (WT1) product is a pan-tumor-associated antigen. We previously identified WT1 protein-derived promiscuous helper peptide, WT1332. Therefore, isolation and characterization of the WT1332-specific T-cell receptors (TCRs) are useful to develop broadly applicable TCR gene-based adoptive immunotherapy. A novel HLA-DRB1*04:05-restricted WT1332-specific TCR gene was cloned and transduced into human CD4+ T-cells by using a lentiviral vector. The WT1332-specific TCR-transduced CD4+ T-cells showed strong proliferation and Th1-cytokine production in an HLA-DRB1*04:05-restricted, WT1332-specific manner. Furthermore, the WT1332-specific TCR-transduced CD4+ T-cells could lyse HLA-DRB1*04:05-positive, WT1-expressing leukemia cells in vitro. The novel TCR gene cloned here should be a promising tool to develop adoptive immunotherapy of WT1332-specific TCR-transduced CD4+ T-cells for the treatment of WT1-expressing cancer, such as leukemia. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Are All Highly Malignant Cancer Cells Identical?

    Science.gov (United States)

    1979-01-01

    ADA3665 ARE AL HIGHL MAGNANTCANCER CELLS DENOIALU) PENNSYLVANIA HOSPITAL PHILADELPHIA DEPT OF MOLECULAR BIOLOGY G NIGET AL 199 N00014-ACA026 UNCLASFE...embryo cells or even the original fertilized ovum . If this speculation has validity, the carcinogenesis and differentiation have the same destinies but...F/G /5 N 1111 2Z111117 1 125iiI 1 1. 1111_L6. -11 O=M 1 MrCROCOP RErSOLUTICN TEST CHART N, APoP SN A’ ,- ARE ALL HIGHLY MALIGNANT CANCER CELLS

  9. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after, respec...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  10. Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS.

    Science.gov (United States)

    Haupaix, Nicolas; Abitua, Philip B; Sirour, Cathy; Yasuo, Hitoyoshi; Levine, Michael; Hudson, Clare

    2014-10-01

    Recent evidence suggests that ascidian pigment cells are related to neural crest-derived melanocytes of vertebrates. Using live-imaging, we determine a revised cell lineage of the pigment cells in Ciona intestinalis embryos. The neural precursors undergo successive rounds of anterior-posterior (A-P) oriented cell divisions, starting at the blastula 64-cell stage. A previously unrecognized fourth A-P oriented cell division in the pigment cell lineage leads to the generation of the post-mitotic pigment cell precursors. We provide evidence that MEK/ERK signals are required for pigment cell specification until approximately 30min after the final cell division has taken place. Following each of the four A-P oriented cell divisions, ERK1/2 is differentially activated in the posterior sister cells, into which the pigment cell lineage segregates. Eph/ephrin signals are critical during the third A-P oriented cell division to spatially restrict ERK1/2 activation to the posterior daughter cell. Targeted inhibition of Eph/ephrin signals results in, at neurula stages, anterior expansion of both ERK1/2 activation and a pigment cell lineage marker and subsequently, at larval stages, supernumerary pigment cells. We discuss the implications of these findings with respect to the evolution of the vertebrate neural crest. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells...

  12. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  13. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells.

    Directory of Open Access Journals (Sweden)

    Shuping Yin

    Full Text Available Women with triple negative breast cancer (TNBC have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA and European American (EA women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women. Our in vitro studies indicate that cancer stem-like cells (CSCs derived from AA TNBC cell lines have significantly higher self-renewal potential (mammosphere formation than CSCs derived from EA cell lines. TNBC tumors express high levels of Myc compared to luminal A or HER2 expressing breast cancers. We studied the effects of c-Myc overexpression on CSCs and chemotherapy in AA, and EA derived TNBC cell line(s. Overexpression of c-Myc in AA derived MDA-MB-468 (Myc/MDA-468 cells resulted in a significant increase in CSCs and with minimal changes in epithelial-to-mesenchymal transition (EMT compared to the control group. In contrast, overexpression of c-Myc in EA derived MDA-MB-231(Myc/MDA-231 cells led to increased epithelial-to-mesenchymal transition (EMT, with a minimal increase in CSCs compared to the control group. Myc/MDA-468 cells were resistant to standard chemotherapeutic treatments such as iniparib (PARP inhibitor plus cisplatin, / iniparib, cisplatin, paclitaxel and docetaxel. However, Myc/MDA-231 cells, which showed EMT changes responded to iniparib with cisplatin, but were resistant to other drugs, such as iniparib, cisplatin, paclitaxel and docetaxel. Collectively, our results indicate that intrinsic differences in the tumor biology may contribute to the breast cancer disparities.

  14. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A

  15. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  17. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation. Copyright © 2013 Wiley Periodicals

  18. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription.

    Science.gov (United States)

    Kaukonen, Riina; Mai, Anja; Georgiadou, Maria; Saari, Markku; De Franceschi, Nicola; Betz, Timo; Sihto, Harri; Ventelä, Sami; Elo, Laura; Jokitalo, Eija; Westermarck, Jukka; Kellokumpu-Lehtinen, Pirkko-Liisa; Joensuu, Heikki; Grenman, Reidar; Ivaska, Johanna

    2016-08-04

    Tissue homeostasis is dependent on the controlled localization of specific cell types and the correct composition of the extracellular stroma. While the role of the cancer stroma in tumour progression has been well characterized, the specific contribution of the matrix itself is unknown. Furthermore, the mechanisms enabling normal-not cancer-stroma to provide tumour-suppressive signals and act as an antitumorigenic barrier are poorly understood. Here we show that extracellular matrix (ECM) generated by normal fibroblasts (NFs) is softer than the CAF matrix, and its physical and structural features regulate cancer cell proliferation. We find that normal ECM triggers downregulation and nuclear exit of the histone demethylase JMJD1a resulting in the epigenetic growth restriction of carcinoma cells. Interestingly, JMJD1a positively regulates transcription of many target genes, including YAP/TAZ (WWTR1), and therefore gene expression in a stiffness-dependent manner. Thus, normal stromal restricts cancer cell proliferation through JMJD1a-dependent modulation of gene expression.

  19. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2016-09-01

    Full Text Available The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.

  20. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  1. Effects of Chronic Blood-Flow Restriction Exercise on Skeletal Muscle Size and Myogenic Satellite Cell Expression

    DEFF Research Database (Denmark)

    Aagaard, Per; Jacobsen, Mikkel; Jensen, Kasper Y.

    2016-01-01

    of continued sports activity, resulting in visible hypertrophy of his left leg. AIM: To study the effect of chronic blood-flow restricted (BFR) exercise conditions on skeletal muscle size and myogenic satellite cell (SC) expression in an arterio-venous shunt patient. METHODS: Muscle biopsies were obtained from......-regulation in myogenic satellite cell activity within all stages of the cell cycle, which was accompanied by substantial muscle hypertrophy. Specifically, muscle fiber cross-sectional area (40%) and myonuclei number (15%) were elevated in the affected leg, together with an elevated myonuclear domain (20%). This single......-case study confirms previous result from our Lab demonstrating that blood-flow restricted muscle exercise leads to a marked activation of myogenic SCs, upregulated myonuclei number and marked myofiber hypertrophy....

  2. Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts.

    Directory of Open Access Journals (Sweden)

    Patrick C Hermann

    Full Text Available In spite of intense research efforts, pancreatic ductal adenocarcinoma remains one of the most deadly malignancies in the world. We and others have previously identified a subpopulation of pancreatic cancer stem cells within the tumor as a critical therapeutic target and additionally shown that the tumor stroma represents not only a restrictive barrier for successful drug delivery, but also serves as a paracrine niche for cancer stem cells. Therefore, we embarked on a large-scale investigation on the effects of combining chemotherapy, hedgehog pathway inhibition, and mTOR inhibition in a preclinical mouse model of pancreatic cancer.Prospective and randomized testing in a set of almost 200 subcutaneous and orthotopic implanted whole-tissue primary human tumor xenografts.The combined targeting of highly chemoresistant cancer stem cells as well as their more differentiated progenies, together with abrogation of the tumor microenvironment by targeting the stroma and enhancing tissue penetration of the chemotherapeutic agent translated into significantly prolonged survival in preclinical models of human pancreatic cancer. Most pronounced therapeutic effects were observed in gemcitabine-resistant patient-derived tumors. Intriguingly, the proposed triple therapy approach could be further enhanced by using a PEGylated formulation of gemcitabine, which significantly increased its bioavailability and tissue penetration, resulting in a further improved overall outcome.This multimodal therapeutic strategy should be further explored in the clinical setting as its success may eventually improve the poor prognosis of patients with pancreatic ductal adenocarcinoma.

  3. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    DEFF Research Database (Denmark)

    Buggert, M.; Norström, M.; Lundegaard, Claus

    2011-01-01

    Background: CD4+ T cells orchestrate immune protection by ‘‘helping’’ other cells of our immune system to clear viral infections. It is well known that the preferential infection and depletion of CD4+ T cells contributes to hampered systemic T cell help following HIV infection. However......, the functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... epitopes improved the polyfunctionality compared with overlapping HIV Gag (p55) peptides. Conclusion: Using an unbiased approach where we have predicted peptides with same prerequisites, we demonstrate that HIV-specific CD4 + T cell immunodominance is heavily skewed, targeting particularly Gag and Nef....

  4. Multinucleated giant cell formation induced by IFN-gamma/IL-3 is associated with restriction of virulent Mycobacterium tuberculosis cell to cell invasion in human monocyte monolayers.

    Science.gov (United States)

    Byrd, T F

    1998-09-15

    One of the hallmarks of an effective immune response against Mycobacterium tuberculosis is the formation of granulomas containing multinucleated giant cells. IFN-gamma and interleukin-3 (IL-3) promote Langhans-type multinucleated giant cell formation and have been identified in T cell clones reacting to M. tuberculosis antigens. The ability of human monocytes treated with IFN-gamma and IL-3 to limit the spread of M. tuberculosis in an in vitro infection assay was examined. Monocytes were incubated with control medium, IFN-gamma, TNF-alpha, and calcitriol, a combination permissive to M. tuberculosis growth, or IFN-gamma and IL-3 and infected with a low inoculum of M. tuberculosis (Erdman). IFN-gamma/IL-3 treatment reduced M. tuberculosis CFU relative to both untreated and IFN-gamma/TNF-alpha/calcitriol-treated monocytes. Specifically, CFU were reduced by 79% at 14 days in the IFN-gamma/IL-3 treatment group relative to the IFN-gamma/TNF-alpha/calcitriol treatment group, an effect that was not due to toxic monocyte metabolites. M. tuberculosis growth restriction by IFN-gamma/IL-3-treated monocyte monolayers was associated with the development of Langhans-type multinucleated giant cells. At the light microscope level, dense growth of M. tuberculosis surrounded by a ring of nuclei localized to the center of individual cells. The intracellular location of M. tuberculosis was confirmed by electron microscopy. In contrast, monocyte monolayers treated with IFN-gamma/TNF-alpha/calcitriol consisted of a syncitium of cells containing monocyte aggregates. Nonlocalized linear arrays of M. tuberculosis were observed to be growing throughout such aggregates. These results suggest that physical sequestration of M. tuberculosis by Langhans-type multinucleated giant cells may limit cell to cell spread of this pathogen, thereby restricting growth. Copyright 1998 Academic Press.

  5. T-cell-directed cancer vaccines: the melanoma model.

    Science.gov (United States)

    Wang, E; Phan, G Q; Marincola, F M

    2001-03-01

    Significant advances in the understanding of the molecular basis for tumour/host interactions in humans have occurred in the last decade through studying patients with metastatic melanoma. This disease is characterised by its tendency to be modulated by immunologic factors. Furthermore, immunologic manipulation of the host with various systemic agents, in particular IL-2, frequently affects this natural phenomenon and can lead to complete rejection of cancer. By studying the cellular immunology occurring in patients undergoing immunotherapy, several tumour antigens (TA) and their epitopes recognised by human leukocyte antigen (HLA) class I-restricted cytotoxic T-lymphocytes (CTL) have been identified. Most of these TA are non-mutated molecules expressed by the majority of melanoma in vivo and most melanoma cell lines. In addition, unique minimal epitopic sequences play an immunodominant role in the context of specific HLA class I alleles. Since melanoma lesions from different patients often share expression of the same TA, and a minimal peptide sequence from a TA can cause immunologic changes in multiple patients, interest has grown in the development of TA-specific vaccines suitable for broad patient populations. Repeated in vitro stimulation of peripheral blood mononuclear cells (PBMC) with TA-derived epitopes can induce a high frequency of TA-reactive T-cells in melanoma patients. The same epitopes can also enhance TA-specific T-cell reactivity in vivo when administered subcutaneously in combination with Incomplete Freund's Adjuvant (IFA). Epitope-based vaccinations, however, have not shown strong clinical efficacy unless combined with IL-2 administration. Attempts to increase the efficacy of these vaccines have combined specialised antigen-presenting cells or the administration of whole TA through DNA- or RNA-based vaccines with the intention of increasing antigen presentation and processing. Save for scattered reports, however, the success of these approaches

  6. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  7. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  8. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  9. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Cui, Dan; Kuramitsu, Yasuhiro; Matsumoto, Takuya; Ikeda, Eiji; Okano, Hideyuki; Ueyama, Yoshiya

    2016-07-27

    The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor

  10. Transcription profiles of non-immortalized breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Holland James F

    2006-04-01

    Full Text Available Abstract Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs were used in addition to commercially-available normal breast epithelial cells (HMECs, established breast cancer cell lines (T-est and established normal breast cells (N-est. The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research.

  11. Natural killer cells enhance the immune surveillance of cancer

    African Journals Online (AJOL)

    Faisal Nouroz

    2015-09-11

    Sep 11, 2015 ... All the cells of the immune sys- tem cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells ..... Cancer stem cells (CSCs) retain the growth of tumor and resist chemotherapy [25]. ... radiation therapy and mushroom beta glucans showed only 1 nodule. The experiments ...

  12. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  13. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-07

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  14. Restricted TET2 Expression in Germinal Center Type B Cells Promotes Stringent Epstein-Barr Virus Latency.

    Science.gov (United States)

    Wille, Coral K; Li, Yangguang; Rui, Lixin; Johannsen, Eric C; Kenney, Shannon C

    2017-03-01

    Epstein-Barr virus (EBV) latently infects normal B cells and contributes to the development of certain human lymphomas. Newly infected B cells support a highly transforming form (type III) of viral latency; however, long-term EBV infection in immunocompetent hosts is limited to B cells with a more restricted form of latency (type I) in which most viral gene expression is silenced by promoter DNA methylation. How EBV converts latency type is unclear, although it is known that type I latency is associated with a germinal center (GC) B cell phenotype, and type III latency with an activated B cell (ABC) phenotype. In this study, we have examined whether expression of TET2, a cellular enzyme that initiates DNA demethylation by converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), regulates EBV latency type in B cells. We found that TET2 expression is inhibited in normal GC cells and GC type lymphomas. In contrast, TET2 is expressed in normal naive B cells and ABC type lymphomas. We also demonstrate that GC type cell lines have increased 5mC levels and reduced 5hmC levels in comparison to those of ABC type lines. Finally, we show that TET2 promotes the ability of the EBV transcription factor EBNA2 to convert EBV-infected cells from type I to type III latency. These findings demonstrate that TET2 expression is repressed in GC cells independent of EBV infection and suggest that TET2 promotes type III EBV latency in B cells with an ABC or naive phenotype by enhancing EBNA2 activation of methylated EBV promoters.IMPORTANCE EBV establishes several different types of viral latency in B cells. However, cellular factors that determine whether EBV enters the highly transforming type III latency, versus the more restricted type I latency, have not been well characterized. Here we show that TET2, a cellular enzyme that initiates DNA demethylation by converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), regulates EBV latency type in B cells by

  15. A stochastic model for cancer stem cell origin in metastatic colon cancer.

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W; Gollin, Susanne M; Gamblin, T Clark; Geller, David A; Lagasse, Eric

    2008-09-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here, we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally derived tumor cells expressed many consistent (clonal) along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability.

  16. Surgery for nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Loïc Lang-Lazdunski

    2013-09-01

    Full Text Available Surgery remains the best curative option in patients with early stage lung cancer (stage I and II. Developments in minimally invasive techniques now allow surgeons to perform lung resections on elderly patients, patients with poor pulmonary function or significant cardiopulmonary comorbidities. New techniques, such as stereotactic radiotherapy and ablative procedures, are being evaluated in early-stage lung cancer and may represent an alternative to surgery in patients unfit for lung resection. Perioperative mortality rates have dropped significantly at most institutions in the past two decades and complications are managed more efficiently. Progress in imaging and staging techniques have helped cut futile thoracotomy rates and offer patients the most adequate treatment options. Large randomised trials have helped clarify the role of neoadjuvant, induction and adjuvant chemotherapy, as well as radiotherapy. Surgery remains an essential step in the multimodality therapy of selected patients with advanced-stage lung cancer (stage III and IV. Interventional and endoscopic techniques have reduced the role of surgery in the diagnosis and staging of nonsmall cell lung cancer, but surgery remains an important tool in the palliation of advanced-stage lung cancer. Large national/international surgical databases have been developed and predictive risk-models for surgical mortality/morbidity published by learned surgical societies. Nonetheless, lung cancer overall survival rates remain deceptively low and it is hoped that early detection/screening, better understanding of tumour biology and development of biomarkers, and development of efficient targeted therapies will help improve the prognosis of lung cancer patients in the next decade.

  17. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  18. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  20. Dietary iodine restriction in preparation for radioactive iodine treatment or scanning in well-differentiated thyroid cancer: a systematic review.

    Science.gov (United States)

    Sawka, Anna M; Ibrahim-Zada, Irada; Galacgac, Philip; Tsang, Richard W; Brierley, James D; Ezzat, Shereen; Goldstein, David P

    2010-10-01

    Dietary iodine is often restricted before radioactive iodine (RAI) scanning or treatment of well-differentiated thyroid cancer. Our objective was to examine the impact of a low-iodine diet (LID) before RAI treatment or scanning on the following outcomes: (i) the efficacy of thyroid remnant ablation (or residual disease elimination), (ii) urinary iodine measurements, (iii) RAI kinetics, and (iv) long-term thyroid cancer outcomes. We performed a systematic review of the English literature. We searched four electronic databases and conducted a hand search. Two reviewers independently screened citations and reviewed full-text articles and reached consensus on included articles. Two reviewers independently abstracted data. We reviewed 76 abstracts or citations and 26 full-text articles. Eight studies were included in the review. The most commonly studied diets allowed ≤ 50 µg/day of iodine for 1-2 weeks. In one study, 6-month successful remnant ablation rates were higher in patients following an LID than in controls. However, in another study, there was no significant benefit of an LID. LIDs reduce urinary iodine measurements and appear to increase I-131 uptake or lesional radiation compared to regular diets. No studies have examined long-term recurrence or mortality rates. Given that LIDs reduce urinary iodine measurements, increase I-131 uptake, and possibly improve efficacy of I-131 treatment, we currently favor the use of a 1-2-week LID before I-131 therapy or scanning. However, more research is needed to clarify the role of this dietary intervention.

  1. Optical imaging of cancer and cell death

    OpenAIRE

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic and macroscopic level. Because we believe optical imaging in particular represents a technology that has unique potential to exploit further our knowledge in preclinical research. First, we imaged...

  2. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    14 4 1. Introduction Prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer- related deaths in American men...internalization by MSCs (red (DiI) - MPs, green ( cholera toxin) - cell membrane, blue (Hoechst) - cell nucleus). (d) To assess drug release from G114 MP-loaded

  3. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells.

    Science.gov (United States)

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-06-30

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.

  4. Novel regulators of prostate cancer stem cells and tumor aggressiveness

    NARCIS (Netherlands)

    Zoni, E.

    2016-01-01

    In the past decade it became increasingly clear that tumor heterogeneity represents one of the major problems for cancer treatment, also in prostate cancer. The identification of the molecular properties of highly aggressive cells (Cancer Stem Cells, CSCs) dispersed within the tumor represents a

  5. Differentiation of Prostate Cancer Cells by Using Flexible Fluorescent Polymers

    Science.gov (United States)

    Scott, Michael D.; Dutta, Rinku; Haldar, Manas K.; Guo, Bin; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Using water soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. By using a step-wise linear discriminant analysis we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and non-cancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. PMID:22148518

  6. Breast Cancer Stem Cells and Tumor Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Wendy W. Hwang-Verslues

    2008-10-01

    Full Text Available Studies of breast cancer stem cells are in their infancy and many fundamental questions have yet to be fully addressed. The molecular distinction between normal and cancerous breast stem cells is not clear. While there have been recent breakthroughs in mouse mammary stem cells and lineage determination in mammary glands, little has been determined in human cells. Microarray analyses have provided molecular categorization of breast cancer. However, the cellular origin of different types of breast cancer is largely unknown. In addition, the relationship between breast cancer stem cells and mammary progenitor cells has yet to be clarified. One of the key questions is how a normal mammary stem cell becomes a breast cancer stem cell. Importantly, the existence of different types of human breast cancers with distinct pathologic and molecular signatures suggests the possibility that different types of breast cancer stem cells may exist. Here, we aim to review the current evidence for the existence of different subtypes of breast cancer stem cells and provide further insight into how tumor suppressors might be involved in the initiation of breast cancer stem cells.

  7. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  8. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells

    DEFF Research Database (Denmark)

    Payne, Rebecca P; Kløverpris, Henrik; Sacha, Jonah B

    2010-01-01

    The association between HLA-B 2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B 2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8(+) T cells. In order to better define the mechanisms of the HLA-B 2705 immune...... control of HIV, we first characterized the CD8(+) T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B 2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B 2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response...... by the respective CD8(+) T-cell response. By comparing inhibitions of viral replication by CD8(+) T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B 2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early...

  9. IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation.

    Science.gov (United States)

    Seki, Noriyasu; Miyazaki, Mayumi; Suzuki, Wataru; Hayashi, Katsuhiko; Arima, Kazuhiko; Myburgh, Elmarie; Izuhara, Kenji; Brombacher, Frank; Kubo, Masato

    2004-05-15

    An initial activation signal via the TCR in a restricted cytokine environment is critical for the onset of Th cell development. Cytokines regulate the expression of key transcriptional factors, T-bet and GATA-3, which instruct the direction of Th1 and Th2 differentiation, through changes in chromatin conformation. In this study, we investigated the kinetics of IL-4-mediated signaling in a transgenic mouse, expressing human IL-4R on a mouse IL-4alphaR-deficient background. These experiments, allowing induction with human IL-4 at defined times, demonstrated that an IL-4 signal was required at the early stage of TCR-mediated T cell activation for lineage commitment to Th2, along with structural changes in chromatin, which take place in the conserved noncoding sequence-1 and -2 within the IL-4 locus. At later times, however, IL-4 failed to promote efficient Th2 differentiation and decondensation of chromatin, even though GATA-3 was clearly induced in the nuclei by IL-4 stimulation. Moreover, IL-4-mediated Th2 instruction was independent from cell division mediated by initial TCR stimulation. The role of IL-4 signaling may have a time restriction during Th2 differentiation. In late stages of initial T cell activation, the chromatin structure of the IL-4 locus retains condensation state. These results demonstrate that IL-4-induced GATA-3 expression is time-restriction switch for Th2 differentiation.

  10. Bat and pig IFN-induced transmembrane protein 3 restrict cell entry by influenza virus and lyssaviruses.

    Science.gov (United States)

    Benfield, Camilla T O; Smith, Sarah E; Wright, Edward; Wash, Rachael S; Ferrara, Francesca; Temperton, Nigel J; Kellam, Paul

    2015-05-01

    IFN-induced transmembrane protein 3 (IFITM3) is a restriction factor that blocks cytosolic entry of numerous viruses that utilize acidic endosomal entry pathways. In humans and mice, IFITM3 limits influenza-induced morbidity and mortality. Although many IFITM3-sensitive viruses are zoonotic, whether IFITMs function as antiviral restriction factors in mammalian species other than humans and mice is unknown. Here, IFITM3 orthologues in the microbat (Myotis myotis) and pig (Sus scrofa domesticus) were identified using rapid amplification of cDNA ends. Amino acid residues known to be important for IFITM3 function were conserved in the pig and microbat orthologues. Ectopically expressed pig and microbat IFITM3 co-localized with transferrin (early endosomes) and CD63 (late endosomes/multivesicular bodies). Pig and microbat IFITM3 restricted cell entry mediated by multiple influenza haemagglutinin subtypes and lyssavirus glycoproteins. Expression of pig or microbat IFITM3 in A549 cells reduced influenza virus yields and nucleoprotein expression. Conversely, small interfering RNA knockdown of IFITM3 in pig NPTr cells and primary microbat cells enhanced virus replication, demonstrating that these genes are functional in their species of origin at endogenous levels. In summary, we showed that IFITMs function as potent broad-spectrum antiviral effectors in two mammals - pigs and bats - identified as major reservoirs for emerging viruses. © 2015 The Authors.

  11. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  12. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  13. Breast cancer stem cells, cytokine networks, and the tumor microenvironment

    National Research Council Canada - National Science Library

    Korkaya, Hasan; Liu, Suling; Wicha, Max S

    2011-01-01

    .... These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment - including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune...

  14. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    Science.gov (United States)

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  15. Six-transmembrane epithelial antigen of the prostate as an immunotherapeutic target for renal cell and bladder cancer.

    Science.gov (United States)

    Azumi, Makoto; Kobayashi, Hiroya; Aoki, Naoko; Sato, Keisuke; Kimura, Shoji; Kakizaki, Hidehiro; Tateno, Masatoshi

    2010-05-01

    T-cell based immunotherapy for renal cell and bladder cancer is one of the most promising therapeutic approaches. STEAP is a novel cell surface protein that is over expressed in various cancers, including renal cell and bladder cancer. Recently we induced STEAP specific helper T lymphocytes that recognize the naturally processed STEAP peptide epitopes STEAP(102-116) and STEAP(192-206) arising from STEAP expressing tumor cells. Thus, STEAP may be a useful tumor associated antigen for designing T-cell based immunotherapy. We determined whether STEAP could induce anti-cellular immune responses to urological cancer. We selected 2 previously described STEAP derived epitope peptides, STEAP(102-116) and STEAP(192-206), and examined their ability to elicit helper T-lymphocyte responses by in vitro vaccination of CD4 T lymphocytes from healthy individuals and patients with cancer. STEAP peptides induced helper T-lymphocyte responses using lymphocytes from healthy individuals that directly recognized STEAP expressing, DR positive renal cell and bladder cancer cells, and autologous dendritic cells pulsed with STEAP expressing tumor cell lysates in a major histocompatibility complex class II restricted manner. These peptides also stimulated T-cell responses in patients with renal cell or bladder cancer. Each STEAP peptides behaved as a promiscuous T-cell epitope, in that they stimulated T cells in the context of multiple major histocompatibility complex class II alleles. Results show that STEAP helper T-lymphocyte epitopes could be used to optimize T-cell based immunotherapy against STEAP expressing renal cell and bladder cancer. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Characterization of T-cell responses against IκBα in cancer patients

    DEFF Research Database (Denmark)

    Munir, Shamaila; Frøsig, Thomas Mørch; Hansen, Morten

    2012-01-01

    -restricted antigenic peptides that are generated by proteasomal degradation in target cells. In the present study, we demonstrate the presence of naturally occurring IκBα -specific T cells in the peripheral blood of patients suffering from several unrelated tumor types, i.e., breast cancer, malignant melanoma......The nuclear factor κ light chain enhancer of activated B cells (NFκB) is constitutively active in most cancers, controlling multiple cellular processes including proliferation, invasion and resistance to therapy. NFκB is primarily regulated through the association with inhibitory proteins...... that are known as inhibitors of NFκB (IκBs). Increased NFκB activity in tumor cells has been correlated with decrease stability of IκB proteins, in particular IκBα. In responso to a large number of stimuli, IκB proteins are degraded by the proteasome. Cytotoxic T lymphocytes (CTLs) recognize HLA...

  17. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction.

    Science.gov (United States)

    Kravchik, Michael; Bernstein, Nirit

    2013-01-16

    Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. The results demonstrate a

  18. Class A scavenger receptor 1 (MSR1 restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells.

    Directory of Open Access Journals (Sweden)

    Hiromichi Dansako

    Full Text Available Persistent infections with hepatitis C virus (HCV may result in life-threatening liver disease, including cirrhosis and cancer, and impose an important burden on human health. Understanding how the virus is capable of achieving persistence in the majority of those infected is thus an important goal. Although HCV has evolved multiple mechanisms to disrupt and block cellular signaling pathways involved in the induction of interferon (IFN responses, IFN-stimulated gene (ISG expression is typically prominent in the HCV-infected liver. Here, we show that Toll-like receptor 3 (TLR3 expressed within uninfected hepatocytes is capable of sensing infection in adjacent cells, initiating a local antiviral response that partially restricts HCV replication. We demonstrate that this is dependent upon the expression of class A scavenger receptor type 1 (MSR1. MSR1 binds extracellular dsRNA, mediating its endocytosis and transport toward the endosome where it is engaged by TLR3, thereby triggering IFN responses in both infected and uninfected cells. RNAi-mediated knockdown of MSR1 expression blocks TLR3 sensing of HCV in infected hepatocyte cultures, leading to increased cellular permissiveness to virus infection. Exogenous expression of Myc-MSR1 restores TLR3 signaling in MSR1-depleted cells with subsequent induction of an antiviral state. A series of conserved basic residues within the carboxy-terminus of the collagen superfamily domain of MSR1 are required for binding and transport of dsRNA, and likely facilitate acidification-dependent release of dsRNA at the site of TLR3 expression in the endosome. Our findings reveal MSR1 to be a critical component of a TLR3-mediated pattern recognition receptor response that exerts an antiviral state in both infected and uninfected hepatocytes, thereby limiting the impact of HCV proteins that disrupt IFN signaling in infected cells and restricting the spread of HCV within the liver.

  19. Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  20. Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  1. Stages of Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  2. NCI Designated Cancer Centers

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  3. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  4. Esophageal Cancer Prevention

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  5. Stages of Vulvar Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  6. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Teodoro Anderson

    2012-08-01

    Full Text Available Abstract Background Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound’s action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. Methods Human cell lines were treated with lycopene (1–5 μM for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL and by DAPI. Results Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7 after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145 when cells were treated with lycopene. Conclusions Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.

  7. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  8. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties.

    Science.gov (United States)

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-02-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

  9. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P.

    Science.gov (United States)

    Huang, Bin; Huang, Yi Jun; Yao, Zhi Jun; Chen, Xu; Guo, Sheng Jie; Mao, Xiao Peng; Wang, Dao Hu; Chen, Jun Xing; Qiu, Shao Peng

    2013-01-01

    Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells as compared with other four cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  10. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  11. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling.

    Science.gov (United States)

    Jacquemet, Guillaume; Baghirov, Habib; Georgiadou, Maria; Sihto, Harri; Peuhu, Emilia; Cettour-Janet, Pierre; He, Tao; Perälä, Merja; Kronqvist, Pauliina; Joensuu, Heikki; Ivaska, Johanna

    2016-12-02

    Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in cancer cells suggesting a previously unappreciated role for these channels during tumorigenesis. We further demonstrate that, at filopodia, L-type calcium channels are activated by integrin inside-out signalling, integrin activation and Src. Moreover, L-type calcium channels promote filopodia stability and maturation into talin-rich adhesions through the spatially restricted regulation of calcium entry and subsequent activation of the protease calpain-1. Altogether we uncover a novel and clinically relevant signalling pathway that regulates filopodia formation in cancer cells and propose that cycles of filopodia stabilization, followed by maturation into focal adhesions, directs cancer cell migration and invasion.

  12. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  13. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  14. Renal cell cancer among African Americans: an epidemiologic review

    National Research Council Canada - National Science Library

    Lipworth, Loren; Tarone, Robert E; McLaughlin, Joseph K

    2011-01-01

    Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease...

  15. Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M.; Muller, William J.

    2009-01-01

    Summary Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis. PMID:19118213

  16. Integrins in mammary-stem-cell biology and breast-cancer progression--a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M; Muller, William J

    2009-01-15

    Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis.

  17. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yanagihara Kazuyoshi

    2009-06-01

    Full Text Available Abstract Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS, which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20 of gastric cancer cell lines (8–18-fold amplification and 4.7% (4/86 of primary gastric tumors (8–50-fold amplification. KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild

  18. Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device

    Science.gov (United States)

    Hondroulis, Evangelia; Zhang, Rui; Zhang, Chengxiao; Chen, Chunying; Ino, Kosuke; Matsue, Tomokazu; Li, Chen-Zhong

    2014-01-01

    Electrical properties of cells determine most of the cellular functions, particularly ones which occur in the cell's membrane. Manipulation of these electrical properties may provide a powerful electrotherapy option for the treatment of cancer as cancerous cells have been shown to be more electronegative than normal proliferating cells. Previously, we used an electrical impedance sensing system (EIS) to explore the responses of cancerous SKOV3 cells and normal HUVEC cells to low intensity (electrotherapy for clinical and drug delivery applications. PMID:25057316

  19. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  20. Circulating Myeloid Dendritic Cells of Advanced Cancer Patients Result in Reduced Activation and a Biased Cytokine Profile in Invariant NKT Cells1

    Science.gov (United States)

    van der Vliet, Hans J. J.; Wang, Ruojie; Yue, Simon C.; Koon, Henry B.; Balk, Steven P.; Exley, Mark A.

    2010-01-01

    CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-β, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-β and IL-10 on human iNKT cells, because TGF-β suppressed iNKT cell activation and proliferation and IFN-γ production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses. PMID:18490728

  1. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib.

    Science.gov (United States)

    de Gooijer, Mark C; Zhang, Ping; Thota, Nishita; Mayayo-Peralta, Isabel; Buil, Levi C M; Beijnen, Jos H; van Tellingen, Olaf

    2015-10-01

    Palbociclib is a cyclin dependent kinase (CDK) 4/6 inhibitor with nanomolar potency and was recently approved for treatment of breast cancer. The drug may also be useful in glioblastoma (GBM) and diffuse intrinsic pontine gliomas (DIPG), which often have an activated CDK4/6-retinoblastoma signaling pathway. However, GBM and DIPG spread widely into the surrounding brain, which calls for a CDK4/6 inhibitor with sufficient blood-brain barrier penetration. We first performed in vitro transwell assays and demonstrate that palbociclib is a substrate of both P-gp and BCRP. Next, we conducted pharmacokinetic studies using wildtype, Abcg2(-/-), Abcb1a/b(-/-) and Abcg2; Abcb1a/b(-/-) mice. The plasma levels were about 3000 and 500 nM and similar in all genotypes at 1 and 4 h after i.v. administration of 10 mg/kg. At 4 h the brain-to-plasma ratios were 0.3 in WT and Abcg2(-/-) mice versus 5.5 and 15 in Abcb1a/b(-/-) and Abcg2; Abcb1a/b(-/-) mice, respectively. The oral bioavailability of palbociclib was high (63 %) in WT mice and increased only modestly and non-significantly in Abcg2; Abcb1a/b(-/-) mice. The plasma level after oral dosing of 150 mg/kg was already much higher than observed in patients (200-400 nM) and exceeded 2500 nM for up to 24 h. This latter dose is commonly used in preclinical studies, which calls into question their predictive value as they were conducted at dose levels causing a clinically non-relevant systemic drug exposure. Thus, the brain penetration of palbociclib is restricted by P-gp and BCRP, which may restrict the efficacy against GBM and DIPG. Moreover, preclinical studies with this agent should be conducted at a more clinically relevant dose level.

  2. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Rita Gross-Hardt

    2007-03-01

    Full Text Available In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus gametic cell fate are unknown. In a screen for regulators of egg cell fate, we isolated the lachesis (lis mutant which forms supernumerary egg cells. In lis mutants, accessory cells differentiate gametic cell fate, indicating that LIS is involved in a mechanism that prevents accessory cells from adopting gametic cell fate. The temporal and spatial pattern of LIS expression suggests that this mechanism is generated in gametic cells. LIS is homologous to the yeast splicing factor PRP4, indicating that components of the splice apparatus participate in cell fate decisions.

  3. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44......+ EOC stem cells in ovarian cancer tumors and progression-free survival. EOC stem cells exist as clusters located close to the stroma forming the cancer stem cell "niche". 17.1% of the samples reveled high number of CD44+ EOC stem cells (>20% positive cells). In addition, the number of CD44+ EOC stem...... cells was significantly higher in patients with early-stage ovarian cancer (FIGO I/II), and it was associated with shorter progression-free survival (P = 0.026). This study suggests that quantification of the number of EOC stem cells in the tumor can be used as a predictor of disease and could...

  4. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment....... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  5. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [Case of heterochronous triple urogenital cancer (renal cell carcinoma, bladder cancer, prostatic cancer)].

    Science.gov (United States)

    Okumura, Akiou; Tsuritani, Shinji; Takagawa, Kiyoshi; Fuse, Hideki

    2013-11-01

    We report a case of a 73-year-old male with heterochronous triple urogenital cancer. The patient was referred to our hospital because serum PSA was elevated (7.0 ng/ml) in 1998. Prostatic needle biopsy revealed prostatic cancer in the right lobe, and total prostatectomy was performed. The histopathological diagnosis was moderately differentiated adenocarcinoma (TlcNOMO). Non-muscle invasive bladder cancer (NMIBC) was detected during an examination for microhematuria in 2002. Transurethral resection of the bladder tumor (TURBT) procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). A right renal mass was detected incidentally on follow-up CT for bladder cancer in 2008. Renal enucleation was performed in 2009. The histopathological diagnosis was grade 2 clear cell renal cell carcinoma (pTlaNXMO). NMIBC was detected on follow-up urethrocystoscopy in 2011. The TURBT procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). On follow-up for urogenital cancer patients, it is important to investigate recurrence of the primary cancer and also heterochronous canceration of other urogenital organs.

  7. From gametogenesis and stem cells to cancer: common metabolic themes.

    Science.gov (United States)

    Pereira, Sandro L; Rodrigues, Ana Sofia; Sousa, Maria Inês; Correia, Marcelo; Perestrelo, Tânia; Ramalho-Santos, João

    2014-01-01

    Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  8. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  9. Oct-4 expression maintained stem cell properties in prostate cancer ...

    African Journals Online (AJOL)

    The purpose of the present study is to isolate cancerous stem-like cells from normal healthy volunteers and prostate cancer patients (CD133+) which also express MDR1 and to ascertain the influence of Oct-4 on 'stem-ness' and differentiation of these CD133+ cells towards epithelium. Methods: CD133+ cells were isolated ...

  10. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. ... Cytotoxicity of SEE on cancer (HepG2 and CT26) and normal (CHO and rat fibroblast) cell lines was evaluated by MTT assay. IC50 of SEE on ... African Journal of Biotechnology Vol.

  11. Targeting Apoptotic Activity Against Prostate Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2017-07-01

    Full Text Available Numerous data suggest that an increase of cancer stem cells (CSCs in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24− cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an activator of apoptosis in tumor cells. However, some tumors are TRAIL-resistant. Cancer cells can be re-sensitized to TRAIL induced apoptosis by a combination of TRAIL and taxanes. The aim of this work was to analyze the enhancement of the anticancer effect of TRAIL by paclitaxel, cabazitaxel and docetaxel in the whole population of PC3 and DU145 prostate cancer cells, but also in CD44+/CD24− prostate cancer stem cells. We examined the apoptotic effect of TRAIL and taxanes using flow cytometry and Annexin-V-PE staining. The co-treatment with taxanes and TRAIL enhanced significantly the apoptosis in CD44+/CD24− cells only in PC3 cell line but not in DU145 cells. We discovered also that taxanes can increase the expression of death receptor TRAIL-R2 in PC3 prostate cancer cells. The results of our study show that treatment with paclitaxel, cabazitaxel and docetaxel is able to enhance the apoptosis induced by TRAIL even in prostate cancer stem cells.

  12. Palbociclib (PD 0332991) : targeting the cell cycle machinery in breast cancer.

    Science.gov (United States)

    Rocca, Andrea; Farolfi, Alberto; Bravaccini, Sara; Schirone, Alessio; Amadori, Dino

    2014-02-01

    The cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6)-retinoblastoma (Rb) pathway, governing the cell cycle restriction point, is frequently altered in breast cancer and is a potentially relevant target for anticancer therapy. Palbociclib (PD 0332991) , a potent and selective inhibitor of CDK4 and CDK6, inhibits proliferation of several Rb-positive cancer cell lines and xenograft models. The basic features and abnormalities of the cell cycle in breast cancer are described, along with their involvement in estrogen signaling and endocrine resistance. The pharmacological features of palbociclib, its activity in preclinical models of breast cancer and the potential determinants of response are then illustrated, and its clinical development in breast cancer described. A literature search on the topic was conducted through PubMed and the proceedings of the main cancer congresses of recent years. The combination of palbociclib with endocrine agents is a very promising treatment and Phase III clinical trials are ongoing to confirm its efficacy. Further, potentially useful combinations are those with drugs targeting mitogenic signaling pathways, such as HER2- and PI3K-inhibitors. Combination with chemotherapy seems more problematic, as antagonism has been reported in preclinical models. The identification of predictive factors, already explored in preclinical studies, must be further refined and validated in clinical trials.

  13. Milk stimulates growth of prostate cancer cells in culture.

    Science.gov (United States)

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes.

  14. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  15. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  16. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro.

    Science.gov (United States)

    Platonov, Mikhail E; Borovjagin, Anton V; Kaverina, Natalya; Xiao, Ting; Kadagidze, Zaira; Lesniak, Maciej; Baryshnikova, Marya; Ulasov, Ilya V

    2018-03-28

    KISS1 tumor suppressor protein regulates cancer cell invasion via MMP9 metalloproteinase. Downregulation of KISS1 gene expression promotes progression of breast cancer and melanoma, resulting in the development of distant metastases. In the current study, we investigated whether restoration of KISS1 expression in KISS1-deficient human metastatic breast cancer cells holds potential as an advanced anticancer strategy. To this end we engineered an infectivity-enhanced conditionally-replicative human adenovirus type 5 encoding KISS1 as an "arming" transgene in the Ad5 E3 region for an ectopic KISS1 expression in transduced cancer cells. The oncolytic potential of the vector was examined using brain-invading metastatic clones of CN34 and MDA-MB-231 breast cancer cells, which supported high levels of AdKISS1 replication, correlating with a robust CRAd-mediated cytotoxicity. Secretion of cellular factors responsible for tumor angiogenesis, cell-to-cell communication and anti-tumoral immune responses upon KISS1 expression in breast cancer cells was analyzed by a RayBiotech Kiloplex Quantibody array. Overall, our results indicate that KISS1 transgene expression provides an important benefit for CRAd-mediated cytotoxicity in breast cancer cells and holds potential as an anticancer treatment in conjunction with oncolytic virotherapy of breast and other metastatic cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  18. Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction

    NARCIS (Netherlands)

    Klarenbeek, Paul L.; Doorenspleet, Marieke E.; Esveldt, Rebecca E. E.; van Schaik, Barbera D. C.; Lardy, Neubury; van Kampen, Antoine H. C.; Tak, Paul P.; Plenge, Robert M.; Baas, Frank; de Bakker, Paul I. W.; de Vries, Niek

    2015-01-01

    Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR) is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+

  19. Spheroid Cultures of Primary Urothelial Cancer Cells: Cancer Tissue-Originated Spheroid (CTOS) Method.

    Science.gov (United States)

    Yoshida, Takahiro; Okuyama, Hiroaki; Endo, Hiroko; Inoue, Masahiro

    2018-01-01

    Increasingly, it has been recognized that studying cancer samples from individual patients is important for the development of effective therapeutic strategies and in endeavors to overcome therapy resistance. Primary cultures of cancer cells acutely dissected from individual patients can provide a platform that enables the study and characterization of individual tumors. To that end, we have developed a method for preparing cancer cells in the form of multi-cellular spheroids. The cells can be derived from patient tumors (primary cells), from patient-derived xenografts, or from genetically- or chemically induced animal tumors. This method of culturing spheroids composed of cells derived from cancer tissues can be applied to various types of cancer, including urothelial cancer. The method is based on the principle of retaining cell-cell contact throughout cancer cell preparation and culturing. The first step is a partial digestion of the tumor specimen into small fragments; these fragments spontaneously form spheroidal shapes within several hours. The spheroid is referred to as a cancer tissue-originated spheroid (CTOS). The advantage of the CTOS method is that it allows one to prepare pure cancer cells at high yield. CTOSs can be stably cultured in serum-free conditions. The CTOS method can be applied to drug sensitivity assays, drug screening, and analyses of intracellular signaling. Moreover, the CTOS method provides a platform for studying the nature of cancer cell clusters.

  20. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    Science.gov (United States)

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  1. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  2. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

    Science.gov (United States)

    Lawson, Devon A.; Bhakta, Nirav R.; Kessenbrock, Kai; Prummel, Karin D.; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-01-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality1. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours2–5. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown2. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are

  3. Risk of spilling cancer cells during total laparoscopic hysterectomy in low-risk endometrial cancer

    Directory of Open Access Journals (Sweden)

    Satoshi Shinohara

    2017-08-01

    Conclusion: We conclude that fallopian tubal cauterization is sufficient to provide protection from the dissemination of cancer cells into the peritoneal cavity at the time of TLH for endometrial cancers in early stages.

  4. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B

    DEFF Research Database (Denmark)

    Skov, Søren; Pedersen, Marianne Terndrup; Andresen, Lars

    2005-01-01

    We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either...

  5. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  6. Differentiation of prostate cancer cells using flexible fluorescent polymers.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Guo, Bin; Friesner, Daniel L; Mallik, Sanku

    2012-01-03

    Using water-soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. Using a stepwise linear discriminant analysis, we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and noncancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. © 2011 American Chemical Society

  7. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Detection of low-abundance KRAS mutations in colorectal cancer using microfluidic capillary electrophoresis-based restriction fragment length polymorphism method with optimized assay conditions.

    Directory of Open Access Journals (Sweden)

    Huidan Zhang

    Full Text Available Constitutively active KRAS mutations have been found to be involved in various processes of cancer development, and render tumor cells resistant to EGFR-targeted therapies. Mutation detection methods with higher sensitivity will increase the possibility of choosing the correct individual therapy. Here, we established a highly sensitive and efficient microfluidic capillary electrophoresis-based restriction fragment length polymorphism (µCE-based RFLP platform for low-abundance KRAS genotyping with the combination of µCE and RFLP techniques. By using our self-built sensitive laser induced fluorescence (LIF detector and a new DNA intercalating dye YOYO-1, the separation conditions of µCE for ΦX174 HaeIII DNA marker were first optimized. Then, a Mav I digested 107-bp KRAS gene fragment was directly introduced into the microfluidic device and analyzed by µCE, in which field amplified sample stacking (FASS technique was employed to obtain the enrichment of the RFLP digestion products and extremely improved the sensitivity. The accurate analysis of KRAS statuses in HT29, LS174T, CCL187, SW480, Clone A, and CX-1 colorectal cancer (CRC cell lines by µCE-based RFLP were achieved in 5 min with picoliter-scale sample consumption, and as low as 0.01% of mutant KRAS could be identified from a large excess of wild-type genomic DNA (gDNA. In 98 paraffin-embedded CRC tissues, KRAS codon 12 mutations were discovered in 28 (28.6%, significantly higher than that obtained by direct sequencing (13, 13.3%. Clone sequencing confirmed these results and showed this system could detect at least 0.4% of the mutant KRAS in CRC tissue slides. Compared with direct sequencing, the new finding of the µCE-based RFLP platform was that KRAS mutations in codon 12 were correlated with the patient's age. In conclusion, we established a sensitive, fast, and cost-effective screening method for KRAS mutations, and successfully detected low-abundance KRAS mutations in clinical

  9. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  10. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro

    2017-02-01

    Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.

  11. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    , we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... dependent. The growth reduction was similar in isogenic colon cancer cells with and without p53, indicating that SSX2 is able to inhibit the growth of cancer cells, even in absence of functional p53. Our results show that SSX2 acts as an inhibitor of cancer cell proliferation, possibly through replicative...... stress, and therefore have important implications for the use of SSX2 as a target for cancer therapy....

  13. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations.

    Science.gov (United States)

    Lasselin, Julie; Rehman, Javaid-Ur; Åkerstedt, Torbjorn; Lekander, Mats; Axelsson, John

    2015-07-01

    While acute modifications of sleep duration induces a wide array of immune function alterations, less is known of how longer periods with insufficient sleep affect immune functions and how they return to normal once recovery sleep is obtained. The purpose of the present study was to investigate the effects of five days of restricted sleep and a subsequent 7-day period of sleep recovery on white blood cell (WBC) subpopulation count and diurnal rhythms. Nine healthy males participated in a sleep protocol consisting of two baseline days (8h of sleep/night), five nights with restricted sleep (4h of sleep/night) and seven days of recovery sleep (8h of sleep/night). During nine of these days, blood was drawn hourly during night-time end every third hour during daytime, and differential WBC count was analyzed. Gradual increase across the days of sleep restriction was observed for total WBC (psleep resulted in a gradual decrease in monocytes (psleep being associated with higher levels during the night and at awakening, resulting in a flattening of the rhythm. The diurnal alterations were reversed when recovery sleep was allowed, although the amplitude of total WBC, neutrophils and monocytes was increased at the end of the recovery period in comparison to baseline. Altogether, these data show that long-term sleep restriction leads to a gradual increase of circulating WBC subpopulations and alterations of the respective diurnal rhythms. Although some of the effects caused by five days of restricted sleep were restored within the first days of recovery, some parameters were not back to baseline even after a period of seven recovery days. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  15. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  16. Verrucous Squamous Cell Cancer in the Esophagus

    DEFF Research Database (Denmark)

    Egeland, C; Achiam, M P; Federspiel, B

    2016-01-01

    Verrucous carcinoma is a rare, slow-growing type of squamous cell cancer. Fewer than 50 patients with verrucous carcinoma in the esophagus have been described worldwide. In 2014, two male patients were diagnosed with verrucous carcinoma in the distal part of the esophagus. The endoscopic examinat...... with dysphagia, weight loss, and an endoscopically malignant tumor, but surgery was not performed until after 9 and 10 months, respectively, and then in order to get a diagnosis. At the last follow-up, both patients were without any recurrence of the disease....

  17. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary O. Rankin

    2013-03-01

    Full Text Available Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70 cell lines and a normal ovarian cell line (IOSE-364 were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 µM for baicalin and 25–40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein. Baicalin decreased expression of VEGF (20 µM, cMyc (80 µM, and NFkB (20 µM; baicalein decreased expression of VEGF (10 µM, HIF-1α (20 µM, cMyc (20 µM, and NFkB (40 µM. Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers.

  18. Identification of genes involved in breast cancer and breast cancer stem cells

    OpenAIRE

    Apostolou P; Toloudi M; Papasotiriou I

    2015-01-01

    Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs), which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed t...

  19. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate......+ cells proliferated and expressed interleukin-2 receptors following stimulation with mycobacterial antigens. Depletion studies after antigen stimulation showed that the cytotoxic effector cells were CD16+ CD56+ and CD4-; the CD4+ cells alone did not mediate non-MHC-restricted cytotoxicity. To evaluate...... activity was reduced. This reduction was abolished by interleukin-2 but not by gamma interferon. We conclude that several mycobacterial antigens are able to induce non-MHC-restricted cytotoxicity. This study indicates that non-MHC-restricted cytotoxicity following stimulation with mycobacterial antigens...

  20. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells.

    Science.gov (United States)

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-10-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription‑quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, as well as in PSCs. An enzyme‑linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)‑α and transforming growth factor‑β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co‑cultured adhesive potential of Panc‑1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc‑1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc‑1 cells. The expression of TNF‑α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc

  1. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2017-09-01

    chose to make new medulloblastoma models with oncogenic PIK3CA (PIK3CAH1047R). However, this change caused major delay in our progress since we have not...these tumors. 15. SUBJECT TERMS cancer stem cells, medulloblastoma, targeted therapy, therapy resistance , pediatric cancer, brain tumor, Notch1...Keywords……………………………………………………………. 4 3. Accomplishments………..………………………………………….. 4 4. Impact…………………………...…………………………………… 8 5. Changes /Problems

  2. Squamous Cell Lung Cancer: From Tumor Genomics to Cancer Therapeutics

    Science.gov (United States)

    Gandara, David R.; Hammerman, Peter S.; Sos, Martin L.; Lara, Primo N.; Hirsch, Fred R.

    2016-01-01

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the last several years, therapeutic progress in SCC has lagged behind the now more common NSCLC histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC. PMID:25979930

  3. Methods to recover the narrow Dicke sub-Doppler feature in evacuated wall-coated cells without restrictions on cell size

    Science.gov (United States)

    Robinson, H. G.

    1984-01-01

    The hyperfine resonance observed in evacuated wall-coated cells with dimensions lambda/2 (lambda is the hyperfine resonance wavelength) consists of a narrow Dicke sub-Doppler linewidth feature, the spike, superimposed on a broad pedestal. The hydrogen maser provides a classic example of this lineshape. As cell size is increased, an effect unique to evacuated wall-coated cells occurs. Certain combinations of microwave field distribution and cell size result in a lineshape having a pedestal with a small spike feature or only the broad pedestal with no spike. Such conditions are not appropriate for atomic frequency standard applications. The cause of the evacuated wall-coated cell lineshape is reviewed and methods to recover the narrow spike feature without restrictions on cell size is discussed. One example is a cell with dimensions having equal volumes of exposure to opposite phases of the microwave magnetic field.

  4. Tracking the Evolution of Non-Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Jamal-Hanjani, Mariam; Wilson, Gareth A.; McGranahan, Nicholas

    2017-01-01

    Background Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine...... as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .)....

  5. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  6. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  7. IL-17-producing innate lymphoid cells are restricted to mucosal tissues and are depleted in SIV-infected macaques

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Liu, David X.; Moroney-Rasmussen, Terri; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    SUMMARY Innate lymphoid cells (ILCs) are an emerging subset of lymphocytes involved in surveillance against virally infected cells. Here we show CD3−CD8high lymphocytes in macaque blood include major subsets of ILCs including NK cells expressing CD16, NKp46 and NKG2A, but also populations of ILCs in mucosal tissues having different properties. One ILC subset secreted IL-17 (ILC17), but these were restricted to mucosal tissues. Some mucosal ILC17 cells expressed classical NK-cell markers, but little NKG2A or NKG2D. Some ILC17 cells secreted IL-22 and TNF-α, but few produced IFN-γ or contained granzyme B. IL-17 production by ILCs was induced by IL-6, TGF-β and IL-23. Further, SIV infection resulted in a significant loss of ILC17 cells, especially in the jejunum, which persisted throughout SIV infection. These findings ILC17 cells may be involved in innate mucosal immune responses, and their loss may contribute to loss of intestinal mucosal integrity and disease progression in HIV/SIV infection. PMID:22669579

  8. Utilization of replication-competent XMRV reporter-viruses reveals severe viral restriction in primary human cells.

    Directory of Open Access Journals (Sweden)

    Christina Martina Stürzel

    Full Text Available The gammaretrovirus termed xenotropic murine leukemia virus-related virus (XMRV was described to be isolated from prostate cancer tissue biopsies and from blood of patients suffering from chronic fatigue syndrome. However, many studies failed to detect XMRV and to verify these disease associations. Data suggesting the contamination of specimens in particular by PCR-based methods and recent reports demonstrating XMRV generation via recombination of two murine leukemia virus precursors raised serious doubts about XMRV being a genuine human pathogen. To elucidate cell tropism of XMRV, we generated replication competent XMRV reporter viruses encoding a green fluorescent protein or a secretable luciferase as tools to analyze virus infection of human cell lines or primary human cells. Transfection of proviral DNAs into LNCaP prostate cancer cells resulted in readily detectably reporter gene expression and production of progeny virus. Inoculation of known XMRV susceptible target cells revealed that these virions were infectious and expressed the reporter gene, allowing for a fast and highly sensitive quantification of XMRV infection. Both reporter viruses were capable of establishing a spreading infection in LNCaP and Raji B cells and could be easily passaged. However, after inoculation of primary human blood cells such as CD4 T cells, macrophages or dendritic cells, infection rates were very low, and a spreading infection was never established. In line with these results we found that supernatants derived from these XMRV infected primary cell types did not contain infectious virus. Thus, although XMRV efficiently replicated in some human cell lines, all tested primary cells were largely refractory to XMRV infection and did not support viral spread. Our results provide further evidence that XMRV is not a human pathogen.

  9. [Expression of a new lung cancer drug resistance-related gene in lung cancer tissues and lung cancer cell strains].

    Science.gov (United States)

    Liu, Ling-Zhi; Qian, Gui-Sheng; Zhou, Xiang-Dong

    2003-02-01

    A new drug resistance-related gene fragment which was 494 bp long was found using suppression subtractive hybridization (SSH) and its full-length cDNA fragment was cloned by the authors. This study was designed to determine the expression of this lung cancer drug resistance-related gene (LCDRG) in lung cancer tissues, juxtacancerous tissues, and five lung cancer cell strains. The expression of LCDRG was determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method in 38 lung cancer tissues,12 juxtacancerous tissues, and 5 lung cancer cell strains. The expression of LCDRG in cancer tissues was significantly higher than that in juxtacancerous tissue (Pcancer cell strains, the expression levels of LCDRG in adenocarcinoma cell strains SPC-A-1 and A549, big cell lung cancer cell strain H460, small cell lung cancer cell strains H446 and SH77 were decreased gradually. LCDRG is closely related to lung cancer and may be involved in the pathogenesis of lung cancer.

  10. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A.; Dharmawardhane, Suranganie F.

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  11. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  12. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  13. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  14. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  15. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  16. Engineering chemically modified viruses for prostate cancer cell recognition.

    Science.gov (United States)

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  17. The complexity of the complicity of mast cells in cancer.

    Science.gov (United States)

    Nechushtan, Hovav

    2010-05-01

    Mast cells are evolutionarly ancient cells of the immune cells which can secrete a variety of effector molecules. Animal and pathologic studies suggest that mast cells may promote tumor growth in some cancer types but may act in an opposite manner in others. In several mouse models a critical role of mast cells for tumor promotion was demonstrated. In humans mast cells are dependent upon the tyrosine kinase receptor c-Kit. This receptor is inhibited by many of the new anti-cancer tyrosine kinase inhibitors including Pazopanib, Imatinib and Masitinib. These drugs probably ablate some tumor mast cells, in addition to their other known antitumor effects. Understanding the complex roles of mast cells in cancer should aid in understanding mechanisms of current tyrosine kinase inhibitors, and the development of innovative anti-cancer therapies. 2009 Elsevier Ltd. All rights reserved.

  18. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  19. Cancer metabolism: the volatile signature of glycolysis-in vitro model in lung cancer cells.

    Science.gov (United States)

    Feinberg, Tali; Herbig, Jens; Kohl, Ingrid; Las, Guy; Cancilla, John C; Torrecilla, Jose S; Ilouze, Maya; Haick, Hossam; Peled, Nir

    2017-01-09

    Discovering the volatile signature of cancer cells is an emerging approach in cancer research, as it may contribute to a fast and simple diagnosis of tumors in vivo and in vitro. One of the main contributors to such a volatile signature is hyperglycolysis, which characterizes the cancerous cell. The metabolic perturbation in cancer cells is known as the Warburg effect; glycolysis is preferred over oxidative phosphorylation (OXPHOS), even in the presence of oxygen. The precise mitochondrial alterations that underlie the increased dependence of cancer cells on aerobic glycolysis for energy generation have remained a mystery. We aimed to profile the volatile signature of the glycolysis activity in lung cancer cells. For that an in vitro model, using lung cancer cell line cultures (A549, H2030, H358, H322), was developed. The volatile signature was measured by proton transfer reaction mass spectrometry under normal conditions and glycolysis inhibition. Glycolysis inhibition and mitochondrial activity were also assessed by mitochondrial respiration capacity measurements. Cells were divided into two groups upon their glycolytic profile (PET positive and PET negative). Glycolysis blockade had a unique characteristic that was shared by all cells. Furthermore, each group had a characteristic volatile signature that enabled us to discriminate between those sub-groups of cells. In conclusion, lung cancer cells may have different subpopulations of cells upon low and high mitochondrial capacity. In both groups, glycolysis blockade induced a unique volatile signature.

  20. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  2. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Donatella D’Eliseo

    2016-01-01

    Full Text Available Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.

  3. Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

    Science.gov (United States)

    Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R

    2017-09-01

    Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.

  4. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  5. Evolution and phenotypic selection of cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2015-03-01

    Full Text Available Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC, as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes.

  6. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  7. Restricted intra-embryonic origin of bona fide hematopoietic stem cells in the chicken

    NARCIS (Netherlands)

    Yvernogeau, Laurent; Robin, Catherine

    2017-01-01

    Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence

  8. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells.

    Science.gov (United States)

    Kimura, Takayuki; Tse, Kevin; McArdle, Sara; Gerhardt, Teresa; Miller, Jacqueline; Mikulski, Zbigniew; Sidney, John; Sette, Alessandro; Wolf, Dennis; Ley, Klaus

    2017-04-01

    Although immunization with major histocompatibility complex (MHC) class II-restricted apolipoprotein B (ApoB) peptides has been shown to be atheroprotective, the mechanism is unclear. Here, we investigated CD4+ T cell populations in immunized atherosclerotic mice. Peptides (16-mers) from mouse ApoB, the core protein of low-density lipoprotein (LDL), were screened for binding to I-Ab by computer prediction and confirmed by radiolabeled peptide competition. Three new peptides, P101 (FGKQGFFPDSVNKALY, 5.5 nM IC50), P102 (TLYALSHAVNSYFDVD, 6.8 nM), and P103 (LYYKEDKTSLSASAAS, 95 nM), were tested in an atherosclerosis model (Apoe-/- mice on Western diet). Immunization with each of the three peptides (1 time in complete Freund's adjuvant subcuntaneously and 4 time in incomplete Freund's adjuvant intraperitoneally) but not with adjuvant alone showed significantly reduced atherosclerotic plaques in the aortic root by serial sections and in the whole aorta by en face staining. There were no differences in body weight, LDL cholesterol, or triglycerides. Peritoneal leukocytes from ApoB peptide-immunized mice, but not control mice, secreted significant amounts of IL-10 (150 pg/ml). Flow cytometry showed that peptide immunization induced IL-10 in 10% of peritoneal CD4+ T cells, some of which also expressed chemokine (C-C motif) receptor 5 (CCR5). Vaccination with ApoB peptides expanded peritoneal FoxP3+ regulatory CD4+ T cells and more than tripled the number of CCR5+FoxP3+ cells. Similar trends were also seen in the draining mediastinal lymph nodes but not in the nondraining inguinal lymph nodes. We conclude that vaccination with MHC class II-restricted autologous ApoB peptides induces regulatory T cells (Tregs) and IL-10, suggesting a plausible mechanism for atheroprotection.NEW & NOTEWORTHY Vaccination against apolipoprotein B (ApoB), the protein of LDL, attracts attention as a novel approach to prevent atherosclerosis. We discovered major histocompatibility complex class II-restricted

  9. Oncogene-directed alterations in cancer cell metabolism.

    Science.gov (United States)

    Nagarajan, Arvindhan; Malvi, Parmanand; Wajapeyee, Narendra

    2016-07-01

    Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.

  10. Restricted distribution of mrg-1 mRNA in C. elegans primordial germ cells through germ granule-independent regulation.

    Science.gov (United States)

    Miwa, Takashi; Takasaki, Teruaki; Inoue, Kunio; Sakamoto, Hiroshi

    2015-11-01

    The chromodomain protein MRG-1 is an essential maternal factor for proper germline development that protects germ cells from cell death in C. elegans. Unlike germ granules, which are exclusively segregated to the germline blastomeres at each cell division from the first cleavage of the embryo, MRG-1 is abundant in all cells in early embryos and is then gradually restricted to the primordial germ cells (PGCs) by the morphogenesis stage. Here, we show that this characteristic spatiotemporal expression pattern is dictated by the mrg-1 3'UTR and is differentially regulated at the RNA level between germline and somatic cells. Asymmetric segregation of germ granules is not necessary to localize MRG-1 to the PGCs. We found that MES-4, an essential chromatin regulator in germ cells, also accumulates in the PGCs in a germ granule-independent manner. We propose that C.elegans PGCs have a novel mechanism to accumulate at least some chromatin-associated proteins that are essential for germline immortality. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  11. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of