WorldWideScience

Sample records for cancer cells radioresistant

  1. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    Directory of Open Access Journals (Sweden)

    Arif Malik

    2016-01-01

    Full Text Available Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  2. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells

    OpenAIRE

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Um, Hong-Duck; Park, Jong Kuk; Song, Jie-Young; Park, In-Chul; KIM, JAE-SUNG; Lee, Su-Jae; Lee, Chang-Woo; Hwang, Sang-Gu

    2016-01-01

    ABSTRACT Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresi...

  3. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells.

    Science.gov (United States)

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Um, Hong-Duck; Park, Jong Kuk; Song, Jie-Young; Park, In-Chul; Kim, Jae-Sung; Lee, Su-Jae; Lee, Chang-Woo; Hwang, Sang-Gu

    2016-02-01

    Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresistance genes Hsp90 and Her-3. RR-H460 cells displayed characteristics of cancer stem-like cells (CSCs), including induction of the surface marker CD44 and stem cell markers Nanog, Oct4, and Sox2. RR-H460 cells also exhibited sphere formation and malignant behavior, further supporting a CSC phenotype. Using proteomic analyses, we identified 8 proteins that were up-regulated in RR-H460 CSC lines and therefore potentially involved in radioresistance and CSC-related biological processes. Notably, 4 of these-PAI-2, NOMO2, KLC4, and PLOD3-have not been previously linked to radioresistance. Depletion of these individual genes sensitized RR-H460 cells to radiotoxicity and additively enhancing radiation-induced apoptosis. Our findings suggest the possibility of integrating molecular targeted therapy with radiotherapy as a strategy for resolving the radioresistance of lung tumors. PMID:26901847

  4. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  5. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    International Nuclear Information System (INIS)

    131I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133+ cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133+ cells and higher radioresistance. After γ-irradiation of the cells, the CD133+ population was enriched due to the higher apoptotic rate of CD133- cells. In vivo 131I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133+ cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133+ cells. (orig.)

  6. Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin

    International Nuclear Information System (INIS)

    Osteopontin (OPN) serves as an indicator of resistance to radiotherapy. However, the role of OPN in the development of acquired radioresistance in human lung cancer cells has not yet been fully elucidated. Therefore, the potential importance of OPN as a marker of lung cancer with a potential significant role in the development of radioresistance against repeated radiotherapy has prompted us to define the pathways by which OPN regulates lung cancer cell growth. In addition, autophagy has been reported to play a key role in the radiosensitization of cancer cells. Here, we report that increased OPN expression through induction of nuclear p53 following irradiation was inhibited by exogenous beclin-1 (BECN1). Our results clearly show that BECN1 gene expression led to induction of autophagy and inhibition of cancer cell growth and angiogenesis. Our results suggest that the induction of autophagy abrogated the radioresistance of the cancer cells. Interestingly, we showed that knockdown of OPN by lentivirus-mediated shRNA induced the autophagy of human lung cancer cell. Taken together, these results suggest that OPN and BECN1 can be molecular targets for overcoming radioresistance by controlling autophagy. (author)

  7. Cancer Stem Cells and Radioresistance: Rho/ROCK Pathway Plea Attention

    Science.gov (United States)

    Pranatharthi, Annapurna; Ross, Cecil

    2016-01-01

    Radiation is the most potent mode of cancer therapy; however, resistance to radiation therapy results in tumor relapse and subsequent fatality. The cancer stem cell (CSC), which has better DNA repair capability, has been shown to contribute to tumor resistance and is an important target for treatment. Signaling molecules such as Notch, Wnt, and DNA repair pathways regulate molecular mechanisms in CSCs; however, none of them have been translated into therapeutic targets. The RhoGTPases and their effector ROCK-signaling pathway, though important for tumor progression, have not been well studied in the context of radioresistance. There are reports that implicate RhoA in radioresistance. ROCK2 has also been shown to interact with BRCA2 in the regulation of cell division. Incidentally, statins (drug for cardiovascular ailment) are functional inhibitors of RhoGTPases. Studies suggest that patients on statins have a better prognosis in cancers. Data from our lab suggest that ROCK signaling regulates radioresistance in cervical cancer cells. Collectively, these findings suggest that Rho/ROCK signaling may be important for radiation resistance. In this review, we enumerate the role of Rho/ROCK signaling in stemness and radioresistance and highlight the need to explore these molecules for a better understanding of radioresistance and development of therapeutics. PMID:27597870

  8. Identification of radioresistance-related molecules in laryngeal cancer cells using proteomic and EST data mining approach

    International Nuclear Information System (INIS)

    Laryngeal cancer is the largest subgroup of head and neck cancer which is the sixth most prevalent cancer in the world. Radiotherapy is known as a major treatment modality of laryngeal caner in conjunction with surgery and chemotherapy. Clinical radiotherapy is generally based on the treatment of fractionated radiation (commonly 2 Gy daily to total 60-70 Gy) to the cancer. This chronic treatment can trigger tumor-adaptive radioresistance contributing cancer recurrence following radiotherapy. Unfortunately, approximately 15 % of laryngeal cancers after radiotherapy acquire radioresistance. However, little is known about the molecular markers and mechanisms underlying tumor-adaptive radioresistance. In the present study, we established the radioresistant model system using HEp-2 cell line and identified radioresistance-related molecules by using the analysis of laryngeal cancer expressed sequence tag (EST) data bases and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)

  9. Identification of radioresistance-related molecules in laryngeal cancer cells using proteomic and EST data mining approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Hong, Eun Hee; Yoon, Hong Sik; Yang, Kyung Mi; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Laryngeal cancer is the largest subgroup of head and neck cancer which is the sixth most prevalent cancer in the world. Radiotherapy is known as a major treatment modality of laryngeal caner in conjunction with surgery and chemotherapy. Clinical radiotherapy is generally based on the treatment of fractionated radiation (commonly 2 Gy daily to total 60-70 Gy) to the cancer. This chronic treatment can trigger tumor-adaptive radioresistance contributing cancer recurrence following radiotherapy. Unfortunately, approximately 15 % of laryngeal cancers after radiotherapy acquire radioresistance. However, little is known about the molecular markers and mechanisms underlying tumor-adaptive radioresistance. In the present study, we established the radioresistant model system using HEp-2 cell line and identified radioresistance-related molecules by using the analysis of laryngeal cancer expressed sequence tag (EST) data bases and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)

  10. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL

    OpenAIRE

    Li Ji-Yu; Li Yu-Yang; Jin Wei; Yang Qing; Shao Zhi-Ming; Tian Xing-Song

    2012-01-01

    Abstract Background Acquired radioresistance of cancer cells remains a fundamental barrier to attaining the maximal efficacy of radiotherapy for the treatment of breast cancer. Anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, play an important role in the radioresistance of cancer cells. In the present study, we aimed to determine if ABT-737, a BH3-only mimic, could reverse the acquired radioresistance of the breast cancer cell line MDA-MB-231R by targeting Bcl-2 and Bcl-xL. Methods The rad...

  11. Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells

    Science.gov (United States)

    McDermott, N.; Meunier, A.; Mooney, B.; Nortey, G.; Hernandez, C.; Hurley, S.; Lynam-Lennon, N.; Barsoom, S. H.; Bowman, K. J.; Marples, B.; Jones, G. D. D.; Marignol, L.

    2016-01-01

    The risk of recurrence following radiation therapy remains high for a significant number of prostate cancer patients. The development of in vitro isogenic models of radioresistance through exposure to fractionated radiation is an increasingly used approach to investigate the mechanisms of radioresistance in cancer cells and help guide improvements in radiotherapy standards. We treated 22Rv1 prostate cancer cells with fractionated 2 Gy radiation to a cumulative total dose of 60 Gy. This process selected for 22Rv1-cells with increased clonogenic survival following subsequent radiation exposure but increased sensitivity to Docetaxel. This RR-22Rv1 cell line was enriched in S-phase cells, less susceptible to DNA damage, radiation-induced apoptosis and acquired enhanced migration potential, when compared to wild type and aged matched control 22Rv1 cells. The selection of radioresistant cancer cells during fractionated radiation therapy may have implications in the development and administration of future targeted therapy in conjunction with radiation therapy. PMID:27703211

  12. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells

    International Nuclear Information System (INIS)

    Background and purpose: Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. Materials and methods: We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. Results: We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFβ neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. Conclusion: These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFβ and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms

  13. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  14. Discovery of the cancer stem cell related determinants of radioresistance

    International Nuclear Information System (INIS)

    Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies

  15. CpG Oligodeoxynucleotide1826 combined with radioresistant cancer cell vaccine confers significant antitumor effects.

    Science.gov (United States)

    Zhuang, X B; Xing, N; Zhang, Q; Yuan, S J; Chen, W; Qiao, T K

    2015-01-01

    Immunotherapy is a hot issue in cancer research over the years and tumor cell vaccine is one of the increasing number of studies. Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. CpG Oligodeoxynucleotides (CpG ODNs), synthetic oligonucleotides containing a cytosine-phosphate-guanine(CpG) motif, was shown to enhance immune responses to a wide variety of antigens. In this study, we generated the radioresistant Lewis lung cancer cell by repeated X-ray radiation and inactivated it as a whole tumor cell vaccine to enhance the immunogenicity of tumor cell vaccine. Mice were subcutaneously immunized with this inactivated vaccine combined with CpG ODN1826 and then inoculated with autologous Lewis lung cancer (LLC) to estimate the antitumor efficacy. The results showed that the radioresistant tumor cell vaccine combined with CpG ODN1826 could significantly inhibit tumor growth, increased survival of the mice and with 20% of the mice surviving tumor free in vivo compared with the unimmunized mice bearing LLC tumor. A significant increase of apoptosis was also observed in the tumor prophylactically immunized with vaccine of inactivated radioresistant tumor cell plus CpG ODN1826. The potent antitumor effect correlated with higher secretion levels of tumor necrosis factor-alpha(TNF-α) and lower levels of interleukin-10(IL-10) concentration in serum. Furthermore, the results suggested that the antitumor mechanism was probably depended on the decreased level of programmed death ligand-1(PD-L1) which plays an important role in the negative regulation of immune response by the inhibition of tumor antigen-specific T cell activation. These findings clearly demonstrated that the radioresistant tumor cell vaccine combined with CpG ODN1826 as an appropriate adjuvant could induce effective antitumor immunity in vivo. PMID:26458317

  16. Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells

    OpenAIRE

    Lei Yang; Wenbo Wang; Liu Hu; Xiaoxi Yang; Juan Zhong; Zheng Li; Hui Yang; Han Lei; Haijun Yu; ZhengKai Liao; Fuxiang Zhou; Conghua Xie; Yunfeng Zhou

    2013-01-01

    BACKGROUND: Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS: In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telo...

  17. ERK/p38 MAPK inhibition reduces radio-resistance to a pulsed proton beam in breast cancer stem cells

    Science.gov (United States)

    Jung, Myung-Hwan; Park, Jeong Chan

    2015-10-01

    Recent studies have identified highly tumorigenic cells with stem cell-like characteristics, termed cancer stem cells (CSCs) in human cancers. CSCs are resistant to conventional radiotherapy and chemotherapy owing to their high DNA repair ability and oncogene overexpression. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. We isolated CSCs from the breast cancer cell lines MCF-7 and MDA-MB-231, which expressed the characteristic breast CSC membrane protein markers CD44+/CD24-/ low , and irradiated the CSCs with pulsed proton beams. We confirmed that CSCs were resistant to pulsed proton beams and showed that treatment with p38 and ERK inhibitors reduced CSC radio-resistance. Based on these results, BCSC radio-resistance can be reduced during proton beam therapy by co-treatment with ERK1/2 or p38 inhibitors, a novel approach to breast cancer therapy.

  18. Investigating the Radioresistant Properties of Lung Cancer Stem Cells in the Context of the Tumor Microenvironment.

    Science.gov (United States)

    Chan, Ryan; Sethi, Pallavi; Jyoti, Amar; McGarry, Ronald; Upreti, Meenakshi

    2016-02-01

    Lung cancer is the most common cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer. While recent research has shown that cancer stem cells (CSC) exhibit radioresistant and chemoresistant properties, current cancer therapy targets the bulk of the tumor burden without accounting for the CSC and the contribution of the tumor microenvironment. CSC interaction with the stroma enhances NSCLC survival, thus limiting the efficacy of treatment. The aim of this study was to elucidate the role of CSC and the microenvironment in conferring radio- or chemoresistance in an in vitro tumor model for NSCLC. The novel in vitro three-dimensional (3D) NSCLC model of color-coded tumor tissue analogs (TTA) that we have developed is comprised of human lung adenocarcinoma cells, fibroblasts, endothelial cells and NSCLC cancer stem cells maintained in low oxygen conditions (5% O2) to recapitulate the physiologic conditions in tumors. Using this model, we demonstrate that a single 5 Gy radiation dose does not inhibit growth of TTA containing CSC and results in elevated expression of cytokines (TGF-α, RANTES, ENA-78) and factors (vimentin, MMP and TIMP), indicative of an invasive and aggressive phenotype. However, combined treatment of single dose or fractionated doses with cisplatin was found to either attenuate or decrease the proliferative effect that radiation exposure alone had on TTA containing CSC maintained in hypoxic conditions. In summary, we utilized a 3D NSCLC model, which had characteristics of the tumor microenvironment and tumor cell heterogeneity, to elucidate the multifactorial nature of radioresistance in tumors. PMID:26836231

  19. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress

    Science.gov (United States)

    Du, Zhanwen; Gao, Jinnan; Yang, Shuming; Gorityala, Shashank; Xiong, Xiahui; Deng, Ou; Ma, Zhefu; Yan, Chunhong; Susana, Gonzalo; Xu, Yan; Zhang, Junran

    2016-01-01

    Radiotherapy (RT) remains a standard therapeutic modality for breast cancer patients. However, intrinsic or acquired resistance limits the efficacy of RT. Here, we demonstrate that CHK1 inhibitor AZD7762 alone significantly inhibited the growth of radioresistant breast cancer cells (RBCC). Given the critical role of ATR/CHK1 signaling in suppressing oncogene-induced replication stress (RS), we hypothesize that CHK1 inhibition leads to the specific killing for RBCC due to its abrogation in the suppression of RS induced by oncogenes. In agreement, the expression of oncogenes c-Myc/CDC25A/c-Src/H-ras/E2F1 and DNA damage response (DDR) proteins ATR/CHK1/BRCA1/CtIP were elevated in RBCC. AZD7762 exposure led to significantly higher levels of RS in RBCC, compared to the parental cells. The mechanisms by which CHK1 inhibition led to specific increase of RS in RBCC were related to the interruptions in the replication fork dynamics and the homologous recombination (HR). In summary, RBCC activate oncogenic pathways and thus depend upon mechanisms controlled by CHK1 signaling to maintain RS under control for survival. Our study provided the first example where upregulating RS by CHK1 inhibitor contributes to the specific killing of RBCC, and highlight the importance of the CHK1 as a potential target for treatment of radioresistant cancer cells. PMID:27167194

  20. Derris scandens Benth extract potentiates radioresistance of Hep-2 laryngeal cancer cells.

    Science.gov (United States)

    Hematulin, Arunee; Meethang, Sutiwan; Ingkaninan, Kornkanok; Sagan, Daniel

    2012-01-01

    The use of herbal products as radiosensitizers is a promising approach to increase the efficacy of radiotherapy. However, adverse effects related to the use of herbal medicine on radiotherapy are not well characterized. The present study concerns the impact of Derris scandens Benth extract on the radiosensitivity of Hep-2 laryngeal cancer cells. Pretreatment with D. scandens extract prior to gamma irradiation significantly increased clonogenic survival and decreased the proportion of radiation-induced abnormal nuclei of Hep-2 cells. Furthermore, the extract was found to enhance radiation-induced G2/M phase arrest, induce Akt activation, and increase motility of Hep-2 cells. The study thus indicated that D. scandens extract potentiates radioresistance of Hep-2 cells, further demonstrating the importance of cellular background for the adverse effect of D. scandens extract on radiation response in a laryngeal cancer cell line. PMID:22799321

  1. Fractionated irradiation induced radio-resistant esophageal cancer EC109 cells seem to be more sensitive to chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Wang Xingwu

    2009-05-01

    Full Text Available Abstract Background Chemo-radiotherapy, a combination of chemotherapy and radiotherapy, is the most frequent treatment for patients with esophageal cancer. In the process of radiotherapy, the radiosensitive cancer will become a radio-resistant one. Methods In order to detect the chemotherapeutic drug sensitivity in radio-resistant cancer cells and improve the therapy efficiency, we firstly established a radio-resistant esophageal cancer cell model (referred to as EC109/R from the human esophageal squamous cell carcinoma cell line EC109 through fractionated irradiation using X-rays. The radio-sensitivity of EC109/R cells was measured by clonogenic assay. To detect the drug sensitivity for EC109/R compared to its parent cells, we employed MTT method to screen the effectiveness of five different drugs commonly used in clinical therapy. The ratio of apoptosis was examined by flow cytometry. Results EC109/R cells were more sensitive to 5-fluorouracil, doxorubicin, paclitaxel and etoposide, but tolerant to cisplatin compared to its original cells. Conclusion Our study implies that fractionated irradiation induced radio-resistant esophageal cancer cell is more sensitive to certain kind of chemotherapeutic drugs. It provides evidence for choosing the sequence of radiotherapy and chemotherapy in esophageal cancer.

  2. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq.

    Directory of Open Access Journals (Sweden)

    Hee Jung Yang

    Full Text Available Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC. Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial-mesenchymal transition (EMT, migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells. Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2 could have possibility as a putative biomarker for radioresistance in NSCLC cells.

  3. Telomere-binding protein TPP1 modulates telomere homeostasis and confers radioresistance to human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Lei Yang

    Full Text Available BACKGROUND: Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS: In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation. CONCLUSIONS: We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer.

  4. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    Science.gov (United States)

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  5. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  6. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  7. Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro

    Institute of Scientific and Technical Information of China (English)

    XU Qing-yong; GAO Yuan; LIU Yan; YANG Wei-zhi; XU Xiang-ying

    2008-01-01

    Background Radiotherapy plays a critical role in the management of non-small cell lung cancer (NSCLC). This study was conducted to identify gene expression profiles of acquired radioresistant NSCLC cell line established by fractionated ionizing radiation (FIR) by cDNA microarray.Methods The human lung adenocarcinoma cell line Anip973 was treated with high energy X-ray to receive 60 Gy in 4 Gy fractions. The radiosensitivity of Anip973R and its parental line were measured by clonogenic assay. Gene expression profiles of Anip973R and its parental line were analyzed using cDNA microarray consisting of 21 522 human genes.Identified partly different expressive genes were validated by quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR).Results Fifty-nine upregulated and 43 downregulated genes were identified to radio-resistant Anip973R. Up-regulated genes were associated with DNA damage repair (DDB2), extracellular matrix (LOX), cell adhesion (CDH2), and apoptosis (CRYAB). Down-regulated genes were associated with angiogenesis (GBP-1), immune response (CD83), and calcium signaling pathway (TNNC1). Subsequent validation of selected eleven genes (CD24, DDB2, IGFBP3, LOX,CDH2, CRYAB, PROCR, ANXA1 DCN, GBP-1 and CD83) by Q-RT-PCR was consistent with microarray analysis.Conclusions Fractionated ionizing radiation can lead to the development of radiation resistance. Altered gene profiles of radioresistant cell line may provide new insights into mechanisms underlying clinical radioresistance for NSCLC.

  8. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    International Nuclear Information System (INIS)

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy−1, β-TC= 0.08 ±0.14Gy−2, α-CSC=0.04±0.07Gy−1, β-CSC =0.02±0.3Gy−2; for the SUM159PT, α-TC=0.08±0.25 Gy−1, β-TC=0.02±0.02Gy−2, α-CSC=0.04±0.18Gy−1, β-CSC =0.004±0.24Gy−2. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation suggested the feasibility of individualized

  9. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Qi, S; Pajonk, F; McCloskey, S; Low, D; Kupelian, P; Steinberg, M; Sheng, K [UCLA, Los Angeles, CA (United States)

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation

  10. Hypoxia-Responsive Mir-301a and Mir-301b Promote Radioresistance of Prostate Cancer Cells via Downregulating NDRG2.

    Science.gov (United States)

    Wang, Wei; Liu, Mingbo; Guan, Yawei; Wu, Qingwu

    2016-01-01

    BACKGROUND MiR-301a and miR-301b are 2 oncomiRs involved in multiple types of cancer. In this study, we explored the expression change of miR-301a and miR-301b in prostate cancer cells in hypoxia and studied their regulation of autophagy and radiosensitivity of prostate cancer cells. MATERIAL AND METHODS QRT-PCR was performed to quantify the expression change of miR-301a and miR-301b in hypoxia. Their effects on autophagy were measured by Western blot analysis, and their effects on radiosensitivity were measured by clonogenic assay and flow cytometry. In addition, the regulation of miR-301a and miR-301b on NDRG2, a tumor-suppressor gene in prostate cancer, was also studied. The effect of miR-301a/b-NDRG2 axis on autophagy and radiosensitivity of prostate cancer cells was further investigated. RESULTS MiR-301a and miR-301b are 2 hypoxia responsive miRNAs that are significantly upregulated in hypoxia in prostate cancer cells. Higher level of miR-301a and miR-301b expression results in elevated autophagy and increased radioresistance in LNCaP cells. MiR-301a and miR-301b simultaneously target NDRG2 and decrease its expression. Knockdown of NDRG2 leads to increased autophagy and radioresistance. CONCLUSIONS MiR-301a and miR-301b are 2 hypoxia-responsive miRNAs that decrease autophagy of prostate cancer cells in hypoxia by targeting NDRG2. Through downregulating NDRG2, miR-301a and miR-301b can promote radioresistance of prostate cancer cells. PMID:27327120

  11. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Zhou

    2010-02-01

    Full Text Available Abstract Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.

  12. CREB mediates ICAM-3: inducing radio-resistance, cell growth and migration/invasion of the human nonsmall cell lung cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; So, Kwang Sup; Bae, In Hwa; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The ICAM family proteins comprises cell surface molecules that are homologous to NCAM and are members of the single passed type 1 immunoglobulin superfamily (IgSF) that are anchored at the cellular membrane. The ICAM family consists of five subfamilies (ICAM-1 to ICAM-5) of heavily glycosylated cell surface receptors with common functional or structural homology. The extracellular domains of ICAM protein have roles in immune response and inflammation through various cell-cell interactions. The cytoplasmic tail residues of ICAM-3 participate in intracellular signaling such as calcium mobilization and tyrosine phosphorylation. Interestingly, the ICAM proteins appear to have a dual role in cancer. ICAM molecules may target and block tumor progression by stimulation of an immune response such as leukocyte activation. Conversely, other investigations have shown that ICAM molecules are involved in cancer malignancy because their increased expressions are associated with a poor diagnosis, lower survival rates and invasion in several cancers including melanoma, breast cancer and leukemia. We have also reported that an increase of ICAM-3 expression in several cancer cells and specimens of cervical cancer patient induce enhanced radio-resistance by the activation of focal adhesion kinase (FAK) and promote cancer cell proliferation by the activation of Akt and p44/42 MAPK. Therefore, these previous reports imply that ICAM-3 has various undefined roles in cancer. In this study, we investigated whether ICAM-3 increase cell migration and invasion through CREB activation and CREB has a role of increase of radioresistance and cell growth.

  13. miRNA-148b regulates radioresistance in non-small lung cancer cells via regulation of MutL homologue 1.

    Science.gov (United States)

    Zhai, Guangsheng; Li, Gaozhong; Xu, Bo; Jia, Tongfu; Sun, Yinping; Zheng, Jianbo; Li, Jianbin

    2016-07-01

    Radioresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. miR-148b has been reported to be implicated regulating radioresistance in lymphoma cells. However, this function has not been investigated in lung cancer cells. Microarray analysis was performed in A549 cells 48 h after exposure to 8 Gy of γ-irradiation or sham irradiation to identify differentially expressed miRNAs. miR-148b mimic and inhibitor were transfected, followed by clonogenic survival assay to examine response to irradiation in A549 cells. Western Blot and luciferase assay were performed to investigate the direct target of miR-148b Xenograft mouse models were used to examine in vivo function of miR-148b Our data showed that expression of miR-148b was significantly down-regulated in both serum and cancerous tissues of radioresistant lung cancer patients compared with radiosensitive patients. Overexpression of miR-148b reversed radioresistance in A549 cells. MutL homologue 1 (MLH1) is the direct target of miR-148b which is required for the regulatory role of miR-148b in radioresistance. miR-148b mimic sensitized A549 xenografts to irradiation in vivo Our study demonstrated that miR-148b regulates radioresistance of lung cancer cells by modulating MLH1 expression level. miR-148b may represent a new therapeutic target for the intervention of lung cancer. PMID:26759383

  14. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.

    Science.gov (United States)

    Chang, L; Graham, P H; Hao, J; Ni, J; Bucci, J; Cozzi, P J; Kearsley, J H; Li, Y

    2014-01-01

    The PI3K/Akt/mTOR pathway has a central role in cancer metastasis and radiotherapy. To develop effective therapeutics to improve radiosensitivity, understanding the possible pathways of radioresistance involved and the effects of a combination of the PI3K/Akt/mTOR inhibitors with radiotherapy on prostate cancer (CaP) radioresistant cells is needed. We found that compared with parent CaP cells, CaP-radioresistant cells demonstrated G0/G1 and S phase arrest, activation of cell cycle check point, autophagy and DNA repair pathway proteins, and inactivation of apoptotic proteins. We also demonstrated that compared with combination of single PI3K or mTOR inhibitors (BKM120 or Rapamycin) and radiation, low-dose of dual PI3K/mTOR inhibitors (BEZ235 or PI103) combined with radiation greatly improved treatment efficacy by repressing colony formation, inducing more apoptosis, leading to the arrest of the G2/M phase, increased double-strand break levels and less inactivation of cell cycle check point, autophagy and non-homologous end joining (NHEJ)/homologous recombination (HR) repair pathway proteins in CaP-radioresistant cells. This study describes the possible pathways associated with CaP radioresistance and demonstrates the putative mechanisms of the radiosensitization effect in CaP-resistant cells in the combination treatment. The findings from this study suggest that the combination of dual PI3K/Akt/mTOR inhibitors (BEZ235 or PI103) with radiotherapy is a promising modality for the treatment of CaP to overcome radioresistance. PMID:25275598

  15. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells.

    Science.gov (United States)

    Kim, Wanyeon; Youn, HyeSook; Kang, ChulHee; Youn, BuHyun

    2015-09-01

    Inflammation plays a pivotal role in modulating the radiation responsiveness of tumors. We determined that an inflammation response prior to irradiation contributes to radiotherapy resistance in non-small cell lung cancer (NSCLC) cells. In the clonogenic survival assay, activation of the inflammation response by lipopolysaccharide (LPS) decreased the degree of radiosensitivity in NCI-H460 cells (relatively radiosensitive cells), but had no effect in A549 cells (relatively radioresistant cells). LPS-induced radioresistance of NCI-H460 cells was also confirmed with a xenograft mouse model. The radioresistant effect observed in NCI-H460 cells was correlated with inhibition of apoptotic cell death due to reduced Caspase 3/7 activity. Moreover, we found that the levels of reactive oxygen species (ROS) were synergistically elevated in NCI-H460 cells by treatment with LPS and radiation. Increased ROS generation negatively affected the activity of protein phosphatase 1 (PP1). Decreased PP1 activity did not lead to Bad dephosphorylation, consequently resulting in the inhibition of irradiation-induced mitochondrial membrane potential loss and apoptosis. We confirmed that pre-treatment with a PP1 activator and LPS sensitized NCI-H460 cells to radiation. Taken together, our findings provided evidence that PP1 activity is critical for radiosensitization in NSCLC cells and PP1 activators can serve as promising radiosensitizers to improve therapeutic efficacy. PMID:26033480

  16. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  17. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer.

    Science.gov (United States)

    Kwon, TaeWoo; Youn, HyeSook; Son, Beomseok; Kim, Daehoon; Seong, Ki Moon; Park, Sungkyun; Kim, Wanyeon; Youn, BuHyun

    2016-02-01

    18F-labeled fluorodeoxyglucose (FDG) uptake during FDG positron emission tomography seems to reflect increased radioresistance. However, the exact molecular mechanism underlying high glucose (HG)-induced radioresistance is unclear. In the current study, we showed that ionizing radiation-induced activation of the MEK-ERK-DAPK-p53 signaling axis is required for anoikis (anchorage-dependent apoptosis) of non-small cell lung cancer (NSCLC) cells in normal glucose media. Phosphorylation of DAPK at Ser734 by ERK was essential for p53 transcriptional activity and radiosensitization. In HG media, overexpressed DANGER directly bound to the death domain of DAPK, thus inhibiting the catalytic activity of DAPK. In addition, inhibition of the DAPK-p53 signaling axis by DANGER promoted anoikis-resistance and epithelial-mesenchymal transition (EMT), resulting in radioresistance of HG-treated NSCLC cells. Notably, knockdown of DANGER enhanced anoikis, EMT inhibition, and radiosensitization in a mouse xenograft model of lung cancer. Taken together, our findings offered evidence that overexpression of DANGER and the subsequent inhibitory effect on DAPK kinase activity are critical responses that account for HG-induced radioresistance of NSCLC.

  18. Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to 60Co γ-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant NAC inhibited berberine and radiation-induced cell death. Bax, caspase-3, p53, p38, and JNK activation increased, but activation of Bcl-2, ERK, and HO-1 decreased with berberine treatment with or without irradiation. Berberine inhibited the anti-apoptotic signal pathway involving the activation of the HO-1/NF-κB-mediated survival pathway, which prevents radiation-induced cell death. Our data demonstrate that berberine inhibited the radioresistant effects and enhanced the radiosensitivity effects in human prostate cancer cells via the MAPK/caspase-3 and ROS pathways

  19. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Mohd Yasser

    Full Text Available Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR. The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001 in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.

  20. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  1. Neuropilin 1 expression correlates with the Radio-resistance of human non-small-cell lung cancer cells.

    Science.gov (United States)

    Dong, Juan Cong; Gao, Hui; Zuo, Si Yao; Zhang, Hai Qin; Zhao, Gang; Sun, Shi Long; Han, Hai Ling; Jin, Lin Lin; Shao, Li Hong; Wei, Wei; Jin, Shun Zi

    2015-09-01

    The purpose of this study was to determine the correlation between over-expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio-sensitivity of non-small cell lung carcinoma (NSCLC) cells. 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V-Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X-ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF-κB. Finally, to examine the effect of shNRP1 on proliferation and radio-sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1-A549) showed a significant reduction in colony-forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA-mediated NRP1 inhibition also significantly enhanced the radio-sensitivity of NSCLC cells both in vitro and in vivo. The over-expression of NRP1 was correlated with growth, survival and radio-resistance of NSCLC cells via the VEGF-PI3K- NF-κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio-sensitization of NSCLC. PMID:26147006

  2. Neuropilin 1 expression correlates with the Radio-resistance of human non-small-cell lung cancer cells.

    Science.gov (United States)

    Dong, Juan Cong; Gao, Hui; Zuo, Si Yao; Zhang, Hai Qin; Zhao, Gang; Sun, Shi Long; Han, Hai Ling; Jin, Lin Lin; Shao, Li Hong; Wei, Wei; Jin, Shun Zi

    2015-09-01

    The purpose of this study was to determine the correlation between over-expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio-sensitivity of non-small cell lung carcinoma (NSCLC) cells. 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V-Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X-ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF-κB. Finally, to examine the effect of shNRP1 on proliferation and radio-sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1-A549) showed a significant reduction in colony-forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA-mediated NRP1 inhibition also significantly enhanced the radio-sensitivity of NSCLC cells both in vitro and in vivo. The over-expression of NRP1 was correlated with growth, survival and radio-resistance of NSCLC cells via the VEGF-PI3K- NF-κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio-sensitization of NSCLC.

  3. Prognostic significance of survivin expression in renal cell cancer and its correlation with radioresistance.

    Science.gov (United States)

    Lei, Yu; Geng, Zhang; Guo-Jun, Wu; He, Wang; Jian-Lin, Yuan

    2010-11-01

    Survivin, an important inhibitor of apoptosis, has been found to play an important role in the initiation, progression, and chemoradioresistance of human malignancies. Previously, we have reported that upregulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. The aim of this study was to assess prognostic significance of survivin protein expression in RCC and analyze its correlation with radiosensitivity of RCC cells. RT-PCR and Western blot assays were performed to detect survivin mRNA and protein expression in normal human kidney epithelial cell line (HKEC) or RCC cell lines. The expression of survivin mRNA in RCC and corresponding nontumor kidney tissues was also detected by RT-PCR. Immunohistochemistry was performed to determine survivin protein expression in 75 cases of RCC tissue samples. Moreover, the association of survivin protein expression with clinicopathogical factors and prognosis of RCC patients was statistically analyzed. Small interfering RNA was used to knockdown the endogenous survivin expression in RCC cell line (ACHN) and evaluate the effects of survivin knockdown on proliferation, apoptosis, and radiosensitivity of RCC cell line. RCC cells showed sufficient expression of survivin mRNA and protein, but the expression of survivin gene was not detected in normal HKEC. Moreover, the expression level of survivin mRNA in RCC tissues was significantly higher than that in corresponding nontumor kidney tissues. The immunostaining of survivin protein was mainly located in cytoplasm of RCC tumor cells. Tumor pathological stage (P = 0.028), grade (P = 0.004), and lymph node metastasis (P = 0.017) of RCC patients were significantly correlated with survivin protein expression. In addition, patients with high survivin levels had a significantly shorter overall survival than those with low levels (P < 0.001), and the expression of survivin protein was an independent prognostic factor for RCC patients (P = 0

  4. 肺癌A549放射抗拒细胞亚系的建立及抗拒机制的研究%Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    Institute of Scientific and Technical Information of China (English)

    赵伟; 王琼; 刘莉; 石星; 丁乾; 伍钢

    2008-01-01

    Objective To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays:A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones,together with its parental A549 cells were measured by clone formation assay and flow cytometry.The mRNA and protein levels of Notch1 in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D0, Dq and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF2. The A549-S1 subline also showed higher percentage of cells in S phase and G2/M phase, but lower percentages in G0/G1 phase (P<0.05). The expression of Notch1 in A549-S1 was enhanced obviously than in A549 cells. But for A549-S2 the radioseasitivity was slightly increased compared with the parental cells with D0, Dq and N values decreased and a curve initial shoulder. The ratio of cells in S and G0/G1 phase ratio was lower than that in parental A549 cells, but that in G2/M phase ratio was higher significantly (P<0.05) .The expression of Notch1 had no marked change compared to A549 cell. Conclusions The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlation with the expression of Notch1.%目的 建立肺癌细胞系A549的放射抗拒模型并探

  5. TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR

    Directory of Open Access Journals (Sweden)

    Sae-lo-oom Lee

    2016-01-01

    Full Text Available Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF- β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR and nuclear factor (erythroid-derived 2-like 2 (Nrf2, a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS, while treatment with N-acetyl-L-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR, and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.

  6. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Yeo-Jin Choi

    Full Text Available The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2 gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines.

  7. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Science.gov (United States)

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  8. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hongfang; Luo, Honglei; Jiang, Zhenzhen; Yue, Jing; Hou, Qiang; Xie, Ruifei; Wu, Shixiu

    2016-01-01

    The efficacy of radiotherapy, one major treatment modality for esophageal squamous cell carcinoma (ESCC) is severely attenuated by radioresistance. Epithelial-to-mesenchymal transition (EMT) is a cellular process that determines therapy response and tumor progression. However, whether EMT is induced by ionizing radiation and involved in tumor radioresistance has been less studied in ESCC. Using multiple fractionated irradiation, the radioresistant esophageal squamous cancer cell line KYSE-150R had been established from its parental cell line KYSE-150. We found KYSE-150R displayed a significant EMT phenotype with an elongated spindle shape and down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker N-cadherin in comparison with KYSE-150. Furthermore, KYSE-150R also possessed some stemness-like properties characterized by density-dependent growth promotion and strong capability for sphere formation and tumorigenesis in NOD-SCID mice. Mechanical studies have revealed that WISP1, a secreted matricellular protein, is highly expressed in KYSE-150R and mediates EMT-associated radioresistance both in ESCC cells and in xenograft tumor models. Moreover, WISP1 has been demonstrated to be closely associated with the EMT phenotype observed in ESCC patients and to be an independent prognosis factor of ESCC patients treated with radiotherapy. Our study highlighted WISP1 as an attractive target to reverse EMT-associated radioresistance in ESCC and can be used as an independent prognostic factor of patients treated with radiotherapy. PMID:27125498

  9. Characterization of radioresistant variant from U251 human glioblastoma cell line and the role of antioxdant enzymes in its radioresistancy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Chahn; Park, In Chul; Park, Myung Jin; Woo, Sang Hyeok; Rhee, Chang Hum; Hong, Seok-II [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    To investigate the radioresistant mechanism in glioblastoma multiforme(GBM), we isolated the radioresistant clone (RRC) from U251 human glioblastoma cell line by exposing to repeated fractions of 3 Gy {gamma}-radiation for six months. RRC had higher radioresistance than the parent cell line as measured by clonogenic survival assay. FACS analysis showed that RRC had a delayed G2 arrest after radiation. Antioxidant enzymes, such as SOD, catalase, glutathione peroxidase (GPX), glutathione reductase (GR), were activated up to 5 folds in RRC after radiation. Erk 1/2 activation was higher in RRC than in the parent cell. Therefore, radioresistancy in RRC might be due to the delayed cell cycle, the coordinated high activation of antioxidant enzyme rather than a single enzyme alone,and higher activation of Erk 1/2.

  10. Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

    OpenAIRE

    Hur, Jung-Mu; Kim, Dongho

    2010-01-01

    The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to 60Co γ-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant ...

  11. Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanyu [Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Liu, Luying [Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou (China); Sharma, Sherven [David Geffen School of Medicine at UCLA, and the Department of Veterans Affairs, Los Angeles, CA (United States); Liu, Hai; Yang, Weifang; Sun, Xiaonan [Department of Radiotherapy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Dong, Qinghua, E-mail: dongqinghua@zju.edu.cn [Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Adaptive radioresistant KYSE-150R cells expressed high level of Bmi-1. Black-Right-Pointing-Pointer Bmi-1 depletion sensitized KYSE-150R cells to RT. Black-Right-Pointing-Pointer Bmi-1 depletion increased the generation of ROS in KYSE-150R cells exposed to radiation. Black-Right-Pointing-Pointer Bmi-1 depletion impaired DNA repair capacities in KYSE-150R cells exposed to radiation. -- Abstract: Radiotherapy (RT) is a major modality of cancer treatment. However, tumors often acquire radioresistance, which causes RT to fail. The exact mechanisms by which tumor cells subjected to fractionated irradiation (FIR) develop an adaptive radioresistance are largely unknown. Using the radioresistant KYSE-150R esophageal squamous cell carcinoma (ESCC) model, which was derived from KYSE-150 parental cells using FIR, the role of Bmi-1 in mediating the radioadaptive response of ESCC cells to RT was investigated. The results showed that the level of Bmi-1 expression was significantly higher in KYSE-150R cells than in the KYSE-150 parental cells. Bmi-1 depletion sensitized the KYSE-150R cells to RT mainly through the induction of apoptosis, partly through the induction of senescence. A clonogenic cell survival assay showed that Bmi-1 depletion significantly decreased the radiation survival fraction in KYSE-150R cells. Furthermore, Bmi-1 depletion increased the generation of reactive oxygen species (ROS) and the expression of oxidase genes (Lpo, Noxo1 and Alox15) in KYSE-150R cells exposed to irradiation. DNA repair capacities assessed by {gamma}-H2AX foci formation were also impaired in the Bmi-1 down-regulated KYSE-150R cells. These results suggest that Bmi-1 plays an important role in tumor radioadaptive resistance under FIR and may be a potent molecular target for enhancing the efficacy of fractionated RT.

  12. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    OpenAIRE

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Bilikere S Dwarakanath

    2015-01-01

    Background Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. Methods We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB)...

  13. Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells. SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions. Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05). SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC

  14. Endoplasmic reticulum protein 29 (ERp29) confers radioresistance through the DNA repair gene, O6-methylguanine DNA-methyltransferase, in breast cancer cells

    OpenAIRE

    Shaohua Chen; Yu Zhang; Daohai Zhang

    2015-01-01

    Resistance of cancer cells to radiotherapy is a major clinical problem in cancer treatment. Therefore, understanding the molecular basis of cellular resistance to radiotherapy and identification of novel targets are essential for improving treatment efficacy for cancer patients. Our previous studies have demonstrated a significant role of ERp29 in breast cancer cell survival against doxorubicin-induced genotoxic stress. We here reported that ERp29 expression in the triple negative MDA-MB-231 ...

  15. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  16. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    International Nuclear Information System (INIS)

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  17. Extracellular matrix metalloproteinase inducer (CD147/BSG/EMMPRIN)-induced radioresistance in cervical cancer by regulating the percentage of the cells in the G2/m phase of the cell cycle and the repair of DNA Double-strand Breaks (DSBs).

    Science.gov (United States)

    Ju, Xingzhu; Liang, Shanhui; Zhu, Jun; Ke, Guihao; Wen, Hao; Wu, Xiaohua

    2016-01-01

    Our preliminary study found that CD147 is related to radioresistance and maybe an adverse prognostic factor in cervical cancer. To date, the mechanisms underlying CD147-induced radioresistance in cervical cancer remain unclear. In the present study, we investigated the mechanisms by which CD147 affects radiosensitivity in cervical cancer both in vitro and in vivo. In this study, the clonogenic assay showed that radiosensitivity was significantly higher in the experimental group (the CD147-negative cell lines) than in the control group (the CD147-positive cell lines). After radiotherapy, the residual tumour volume was significantly lower in the experimental group. FCM analysis showed the cells percentage in the G2/M phase of the cell cycle were significantly higher in the CD147-negative group than in the control group. However, there was no significant difference in terms of apoptosis. The expression of gamma-H2A histone family, member X (γH2AX) was dramatically elevated in the CD147-negative cell lines after irradiation, but the expression of ataxia-telangiectasia mutated (ATM) was not different between the two groups. WB analysis did not show any other proteins relating to the expression of CD147. In conclusion, it is likely that CD147 regulates radioresistance by regulating the percentage of the cells in the G2/M phase of the cell cycle and the repair of DNA double-strand breaks (DSBs). Inhibition of CD147 expression enhances the radiosensitivity of cervical cancer cell lines and promotes post-radiotherapy xenograft tumour regression in nude mice. Therefore, CD147 may be used in individualized therapy against cervical cancer and is worth further exploration. PMID:27398135

  18. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells

    International Nuclear Information System (INIS)

    Background and purpose: Cellular radioresistance is a major impediment to effective radiotherapy. Here, we demonstrated that long-term exposure to fractionated radiation conferred acquired radioresistance to tumor cells due to AKT-mediated enhanced aerobic glycolysis. Material and methods: Two human tumor cell lines with acquired radioresistance were established by long-term exposure to fractionated radiation with 0.5 Gy of X-rays. Glucose uptake was inhibited using 2-deoxy-D-glucose, a non-metabolizable glucose analog. Aerobic glycolysis was assessed by measuring lactate concentrations. Cells were then used for assays of ROS generation, survival, and cell death as assessed by annexin V staining. Results: Enhanced aerobic glycolysis was shown by increased glucose transporter Glut1 expression and a high lactate production rate in acquired radioresistant cells compared with parental cells. Inhibiting the AKT pathway using the AKT inhibitor API-2 abrogated these phenomena. Moreover, we found that inhibiting glycolysis with 2-deoxy-D-glucose suppressed acquired tumor cell radioresistance. Conclusions: Long-term fractionated radiation confers acquired radioresistance to tumor cells by AKT-mediated alterations in their glucose metabolic pathway. Thus, tumor cell metabolic pathway is an attractive target to eliminate radioresistant cells and improve radiotherapy efficacy

  19. Proteomics of the Radioresistant Phenotype in Head-and-Neck Cancer: Gp96 as a Novel Prediction Marker and Sensitizing Target for Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Radiotherapy is an integral part of the treatment modality for head-neck cancer (HNC), but in some cases the disease is radioresistant. We designed this study to identify molecules that may be involved in this resistance. Methods and Materials: Two radioresistant sublines were established by fractionated irradiation of the HNC cell lines, to determine differentially proteins between parental and radioresistant cells. Proteomic analysis and reverse-transcription polymerase chain reaction were used to identify and confirm the differential proteins. The siRNA knockdown experiments were applied to examine cellular functions of a radioresistant gene, with investigation of the alterations in colonogenic survival, cell cycle status, and reactive oxygen species levels. Xenografted mouse tumors were studied to validate the results. Results: IN all, 64 proteins were identified as being potentially associated with radioresistance, which are involved in several cellular pathways, including regulation of stimulus response, cell apoptosis, and glycolysis. Six genes were confirmed to be differentially expressed in both radioresistant sublines, with Gp96, Grp78, HSP60, Rab40B, and GDF-15 upregulated, and annexin V downregulated. Gp96 was further investigated for its functions in response to radiation. Gp96-siRNA transfectants displayed a radiation-induced growth delay, reduction in colonogenic survival, increased cellular reactive oxygen species levels, and increased proportion of the cells in the G2/M phase. Xenograft mice administered Gp96-siRNA showed significantly enhanced growth suppression in comparison with radiation treatment alone (p = 0.009). Conclusions: We identified 64 proteins and verified 6 genes that are potentially involved in the radioresistant phenotype. We further demonstrated that Gp96 knockdown enhances radiosensitivity both in cells and in vivo, which may lead to a better prognosis of HNC treatment.

  20. MiR-95 induces proliferation and chemo- or radioresistance through directly targeting sorting nexin1 (SNX1) in non-small cell lung cancer.

    Science.gov (United States)

    Chen, Xiaochun; Chen, Shaomu; Hang, Weijie; Huang, Haitao; Ma, Haitao

    2014-06-01

    MicroRNAs are emerging as a class of small regulatory RNAs whose specific roles and significant functions in the majority of carcinomas have yet to be entirely illustrated. The aim of this study is to explore the effect of miR-95 and determine whether miR-95 could be a potential therapeutic target for human non-small cell lung cancer. First of all, our study showed that miR-95 was highly expressed in both NSCLC cell lines (compared with normal cells) and tumor tissues (compared with corresponding normal tissues), whereas the protein level of SNX1 was downregulated in NSCLC cell lines. Next, we found that ectopic overexpression of miR-95 in A549 or H226 contributed to tumor growth in xenograft mouse models. In addition, the results also indicated that upregulation of miR-95 could significantly enhance the susceptibilities of NSCLC cells to chemo- or radiotherapy. Furthermore, using the luciferase reporter, we demonstrated that SNX1 is a direct target of miR-95. Meanwhile, overexpression of SNX1 could abrogate the growth of NSCLC cells induced by miR-95. Taken together, these results suggest that miR-95 functions as an oncogene role in NSCLC cells by directly targeting SNX1. PMID:24835695

  1. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Nobutaka [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Ogawa, Ryohei, E-mail: ogawa@med.u-toyama.ac.jp [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Cui, Zheng-Guo [Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Morii, Akihiro; Watanabe, Akihiko [Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Kanayama, Shinji; Yoneda, Yuko [New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  2. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    International Nuclear Information System (INIS)

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl2 confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype

  3. Dysregulation of IRP1-mediated iron metabolism causes gamma ray-specific radioresistance in leukemia cells.

    Directory of Open Access Journals (Sweden)

    Kurtis J Haro

    Full Text Available Iron is required for nearly all organisms, playing important roles in oxygen transport and many enzymatic reactions. Excess iron, however, can be cytotoxic. Emerging evidence suggests that radioresistance can be achieved in lower organisms by the protection of proteins, but not DNA, immediately following ionizing radiation (IR exposure, allowing for improved DNA repair. One potential mechanism for protein protection is controlling and limiting the amount of free iron in cells, as has been demonstrated in the extremophile Deinococcus Radiodurans, reducing the potential for oxidative damage to proteins during exposure to IR. We found that iron regulatory protein 1 (IRP1 expression was markedly reduced in human myeloid leukemia HL60 cells resistant to low linear energy transfer (LET gamma rays, but not to high LET alpha particles. Stable knockdown of IRP1 by short-hairpin RNA (shRNA interference in radiosensitive parental cells led to radioresistance to low LET IR, reduced intracellular Fenton chemistry, reduced protein oxidation, and more rapid DNA double-strand break (DSB repair. The mechanism of radioresistance appeared to be related to attenuated free radical-mediated cell death. Control of intracellular iron by IRPs may be a novel radioresistance mechanism in mammalian cells.

  4. Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie!

    Science.gov (United States)

    Zafarana, Gaetano; Bristow, Robert G

    2010-01-01

    Preclinical data from cell lines and experimental tumors support the concept that breast cancer-derived tumor-initiating cells (TICs) are relatively resistant to ionizing radiation and chemotherapy. This could be a major determinant of tumor recurrence following treatment. Increased clonogenic survival is observed in CD24-/low/CD44+ TICs derived from mammosphere cultures and is associated with (a) reduced production of reactive oxygen species, (b) attenuated activation of γH2AX and CHK2-p53 DNA damage signaling pathways, (c) reduced propensity for ionizing radiation-induced apoptosis, and (d) altered DNA double-strand or DNA single-strand break repair. However, recent data have shed further light on TIC radioresistance as irradiated TICs are resistant to tumor cell senescence following DNA damage. Taken together, the cumulative data support a model in which DNA damage signaling and repair pathways are altered in TICs and lead to an altered mode of cell death with unique consequences for long-term clonogen survival. The study of TIC senescence lays the foundation for future experiments in isogenic models designed to directly test the capacity for senescence and local control (that is, not solely local regression) and spontaneous metastases following treatment in vivo. The study also supports the targeting of tumor cell senescence pathways to increase TIC clonogen kill if the targeting also maintains the therapeutic ratio.

  5. Radioresistance of cells responsible for delayed hypersensitivity reactions in the mouse

    International Nuclear Information System (INIS)

    The cells responsible for delayed hypersensitivity reactivity in the mouse act in a radioresistant fashion only if such irradiated cells are injected directly into the site of antigen challenge. Intravenous transfer of irradiated, primed spleen cells does not achieve a transfer of sensitivity to show delayed type hypersensitivity reactions. Transfer of sensitivity by the intravenous route can be effected by injection of non-irradiated spleen cells from primed mice. (U.S.)

  6. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Jamal

    2012-02-01

    Full Text Available Brain tumor xenografts initiated from glioblastoma (GBM CD133+ tumor stem-like cells (TSCs are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, γH2AX and 53BP1 foci were quantified in CD133+ cells and their differentiated (CD133- progeny. Under in vitro conditions, no difference was detected between CD133+ and CD133- cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer γH2AX and 53BP1 foci in CD133+ cells compared to their CD133- counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133+ cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133+ cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment.

  7. Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to X-rays

    International Nuclear Information System (INIS)

    A radioresistant cell strain from human fibrosarcoma HT1080 has been obtained after prolonged exposure to x-rays for 7 months (2 Gy per day, 5 days per week). This new strain, HT1080R, differs from HT1080 in a significantly increased ability of clonogenical survival, with coefficient α decreasing from 0.161 to 0.123 Gy-1 and coefficient β decreasing from 0.0950 to 0.0565 Gy-2. Furthermore, the radioresistance of HT1080R proved to be stable in long-term passaged cultures as well as in frozen samples. Differences between the two cell lines are also observed in the G-banded karyotype; the new cell line shows monosomy of chromosome 17 and loss of 5p+ and 11q+ present in the parental cells. These data suggest that the radioresistance may have been caused by radiation-induced cell mutation and that the resistant cells may have been selected by repeated irradiations. In order to characterize this new strain, the ability of the cells to rejoin DNA double-strand breaks, the cell cycle distribution and the amount of apoptosis after irradiation have been estimated; however, no differences are observed between these two cell strains. Although the mechanism of the elevated radioresistance remains unknown, this pair of cell strains can provide a new model system for further investigations with regard to the mechanisms of cellular radioresistance. The results also show that any type of irradiation similar to the schedules used in radiotherapy can lead to the formation and selection of more radioresistant cell clones in vitro, a phenomenon with possible implications for radiotherapy. (orig.)

  8. Dexamethasone-induced radioresistance occurring independent of human papilloma virus gene expression in cervical carcinoma cells

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the role of HPV 18 E6 and E7 gene products with respect to radiosensitivity of two cervical carcinoma cell lines. The two cervical carcinoma lines C4-1 and SW 756 were used in which treatment with dexamethasone allows to modulate expression levels of HPV 18 E6 and E7 genes: Upregulation in C4-1, down-regulation in SW 756. Effects of treatment with dexamethasone on plating efficiency and radiosensitivity were assessed using a clonogenic assay. Treatment with dexamethasone increased plating efficiency of the C4-1 cells, but did not affect plating efficiency of SW 756 cells. Treatment with dexamethasone induced enhanced radioresistance in both cell lines. Thus, in C4-1 cells the observed changes in radioresistance correlate to the enhancement in expression of HPV 18 genes E6/E7, whereas in SW 756, a reduced expression correlates negatively with the enhanced radioresistance. (orig./MG)

  9. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  10. MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells

    International Nuclear Information System (INIS)

    The microRNA-17-92 (miRNA-17-92) cluster, at chromosome 13q31-q32, also known as oncomir-1, consists of seven miRNAs that are transcribed as a polycistronic unit. Over-expression of miRNA-17-92 has been observed in lymphomas and other solid tumors. Whether miRNA-17-92 expression affects the response of tumor cells to radiotherapy is not addressed so far. In the present study, we studied the effects of miRNA-17-92 on the radiosensitivity of human mantle cell lymphoma (MCL) cells Z138c. Over-expression of miRNA-17-92 significantly increased survival cell number, cell proliferation and decreased cell death of human MCL cells after different doses of radiation. Immunoblot analysis showed that phosphatase and tension homolog (PTEN) and PHLPP2 was down-modulated and pAkt activity was enhanced in MCL cells after over-expressing miRNA-17-92 after irradiation. These findings are the first direct evidence that over-expression of miRNA-17-92 cluster significantly increases the radioresistance of human MCL cells, which offers a novel target molecule for improving the radiotherapy of MCL in clinic

  11. Relationship between radioresistance of breast cancer stem cell and cell cycle%乳腺癌干细胞耐放射性与细胞周期的关系

    Institute of Scientific and Technical Information of China (English)

    沈皓月; 李连宏

    2012-01-01

    肿瘤的放射疗法是一种建立在细胞周期基础上的治疗方法,乳腺癌干细胞在放疗过程中出现的G2/M期阻滞、衰老途径下调、APE1水平升高及细胞周期调控相关基因p21和p53活性等改变直接或间接导致细胞周期紊乱,均与乳腺癌干细胞的耐放射性密切相关,是分子遗传学和肿瘤生物学研究的热点.%Radiative therapy of carcinoma is founded at the basis of eell cycle theory. The changes of breast cancer stem cell during radiation which include G2/M phase arrest, the senescence evasion, an elevated level of APE1 and alternation of cell cycle regulation related genes p21/p53, directly or indirectly cause the abnormal proliferation of cancer stem cells. These fundamental studies may result in broad applications within many different fields and may, in the long term, open a new path for cancer therapy.

  12. Radioresistance of granulation tissue-derived cells from skin wounds combined with total body irradiation.

    Science.gov (United States)

    Dai, Tingyu; Chen, Zelin; Tan, Li; Shi, Chunmeng

    2016-04-01

    Combined radiation and wound injury (CRWI) occurs following nuclear explosions and accidents, radiological or nuclear terrorism, and radiation therapy combined with surgery. CRWI is complicated and more difficult to heal than single injuries. Stem cell‑based therapy is a promising treatment strategy for CRWI, however, sourcing stem cells remains a challenge. In the present study, the granulation tissue-derived cells (GTCs) from the skin wounds (SWs) of CRWI mice (C‑GTCs) demonstrated a higher radioresistance to the damage caused by combined injury, and were easier to isolate and harvest when compared with bone marrow‑derived mesenchymal stromal cells (BMSCs). Furthermore, the C-GTCs exhibited similar stem cell-associated properties, such as self-renewal and multilineage differentiation capacity, when compared with neonatal dermal stromal cells (DSCs) and GTCs from unirradiated SWs. Granulation tissue, which is easy to access, may present as an optimal autologous source of stem/progenitor cells for therapeutic applications in CRWI. PMID:26936439

  13. Radioresistance of mice cells immobilized by adhesion in glass layer

    International Nuclear Information System (INIS)

    Phagocytic leukocytes are involved in bio compatibility and biodegradation processes at which materials utilized in different at which materials utilized in different types of implants are submitted. In this work round shape glass cover slips were implanted subcutaneously in 45-day-old C57B1J 6 mice and later irradiated with a 60 Co sublethal whole-body dose of 4.0 Gy. Cover slips were removed 1,3,7 and 14 days post-implant and dyed by the hematoxylin-eosin technique. Macrophage and giant cell estimations were done in a microscope by means of an integrator eyepiece. The modifications found permit to conclude that they to exist significant differences in macrophages as a function of time after implant but not as a consequence of irradiation. (author)

  14. Dexamethasone-induced radioresistance occurring independent of human papilloma virus gene expression in cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, H.P.; Mariotta, M.; Mirimanoff, R.O. [Lab. de Radiobiologie, Service de Radio-Oncologie, CHUV, Lausanne (Switzerland); Knebel Doeberitz, M. von [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Inst. fuer Virusforschung

    1998-02-01

    The aim of this study was to investigate the role of HPV 18 E6 and E7 gene products with respect to radiosensitivity of two cervical carcinoma cell lines. The two cervical carcinoma lines C4-1 and SW 756 were used in which treatment with dexamethasone allows to modulate expression levels of HPV 18 E6 and E7 genes: Upregulation in C4-1, down-regulation in SW 756. Effects of treatment with dexamethasone on plating efficiency and radiosensitivity were assessed using a clonogenic assay. Treatment with dexamethasone increased plating efficiency of the C4-1 cells, but did not affect plating efficiency of SW 756 cells. Treatment with dexamethasone induced enhanced radioresistance in both cell lines. Thus, in C4-1 cells the observed changes in radioresistance correlate to the enhancement in expression of HPV 18 genes E6/E7, whereas in SW 756, a reduced expression correlates negatively with the enhanced radioresistance. (orig./MG) [Deutsch] Das Ziel dieser Studie lag darin, die Rolle der HPV-18-Gene E6 und E7 in bezug auf die Strahlenempfindlichkeit von menschlichen Zervixkarzinomzellen zu untersuchen. Wir verwendeten zwei menschliche Zervixkarzinomzellinien, C4-1 und SW 756, in welchen die Expression der viralen Gene HPV 18 E6 und E7 mit Dexamethason moduliert werden kann: In C4-1 bewirkt die Behandlung mit Dexamethason eine Erhoehung der Expression dieser Gene, in SW 756 eine Verminderung. Die Wirkung auf die Wachstumsfaehigkeit der Zellen und auf die Wachstumshemmung durch die Bestrahlung wurde unter Verwendung eines klonogenen Assays bestimmt. Dexamethason bewirkte eine erhoehte Wachstumsfaehigkeit der C4-1 Zellen, ohne die Wachstumsfaehigkeit der SW-756-Zellen zu beeinflussen, wie schon frueher beschrieben. Die Resistenz beider Zellinien gegenueber Bestrahlung wurde erhoeht. Somit besteht in den C4-1-Zellen eine Korrelation der Expression der viralen Gene mit der Zunahme der Strahlenresistenz, wogegen in den SW-756-Zellen die Abnahme der Expression im Gegensatz zu

  15. Hyper-radiosensitivity and induced radioresistance and bystander effects in rodent and human cells as a function of radiation quality

    International Nuclear Information System (INIS)

    In the past two decades, a body of experimental evidences in vitro has shown the presence of a plethora of phenomena occurring after low-dose irradiation [including hypersensitivity and induced radioresistance (IRR), adaptive response, bystander effect (BE) and genomic instability], which might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the linear no-threshold model for cancer risk assessment in such a dose region. In this framework, a systematic investigation have been undertaken on non-linear effects at low doses as a function of different radiation quality and cellular radiosensitivity and in terms of different biological end points. The present article reports the recent results on hyper-radiosensitivity and IRR and BE phenomena, in terms of clonogenic survival in V79 Chinese hamster cells and T98G human glioblastoma cells irradiated with protons and carbon ions with different energy, as a function of dose (and fluence). (authors)

  16. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Farci, Domenica; Bowler, Matthew W; Kirkpatrick, Joanna; McSweeney, Sean; Tramontano, Enzo; Piano, Dario

    2014-07-01

    We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed.

  17. A preliminary study of the role of miR-193a-3p in radioresistance of esophageal cancer cells%miR-193a-3p在食管癌细胞放射抵抗作用的初步研究

    Institute of Scientific and Technical Information of China (English)

    孟芳; 钱立庭; 丁伯金; 周解平

    2016-01-01

    目的:探讨miR⁃193a⁃3p在食管鳞癌放射耐受性机制中的作用。方法通过6 MV X射线对4个食管癌细胞系进行照射,采用MTT法检测出相对敏感系及耐受系细胞;茎环引物实时定量PCR法检测miR⁃193a⁃3p、miR⁃155、miR⁃22⁃3p在2个细胞中的表达,miR⁃193a⁃3p作为表达差异较为明显的 microRNA 被挑选进行下一步研究。分别合成并转染 miR⁃193a⁃3p 的 mimic (3PM)或antagomiR (3PA)序列及小干扰RNA (si⁃LOXL4)以提高或抑制其在细胞中的表达水平,MTT法和流式细胞分析术检测miR⁃193a⁃3p及其下游基因LOXL4对于放射敏感性的影响。结果筛选出相对放射敏感细胞系( KYSE510)及耐受细胞系( KYSE410);miR⁃193a⁃3p在两系细胞中的表达水平差异显著高于miR⁃155、miR⁃22⁃3p (1.00∶21.13);KYSE510细胞中转染mimic提高其表达后,与对照组相比,其放射敏感性降低,细胞凋亡比例显著下降11.10%(P<0.05),而 KYSE410细胞中转染 antagomiR后,其敏感性增加( P<0.05)。作为miR⁃193a⁃3p的下游基因,LOXL4的表达抑制也受到miR⁃193a⁃3p的调控,转染si⁃LOXL4降低其表达,与对照组相比放射敏感性也降低,细胞凋亡比例下降7.07%( P<0.05)。结论 miR⁃193a⁃3p可能通过调控基因LOXL4促进食管癌细胞放射耐受性。%Objective To investigate the role of miR⁃193a⁃3p in the radioresistance of esophageal squamous cell carcinoma ( ESCC) . Methods MTT assay was used to identify the cell lines with the highest radiosensitivity and radioresistance in four esophageal cancer cell lines exposed to irradiation of 6 MV X⁃ray. Stem⁃loop quantitative real⁃time PCR was used to measure the expression levels of miR⁃193a⁃3p, miR⁃155, and miR⁃22⁃3P in the two cell lines. Further studies were performed on miR⁃193a⁃3p because of the substantial difference in its expression between

  18. Critical analysis of salvage radical prostatectomy in the management of radioresistant prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seabra, Daniel; Faria, Eliney; Dauster, Breno; Rodrigues, Gunther; Fava, Gilberto [Pio XII Foundation, Barretos, SP (Brazil). Section of Urology], e-mail: daniel.seabra@terra.com.br

    2009-01-15

    Purpose: To critically evaluate salvage radical prostatectomy (SRP) in the treatment of patients with recurrent prostate cancer (PCa). Materials and Methods: From January 2005 to June 2007, we assessed patients with recurrent localized PCa. Recurrence was suspected when there were three or more successive increases in prostate specific antigen (PSA) after nadir. After the routine imagery examinations, and once localized PCa was confirmed, patients were offered SRP. Following surgery, we evaluated bleeding, rectal injury, urinary incontinence or obstruction and impotence. PSA values were measured at 1, 3, 6, months and thereafter twice a year. Results: Forty-two patients underwent SRP. The average age was 61 years. Following radiotherapy , the mean PSA nadir was 1.5 ng/mL (0.57-5.5). The mean prostate specific antigen doubling time (PSA-DT) was 14 months (6-20). Prior to SRP, the mean PSA was 5.7 ng/mL (2.9-18). The pathologic staging was pT2a: 13%; pT2b: 34%; pT2c: 27%; pT3a: 13%; and pT3b: 13%. Bleeding > 600 mL occurred in 14% of the cases; urethral stenosis in 50%; and urinary incontinence (two or more pads/day) in 72%. The mean follow-up post-SRP ranged from 6 to 30 months. The PSA level rose in 9, of which 6 had PSA-DT < 10 months. Conclusions: SRP is a feasible method in the management of localized radioresistant PCa. PSA-DT has shown to be important for the selection and SRP should not be performed if PSA-DT > 10 months. Due to its increased morbidity, SRP should be only offered to the patients who are more concerned about survival rather than quality of life. (author)

  19. P53-mediated radioresistance does not correlate with metastatic potential in tumorigenic rat embryo cell lines following oncogene transfection

    International Nuclear Information System (INIS)

    Purpose: Changes in wild-type p53 protein function occur in the majority of human tumors, and may alter genomic stability and the cellular response to ionizing radiation. Whether oncoproteins can render tumor cells both radioresistant and metastatic, may have implications for clinical strategies designed to improve local tumor control. In the studies reported here, we tested the hypothesis that acquired radioresistance correlates with metastatic potential within a large panel of transformed rat embryo cell (REF) lines following transfection with activated H-ras, mutant p53, and HPV16-E7 alleles. Methods and Materials: Rat embryo cells (REF cells) were transfected using the calcium-phosphate technique with an activated H-ras gene alone, or in combination with human papillomavirus HPV16-E7 and/or human or murine mutant p53 sequences. Other rat embryo cell clones expressing transfected HPV-E7 and activated ras sequences subsequently acquired endogenous p53 gene mutations during culture in vitro. The relative expression of p21ras and p53 protein for each REF transformant was determined by Western blot analysis following transfection. REF clones were phenotypically characterized at early passage (i.e., passages 5-7) and late passage (i.e., passages 10-20) for their: (a) relative tumor growth rate, and (b) their ability to undergo spontaneous metastasis following intramuscular injection into the hind legs of SCID mice. In vivo phenotypic end points were then compared to previously measured parameters of in vitro radiosensitivity for each cell line. Additionally, the expression of the cellular protease, plasminogen activator, was determined for a number of metastatic and nonmetastatic cell lines. Results: We found no evidence that selected oncogene-transfected REF transformants that were radioresistant in culture had a greater spontaneous metastatic potential than nonradioresistant REF transformants. Neither the level of expression of the p21ras protein nor that of the p

  20. Neuroendorine differentiation in prostate cancer: A mechanism of radioresistance and treatment failure

    Directory of Open Access Journals (Sweden)

    Chang-Deng eHu

    2015-04-01

    Full Text Available Neuroendocrine differentiation (NED in prostate cancer is a well recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.

  1. The radioresistance to killing of A1-5 cells derives from activation of the Chk1 pathway

    Science.gov (United States)

    Hu, B.; Zhou, X. Y.; Wang, X.; Zeng, Z. C.; Iliakis, G.; Wang, Y.

    2001-01-01

    Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.

  2. DNA-dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair.

    Science.gov (United States)

    Li, Yong; Li, Hang; Peng, Wen; He, Xin-Yun; Huang, Min; Qiu, Dong; Xue, Ying-Bo; Lu, Liang

    2015-07-01

    The mechanisms underlying lung cancer radioresistance remain to be fully elucidated. The DNA repair pathway is a predominant target of radiotherapy, which is considered to be involved in the acquired radioresistance of cancer cells. The present study aimed to establish a radioresistant cell model using the A549 human lung cancer cell line, and to further investigate the potential mechanisms underlying the radioresistance. The A549R radioresistant lung cancer cell variant was established by exposing the parental A549 cells to repeated γ-ray irradiation at a total dose of 60 Gy. Colony formation assays were then used to determine cell survival following γ-ray exposure. The established radioresistant cells were subsequently treated with or without the NU7026 DNA-PKcs inhibitor. The levels of DNA damage were determined by counting the number of fluorescent γ-H2AX foci in the cells. The cellular capacity for DNA repair was assessed using antibodies for the detection of various DNA repair pathway proteins. The radioresistant sub-clones exhibited significantly decreased survival following NU7026 treatment, compared with the parental cells, as determined by colony formation assays (P<0.05), and this finding was found to be dose-dependent. Treatment with the DNA-dependent protein kinase (DNA-PK) inhibitor significantly reduced γ-H2AX foci formation (P<0.05) following acute radiation exposure in the radioresistant sub-clones, compared with the parental control cells. The decreased levels of γ-H2AX were accompanied by an increase in the percentage of apoptotic cells in the radioresistant cell line following post-radiation treatment with the DNA-PKcs inhibitor. The expression levels of proteins associated with the DNA repair pathway were altered markedly in the cells treated with NU7026. The results of the present study suggested that radioresistance may be associated with enhanced DNA repair following exposure to radiation, resulting in reduced apoptosis. Therefore, the

  3. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    Science.gov (United States)

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  4. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    International Nuclear Information System (INIS)

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer

  5. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  6. The effect of oxygen on low-dose hypersensitivity and increased radioresistance in Chinese hamster V79-379A cells

    International Nuclear Information System (INIS)

    Chinese hamster V79 cells irradiated in air are hypersensitive to X-ray doses less than 0.5 Gy and show an increased radioresistance over the dose range 0.5-1 Gy. Of considerable interest from both a mechanistic and clinical viewpoint is the response of hypoxic cells over this dose range. The data presented here indicate that hypoxic cells are also hypersensitive to low X-ray doses and exhibit an increased radioresistant response, albeit triggered at a somewhat higher dose (0.69 Gy, SEM ± 0.18 Gy) than observed in oxygenated cells (0.5 Gy, SEM ± 0.21 Gy). These data indicate that the triggering event for increased radioresistance may be independent of oxygen. As reported by others previously, the oxygen enhancement ratio was found to decrease with a decreasing X-ray dose. 21 refs., 3 figs., 1 tab

  7. Cancer stem cell and its relevance to tumors resistance to radiotherapy

    International Nuclear Information System (INIS)

    The gradually accumulated information and knowledge regarding cancer stem cell or stem-like cancer cell greatly potentiated the research progression of radiation oncology and biology. In recent years, a series studies have uncovered that the cancer stem cell and cancer quiescent cell could be the major cells origin attributed to the radioresistance and recurrence of tumors in the course of radiotherapy. A rapid research progression has already been achieved respecting the radiosensitivity and related mechanisms of these two subsets of cancer cells, and which provides an idea strategy for development of the measures targeting tumor radioresistance. This paper reviewed and discussed the cellular basis and molecular mechanism of the tumor radioresistance from the aspects of cancer cells subsets and the radiobiological characteristics. (authors)

  8. Does the cell radioresistance acquired by low dose-rate gamma irradiation depend on genetic factors or physiological changes. Study carried out on inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK

    International Nuclear Information System (INIS)

    Inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK were used to test the following hypothesis: the radioresistance acquired by these cells after irradiation at low dose rate (0.06 Gy/mn) is due to the selection or induction of radioresistant clones. Clone cultures were grown mainly from colonies exhibiting defects (high cell loss, slowed growth, pigment deficiency). Of thirty clones studied, three only of second and third separations possessed the radioresistance of their original population. On the basis of these results, backed up by a first experiment which shows the loss of cell radioresistance when continuous irradiation is stopped, the initial hypothesis may be dismissed and research directed towards changes relative to cell restoration processes by irradiation at low dose rates

  9. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Park, Sang Jun; Kim, Chun-Ho [Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  10. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Zheng, Lin [Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province (China); Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Ding, Yi [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Li, Qi [Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Rong [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Liu, Tongxin; Sun, Quanquan [Department of Radiation Oncology, Cancer Hospital, Hangzhou, Zhejiang Province (China); Yang, Hua [Department of Radiation Oncology, Nanhai Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Peng, Shunli [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Wei, E-mail: wangwei9500@hotmail.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Chen, Longhua, E-mail: chenlhsmu@126.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China)

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  11. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation

    International Nuclear Information System (INIS)

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)

  12. Radiation hypersensitivity and radioresistant DNA synthesis in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Patients with the autosomal recessive genetic disease, ataxia-telangiectasia (A-T), are cancer-prone and hypersensitive to the killing effects of ionizing radiation. In an attempt to isolate the gene(s) responsible for the hypersensitivity of A-T cells, they were transfected with normal human DNA in cosmid vectors containing a rescuable marker (G-418 resistance), and revertants to normal sensitivity were isolated and characterized. The failure of radioresistant revertants to demonstrate a reversion of the phenotype, radioresistant DNA synthesis, shows that this feature is dependent on a gene separate from the one conferring resistance to cell killing. Cells from every A-T patient thus far examined demonstrate both hypersensitivity, in terms of radiation-induced cell killing, and radioresistant DNA synthesis. The results reported here, however, show that the former is not a result of the latter, as previously proposed. Moreover, the fact that these two characteristics can be uncoupled obscures the role(s) that either of them plays in the etiology of the disease, or in the development in its other features, including cancer-proneness

  13. High radiosensitivity of induction in contrast to radioresistance of expression of cells mediating delayed-type hypersensitivity during response to sheep red blood cells in mice

    International Nuclear Information System (INIS)

    The delayed-type hypersensitivity (DTH) reaction observed in mice primed i.v. with low doses of sheep red blood cells was greatly decreased when mice were irradiated with 300 rad before priming. An estimation of the radiosensitivity of DTH-mediating cells (DTH-C) was performed using a titration assay after local adoptive transfer of these cells mixed with antigen into the footpad of unprimed mice. A high radiosensitivity of the induction of DTH-C was observed with a D37 of approximately 50 rad. In contrast, the expression of DTH-C appeared radioresistant, as the D37 was approximately 2000 rad. (author)

  14. The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines

    International Nuclear Information System (INIS)

    The accuracy of DNA repair may play a role in determining the cytotoxic effect of ionizing radiation. Repair, as measured by DNA strand breakage, often shows little difference between tumor cell lines of widely different radiosensitivity. The mechanism by which DNA fragments are rejoined is poorly understood. This study used plasmid transfection as a probe to assess the balance between correct repair and misrepair. A general trend for sensitive cells to show lower repair fidelity relative to resistant cells was observed. The type of double-strand cleavage of the plasmid (staggered or blunt) made little difference to the measured repair fidelity, in contrast to published studies in which restriction-enzyme breaks had been introduced into DNA within chromatin. Specific comparison of parent lines and their radiosensitive clones showed significant differences in repair fidelity for a relatively small change in radiation response, which was in line with the overall correlation. These same pairs have previously been shown to have no difference in the loss of DNA fragmentation with time after irradiation, and Southern analysis had confirmed the integrated plasmid copy number was similar in the cell lines compared. The number of intact copies of the damaged gene relative to the undamaged gene mirrored the observed repair fidelity. However, in one cell line out of the 10 studied, an exception to the observed trend was found. In comparison of two equally radioresistant bladder cancer cell lines, large differences in repair fidelity were observed. Again, no difference in the integrated copy number was found, and the damaged gene was highly rearranged or deleted in the cell line with low repair fidelity. It is suggested that repair fidelity can be, but is not invariably, a measure of correct repair relative to misrepair, resulting from the processing of double-strand breaks and, hence, the response to ionizing radiation. 24 refs., 2 figs., 2 tabs

  15. Brain Cancer Stem Cells: Current Status on Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM), an aggressive brain tumor of astrocytic/neural stem cell origin, represents one of the most incurable cancers. GBM tumors are highly heterogeneous. However, most tumors contain a subpopulation of cells that display neural stem cell characteristics in vitro and that can generate a new brain tumor upon transplantation in mice. Hence, previously identified molecular pathways regulating neural stem cell biology were found to represent the cornerstone of GBM stem cell self-renewal mechanism. GBM tumors are also notorious for their resistance to radiation therapy. Notably, GBM “cancer stem cells” were also found to be responsible for this radioresistance. Herein, we will analyze the data supporting or not the cancer stem cell model in GBM, overview the current knowledge regarding GBM stem cell self-renewal and radioresistance molecular mechanisms, and discuss the potential therapeutic application of these findings

  16. Radio-resistance induced by nitric oxide to heavy ion irradiation in A172 human glioma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qingming; ZHANG Hong; ZHANG Xingxia

    2007-01-01

    To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172,A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA172), were irradiated by 12C6+ ions to 0, 1 or 2Gy. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G2/M stage arrest induced by the 12C6+ ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection.The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.

  17. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers

  18. Induction of apoptosis by ionizing radiation in Chinese hamster V79 cells and a radioresistant cell strain derived from V79.

    Science.gov (United States)

    Ghosh, R; Sengupta, S; Bhattacharyya, N P

    1996-09-01

    DNA fragmentation into nucleosome ladder, a hall mark of apoptosis, could be obtained by as low as 0.58 Gy of gamma irradiation within 6 hr of irradiation which increased appreciably after 48 hr in V79 cells. In the same condition condensation of the nucleus and marginalization of the cytoplasm the characteristic morphology of apoptotic death were observed. Unirradiated controls had approximately 2% apoptotic cells. When cells were irradiated with 0.58 Gy, approximately 10% of the cells had the apoptotic morphology. This number increased to approximately 29% at 3.5 Gy dose. At a higher dose, apoptotic and necrotic cells were visualized. In radio resistant cells higher doses were required to induce morphological changes. The results indicated that gamma irradiation can induce apoptosis in Chinese hamster V79, fibroblast cell line and the radioresistant cell strain derived from V79 cells is also resistant to induction of apoptosis.

  19. IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation

    OpenAIRE

    Chen, Yuhchyau; Zhang, Fuquan; Tsai, Ying; Yang, Xiadong; Yang, Li; Duan, Shanzhou; Wang, Xin; Keng, Peter; Lee, Soo Ok

    2015-01-01

    Background Local tumor control by standard fractionated radiotherapy (RT) remains poor because of tumor resistance to radiation (radioresistance). It has been suggested that cancer stem cells (CSCs) are more radioresistant than non-CSCs. In previous studies, we have shown IL-6 promotes self-renewal of CD133+ CSC-like cells. In this study, we investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells after radiation, but also in conferring radioresistance of CD133...

  20. Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma

    International Nuclear Information System (INIS)

    Purpose: Renal cell carcinoma (RCC) is often considered a radioresistant tumor, but the molecular mechanism underlying its radioresistance is poorly understood. This study explored the roles of hypoxia-inducible factor 2α (HIF2α) and sonic hedgehog (SHH)-GLI1 signaling in mediating the radioresistance of RCC cells and to unveil the interaction between these 2 signaling pathways. Methods and Materials: The activities of SHH-GLI1 signaling pathway under normoxia and hypoxia in RCC cells were examined by real-time polymerase chain reaction, Western blot, and luciferase reporter assay. The expression of HIF2α and GLI1 in RCC patients was examined by immunohistochemistry, and their correlation was analyzed. Furthermore, RCC cells were treated with HIF2α-specific shRNA (sh-HIF2α), GLI1 inhibitor GANT61, or a combination to determine the effect of ionizing radiation (IR) on RCC cells based on clonogenic assay and double-strand break repair assay. Results: RCC cells exhibited elevated SHH-GLI1 activities under hypoxia, which was mediated by HIF2α. Hypoxia induced GLI1 activation through SMO-independent pathways that could be ablated by PI3K inhibitor or MEK inhibitor. Remarkably, the SHH-GLI1 pathway also upregulated HIF2α expression in normoxia. Apparently, there was a positive correlation between HIF2α and GLI1 expression in RCC patients. The combination of sh-HIF2α and GLI1 inhibitor significantly sensitized RCC cells to IR. Conclusions: Cross-talk between the HIF2α and SHH-GLI1 pathways was demonstrated in RCC. Cotargeting these 2 pathways, significantly sensitizing RCC cells to IR, provides a novel strategy for RCC treatment

  1. Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiancheng [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Wu, Kaijie [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Gao, Dexuan [Department of Urology, Shandong Provincial Hospital affiliated with Shandong University, Ji' nan (China); Zhu, Guodong; Wu, Dapeng; Wang, Xinyang; Chen, Yule; Du, Yuefeng; Song, Wenbin; Ma, Zhenkun [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Authement, Craig; Saha, Debabrata [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hsieh, Jer-Tsong, E-mail: jt.hsieh@utsouthwestern.edu [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); He, Dalin, E-mail: dalinhe@yahoo.com [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China)

    2014-11-15

    Purpose: Renal cell carcinoma (RCC) is often considered a radioresistant tumor, but the molecular mechanism underlying its radioresistance is poorly understood. This study explored the roles of hypoxia-inducible factor 2α (HIF2α) and sonic hedgehog (SHH)-GLI1 signaling in mediating the radioresistance of RCC cells and to unveil the interaction between these 2 signaling pathways. Methods and Materials: The activities of SHH-GLI1 signaling pathway under normoxia and hypoxia in RCC cells were examined by real-time polymerase chain reaction, Western blot, and luciferase reporter assay. The expression of HIF2α and GLI1 in RCC patients was examined by immunohistochemistry, and their correlation was analyzed. Furthermore, RCC cells were treated with HIF2α-specific shRNA (sh-HIF2α), GLI1 inhibitor GANT61, or a combination to determine the effect of ionizing radiation (IR) on RCC cells based on clonogenic assay and double-strand break repair assay. Results: RCC cells exhibited elevated SHH-GLI1 activities under hypoxia, which was mediated by HIF2α. Hypoxia induced GLI1 activation through SMO-independent pathways that could be ablated by PI3K inhibitor or MEK inhibitor. Remarkably, the SHH-GLI1 pathway also upregulated HIF2α expression in normoxia. Apparently, there was a positive correlation between HIF2α and GLI1 expression in RCC patients. The combination of sh-HIF2α and GLI1 inhibitor significantly sensitized RCC cells to IR. Conclusions: Cross-talk between the HIF2α and SHH-GLI1 pathways was demonstrated in RCC. Cotargeting these 2 pathways, significantly sensitizing RCC cells to IR, provides a novel strategy for RCC treatment.

  2. Canonical autophagy does not contribute to cellular radioresistance

    International Nuclear Information System (INIS)

    Background: (Pre)clinical studies indicate that autophagy inhibition increases response to anti-cancer therapies. Although promising, due to contradicting reports, it remains unclear if radiation therapy changes autophagy activity and if autophagy inhibition changes the cellular intrinsic radiosensitivity. Discrepancies may result from different assays and models through off-target effects and influencing other signaling routes. In this study, we directly compared the effects of genetic and pharmacological inhibition of autophagy after irradiation in human cancer cell lines. Materials and methods: Changes in autophagy activity after ionizing radiation (IR) were assessed by flux analysis in eight cell lines. Clonogenic survival, DNA damage (COMET-assay) and H2AX phosphorylation were assessed after chloroquine or 3-methyladenine pretreatment and after ATG7 or LC3b knockdown. Results: IR failed to induce autophagy and chloroquine failed to change intrinsic radiosensitivity of cells. Interestingly, 3-methyladenine and ATG7- or LC3b-deficiency sensitized cancer cells to irradiation. Surprisingly, the radiosensitizing effect of 3-methyladenine was also observed in ATG7 and LC3b deficient cells and was associated with attenuated γ-H2AX formation and DNA damage repair. Conclusion: Our data demonstrate that the anti-tumor effects of chloroquine are independent of changes in intrinsic radioresistance. Furthermore, ATG7 and LC3b support radioresistance independent of canonical autophagy that involves lysosomal degradation

  3. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, N.; Meineke, V. [Inst. of Radiobiology, Medical Academy of the German Armed Forces, Munich (Germany)

    2003-05-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit {beta}1, were irradiated, and clonogenic cell survival, {beta}1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, {beta}1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in {beta}1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the {beta}1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  4. Clinical perspectives of cancer stem cell research in radiation oncology

    International Nuclear Information System (INIS)

    Radiotherapy has a proven potential to eradicate cancer stem cells which is reflected by its curative potential in many cancer types. Considerable progress has been made in identification and biological characterisation of cancer stem cells during the past years. Recent biological findings indicate significant inter- and intratumoural and functional heterogeneity of cancer stem cells and lead to more complex models which have potential implications for radiobiology and radiotherapy. Clinical evidence is emerging that biomarkers of cancer stem cells may be prognostic for the outcome of radiotherapy in some tumour entities. Perspectives of cancer stem cell based research for radiotherapy reviewed here include their radioresistance compared to the mass of non-cancer stem cells which form the bulk of all tumour cells, implications for image- and non-image based predictive bio-assays of the outcome of radiotherapy and a combination of novel systemic treatments with radiotherapy

  5. Detection of DNA strand breaks in mammalian cells using the radioresistant bacterium PprA protein

    International Nuclear Information System (INIS)

    We have previously found that the PprA protein from Deinococcus radiodurans possesses ability to recognize DNA carrying strand breaks. In the present study, we attempted to visualize radiation-induced DNA strand breaks with PprA protein using immunofluorescence technique to elucidate the DNA damage response mechanism in mammalian cultured cells. As a result, colocalization of Cy2 and DAPI fluorescent signals was observed. This observation suggests that DNA strand breaks in the nucleus of CHO-K1 cells were effectively detected using the PprA protein. The amount of DNA strand breaks (integrated density of Cy2 fluorescent signals) was increased with the increase in the radiation dose. (author)

  6. Increased radioresistance of offspring in rats after maternal stimulation with benzene blood cell extracts

    International Nuclear Information System (INIS)

    Benzene extracts from human blood cells were inoculated intraperitoneally into female rats on days 13, 17 and 21 of pregnancy. Their offspring at 13 to 15 weeks of age were irradiated with gamma rays for 49 h, with a total dose of 15.6 Gy. The number of survivors 30 days after irradiation was significantly greater in offspring from mothers treated with extracts as compared with controls. (author). 1 tab., 8 refs

  7. The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks

    Directory of Open Access Journals (Sweden)

    De Benedetti Arrigo

    2005-09-01

    Full Text Available Abstract Background The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and missegregation of chromosomes probably, due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases it's resistance to ionizing radiation (IR or the radiomimetic drug doxorubicin, also likely due to changes in chromatin remodeling. TLK1B is translationally regulated by the availability of the translation factor eIF4E, and its synthesis is activated by IR. The reason for this mechanism of regulation is likely to provide a rapid means of promoting repair of DSBs. TLK1B specifically phosphorylates histone H3 and Asf1, likely resulting in changes in chromatin structure, particularly at double strand breaks (DSB sites. Results In this work, we provide several lines of evidence that TLK1B protects the cells from IR by facilitating the repair of DSBs. First, the pattern of phosphorylation and dephosphorylation of H2AX and H3 indicated that cells overexpressing TLK1B return to pre-IR steady state much more rapidly than controls. Second, the repair of episomes damaged with DSBs was much more rapid in cells overexpressing TLK1B. This was also true for repair of genomic damage. Lastly, we demonstrate with an in vitro repair system that the addition of recombinant TLK1B promotes repair of a linearized plasmid incubated with nuclear extract. In addition, TLK1B in this in vitro system promotes the assembly of chromatin as shown by the formation of more highly supercoiled topomers of the plasmid. Conclusion In this work, we provide evidence that TLK1B promotes the repair of DSBs, likely as a consequence of a change in chromatin remodeling capacity that

  8. Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells

    International Nuclear Information System (INIS)

    The interaction among nicotinamide, radiation, and heat was studied in vivo using a C3H mouse mammary carcinoma grown in the feet of CDF1 mice. Response following local tumor treatment was assessed by tumor control and regrowth delay. Nicotinamide (1000 mg/kg i.p.) produced maximal radiosensitization when injected 30 min to 2 h before irradiation [enhancement ratios (ERs), 1.2-1.5]. Radiation damage was also increased by heating tumors (43.5 degrees C for 60 min) 4 h after irradiation (ERs = 1.6-2.6). This combined radiation and heat treatment was enhanced by nicotinamide but the effect depended on the assay procedure, such that although a significant increase was observed with the tumor control assay, only a slight increase was seen using regrowth delay as the end point. The development of moist desquamation in normal feet was used to estimate skin damage after irradiation. Nicotinamide and heat both resulted in a small yet significant increase in skin damage (ERs less than 1.2 and 1.1, respectively). A combined treatment resulted in a greater ER of 1.7, but when compared to the tumor response it still gave a therapeutic gain. A histological fluorescent staining technique was used to assess functional tumor vasculature at two periods in time separated by 20 min. Under normal conditions 7.7% of the vessels in this tumor were functional at one time but not the other. This value was reduced to 2.8% after nicotinamide administration. Since these fluctuations in blood flow can result in acute hypoxia we conclude that while heat eliminates chronically hypoxic tumor cells, nicotinamide probably removes the presence of acute hypoxia

  9. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  10. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  11. Isolation and Characterization of Radiation-resistant Lung Cancer D6-R Cell Line

    Institute of Scientific and Technical Information of China (English)

    QI-CHUN WEI; LI SHEN; SHU ZHENG; YONG-LIANG ZHU

    2008-01-01

    To isolate an isogenic radioresistant cancer cell line after fractioned X-ray radiation and characterize the resistant cells. Methods D6 cells were exposed to repeated X-ray irradiation, and after a total dose of 5200 cGy in 8 fractions, a radioresistant monoclone D6-R was obtained. The radiosensitivity and drug sensitivity of the novel radioresistant D6-R cells, together with their parent D6 cells, were measured using clonogenic assay and MTT assay respectively. Cell cycle distribution was analyzed by flow cytometry. Fluorescence microscopy and flow cytometry were applied for apoptosis detection. Comet assay was used for the detection of DNA damage and repair. Results D6-R cells showed higher and broader initial shoulder (D=2.08 Gy, D=1.64 Gy, N=2.20) than the parent D6 ceils (D=1.84 Gy, D=0.34 Gy, N=1.20). They were 1.65-fold more radioresistant than D6 cells in terms of SF(63% vs 38%) and were more resistant to ADM (3.15-fold) and 5-FU (3.86-fold) as compared with the latter. It was found that D6-R cells had higher fractions of cells in S phase (53.4% vs 37.8%) and lower fractions of ceils in G(44.1% vs 57.2%) and G-M phase (2.5% vs 5%). There was no difference in radiation-induced apoptosis between D6-R and D6 cells. D6-R cells showed less initial DNA damage and increased capacity in DNA repair after irradiation, as compared with the parent cells. Conclusions D6-R cells have been isolated by exposing the parental D6 cells to repeated irradiation. The difference in cell cycle pattern together with the induction and repair of DNA damage might, at least partially, explain the mechanism of the radioresistance.

  12. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  13. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  14. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  15. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  16. Inhibitory effects of Hedyotis diffusa Willd. on colorectal cancer stem cells

    OpenAIRE

    Sun, Guodong; Wei, Lihui; FENG, JIANYU; LIN, JIUMAO; Peng, Jun

    2016-01-01

    Cancer stem cells (CSCs) are proposed to be closely correlated with the development and progression of tumors, as well as with chemo- and radioresistance. Targeting CSCs may therefore be a promising potential strategy for the treatment of cancer. Currently, natural products have received great interest due to their therapeutic efficacy and reduced adverse effects compared with modern chemotherapeutics. As a significant component of a number of traditional Chinese medicine formulas, the medici...

  17. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium.

    Science.gov (United States)

    Devigne, Alice; Ithurbide, Solenne; Bouthier de la Tour, Claire; Passot, Fanny; Mathieu, Martine; Sommer, Suzanne; Servant, Pascale

    2015-06-01

    Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.

  18. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  19. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines.

    Science.gov (United States)

    Maeda, Junko; Froning, Coral E; Brents, Colleen A; Rose, Barbara J; Thamm, Douglas H; Kato, Takamitsu A

    2016-01-01

    Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19-0.93). In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB) repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further investigations

  20. Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul [Kyungpook National University College of Medicine, Taegu (Korea, Republic of); Shin, Sei One [Yeungnam University College of Medicine, Taegu (Korea, Republic of)

    2001-12-15

    Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x- irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed.

  1. Stem cell biology in thyroid cancer: Insights for novel therapies

    Institute of Scientific and Technical Information of China (English)

    Parisha; Bhatia; Koji; Tsumagari; Zakaria; Y; Abd; Elmageed; Paul; Friedlander; Joseph; F; Buell; Emad; Kandil

    2014-01-01

    Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review.

  2. Stem cell biology in thyroid cancer: Insights for novel therapies

    Science.gov (United States)

    Bhatia, Parisha; Tsumagari, Koji; Abd Elmageed, Zakaria Y; Friedlander, Paul; Buell, Joseph F; Kandil, Emad

    2014-01-01

    Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review. PMID:25426258

  3. Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation.

    Science.gov (United States)

    Zheng, Hang; Wang, Miao; Wu, Jing; Wang, Zhi-Ming; Nan, Hai-Jun; Sun, He

    2016-06-01

    Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation. PMID:26999331

  4. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  5. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  6. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  7. Innovative therapeutic strategies against chemo and radio-resistant cancers : hydrogenated Nanodiamonds and Metal organic frameworks. An in vitro study in 2D and 3D systems.

    OpenAIRE

    Grall, Romain

    2015-01-01

    The present work focuses on nanoparticles and their great skills for oncology therapies. Two kinds of nanoparticles have been studied in order to biologically validate and characterize their features. The use of hydrogenated Nanodiamonds (H-NDs) as radio sensitizer is based on a physic-chemical postulate where they act as oxidative stress generator through interaction with irradiation. Thus we validated this hypothesis in radio resistant kidney and breast cancer cell lines and identify senesc...

  8. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae

    Directory of Open Access Journals (Sweden)

    Battista John R

    2005-03-01

    Full Text Available Abstract Background Transmission electron microscopy images of Deinococcus radiodurans R1 suggest that the nucleoid of this species exists as a "ring-like" body, and have led to speculation that this structure contributes to the radioresistance of the species. Since extreme radioresistance is characteristic of six other species of Deinococcus, we have attempted to correlate nucleoid morphology and radioresistance by determining whether the genomic DNA of each of these species exhibit similar structures. Results The nucleoid morphologies of seven recognized species of Deinococcus, the radioresistant bacterium Rubrobacter radiotolerans, and the more radiosensitive deinococcal relative Thermus aquaticus were evaluated using epifluorescence and deconvolution techniques. Although the nucleoids of Deinococcus murrayi, Deinococcus proteolyticus, Deinococcus radiophilus, and Deinococcus grandis have structures similar to D. radiodurans, the majority of nucleoids found in Deinococcus radiopugnans and Deinococcus geothermalis lack any specific organization. The nucleoid of R. radiotolerans consists of multiple highly condensed spheres of DNA scattered throughout the cell. The genomic DNA of Thermus aquaticus is uniformly distributed throughout the cell. Conclusion There is no obvious relationship between the shape of a species' nucleoid and extreme radioresistance. However, the genomes of all extremely radioresistance species examined are highly condensed relative to more radiosensitive species. Whether DNA in this tightly packed configuration contributes to the radioresistance of these bacteria remains unknown, but this common structural feature appears to limit diffusion of fragments generated post-irradiation even in cells incapable of repairing strand breaks.

  9. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  10. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  11. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs

  12. MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance

    OpenAIRE

    Abraham Pedroza-Torres; Eduardo López-Urrutia; Verónica García-Castillo; Nadia Jacobo-Herrera; Herrera, Luis A.; Oscar Peralta-Zaragoza; César López-Camarillo; David Cantú De Leon; Jorge Fernández-Retana; Jorge F. Cerna-Cortés; Carlos Pérez-Plasencia

    2014-01-01

    Cervical carcinoma (CC) is one of the most common cancers and a leading cause of mortality in women worldwide. Epidemiologic and experimental data have clearly demonstrated a causal role of high-risk Human Papillomavirus (HR-HPV) types in CC initiation and progression, affecting the cellular processes by targeting and inactivating p53 and pRB host proteins. HR-HPV E5, E6 and E7 oncoproteins have the ability to deregulate several cellular processes, mostly apoptosis, cell cycle control, migra...

  13. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  14. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  15. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W.; Naylor, Matthew J.

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  16. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    OpenAIRE

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza; Goliaei, Bahram

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-2...

  17. Radiotherapy for oligometastatic disease in patients with spinal cord compression (MSCC) from relatively radioresistant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Freundt, Katja; Meyners, Thekla; Dunst, Juergen; Rades, Dirk [Dept. of Radiation Oncology, Univ. of Luebeck (Germany); Bajrovic, Amira [Dept. of Radiation Oncology, Univ. of Hamburg (Germany); Basic, Hiba [Dept. of Radiation Oncology, Univ. of Sarajevo (Bosnia and Herzegovina); Karstens, Johann H. [Dept. of Radiation Oncology, Medical School Hannover (Germany); Adamietz, Irenaeus A. [Dept. of Radiation Oncology, Ruhr Univ. of Bochum (Germany); Rudat, Volker [Dept. of Radiation Oncology, Saad Specialist Hospital, Al-Khobar (Saudi Arabia); Schild, Steven E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2010-04-15

    Background: Radiotherapy alone is the most common treatment for metastatic spinal cord compression (MSCC). Patients with relatively radioresistant tumors and oligometastatic disease may benefit from more intensive therapies (surgery, high-precision radiotherapy). If such therapies are not available, one can speculate whether patients benefit from dose escalation beyond the standard regimen 30 Gy in ten fractions. Patients and methods: Of 206 patients with MSCC from relatively radioresistant tumors (renal cell carcinoma, colorectal cancer, malignant melanoma), 51 had oligometastatic disease (no visceral or other bone metastases, involvement of only one to three vertebrae). In this subset, 21 patients receiving 30 Gy in ten fractions were retrospectively compared to 30 patients receiving higher doses. Seven further potential prognostic factors were investigated: age, gender, tumor type, performance status, interval from tumor diagnosis to radiotherapy of MSCC, pretreatment ambulatory status, and time developing motor deficits before radiotherapy. Results: Motor function improved in 52% of patients after 30 Gy and 40% after higher doses (p = 0.44). On multivariate analysis, functional outcome was associated with interval from tumor diagnosis to radiotherapy (p = 0.020). 1-year local control rates were 84% after 30 Gy and 82% after higher doses (p = 0.75). No factor was associated with local control. 1-year survival rates were 76% after 30 Gy and 63% after higher doses (p = 0.52). On multivariate analysis, survival was associated with performance status (p = 0.022) and interval from tumor diagnosis to radiotherapy (p = 0.039), and almost with pretreatment ambulatory status (p = 0.069). Conclusion: Dose escalation beyond 30 Gy in ten fractions did not improve motor function, local control, and survival in MSCC patients with oligometastatic disease from relatively radioresistant tumors. (orig.)

  18. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  19. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  20. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  1. Mitochondrial respiratory modifiers confer survival advantage by facilitating DNA repair in cancer cells

    International Nuclear Information System (INIS)

    High rate of aerobic glycolysis (Warburg effect), one of the primary hallmarks of cancer cells, acquired during the multistep development of tumors is also responsible for therapeutic resistance. Underlying this hallmark is the compromised respiratory metabolism that contributes to the acquisition of the glycolytic phenotype for sustained ATP production and cell proliferation. Nevertheless, the exact mechanisms underlying the glycolysis-linked radio-resistance in cancer cells remain elusive. In this study, we transiently elevated glycolysis by treating human cell lines (HEK293, BMG-1 and OCT-1) with mitochondrial respiratory modifiers (MRMs) viz. 2,4-dinitrophenol, Photosan-3, and Methylene blue to examine if transient stimulation of glycolysis before irradiation using MRMs is sufficient to confer radioresistance. Treatment with MRMs led to a significant (two-fold) increase in glucose consumption and lactate production together with a robust increase in the protein levels of two key regulators of glucose metabolism, i.e. GLUT-1 and HK-II. MRMs also enhanced the clonogenic survival and facilitated DNA repair by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. Inhibition of glucose uptake by inhibitors like 2-deoxy-D-glucose (2-DG), 3-bromo pyruvate (3-BP) and fasentin under conditions of stimulated glycolysis not only reversed the effect but also sensitized the cells to radiation more profoundly. The inhibition of glycolysis using 2-DG also reduced the levels of Ku 70 (NHEJ) and Rad-51 (HR) proteins. Thus, our results suggest that enhanced glycolysis in cancer cells may confer radio-resistance and offers survival advantage partly by enhancing the repair of DNA damage. (author)

  2. MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance

    Directory of Open Access Journals (Sweden)

    Abraham Pedroza-Torres

    2014-05-01

    Full Text Available Cervical carcinoma (CC is one of the most common cancers and a leading cause of mortality in women worldwide. Epidemiologic and experimental data have clearly demonstrated a causal role of high-risk Human Papillomavirus (HR-HPV types in CC initiation and progression, affecting the cellular processes by targeting and inactivating p53 and pRB host proteins. HR-HPV E5, E6 and E7 oncoproteins have the ability to deregulate several cellular processes, mostly apoptosis, cell cycle control, migration, immune evasion, and induction of genetic instability, which promote the accumulation of mutations and aneuploidy. In this scenario, genomic profiles have shown that aberrant expression of cellular oncogenic and tumor suppressive miRNAs have an important role in CC carcinogenesis. It has been stated that HPV infection and E6/E7 expression are essential but not sufficient to lead to CC development; hence other genetic and epigenetic factors have to be involved in this complex disease. Recent evidence suggests an important level of interaction among E6/E7 viral proteins and cellular miRNA, and other noncoding RNAs. The aim of the current review is to analyze recent data that mainly describe the interaction between HR-HPV established infections and specific cellular miRNAs; moreover, to understand how those interactions could affect radio-therapeutic response in tumor cells.

  3. MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance.

    Science.gov (United States)

    Pedroza-Torres, Abraham; López-Urrutia, Eduardo; García-Castillo, Verónica; Jacobo-Herrera, Nadia; Herrera, Luis A; Peralta-Zaragoza, Oscar; López-Camarillo, César; De Leon, David Cantú; Fernández-Retana, Jorge; Cerna-Cortés, Jorge F; Pérez-Plasencia, Carlos

    2014-01-01

    Cervical carcinoma (CC) is one of the most common cancers and a leading cause of mortality in women worldwide. Epidemiologic and experimental data have clearly demonstrated a causal role of high-risk Human Papillomavirus (HR-HPV) types in CC initiation and progression, affecting the cellular processes by targeting and inactivating p53 and pRB host proteins. HR-HPV E5, E6 and E7 oncoproteins have the ability to deregulate several cellular processes, mostly apoptosis, cell cycle control, migration, immune evasion, and induction of genetic instability, which promote the accumulation of mutations and aneuploidy. In this scenario, genomic profiles have shown that aberrant expression of cellular oncogenic and tumor suppressive miRNAs have an important role in CC carcinogenesis. It has been stated that HPV infection and E6/E7 expression are essential but not sufficient to lead to CC development; hence other genetic and epigenetic factors have to be involved in this complex disease. Recent evidence suggests an important level of interaction among E6/E7 viral proteins and cellular miRNA, and other noncoding RNAs. The aim of the current review is to analyze recent data that mainly describe the interaction between HR-HPV established infections and specific cellular miRNAs; moreover, to understand how those interactions could affect radio-therapeutic response in tumor cells. PMID:24840898

  4. Evidence and analysis of radioresistance induced by protracted gamma irradiation of Chlorella pyrenoidosa chick, green unicellular alga

    International Nuclear Information System (INIS)

    Chlorella cells, unicellular green algae, are a suitable living material to study radiosensitivity of eucaryotic cells after acute or protracted gamma irradiations. Cell survival and survival curves are taken as end-points. Methods of irradiation were defined taking in account interferences of the different factors which can intervene during the experimentation. Survival curves after protracted irradiation of Chlorella cell cultures in plateau-phase have a shape that can be explained by radioresistance. The population of surviving cells becomes radioresistant in front of protracted and acute irradiations, acute irradiation allowing us to analyze radioresistance. Radioresistance increases with the total dose of protracted irradiation. The decrease of radiosensitivity with aging of cells is not able to explain the phenomenon. It is not due to selection of radioresistance cells by protracted irradiation. All the cells get radioresistance. Radioresistance decreases with the time when protracted irradiation is suppressed. It is not found in offspring. It is not a mutation but perhaps the effect of a stimulation of repair processes, but not potentially lethal damage repair

  5. High expression of HIF-2α and its anti-radiotherapy effect in lung cancer stem cells.

    Science.gov (United States)

    Sun, J C; He, F; Yi, W; Wan, M H; Li, R; Wei, X; Wu, R; Niu, D L

    2015-01-01

    Hypoxia-inducible factor-2 alpha (HIF-2α) has been shown to regulate cell stemness, although the expression and effects of HIF-2α in lung cancer stem cells remained unclear. This study investigated HIF-2α expression in lung cancer stem cells, as well as the relationship between HIF-2α expression and radioresistance in lung cancer cells. Stem-like cells (CD133(+)) in the non-small-cell lung cancer cell line A549 were enriched by serum-free culture conditions, and CD133(+) cells were sorted via fluorescence-activated cell sorting. A549 cells were treated with middle-infrared radiation, and the level of HIF-2α expression was determined by a quantitative polymerase chain reaction assay and western blot analysis. The level of HIF-2α expression in tissue sections from 50 cases of clinically confirmed non-small-cell lung cancer was determined via immunohistochemical analysis, and its correlation with prognosis after radiotherapy was analyzed. HIF-2α levels in CD133(+) cells were significantly higher than those in CD133(-) cells (P = 0.032). However, after radiation treatment, these levels were significantly upregulated in both CD133(+) and CD133(-) cells (P = 0.031 and P = 0.023, respectively). After irradiation, the proportions of apoptotic, dead, and autophagic CD133(+) A549 cells were considerably lower than those of CD133(-) A549 cells (P < 0.05). Furthermore, the recovery of carcinoembryonic antigen to pre-radiation levels was more rapid in lung cancer patients with high levels of HIF-2α expression, and these patients had shorter survival times (P = 0.018). HIF-2α is highly expressed in lung cancer stem cells, which may lead to radioresistance. In conclusion, HIF-2α is a potential prognostic marker for lung cancer. PMID:26782458

  6. Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin.

    Directory of Open Access Journals (Sweden)

    Quinn Matthews

    Full Text Available Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460 and breast (MCF7 tumor cells compared to prostate (LNCaP tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy.

  7. Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin.

    Science.gov (United States)

    Matthews, Quinn; Isabelle, Martin; Harder, Samantha J; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G; Jirasek, Andrew; Lum, Julian J

    2015-01-01

    Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy. PMID:26280348

  8. Ring-like nucleoid does not play a key role in radioresistance of Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    GAO GuanJun; LU HuiMing; YIN LongFei; HUA YueJin

    2007-01-01

    The conclusion based on transmission electron microscopy, "the tightly packed ring-like nucleoid of the Deinococcus radiodurans R1 is a key to radioresistance", has instigated lots of debates. In this study, according to the previous research of Pprl's crucial role in radioresistance of D. radiodurans, we have attempted to examine and compare the nucleoid morphology differences among wild-type D. radiodurans R1 strain, pprl function-deficient mutant (YR1), and pprl function-complementary strains(YR1001, YR1002, and YR1004) before and after exposure to ionizing irradiation. Fluorescence microscopy images indicate: (1) the majority of nucleoid structures in radioresistant strain R1 cells exhibit the tightly packed ring-like morphology, while the pprl function-deficient mutant YR1 cells carrying predominate ring-like structure represent high sensitivity to irradiation; (2) as an extreme radioresistant strain similar to wild-type R1, pprl completely function-complementary strain YR1001 almost displays the loose and irregular nucleoid morphologies. On the other hand, another radioresistant pprl partly function-complementary strain YR1002's nucleiods exhibit about 60% ring-like structure; (3) a Pprl C-terminal deletion strain YR1004 consisting of approximately 60% of ring-like nucleoid is very sensitive to radiation. Therefore, our present experiments do not support the conclusion that the ring-like nucleoid of D. radiodurans does play a key role in radioresistance.

  9. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  10. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  11. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  12. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells

    International Nuclear Information System (INIS)

    Background and purpose: The success rate of any therapeutic approach depends on the therapeutic window, which can be increased by either raising the resistance of the normal tissue without protecting the tumor cells or by sensitizing the tumor cells but not the normal cells. Two promising candidate genes for normal tissue protection against radiation-induced damage may be the copper-zinc (CuZnSOD) and manganese superoxide-dismutase genes (MnSOD). The recombinant adeno-associated virus 2 (rAAV-2) offers attractive advantages over other vector systems: low immunogenicity, ability to infect dividing and non-dividing tissues and a low chance of insertional mutagenesis, due to extra-chromosomal localization. We report the production of novel rAAV-2-SOD vectors and the investigation of their modulating effects on HeLa-RC cells after irradiation. Material and methods: rAAV-2 vectors were cloned containing the human CuZnSOD or MnSOD as transgene and vector stocks were produced. In the initial experiments human cervix carcinoma (HeLa-RC) cells were chosen for their susceptibility to rAAV-2. On day 0, cells were seeded and transduced with the rAAV-2-SOD vectors. On day 3, cells were harvested, irradiated (0.5-8 Gy) and reseeded in different assays (FACS, SOD, MTT and colony assays). Results: Although >70% of all cells expressed SOD and significant amounts of functional SOD protein were detected, no radioprotective effect of SOD was observed after transduction of HeLa-RC cells. Conclusions: Novel rAAV-2-SOD vectors that could be produced at high titer, were able to efficiently infect cells and express the SOD genes. The absence of a radioprotective effect in HeLa-RC cancer cells indicates an additional safety feature and suggests that rAAV-mediated MnSOD overexpression might contribute to increasing the therapeutic index when applied for normal tissue protection

  13. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  14. Characterization and application of radiation-sensitizing genes by DNA methylation in lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2011-03-15

    The sensitivity or resistance of cancer cells and normal tissues to ionizing radiation plays an important role in the clinical setting of lung cancer treatment. However, to date the exact molecular mechanisms of intrinsic radiosensitivity have not been well explained. In this study, we compared the radiosensitivity or radioresistance in two non-small cell lung cancers (NSCLCs), H460 and A549, and investigated the signaling pathways that confer radioresistance. H460 cells showed a significant G2/M arrest after 12 h of irradiation (5 Gy), reaching 60% of G2/M phase arrest. A549 cells also showed a significant G2/M arrest after 12 h of exposure; however, this arrest completely disappeared after 24 h of exposure. A549 has higher methylated CpG sites in PTEN, which is correlated with tumor radioresistance in some cancer cells, than H460 cells, and the average of the extent of the methylation was {approx}4.3 times higher in A549 cells than in H460 cells. As a result, PTEN expression was lower in A549 than in H460. Conducting Western blot analysis, we found that PTEN acted as a negative regulator for pAkt, and the pAkt acted as a negative regulator for p53 expression. According to the above results, we concluded that the radiosensitivity shown in H460 cells may be due to the higher expression of PTEN through p53 signaling pathway. The expression of the Wnt-antagonist Dickkopf gene (DKK) is downregulated in several types of tumors as a consequence of epigenetic DNA modification; four DKK members, DKK1, DKK2, DKK3, and DKK4, have been identified. In this study, we investigated another function of DKK3 in non-small cell lung cancer H460 cells, in which DKK3 was hypermethylated (44%) but still expressed, by interfering with DKK3 expression using DKK3-silencing RNA (SiRNA). We found that knockdown of DKK3 expression by DKK3 SiRNA transfection led to the detachment of H460 cells from the bottom of the culture plate and caused apoptosis. The expression of cyclindependent kinases

  15. RELATIONSHIP BETWEEN TELOMERE LENGTH AND RADIOSENSITIVITY IN VARIOUS HUMAN CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    CAO Zhen; ZHOU Yun-feng; LUO Zhi-guo; XIAO Chuang-ying; DAI Jing; PAN Dong-feng; ZHOU Fu-xiang; XIE Cong-hua; ZHANG Gong; LIU Shi-quan

    2005-01-01

    Objective: To investigate the relationship between telomere length and radiosensitivity in various human cancer cell lines with the expectation to find a valid and common predictor of radiosensitivity for different cancers. Methods: Eight human cancer cell lines were used, including five human breast cancer cell lines (ZR-75-30, MCF-7, MDA-MB-435S, T-47-D,F539-1590), two human larynx squamous carcinoma cell lines (Hep-2 and Hep-2R) and a human malignant glioma cell line(U251). Among them, the radioresistant cell line Hep-2R was isolated and established from a radiosensitive human larynx squamous carcinoma cell line Hep-2 by our center. The radiobiological characteristics of the eight lines were analyzed by the method of colony-forming assay and the radiosensitivity parameters were calculated. Telomere length was analyzed by TRF(mean Telomere Restriction Fragments) length assay. Results: The radioresistance of Hep-2R cell line proved to be stable in long-term passaged cultures as well as in frozen samples. Radiosensitivity parameters are different among those lines. The SF2 values of Hep-2 and U251 are 0.4148 and 0.7520, respectively; The SF2 values of breast cancer cell lines are between those of Hep-2 and U251. The TRF of Hep-2R is 11.12Kb, longer than three times that of its parental counterpart. There is a positive correlation both between SF2 and TRF (r=0.786, P<0.05), and between Do and TRF (r=0.905, P<0.01). Conclusion:It is concluded that radiosensitivity and telomere length (TRF) are negatively correlated, TRF could be a valid predictor for radiosensitivity.

  16. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  17. Cancer Stem Cells in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer

  18. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  19. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  20. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis.

    Science.gov (United States)

    Colombo, Michela; Mirandola, Leonardo; Reidy, Adair; Suvorava, Natallia; Konala, Venu; Chiaramonte, Raffaella; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Nugyen, Diane D; Dalhbeck, Scott; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2015-03-01

    Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer. PMID:25901861

  1. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, studies on the mechanism for radioresistance were carried out mostly using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1)Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  2. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  3. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  4. Autophagy Inhibition to Increase Radiosensitization in Breast Cancer

    OpenAIRE

    Liang, Diana Hwang; El-Zein, Randa; Dave, Bhuvanesh

    2015-01-01

    Currently, many breast cancer patients with localized breast cancer undergo breast-conserving therapy, consisting of local excision followed by radiation therapy. Following radiation therapy, breast cancer cells are noted to undergo induction of autophagy, development of radioresistance, and enrichment of breast cancer stem cell subpopulations. It is hypothesized that inhibition of the cytoprotective autophagy that arises following radiation therapy increases radiosensitivity and confers long...

  5. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio-resistance

  6. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu, E-mail: oommen1978@gmail.com [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  7. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing.

    Directory of Open Access Journals (Sweden)

    Guo Li

    Full Text Available BACKGROUND: Rapidly growing evidence suggests that microRNAs (miRNAs are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC. METHODS: The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models. RESULTS: 50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501, 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323 and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1 and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1. CONCLUSIONS: Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.

  8. Cancer Stem Cells in Breast Cancer

    OpenAIRE

    Fumitaka Takeshita; Tomohiro Fujiwara; Takahiro Ochiya; Makiko Ono; Ryou-u Takahashi

    2011-01-01

    The cancer stem cell (CSC) theory is generally acknowledged as an important field of cancer research, not only as an academic matter but also as a crucial aspect of clinical practice. CSCs share a variety of biological properties with normal somatic stem cells in self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cel...

  9. EGFR-dependent Impact of Indol-3-Carbinol on Radiosensitivity 
of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiao XIAO

    2012-07-01

    Full Text Available Background and objective Indole-3-carbinol (I3C is a naturally occurring phytochemical found in cruciferous vegetables. The aim of the present study is to investigate the influence of I3C on radiosensitivity in epidermal growth factor receptor (EGFR-positive and EGFR-negative lung cancer cell lines. Methods Human lung adenocarcinoma NIH-H1975 cells and human lung squamous carcinoma NIH-H226 and NIH-H520 cells were routinely cultured in RPMI-1640. MTT assay and clonogenic assay were used to detect cell growth and survival, respectively. Western blot and RT-PRC assay was employed to detect EGFR protein and mRNA expression. Results 5 μmol/L of I3C significantly reduced radiosensitivity of EGFR-positive NIH-H1975 and NIH-H226 cells, but failed to affect radiosensitivity of EGFR-negative NIH-H520 cells. Furthermore, I3C caused an increased expression of total EGFR and pEGFR (Y845 protein in NIH-H1975 and NIH-H226 cell lines, but not in NIH-H520 cell line. A reduction of EGFR expression by EGFR-siRNA significantly inhibited I3C-caused radioresistance in NIH-H1975 cells. Conclusion Our data presented here for the first time demonstrate that I3C reduces radiosensitivity of lung cancer cells by mediating EGFR expression, indicating that EGFR may be an important target for I3C-mediated radioresistance in lung cancer.

  10. Sensitization of hepatocellular carcinoma cells to irradiation by miR‑34a through targeting lactate dehydrogenase‑A.

    Science.gov (United States)

    Li, Xiaogang; Lu, Ping; Li, Bo; Yang, Rong; Chu, Yan; Zhang, Zhiping; Wan, Hongwei; Niu, Chao; Wang, Chunxiao; Luo, Kaiyuan

    2016-04-01

    Radiation is a therapeutic strategy for the treatment of cancer, and is also used for the treatment of hepatocellular carcinoma. MicroRNAs (miRs) are endogenous, non‑coding single‑stranded RNA molecules, which regulate gene expression at the post‑transcriptional level. In the present study, the roles of miR‑34a‑mediated glycolysis in radiation sensitivity were investigated. By establishing a radioresistant liver cancer cell line, the present study compared the expression level of miR‑34a from radiosensitive and radioresistant cells using the reverse transcription‑quantitative polymerase chain reaction. The glucose uptake and lactate production were also compared between the two types of cells. The results demonstrated that miR‑34a acted as a tumor suppressor in human hepatocellular cancer cells. Following comparison of radiosensitive and radioresistant cancer cells, the results of the present study demonstrated that miR‑34a was negatively correlated with radiation resistance; and levels of miR‑34a were significantly downregulated in the HepG2 radioresistant cells. Furthermore, the rate of glycolysis in the radioresistant cells was elevated, and there was evidence that glucose uptake and lactate production increased. Lactate dehydrogenase A (LDHA), which is a key enzyme in the glycolysis signaling pathway, was found to be a target of miR‑34a in hepatocellular cancer cells. Notably, the overexpression of miR‑34a re‑sensitized HepG2 radioresistant cells to radiation treatment by inhibiting LDHA. The results of the present study revealed a negative correlation between miR‑34a and glycolysis, caused by the targeting of LDHA‑34a, providing a novel mechanism for miR‑34a‑mediated radioresistance. PMID:26956717

  11. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    Directory of Open Access Journals (Sweden)

    Fedrigo Carlos A

    2011-11-01

    Full Text Available Abstract Background Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM cell radioresistance. Methods Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1 were irradiated (5, 10 and 20 Gy, their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059 and Akt (wortmannin. Results At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059 and Akt (wortmannin leads to radiosensitization of MO59J spheroids. Conclusions These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance.

  12. Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro.

    Science.gov (United States)

    Marvaso, Giulia; Barone, Agnese; Amodio, Nicola; Raimondi, Lavinia; Agosti, Valter; Altomare, Emanuela; Scotti, Valerio; Lombardi, Angela; Bianco, Roberto; Bianco, Cataldo; Caraglia, Michele; Tassone, Pierfrancesco; Tagliaferri, Pierosandro

    2014-06-01

    Radiotherapy is one of the most effective therapeutic strategies for breast cancer patients, although its efficacy may be reduced by intrinsic radiation resistance of cancer cells. Recent investigations demonstrate a link between cancer cell radio-resistance and activation of sphingosine kinase (SphK1), which plays a key role in the balance of lipid signaling molecules. Sphingosine kinase (SphK1) activity can alter the sphingosine-1-phosphate (S1P)/ceramide ratio leading to an imbalance in the sphingolipid rheostat. Fingolimod (FTY720) is a novel sphingosine analog and a potent immunosuppressive drug that acts as a SphK1 antagonist, inhibits the growth, and induces apoptosis in different human cancer cell lines. We sought to investigate the in vitro radiosensitizing effects of FTY720 on the MDA-MB-361 breast cancer cell line and to assess the effects elicited by radiation and FTY720 combined treatments. We found that FTY720 significantly increased anti-proliferative and pro-apoptotic effects induced by a single dose of ionizing radiation while causing autophagosome accumulation. At the molecular level, FTY720 significantly potentiated radiation effects on perturbation of signaling pathways involved in regulation of cell cycle and apoptosis, such as PI3K/AKT and MAPK. In conclusion, our data highlight a potent radiosensitizing effect of FTY720 on breast cancer cells and provide the basis of novel therapeutic strategies for breast cancer treatment. PMID:24657936

  13. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  14. Cancer Stem Cells in Pancreatic Cancer

    OpenAIRE

    Karl-Walter Jauch; Hendrik Seeliger; Hanno Niess; Qi Bao; Andrea Renner; Yue Zhao; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC t...

  15. Cancer stem cells in prostate cancer

    OpenAIRE

    Moltzahn, Felix; Thalmann, George N

    2013-01-01

    Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitation...

  16. Radiosensitizing Effect of TRPV1 Channel Inhibitors in Cancer Cells.

    Science.gov (United States)

    Nishino, Keisuke; Tanamachi, Keisuke; Nakanishi, Yuto; Ide, Shunta; Kojima, Shuji; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2016-07-01

    Radiosensitizers are used in cancer therapy to increase the γ-irradiation susceptibility of cancer cells, including radioresistant hypoxic cancer cells within solid tumors, so that radiotherapy can be applied at doses sufficiently low to minimize damage to adjacent normal tissues. Radiation-induced DNA damage is repaired by multiple repair systems, and therefore these systems are potential targets for radiosensitizers. We recently reported that the transient receptor potential vanilloid type 1 (TRPV1) channel is involved in early responses to DNA damage after γ-irradiation of human lung adenocarcinoma A549 cells. Therefore, we hypothesized that TRPV1 channel inhibitors would have a radiosensitizing effect by blocking repair of radiation-induced cell damage. Here, we show that pretreatment of A549 cells with the TRPV1 channel inhibitors capsazepine, AMG9810, SB366791 and BCTC suppressed the γ-ray-induced activation of early DNA damage responses, i.e., activation of the protein kinase ataxia-telangiectasia mutated (ATM) and accumulation of p53-binding protein 1 (53BP1). Further, the decrease of survival fraction at one week after γ-irradiation (2.0 Gy) was enhanced by pretreatment of cells with these inhibitors. On the other hand, inhibitor pretreatment did not affect cell viability, the number of apoptotic or necrotic cells, or DNA synthesis at 24 h after irradiation. These results suggest that inhibition of DNA repair by TRPV1 channel inhibitors in irradiated A549 cells caused gradual loss of proliferative ability, rather than acute facilitation of apoptosis or necrosis. TRPV1 channel inhibitors could be novel candidates for radiosensitizers to improve the efficacy of radiation therapy, either alone or in combination with other types of radiosensitizers. PMID:27150432

  17. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    International Nuclear Information System (INIS)

    Highlights: → MELK expression significantly increased when the cells are exposed to radiation or 5-FU. → Suppression of MELK caused cell cycle changes and decrease in proliferation. → Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  18. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seungho [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Ku, Ja-Lok, E-mail: kujalok@snu.ac.kr [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} MELK expression significantly increased when the cells are exposed to radiation or 5-FU. {yields} Suppression of MELK caused cell cycle changes and decrease in proliferation. {yields} Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  19. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients

    International Nuclear Information System (INIS)

    Experimental and clinical data suggest that solid cancers contain treatment-resistant cancer stem cells that will impair treatment efficacy. The objective of this study was to investigate if head and neck squamous cell carcinoma (HNSCC) also contain cancer stem cells that can be identified by low 26S proteasome activity and if their presence correlates to clinical outcome. Human HNSCC cells, engineered to report lack of proteasome activity based on accumulation of a fluorescent fusion protein, were separated based on high (ZsGreen-cODCneg) or low (ZsGreen-cODCpos) proteasome activity. Self-renewal capacity, tumorigenicity and radioresistance were assessed. Proteasome subunit expression was analyzed in tissue microarrays and correlated to survival and locoregional cancer control of 174 patients with HNSCC. HNSCC cells with low proteasome activity showed a significantly higher self-renewal capacity and increased tumorigenicity. Irradiation enriched for ZsGreen-cODCpos cells. The survival probability of 82 patients treated with definitive radio- or chemo-radiotherapy exhibiting weak, intermediate, or strong proteasome subunit expression were 21.2, 28.8 and 43.8 months (p = 0.05), respectively. Locoregional cancer control was comparably affected. Subpopulations of HNSCC display stem cell features that affect patients’ tumor control and survival. Evaluating cancer tissue for expression of the proteasome subunit PSMD1 may help identify patients at risk for relapse

  20. Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-κB Activity

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-κB (NF-κB) activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-κB activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-κB activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of κB alpha, inhibition of inhibitor of κB kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-κB-regulated gene products (Bcl-2, Bcl-xL, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-κB activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.

  1. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.)

  2. Electro pulse mediated enhancement of radiation response of murine cancer cells

    International Nuclear Information System (INIS)

    Full text: Radiotherapy is an important modality of cancer treatment but most often clinicians face some limitations. The major problems in cancer treatment are the radioresistance and chemoresistance of cancer cells which poses challenge to researchers and clinicians. To overcome these problems, a search for achieving the improved treatment of cancer is highly warranted. Electroporation is a biophysical technique that involves transient increase in cell membrane permeability by application of high voltage pulses of short duration. In recent years, cell membrane has been considered as a common target for ionizing radiation and electroporation. In our laboratory, we have investigated the combined treatment of gamma radiation and electric pulses to cancer cells both in vivo and in vitro. Experiments have been conducted in vitro using Ehlrich Ascites carcinoma cells with 60Co gamma irradiation and electric pulses. Results have shown significantly enhanced cytotoxicity of cells on combined treatment with radiation and electroporation. In vivo studies have been carried out using murine fibrosarcoma as a model system. Mice were segregated into following treatment groups: Control, radiation, electroporation, and radiation plus electroporation. Studies on tumor growth kinetics indicated a significant tumor growth delay when the transplanted tumor was treated with the a radiation followed by electroporation. It is suggested that optimization of parameters of electroporation and radiation may prove a powerful treatment modality for cancer in clinic

  3. Silencing miR-21 Sensitizes Non-Small Cell Lung Cancer A549 Cells to Ionizing Radiation through Inhibition of PI3K/Akt

    Directory of Open Access Journals (Sweden)

    Yongfu Ma

    2014-01-01

    Full Text Available We investigated the role of microRNA-21 (miR-21 in radiotherapy resistance of non-small cell lung cancers (NSCLC and the underlying molecular mechanism. A549 cells were transfected with anti-miR-21 or the negative control oligonucleotides and real-time PCR was applied to detect miR-21 expression level. After ionizing radiation (IR, the survival fractions, proliferation, apoptosis, and expression of phosphorylated-Akt of A549 cells were determined by clonogenic survival analysis, MTT assay, flow cytometry, and Western blotting. Downregulation of miR-21 in radioresistant NSCLC A549 cells inhibited the colony-forming ability and proliferation of A549 cells after IR. Moreover, silencing miR-21 enhanced apoptosis of A549 cells induced by IR accompanied by decreased phosphorylated-Akt protein level. However, PI3K activator IGF-1 reversed suppression of phosphorylated-Akt protein level and promotion of apoptosis of A549 cells after IR caused by miR-21 knockdown. Silencing miR-21 in radioresistant NSCLC A549 cells sensitized them to IR by inhibiting cell proliferation and enhancing cell apoptosis through inhibition of PI3K/Akt signaling pathway. This might help in sensitization of NSCLC to radiotherapy.

  4. Critical Role of Aberrant Angiogenesis in the Development of Tumor Hypoxia and Associated Radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Multhoff, Gabriele, E-mail: Gabriele.multhoff@lrz.tu-muenchen.de [Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich (Germany); Clinical Cooperation Group “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Radons, Jürgen [multimmune GmbH, Munich, Ismaningerstr. 22, 81675 Munich (Germany); Vaupel, Peter [Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich (Germany)

    2014-04-08

    Newly formed microvessels in most solid tumors show an abnormal morphology and thus do not fulfil the metabolic demands of the growing tumor mass. Due to the chaotic and heterogeneous tumor microcirculation, a hostile tumor microenvironment develops, that is characterized inter alia by local hypoxia, which in turn can stimulate the HIF-system. The latter can lead to tumor progression and may be involved in hypoxia-mediated radioresistance of tumor cells. Herein, cellular and molecular mechanisms in tumor angiogenesis are discussed that, among others, might impact hypoxia-related radioresistance.

  5. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  6. Urothelial Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2010-01-01

    Full Text Available There is mounting evidence supporting the idea that tumors, similar to normal adult tissues, arise from a specific stem-like cell population, the cancer stem cells (CSCs, which are considered as the real driving force behind tumor growth, the ability to metastasize, as well as resistance to conventional antitumor therapy. The concept that cancer growth recapitulates normal proliferative and/or regenerative processes, even though in very dysfunctional ways, has tremendous implications for cancer therapy. The rapid development of the CSC field, shoulder to shoulder with powerful genome-wide screening techniques, has provided cause for optimism for the development of more reliable therapies in the future. However, several important issues still lie ahead. Recent identification of a highly tumorigenic stem-like compartment and existence of urothelial differentiation programs in urothelial cell carcinomas (UCCs raised important questions about UCC initiation and development. This review examines the present knowledge on CSCs in UCCs regarding the similarities between CSCs and the adult urothelial stem cells, potential origin of urothelial CSCs, main regulatory pathways, surface markers expression, and the current state of CSC-targeting therapeutic strategies.

  7. Ring-like nucleoid does not play a key role in radioresistance of Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The conclusion based on transmission electron microscopy, "the tightly packed ring-like nucleoid of the Deinococcus radiodurans R1 is a key to radioresistance", has instigated lots of debates. In this study, according to the previous research of PprI’s crucial role in radioresistance of D. radiodurans, we have attempted to examine and compare the nucleoid morphology differences among wild-type D. ra-diodurans R1 strain, pprI function-deficient mutant (YR1), and pprI function-complementary strains (YR1001, YR1002, and YR1004) before and after exposure to ionizing irradiation. Fluorescence mi-croscopy images indicate: (1) the majority of nucleoid structures in radioresistant strain R1 cells ex-hibit the tightly packed ring-like morphology, while the pprI function-deficient mutant YR1 cells carrying predominate ring-like structure represent high sensitivity to irradiation; (2) as an extreme radioresistant strain similar to wild-type R1, pprI completely function-complementary strain YR1001 almost displays the loose and irregular nucleoid morphologies. On the other hand, another radioresistant pprI partly function-complementary strain YR1002’s nucleiods exhibit about 60% ring-like structure; (3) a PprI C-terminal deletion strain YR1004 consisting of approximately 60% of ring-like nucleoid is very sensi-tive to radiation. Therefore, our present experiments do not support the conclusion that the ring-like nucleoid of D. radiodurans does play a key role in radioresistance.

  8. Exploring Spatial Overlap of High-Uptake Regions Derived From Dual Tracer Positron Emission Tomography–Computer Tomography Imaging Using 18F-Fluorodeoxyglucose and 18F-Fluorodeoxythymidine in Nonsmall Cell Lung Cancer Patients

    OpenAIRE

    Liu, Jing; Li, Chengqiang; Hu, Man; Lu, Jie; Shi, Xiaorong; XING, LIGANG; Sun, Xindong; FU, ZHENG; YU, JINMING; MENG, XUE

    2015-01-01

    Abstract Interest is growing in radiotherapy to nonuniformly boost radioresistant regions within nonsmall cell lung cancer (NSCLC) using molecular imaging techniques. The complexity of tumor behavior is beyond the ability of any single radiotracer to reveal. We hold dual tracer positron emission tomography–computer tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) and fluorodeoxythymidine (FLT) for NSCLC patients to offer an integrated overlook of tumor biological behaviors quantitati...

  9. Radioresistance related genes screened by protein-protein interaction network analysis in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Objective: To discover radioresistance associated molecular biomarkers and its mechanism in nasopharyngeal carcinoma by protein-protein interaction network analysis. Methods: Whole genome expression microarray was applied to screen out differentially expressed genes in two cell lines CNE-2R and CNE-2 with different radiosensitivity. Four differentially expressed genes were randomly selected for further verification by the semi-quantitative RT-PCR analysis with self-designed primers. The common differentially expressed genes from two experiments were analyzed with the SNOW online database in order to find out the central node related to the biomarkers of nasopharyngeal carcinoma radioresistance. The expression of STAT1 in CNE-2R and CNE-2 cells was measured by Western blot. Results: Compared with CNE-2 cells, 374 genes in CNE-2R cells were differentially expressed while 197 genes showed significant differences. Four randomly selected differentially expressed genes were verified by RT-PCR and had same change trend in consistent with the results of chip assay. Analysis with the SNOW database demonstrated that those 197 genes could form a complicated interaction network where STAT1 and JUN might be two key nodes. Indeed, the STAT1-α expression in CNE-2R was higher than that in CNE-2 (t=4.96, P<0.05). Conclusions: The key nodes of STAT1 and JUN may be the molecular biomarkers leading to radioresistance in nasopharyngeal carcinoma, and STAT1-α might have close relationship with radioresistance. (authors)

  10. Invasive oral cancer stem cells display resistance to ionising radiation.

    Science.gov (United States)

    Gemenetzidis, Emilios; Gammon, Luke; Biddle, Adrian; Emich, Helena; Mackenzie, Ian C

    2015-12-22

    There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro, with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro, and that sensitization of CD44hi/ESAlow cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.

  11. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  12. MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo.

    Science.gov (United States)

    Zhu, Wei; Liu, Jing; Nie, Jihua; Sheng, Wenjiong; Cao, Han; Shen, Wenhao; Dong, Aijing; Zhou, Jundong; Jiao, Yang; Zhang, Shuyu; Cao, Jianping

    2015-10-01

    Radiotherapy is a common treatment modality for lung cancer, however, radioresistance remains a fundamental barrier to attaining the maximal efficacy. Cancer cells take advantage of the ubiquitin-proteasome system (UPS) for increased proliferation and decreased apoptotic cell death. MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal‑H), a specific and selective reversible inhibitor of the 26S proteasome, has shown anticancer effect in multiple types of cancers. Previously, we have reported that MG132 enhances the anti‑growth and anti-metastatic effects of irradiation in lung cancer cells. However, whether MG132 can enhance the radiosensitivity in lung cancer cells in vitro and in vivo is still unknown. In this study, we found that MG132 increased apoptosis and dicentric chromosome ratio of A549 and H1299 cells treated by irradiation. Radiation-induced NF-κB expression and IκBα phosphorylation was attenuated in MG132 plus irradiation-treated cells. The in vivo model of H1299 xenografts of nude mice showed that the tumor size of MG132 plus irradiation treated xenografts was smaller than that of irradiation, MG132 or the control group. Moreover, MG132 plus irradiation group showed significant reduced Ki67 expression. Taken together, these results demonstrate that MG132 enhances the radiosensitivity through multiple mechanisms in vitro and in vivo. PMID:26238156

  13. A radio-resistant perforin-expressing lymphoid population controls allogeneic T cell engraftment, activation, and onset of graft-versus-host disease in mice.

    Science.gov (United States)

    Davis, Joanne E; Harvey, Michael; Gherardin, Nicholas A; Koldej, Rachel; Huntington, Nicholas; Neeson, Paul; Trapani, Joseph A; Ritchie, David S

    2015-02-01

    Immunosuppressive pretransplantation conditioning is essential for donor cell engraftment in allogeneic bone marrow transplantation (BMT). The role of residual postconditioning recipient immunity in determining engraftment is poorly understood. We examined the role of recipient perforin in the kinetics of donor cell engraftment. MHC-mismatched BMT mouse models demonstrated that both the rate and proportion of donor lymphoid cell engraftment and expansion of effector memory donor T cells in both spleen and BM were significantly increased within 5 to 7 days post-BMT in perforin-deficient (pfn(-/-)) recipients, compared with wild-type. In wild-type recipients, depletion of natural killer (NK) cells before BMT enhanced donor lymphoid cell engraftment to that seen in pfn(-/-) recipients. This demonstrated that a perforin-dependent, NK-mediated, host-versus-graft (HVG) effect limits the rate of donor engraftment and T cell activation. Radiation-resistant natural killer T (NKT) cells survived in the BM of lethally irradiated mice and may drive NK cell activation, resulting in the HVG effect. Furthermore, reduced pretransplant irradiation doses in pfn(-/-) recipients permitted long-term donor lymphoid cell engraftment. These findings suggest that suppression of perforin activity or selective depletion of recipient NK cells before BMT could be used to improve donor stem cell engraftment, in turn allowing for the reduction of pretransplant conditioning.

  14. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  15. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    OpenAIRE

    Yi-Min Zhu; Li-Hua Yuan; Ke-Feng Pu; Bing Dong; An-Xin Wang; Li-Sha Chen

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell resea...

  16. Thermoresistance in radioresistant strains of 'Drosophila nebulosa'

    International Nuclear Information System (INIS)

    The detection of thermoresistance in radioresistant strains of 'D. nebulosa' is described, as well as some conclusions on the genetic nature of these differences are presented. The strains used in this experiment were MF 204, from 'Morro de Ferro', in Pocos de Caldas (MG) (one of the biggest radioactive anomalies in the world) whose radioresistance is due to its additive genetic components (Kratz, 1973 and 1975); 85(87) R, an induced radioresistant strain; and MF K a control 'pooled' strain obtained near 'Morro do Ferro'. Survival tests, 72 hours after temperature shocks, performed in the interval of 360C to 390C showed a decreasing gradient of thermoresistance with the following regression coefficients: MF 204 b=-5,4; 85(87)R b=-7,2 and MF K b=-7,9. Bifactorial analysis (strains and sexes) performed at 380C and 390C confirmed differences among strains (P<01 and P<0,5, respectively) suggesting a poligenic control of the thermoresistance. Consitent and verified relations among strains, being simultaneously resistant to different kinds of mutagenic factors, are considered evidence of the existence of general mechanisms in mutagenic control. Therefore, the results, together with results of Tsukamoto, Ogaki and Kikkawa 1957, Ogaki 1962 and Nakashima-Tanaka 1966, Parsons 1969, add to the hypotheses of the existence of general mechanisms in mutagenic control

  17. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  18. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  19. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  20. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    Science.gov (United States)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing

  1. Strategies To Assess Hypoxic/HIF-1-Active Cancer Cells for the Development of Innovative Radiation Therapy

    International Nuclear Information System (INIS)

    Local tumor recurrence and distant tumor metastasis frequently occur after radiation therapy and result in the death of cancer patients. These problems are caused, at least in part, by a tumor-specific oxygen-poor microenvironment, hypoxia. Oxygen-deprivation is known to inhibit the chemical ionization of both intracellular macro-molecules and water, etc., and thus reduce the cytotoxic effects of radiation. Moreover, DNA damage produced by free radicals is known to be more repairable under hypoxia than normoxia. Hypoxia is also known to induce biological tumor radioresistance through the activation of a transcription factor, hypoxia-inducible factor 1 (HIF-1). Several potential strategies have been devised in radiation therapy to overcome these problems; however, they have not yet achieved a complete remission. It is essential to reveal the intratumoral localization and dynamics of hypoxic/HIF-1-active tumor cells during tumor growth and after radiation therapy, then exploit the information to develop innovative therapeutic strategies, and finally damage radioresistant cells. In this review, we overview problems caused by hypoxia/HIF-1-active cells in radiation therapy for cancer and introduce strategies to assess intratumoral hypoxia/HIF-1 activity

  2. Ovarian cancer: emerging concept on cancer stem cells

    OpenAIRE

    Ponnusamy Moorthy P; Batra Surinder K

    2008-01-01

    Abstract Emerging evidence suggests that the capacity of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. In fact, cancer cells, like stem cells, can proliferate indefinitely through a dysregulated cellular self-renewal capacity. Cancer stem cells may originate due to the distribution into self-renewal and differentiation pathways occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells and cancer cell...

  3. Investigation of radiosensitivity gene signatures in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    John S Hall

    Full Text Available Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2 by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median was investigated using Affymetrix GeneChip Exon 1.0ST (cervix or U133A Plus2 (head and neck arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4% were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI, and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.

  4. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    International Nuclear Information System (INIS)

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  5. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  6. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  7. Effects of recombinant epidermal growth factor receptor antisense adenovirus combined with irradiation on breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of a recombinant antisense adenovirus for epidermal growth factor receptor (EGFR) combined with irradiation on breast cancer cells. Methods: Human EGFR cDNA fragment was subcloned in the opposite orientation to the cytomegaloviral promoter and inserted into a E1/E3-deleted type 5 adenoviral vector to obtain AdE5 construct which expresses EGFR antisense RNA. Combined with γ-ray irradiation, its effects on clonogenicity and cell cycle phase distribution were studied in a human breast cancer line MDA-MB-23. Results: EGFR protein expression was dramatically inhibited in MDA-MB-231 cells after AdE5 infection. The post-irradiation clonogenicity was reduced by AdE5 in a viral and irradiation dose-dependent manner. Further cytometric analysis showed that AdE5 infection at a MOI of 300 pfu/cell induced a cell cycle progression from radio-resistant G0 + G1 phases to radiosensitive G2 + M phases, resulting in a synergistic effect after combination of these two treatments. Conclusions: The transduction of EGFR antisense RNA by adenoviral vector is effective for antisense strategy targeting EGFR, and increases the cell-killing effect of ionizing radiation on breast cancer cells.(authors)

  8. [The role of genetic factors in human radioresistance].

    Science.gov (United States)

    Tel'nov, V I

    2005-01-01

    The role of genetic factors in the development of chronic radiation disease (CRD), mostly caused by occupational external gamma-exposure, was evaluated. The data of molecular genetic survey of a cohort of 985 workers at the nuclear power plant, the Mayak PA, were analyzed. Among the genetic markers tested, an association between the haptoglobin (Hp) genetic system and the development of CRD was established. It was demonstrated that the contribution of genetic factors to the CRD onset was realized not within the whole, but in a relatively narrow dose interval (70 to 400 cGy), i.e., was relative. Furthermore, at equal irradiation doses, relatively higher risk of CRD was observed among the Hp 2-2 phenotype carriers (1.96) compared to lower risk among the Hp 1-1 and Hp 2-1 phenotype carriers (0.64). It was shown that with the increase of the irradiation dose, genotypic differences in the CRD frequency decreased to the point of their complete disappearance. Comparison of the roles of the genetic factors in the onset of such deterministic irradiation effect as CRD, with their roles in the onset of lung cancer in tobacco smokers revealed similar patterns. A scheme of the relationships between the effector intensity and the differences in the genetically determined radioresistance is presented. The data obtained do not support the idea that the survivals of the atomic bombing of Hiroshima and Nagasaki were the most radioresistant individuals, who are not representative for evaluating the radiation risk. PMID:15771255

  9. Small Cell Lung Cancer.

    Science.gov (United States)

    Bernhardt, Erica B; Jalal, Shadia I

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer of neuroendocrine origin, which is strongly associated with cigarette smoking. Patients typically present with a short duration of symptoms and frequently (60-65 %) with metastatic disease. SCLC is a heterogeneous disease including extremely chemosensitive and chemoresistant clones. For this reason, a high percentage of patients respond to first-line chemotherapy but rapidly succumb to the disease. SCLC is generally divided into two stages, limited and extensive. Standard treatment of limited stage disease includes combination chemotherapy with cisplatin and etoposide for four cycles, thoracic radiation initiated early with the first cycle of chemotherapy, and consideration of prophylactic cranial irradiation (PCI) in the subset of patients with good response. Surgery may play a role in TNM stages I and II. In extensive disease, platinum agents and etoposide, used in combination, are again the first-line standard of care in the USA. However, thoracic radiation therapy is used predominately in patients where local control is important and PCI is of uncertain benefit. Despite these treatments, prognosis remains poor and novel therapies are needed to improve survival in this disease. PMID:27535400

  10. Mouse models for cancer stem cell research

    OpenAIRE

    Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.

    2009-01-01

    Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...

  11. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  12. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation.

    Directory of Open Access Journals (Sweden)

    Enhui He

    Full Text Available In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN, and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.

  13. Innovative therapeutic strategies against chemo and radio-resistant cancers: hydrogenated nano-diamonds and metal organic frameworks. An in vitro study in 2D and 3D systems

    International Nuclear Information System (INIS)

    The present work focuses on nanoparticles and their great skills for oncology therapies. Two kinds of nanoparticles have been studied in order to biologically validate and characterize their features. The use of hydrogenated Nano-diamonds (H-NDs) as radio sensitizer is based on a physic-chemical postulate where they act as oxidative stress generator through interaction with irradiation. Thus we validated this hypothesis in radio resistant kidney and breast cancer cell lines and identify senescence as the main pathway after co-treatment with H-NDs and irradiation. Metal organic frameworks are also of particular interest for drug delivery because of their very important loading capacities. Here we demonstrate the biocompatibility of the empty compounds in four lung and hepatic cancer cell lines, a main point before their involvement in drug delivery strategies. Finally, following international guidelines encouraging to make animal testing more ethic, we developed a new 3D cell culture mimicking mucinous lung adenocarcinoma. This well characterized model will be used for the study of cancer development and drug screening. (author)

  14. Local control rates of metastatic renal cell carcinoma to the bone using stereotactic body radiation therapy: Is RCC truly radioresistant?′

    Science.gov (United States)

    Bourlon, Maria T.; Bedrick, Edward; Bhatia, Shilpa; Kessler, Elizabeth R.; Flaig, Thomas W.; Fisher, Christine M.; Kavanagh, Brian D; Lam, Elaine T.; Karam, Sana D.

    2015-01-01

    Purpose We report the radiographic and clinical response rate of stereotactic body radiation therapy (SBRT) compared with conventional fractionated external beam radiation therapy (CF-EBRT) for renal cell carcinoma (RCC) bone lesions treated at our institution. Methods and materials Forty-six consecutive patients were included in the study, with 95 total lesions treated (50 SBRT, 45 CF-EBRT). We included patients who had histologic confirmation of primary RCC and radiographic evidence of metastatic bone lesions. The most common SBRT regimen used was 27 Gy in 3 fractions. Results Median follow-up was 10 months (range, 1-64 months). Median time to symptom control between SBRT and CF-EBRT were 2 (range, 0-6 weeks) and 4 weeks (range, 0-7 weeks), respectively. Symptom control rates with SBRT and CF-EBRT were significantly different (P = .020) with control rates at 10, 12, and 24 months of 74.9% versus 44.1%, 74.9% versus 39.9%, and 74.9% versus 35.7%, respectively. The median time to radiographic failure and unadjusted pain progression was 7 months in both groups. When controlling for gross tumor volume, dose per fraction, smoking, and the use of systemic therapy, biologically effective dose ≥80 Gy was significant for clinical response (hazard ratio [HR], 0.204; 95% confidence interval [CI], 0.043-0.963; P = .046) and radiographic (HR, 0.075; 95% CI, 0.013-0.430; P = .004). When controlling for gross tumor volume and total dose, biologically effective dose ≥80 Gy was again predictive of clinical local control (HR, 0.140; 95% CI, 0.025-0.787; P = .026). Toxicity rates were low and equivalent in both groups, with no grade 4 or 5 toxicity reported. Conclusions SBRT is both safe and effective for treating RCC bone metastases, with rapid improvement in symptoms after treatment and more durable clinical and radiographic response rate. Future prospective trials are needed to further define efficacy and toxicity of treatment, especially in the setting of targeted agents

  15. ZnFe{sub 2}O{sub 4} nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Meidanchi, Alireza [Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Khoei, Samideh [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shokri, Ali A. [Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Hajikarimi, Zahra [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khansari, Nakisa [Department of Cardiology, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe{sub 2}O{sub 4}) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ∼ 1 min for 2 mg mL{sup −1} of the nanoparticles in ethanol) by applying an external magnetic field (∼ 1 T). The ZnFe{sub 2}O{sub 4} nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of {sup 60}Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL{sup −1}, in the absence of gamma irradiation. The gamma irradiation alone (2 Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL{sup −1} ZnFe{sub 2}O{sub 4} nanoparticles resulted in ∼ 53% inactivation of the cells (∼ 17 times higher than the inactivation that occurred under gamma irradiation alone) after 24 h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe{sub 2}O{sub 4} nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy. - Highlights: • Synthesis of magnetic ZnFe{sub 2}O{sub 4} nanoparticles with high-Z elements as radiosensitizers • Fast separation of the nanoparticles from solutions by applying a magnetic field • Application of the nanoparticles in efficient

  16. Head and Neck Cancer Stem Cells

    OpenAIRE

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signalin...

  17. Cell of origin of lung cancer

    OpenAIRE

    Hanna, Jennifer M.; Onaitis, Mark W.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s) of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell o...

  18. HPV16 E6/E7 Negatively Affect Radiosensitivity of Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lu Lu; Qinghui Meng; Ming Cui; Xiaofei Chu; Shuyi Zhao; Huiwen Xiao; Jiali Dong

    2016-01-01

    Objective Lung cancer cells associated with radioresistance are likely to give rise to local recurrence and distant metastatic relapse,but little is known about its underlying mechanisms.In the present paper,the effects of the HPV16 E6 and HPV16 E7 oncoprotein on the radiosensitivity of lung cancer cell lines were investigated.Methods The HPV16 E6 or HPV16 E7 oncoprotein was expressed by a transient transfection with pcDNA3-HPV16 E6 or pcDNA3-HPV16 E7 expression vector.Human lung cancer H2179 cells and mouse lung cancer Lewis cells were exposed to a γ-ray radiation source,cellular survival was evaluated by using a colony formation assay.The expression of HPV16 oncoproteins E6/E7,extracellular signal-regulated kinases 1/2(ERK1/2) and AKT signaling was determined by Western blot assay.VEGF secretion was determined by ELISA.Results Both HPV16 oncoproteins E6 and E7 significantly decreased radiosensitivity of H2179 cells,associated with a promotion of the ERK1/2 and AKT phosphorylation.A decrease of reactive oxygen species(ROS) and an increase of VEGF levels were observed in the cells expressing the HPV16 oncoproteins E6 and E7.Furthermore,a similar reduction of radiosensitivity mediated by the HPV16 oncoproteins E6 and E7 was also observed in a mouse lung cancer Lewis cells.Conclusion The findings indicate that the HPV16 oncoproteins E6 and E7 negatively affects susceptibility of lung cancer cells to radiotherapy via regulation of the ERK1/2 and Akt signaling pathway and VEGF expression.

  19. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Lisa Mutschelknaus

    Full Text Available Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better

  20. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Science.gov (United States)

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  1. Adenovirus-mediated expression of UHRF1 reduces the radiosensitivity of cervical cancer HeLa cells to γ-irradiation

    Institute of Scientific and Technical Information of China (English)

    Xin-li LI; Qing-hui MENG; Sai-jun FAN

    2009-01-01

    Aim:An in vitro study was carried out to determine the effect of UHRF1 overexpression on radiosensitivity in human cervical cancer HeLa ceUs using adenovirus-mediated UHRF1 gene transfer (Ad5-UHRF1). Methods: Cell survival was evaluated using the clonogenic survival assay and the MTT assay; apoptosis and cell cycle distribution were monitored by flow cytometry. Protein levels were measured by Western blotting. Silencing XRCC4 expression was performed by transfection of small interfering RNA (siRNA).Results: Increased expression of UHRF1 by AdS-UHRF1 significantly reduced the radiosensitivity of HeLa cells. The UHRF1-mediated radioresistance was correlated with increased DNA repair capability and increased expression of the DNA damage repair protein, XRCC4. Knocking down XRCC4 expression in the cells using XRCC4 siRNA markedly reduced the UHRFl-mediated radioresistance. Conclusion: These results provide the first evidence for revealing a functional role of UHRF1 in human cervical cancer cells as a negative regulator of radiosensitivity.

  2. Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers

    International Nuclear Information System (INIS)

    Background and purpose: In this study, we investigated whether cancer stem cell marker expressing cells can be identified that predict for the response of esophageal cancer (EC) to CRT. Materials and methods: EC cell-lines OE-33 and OE-21 were used to assess in vitro, stem cell activity, proliferative capacity and radiation response. Xenograft tumors were generated using NOD/SCID mice to assess in vivo proliferative capacity and tumor hypoxia. Archival and fresh EC biopsy tissue was used to confirm our in vitro and in vivo results. Results: We showed that the CD44+/CD24− subpopulation of EC cells exerts a higher proliferation rate and sphere forming potential and is more radioresistant in vitro, when compared to unselected or CD44+/CD24+ cells. Moreover, CD44+/CD24− cells formed xenograft tumors faster and were often located in hypoxic tumor areas. In a study of archival pre-neoadjuvant CRT biopsy material from EC adenocarcinoma patients (N = 27), this population could only be identified in 50% (9/18) of reduced-responders to neoadjuvant CRT, but never (0/9) in the complete responders (P = 0.009). Conclusion: These results warrant further investigation into the possible clinical benefit of CD44+/CD24− as a predictive marker in EC patients for the response to chemoradiation

  3. CHMP4C Disruption Sensitizes the Human Lung Cancer Cells to Irradiation

    Directory of Open Access Journals (Sweden)

    Kang Li

    2015-12-01

    Full Text Available Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve radiotherapy effectiveness is a crucial question. In the present study, human lung cancer A549 and H1299 cells were irradiated using γ-rays from a Co60 irradiator. Protein expression was detected by Western blotting. Cell cycle and apoptosis were measured by flow cytometry. Surviving fraction was determined by colony formation assay. γH2AX and 53BP1 foci formation were examined by fluorescence microscopy. In the results, we show that CHMP4C, a subunit of Endosomal sorting complex-III (ESCRT-III, is involved in radiation-induced cellular response. Radiation-induced Aurora B expression enhances CHMP4C phosphorylation in non-small cell lung cancer (NSCLC cells, maintaining cell cycle check-point and cellular viability as well as resisting apoptosis. CHMP4C depletion enhances cellular sensitivity to radiation, delays S-phase of cell cycle and reduces ionizing radiation (IR-induced γH2AX foci formation. We found that Aurora B targets CHMP4C and inhibition of Aurora B exhibits similar effects with silencing of CHMP4C in radioresistance. We also confirm that CHMP4C phosphorylation is elevated after IR both in p53-positive and-negative cells, indicating that the close correlation between CHMP4C and Aurora B signaling pathway in mediating radiation resistance is not p53 dependent. Together, our work establishes a new function of CHMP4C in radiation resistance, which will offer a potential strategy for non-small cell lung cancer by disrupting CHMP4C.

  4. CHMP4C Disruption Sensitizes the Human Lung Cancer Cells to Irradiation.

    Science.gov (United States)

    Li, Kang; Liu, Jianxiang; Tian, Mei; Gao, Gang; Qi, Xuesong; Pan, Yan; Ruan, Jianlei; Liu, Chunxu; Su, Xu

    2016-01-01

    Human lung cancer is highly invasive and the most malignant among human tumors. Adenocarcinoma as a specific type of non-small cell lung cancer occurs with high frequency and is also highly resistant to radiation therapy. Thus, how to avoid radiation resistance and improve radiotherapy effectiveness is a crucial question. In the present study, human lung cancer A549 and H1299 cells were irradiated using γ-rays from a Co60 irradiator. Protein expression was detected by Western blotting. Cell cycle and apoptosis were measured by flow cytometry. Surviving fraction was determined by colony formation assay. γH2AX and 53BP1 foci formation were examined by fluorescence microscopy. In the results, we show that CHMP4C, a subunit of Endosomal sorting complex-III (ESCRT-III), is involved in radiation-induced cellular response. Radiation-induced Aurora B expression enhances CHMP4C phosphorylation in non-small cell lung cancer (NSCLC) cells, maintaining cell cycle check-point and cellular viability as well as resisting apoptosis. CHMP4C depletion enhances cellular sensitivity to radiation, delays S-phase of cell cycle and reduces ionizing radiation (IR)-induced γH2AX foci formation. We found that Aurora B targets CHMP4C and inhibition of Aurora B exhibits similar effects with silencing of CHMP4C in radioresistance. We also confirm that CHMP4C phosphorylation is elevated after IR both in p53-positive and-negative cells, indicating that the close correlation between CHMP4C and Aurora B signaling pathway in mediating radiation resistance is not p53 dependent. Together, our work establishes a new function of CHMP4C in radiation resistance, which will offer a potential strategy for non-small cell lung cancer by disrupting CHMP4C. PMID:26712741

  5. Prostate Cancer Stem Cells: Research Advances

    OpenAIRE

    Dagmara Jaworska; Wojciech Król; Ewelina Szliszka

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve th...

  6. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance.

    Directory of Open Access Journals (Sweden)

    Olena Zakharchenko

    Full Text Available Transforming growth factor-β (TGFβ is a potent regulator of tumorigenesis, although mechanisms defining its tumor suppressing and tumor promoting activities are not understood. Here we describe phosphoproteome profiling of TGFβ signaling in mammary epithelial cells, and show that 60 identified TGFβ-regulated phosphoproteins form a network with scale-free characteristics. The network highlighted interactions, which may distribute signaling inputs to regulation of cell proliferation, metabolism, differentiation and cell organization. In this report, we identified two novel and TGFβ-dependent phosphorylation sites of 14-3-3σ, i.e. Ser69 and Ser74. We observed that 14-3-3σ phosphorylation is a feed-forward mechanism in TGFβ/Smad3-dependent transcription. TGFβ-dependent 14-3-3σ phosphorylation may provide a scaffold for the formation of the protein complexes which include Smad3 and p53 at the Smad3-specific CAGA element. Furthermore, breast tumor xenograft studies in mice and radiobiological assays showed that phosphorylation of 14-3-3σ at Ser69 and Ser74 is involved in regulation of cancer progenitor population and radioresistance in breast cancer MCF7 cells. Our data suggest that TGFβ-dependent phosphorylation of 14-3-3σ orchestrates a functional interaction of TGFβ/Smad3 with p53, plays a role in the maintenance of cancer stem cells and could provide a new potential target for intervention in breast cancer.

  7. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  8. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    International Nuclear Information System (INIS)

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)–transfected cells enhanced activation of the phosphatidylinositol-3-kinase–Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)–neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor α was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR–phosphatidylinositol-3-kinase–Akt cascade.

  9. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  10. Stem cells in human breast cancer

    OpenAIRE

    Roberto Oliveira, Lucinei; Jeffrey, Stefanie S; Ribeiro Silva, Alfredo

    2010-01-01

    Increasing data support cancer as a stem cell-based disease. Cancer stem cells (CSCs) have beenfound in different human cancers, and recent evidenceindicates that breast cancer originates from and ismaintained by its own CSCs, as well as the normalmammary gland. Mammary stem cells and breast CSCshave been identified and purified in in vitroculturesystems, transplantation assays and/or by cell surfaceantigen identification. Cell surface markers enable thefunctional isolation of stem cells that...

  11. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Sara Häggblad Sahlberg

    Full Text Available The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1 expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low. The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2 did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

  12. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair

    Science.gov (United States)

    Barreiro, Olga; Cibrian, Danay; Clemente, Cristina; Alvarez, David; Moreno, Vanessa; Valiente, Íñigo; Bernad, Antonio; Vestweber, Dietmar; Arroyo, Alicia G; Martín, Pilar; von Andrian, Ulrich H; Sánchez Madrid, Francisco

    2016-01-01

    Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis. DOI: http://dx.doi.org/10.7554/eLife.15251.001 PMID:27304075

  13. Radiosensitivity in lung cancer with focus on p53

    CERN Document Server

    Bergqvist, M

    2002-01-01

    In Sweden approximately 2800 new lung cancer patients are diagnosed every year. Radiotherapy is used with curative intention in certain groups of patients. The aim of this thesis is to study the basis of differences in radioresistance and the possibility to predict response to radiotherapy. In the first study we investigated, using the comet assay, four lung cancer cell lines with different sensitivity towards radiation. A clear dose-response relationship for radiation-induced DNA single strand and double strand breaks were found. All cell lines showed a remarkably efficient repair of both the DNA single strand and double strand breaks one hour after irradiation. However, further studies in one radioresistant and one radiosensitive cell line demonstrated that repair during the first 15 min had the best accordance with radiosensitivity measured as surviving fraction. In the second and third study, sequencing studies of the p53 gene were performed on cell lines as well as on tumour material. Cell lines that wer...

  14. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  15. Study of multidrug resistance and radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance.

  16. Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Advanced non-small cell lung cancer (NSCLC) is an aggressive tumor that is treated with a combination of chemotherapy and radiation if the patient is not a candidate for surgery. Predictive biomarkers for response to radiotherapy are lacking in this patient population, making it a non-tailored therapy regimen with unknown outcome. Twenty to 30 % of NSCLC harbor an activating mutation in KRAS that may confer radioresistance. We hypothesized that mutant KRAS can regulate glutamine metabolism genes in NSCLC and maintain tumor redox balance through transamination reactions that generate cytosolic NADPH via malic enzyme 1 (ME1), which may contribute to radioresistance. A doxycycline-inducible mouse model of KRASG12D driven NSCLC and patient data was analyzed from multiple publicly accessible databases including TCGA, CCLE, NCBI GEO and Project Achilles. ME1 expression was found to be mutant KRAS associated in both a NSCLC mouse model and human NSCLC cancer cell lines. Perturbing glutamine metabolism sensitized mutant KRAS, but not wild-type KRAS NSCLC cell lines to radiation treatment. NSCLC survival analysis revealed that patients with elevated ME1 and GOT1 expression had significantly worse outcomes after radiotherapy, but this was not seen after chemotherapy alone. KRAS driven glutamine metabolism genes, specifically ME1 and GOT1 reactions, may be a predictive marker and potential therapeutic target for radiotherapy in NSCLC. The online version of this article (doi:10.1186/s13014-015-0457-x) contains supplementary material, which is available to authorized users

  17. An overview of the role of cancer stem cells in spine tumors with a special focus on chordoma

    Science.gov (United States)

    Safari, Mojdeh; Khoshnevisan, Alireza

    2014-01-01

    Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine. PMID:24567788

  18. [Increase in the number of cancer stem cells after exposure to low-LET radiation].

    Science.gov (United States)

    Zamulaeva, I A; Matchuk, O N; Selivanova, E I; Andreev, V G; Lipunov, N M; Makarenko, S A; Zhavoronkov, L P; Saenko, A S

    2014-01-01

    Radioresistance of cancer stem cells (CSCs) is regarded as one of the possible causes of cancer recurrence after radiotherapy. Since the regularities and mechanisms of radiation effects on this population of cells have not been sufficiently studied, the aim of this work is to elucidate the changes in the CSC number after γ-irradiation in stable cultures of tumor cells in vitro and tumor tissue in vivo (in the course of radiation therapy of patients with cancers of the upper respiratory tract). CSCs were identified in the cell lines B16, MCF-7, HeLa by the ability to exclude the fluorescent dye Hoechst 33342 (SP method) 48-72 h after irradiation at the doses of 1-20 Gy and in biopsy material by immunophenotype CD44+CD24(-/low) before and 24 h after irradiation at the total dose of 10 Gy. The essential differences in the response of CSCs and other cancer cells were found after exposure to low-LET radiation. The absolute number of CSCs increased after a single exposure at the doses ranging from 1 to 5-10 Gy in different cell cultures, but a further dose increase maintained the current number of CSCs or decreased it. At the same time, the number of non CSCs significantly decreased with increasing doses of radiation exposure, as expected. Fractionated irradiation in vivo at a total dose of 10 Gy increased the relative amount of CSCs in most patients. The registered changes are an integral indicator of cell death, cell division delay immediately after irradiation, proliferation at a later time, possible dedifferentiation of non CSCs, etc. The exact contribution of each of them to the radiation-induced increase of the CSCs number is of considerable interest and requires further research.

  19. 一株耐辐射枯草芽孢杆菌的辐照抗性研究%Radioresistance Ability of a Bacillus subtilis Radioresistant Strain

    Institute of Scientific and Technical Information of China (English)

    陈晓明; 曹以诚; 萧主先

    2011-01-01

    研究室经过对枯草芽孢杆菌黑色变种进行了两次中子辐照,一次γ辐照和一次紫外线辐照,筛选得到了一株辐射抗性较强的菌株,称为耐辐射株.为了系统地考察这株耐辐射株的辐照抗性,分别以芽孢和营养体为材料,研究了其对中子、脉冲X光和紫外线的耐受性.结果显示,这株耐辐射株与原菌相比,对不同射线的耐受性都有不同程度的提高.但对于不同的辐照,其耐受性上升幅度不同,而且芽孢和营养体状态对辐射耐受的表现也不一致.总的来说,芽孢对各种辐射的耐受性增长相对较少,对不同辐照剂量的表现也较一致.耐辐射株营养体对不同射线在不同剂量下的耐受性表现差异较大:对中子辐照耐辐射株营养体的存活率是原菌的4~5倍,而对脉冲X射线辐照,在各剂量下耐辐射株的抗性表现较一致,大约是原菌的200倍;对UvC辐照耐辐射株营养体比原菌耐受能力,在不同剂量下差异较大,分别提高2.5~66倍.这些结果表明,这株耐辐射株对不同的射线都具有较强的辐射抗性能力,这种能力可能与其DNA损伤修复水平和细胞周期有关.%A strong radiation resistance strain was screened, known as Bacillus subtilis radioresistant strain, after twice neutron irradiation, once 7 - ray and once UV radiation on Bacillus subtilis var niger in the laboratory. In order to study the strain resistance to different radiation systematically, spores and vegetative cells were used as the research materials, and neutron, pulse X-ray and UVC were used as radiation resource. Results showed that compared with the original strain, the radioresistant strain tolerance to various rays has increased in varying degrees. To different irradiation, the increase rate of tolerance is different, and for spores and vegetative cells, the radiation tolerance is inconsistent. The radioresistant strain spores have a relatively small increase in radiation

  20. Role of cancer stem cells in hepatocarcinogenesis

    OpenAIRE

    Wang, Bo; Jacob, Samson T.

    2011-01-01

    There has been considerable interest in cancer stem cells (CSCs) among cancer biologists and clinicians, most likely because of their role in the heterogeneity of cancer and their potential application in cancer therapeutics. Recent studies suggest that CSCs play a key role in liver carcinogenesis. A small subpopulation of cancer cells with CSC properties has been identified and characterized from hepatocellular carcinoma (HCC) cell lines, animal models and human primary HCCs. Considering the...

  1. The biology of cancer stem cells and its clinical implication in hepatocellular carcinoma.

    Science.gov (United States)

    Yoon, Seung Kew

    2012-01-01

    Hepatocellular carcinoma (HCC) is a highly malignant tumor with limited treatment options in its advanced state. The molecular mechanisms underlying HCC remain unclear because of the complexity of its multi-step development process. Cancer stem cells (CSCs) are defined as a small population of cells within a tumor that possess the capability for self-renewal and the generation of heterogeneous lineages of cancer cells. To date, there have been two theories concerning the mechanism of carcinogenesis, i.e., the stochastic (clonal evolution) model and the hierarchical (cancer stem cell-driven) model. The concept of the CSC has been established over the past decade, and the roles of CSCs in the carcinogenic processes of various cancers, including HCC, have been emphasized. Previous experimental and clinical evidence indicated the existence of liver CSCs; however, the potential mechanistic links between liver CSCs and the development of HCC in humans are not fully understood. Although definitive cell surface markers for liver CSCs have not yet been found, several putative markers have been identified, which allow the prospective isolation of CSCs from HCC. The identification and characterization of CSCs in HCC is essential for a better understanding of tumor initiation or progression in relation to signaling pathways. These markers could be used along with clinical parameters for the prediction of chemoresistance, radioresistance, metastasis and survival and may represent potential targets for the development of new molecular therapies against HCC. This review describes the current evidence for the existence and function of liver CSCs and discuss the clinical implications of CSCs in patients demonstrating resistance to conventional anti-cancer therapies, as well as clinical outcomes. Such data may provide a future perspective for targeted therapy in HCC.

  2. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  3. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  4. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  5. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  6. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  7. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  8. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  9. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  10. Targeting the Checkpoint to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jan Benada

    2015-08-01

    Full Text Available Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.

  11. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  12. The relationship of cancer stem cells in urological cancers

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczyńska

    2013-08-01

    Full Text Available Numerous studies are ongoing to identify and isolate cancer stem cells from cancers of genito-urinary tracts. Better understanding of their role in prostate, urothelial and kidney cancer origin, growth and progression opens new pathways in development of more effective treatment methods. However there are still many issues before advances in this field can be introduced for clinical application. This review addresses current achievements in cancer stem cells research in uro-oncology.

  13. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  14. Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation.

    Science.gov (United States)

    Panat, Niranjan A; Singh, Beena G; Maurya, Dharmendra K; Sandur, Santosh K; Ghaskadbi, Saroj S

    2016-05-01

    Troxerutin, a flavonoid best known for its radioprotective and antioxidant properties is of considerable interest of study due to its broad pharmacological activities. The present study on troxerutin highlights its abilities to bind DNA and enhance cancer cell killing in response to radiation. Troxerutin showed strong binding with calf thymus DNA in vitro. Troxerutin-DNA interaction was confirmed by CD spectropolarimetry. The mode of binding of troxerutin to DNA was assessed by competing troxerutin with EtBr or DAPI, known DNA intercalator and a minor groove binder, respectively. DAPI fluorescence was drastically reduced with linear increase in troxerutin concentration suggesting possible binding of troxerutin to DNA minor groove. Further, computational studies of docking of troxerutin molecule on mammalian DNA also indicated possible troxerutin-DNA interaction at minor groove of DNA. Troxerutin was found to mainly localize in the nucleus of prostate cancer cells. It induced cytotoxicity in radioresistant (DU145) and sensitive (PC3) prostate cancer cells. When troxerutin pre-treated DU145 and PC3 cells were exposed to γ-radiation, cytotoxicity as estimated by MTT assay, was found to be further enhanced. In addition, the % subG1 population detected by propidium iodide staining also showed similar response when combined with radiation. A similar trend was observed in terms of ROS generation and DNA damage in DU145 cells when troxerutin and radiation were combined. DNA binding at minor groove by troxerutin may have contributed to strand breaks leading to increased radiation induced cell death.

  15. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  16. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  17. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  18. Radiation-induced-radioresistance: mechanisms and modification radioprotection

    International Nuclear Information System (INIS)

    Full text: The term radiation-induced-radioresistance (RIR) has been chosen to explain a particular class of resistance against lethal doses of radiation, which is transient and is induced by pre-exposure to low doses of radiation. This is a genetically governed phenomenon and is different from adaptation which in one of its several senses, refers to evolutionary transformation into new behavioural patterns. RIR is understood to be an evolutionarily conserved fundamental cellular defense mechanism. Small doses of radiation acting as stress stimuli evoke a concerted action of molecular pathways which help the organism to cope-up with the genotoxic effects of lethal doses of radiation given subsequently. Such molecular pathways are a complex interplay of genetic and biochemical entities and are increasingly becoming the focus of research world over. Most of our information on this subject has been gathered from prokaryotes, simpler eukaryotes, human cells and the epidemiological studies. A number of genes such as GADD 45, CDKN1A, PBP74, DIR1, DDR have been reported by to participate in RIR. However, till date, the mechanism of RIR remain poorly understood. In this deliberation some of our findings on mechanisms of RIR will be presented. Further, modification of RIR by a metabolic modifier, presently under clinical investigations for tumor radiotherapy, will also be presented

  19. Understanding the cancer stem cell

    OpenAIRE

    Bomken, S; Fišer, K; Heidenreich, O; Vormoor, J

    2010-01-01

    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of fun...

  20. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  1. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  2. Cancer stem cells: the lessons from pre-cancerous stem cells

    OpenAIRE

    Gao, Jian-Xin

    2007-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not con...

  3. Characterization of new radioresistant strains of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    The purpose of this work is to investigate 4 new mutant strains of Chlamydomonas reinhardtii induced in respect to their radioresistance at different levels: cellular, molecular and biochemical. A comparison between radioresistance of the strains, DNA-ssb repair activity and pigment contents (chl 'a', chl 'b' and carotenoids) is made. Strain 137C(+) and mutant strains GK-1(+), GK-2(+), GK-3(+), and AKK-9-9(-) are used. The radioresistance has been assessed according to colony forming ability of the strains after irradiation with gamma rays (60C0, I=12.4 rads-1 doses 10, 50, 100, 150, 200 and 250 Gy). The data obtained reveal that there is a relationship between radioresistance, DNA-ssb repair efficiency and plastid pigment content in the tested Chlamydomonas reinhardtii strains. This relationship is most pronounced in strain AK-9-9 which displays the highest level of radioresistance. On the basis of data obtained the authors propose mutant strain AK-9-9 to be included in the existing collection of mutant strains of Chlamydomonas reinhardtii

  4. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  5. Extinction Models for Cancer Stem Cell Therapy

    OpenAIRE

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth

    2009-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...

  6. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models......There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...

  7. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    OpenAIRE

    Kasai, T; Chen, L.; Mizutani, AZ; Kudoh, T.; Murakami, H; Fu, L.; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-...

  8. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling

    Directory of Open Access Journals (Sweden)

    Huang Chih-Yang

    2010-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is a highly lethal cancer that contains cellular and functional heterogeneity. Previously, we enriched a subpopulation of highly tumorigenic head and neck cancer initiating cells (HN-CICs from HNSCC. However, the molecular mechanisms by which to govern the characteristics of HN-CICs remain unclear. GRP78, a stress-inducible endoplasmic reticulum chaperone, has been reported to play a crucial role in the maintenance of embryonic stem cells, but the role of GRP78 in CICs has not been elucidated. Results Initially, we recognized GRP78 as a putative candidate on mediating the stemness and tumorigenic properties of HN-CICs by differential systemic analyses. Subsequently, cells with GRP78 anchored at the plasma membrane (memGRP78+ exerted cancer stemness properties of self-renewal, differentiation and radioresistance. Of note, xenotransplantation assay indicated merely 100 memGRP78+ HNSCCs resulted in tumor growth. Moreover, knockdown of GRP78 significantly reduced the self-renewal ability, side population cells and expression of stemness genes, but inversely promoted cell differentiation and apoptosis in HN-CICs. Targeting GRP78 also lessened tumorigenicity of HN-CICs both in vitro and in vivo. Clinically, co-expression of GRP78 and Nanog predicted the worse survival prognosis of HNSCC patients by immunohistochemical analyses. Finally, depletion of GRP78 in HN-CICs induced the expression of Bax, Caspase 3, and PTEN. Conclusions In summary, memGRP78 should be a novel surface marker for isolation of HN-CICs, and targeting GRP78 signaling might be a potential therapeutic strategy for HNSCC through eliminating HN-CICs.

  9. Dexamethasone-induced enhancement of resistance to ionizing radiation and chemotherapeutic agents in human tumor cells

    International Nuclear Information System (INIS)

    Background: Dexamethasone-induced changes in radioresistance have previously been observed by several authors. Here, we examined effects of dexamethasone on resistance to ionizing radiation in 10 additional human cell lines and strains, and on resistance to carboplatin and paclitaxel in 13 fresh tumor samples. Material and Methods: Eight human carcinoma cell lines, a glioblastoma cell line and a strain of normal human diploid fibroblasts were arbitrarily chosen for these in-vitro studies. Effects on radiosensitivity were assessed using a conventional colony formation assay. Effects on resistance to the drugs were investigated prospectively (ATP cell viability assay) using 13 fresh tumor samples from consecutive patients operated for ovarian cancer within the context of a Swiss nation-wide randomized prospective clinical trial (SAKK 45/94). Results: Dexamethasone promoted proliferation of 1 of the cell lines without affecting radiosensitivity, while it completely inhibited proliferation of another cell line (effects on radiosensitivity could thus not be examined). Furthermore, dexamethasone induced enhanced radioresistance in 1 of the 8 carcinoma cell lines examined. In the glioblastoma cell line, there was no effect on growth or radioresistance, nor in the fibroblasts. Treatment with dexamethasone enhanced resistance of the malignant cells to carboplatin in 4 of the 13 fresh tumor samples examined, while no enhancement in resistance to paclitaxel was observed. Conclusions: In agreement with previous reports, we found that dexamethasone may induce radioresistance in human carcinoma cells. Including the published data from the literature, dexamethasone induced enhancement in radioresistance in 4 of 12 carcinoma cell lines (33%), but not in 3 glioblastoma cell lines, nor in 3 fibroblast strains. Dexamethasone also induced enhanced resistance to carboplatin with a similar probability in fresh samples of ovarian cancer evaluated prospectively (in 4 of 13 samples; 31

  10. Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Cui FB

    2014-05-01

    Full Text Available Fang-bo Cui,1,* Qin Liu,1,* Ru-Tian Li,1 Jie Shen,1 Pu-yuan Wu,1 Li-Xia Yu,1 Wen-jing Hu,1 Feng-lei Wu,2 Chun-Ping Jiang,1 Guo-feng Yue,2 Xiao-Ping Qian,1 Xi-Qun Jiang,3 Bao-Rui Liu11The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 2Nanjing Medical University, 3Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: Radiotherapy is the main locoregional control modality for many types of unresectable tumors, including gastric cancer. However, many patients fail radiotherapy due to intrinsic radioresistance of cancer cells, which has been found to be strongly associated with cancer stem cell (CSC-like properties. In this study, we developed a nanoparticle formulation to deliver miR-200c, which is reported to inhibit CSC-like properties, and then evaluated its potential activity as a radiosensitizer. miR-200c nanoparticles significantly augmented radiosensitivity in three gastric cancer cell lines (sensitization enhancement ratio 1.13–1.25, but only slightly in GES-1 cells (1.06. In addition to radioenhancement, miR-200c nanoparticles reduced the expression of CD44, a putative CSC marker, and the percentage of CD44+ BGC823 cells. Meanwhile, other CSC-like properties, including invasiveness and resistance to apoptosis, could be suppressed by miR-200c nanoparticles. CSC-associated radioresistance mechanisms, involving reactive oxygen species levels and DNA repair capacity, were also attenuated. We have demonstrated that miR-200c nanoparticles are an effective radiosensitizer in gastric cancer cells and induce little radiosensitization in normal cells, which suggests that they are as a promising candidate for further preclinical and clinical evaluation

  11. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  12. Cancer stem cells, tumor dormancy, and metastasis

    OpenAIRE

    EmilyChen

    2012-01-01

    Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs) in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignanc...

  13. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  14. Head and neck cancer stem cells.

    Science.gov (United States)

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  15. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  16. MicroRNA expression profiles in human cancer cells after ionizing radiation

    International Nuclear Information System (INIS)

    MicroRNAs are regulators of central cellular processes and are implicated in the pathogenesis and prognosis of human cancers. MicroRNAs also modulate responses to anti-cancer therapy. In the context of radiation oncology microRNAs were found to modulate cell death and proliferation after irradiation. However, changes in microRNA expression profiles in response to irradiation have not been comprehensively analyzed so far. The present study's intend is to present a broad screen of changes in microRNA expression following irradiation of different malignant cell lines. 1100 microRNAs (Sanger miRBase release version 14.0) were analyzed in six malignant cell lines following irradiation with clinically relevant doses of 2.0 Gy. MicroRNA levels 6 hours after irradiation were compared to microRNA levels in non-irradiated cells using the 'Geniom Biochip MPEA homo sapiens'. Hierarchical clustering analysis revealed a pattern, which significantly (p = 0.014) discerned irradiated from non-irradiated cells. The expression levels of a number of microRNAs known to be involved in the regulation of cellular processes like apoptosis, proliferation, invasion, local immune response and radioresistance (e. g. miR-1285, miR-24-1, miR-151-5p, let-7i) displayed 2 - 3-fold changes after irradiation. Moreover, several microRNAs previously not known to be radiation-responsive were discovered. Ionizing radiation induced significant changes in microRNA expression profiles in 3 glioma and 3 squamous cell carcinoma cell lines. The functional relevance of these changes is not addressed but should by analyzed by future work especially focusing on clinically relevant endpoints like radiation induced cell death, proliferation, migration and metastasis

  17. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H2O2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  18. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and /sup 60/Co-..gamma..-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated ..gamma..-irradiation-regrowth cycles radioresistant mutants of Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of ..gamma..-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H/sub 2/O/sub 2/ is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to ..gamma..-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or ..gamma..-irradiated phages Tg13 and 105.

  19. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  20. Cell of origin of lung cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M Hanna

    2013-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell of origin, and cancer stem cells has been hampered by the heterogeneity of the disease, the lack of good in vivo transplantation models to assess stem cell behavior, and an overall incomplete understanding of the epithelial stem cell hierarchy. As such, a systematic computerized literature search of the MEDLINE database was used to identify articles discussing current knowledge about normal lung and lung cancer stem cells or progenitor cells. In this review, we discuss what is currently known about the role of cancer-initiating cells and normal stem cells in the development of lung tumors.

  1. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells

    OpenAIRE

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2015-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, che...

  2. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Science.gov (United States)

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  3. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  4. Selenium-containing thioredoxin reductase inhibitor ethaselen sensitizes non-small cell lung cancer to radiotherapy.

    Science.gov (United States)

    Wang, Lei; Fu, Jia-Ning; Wang, Jing-Yu; Jin, Cun-Jing; Ren, Xiao-Yuan; Tan, Qiang; Li, Jing; Yin, Han-Wei; Xiong, Kun; Wang, Tian-Yu; Liu, Xin-Min; Zeng, Hui-Hui

    2011-09-01

    It has been proposed that thioredoxin reductase (TR) is a mediator that allows non-small cell lung cancer (NSCLC) to develop resistance to irradiation; however, little is known regarding the detailed mechanisms of action. Thus, ethaselen {1, 2-[bis (1,2-benzisoselenazolone-3 (2H)-ketone)] ethane, BBSKE}, a novel organoselenium TR inhibitor, is currently being investigated in a phase I clinical trial in China. However, its radiosensitizing effect remains unexplored. In this study, we found that the activity of TR increased dramatically in both A549 and H1299 cells after radiation, and moreover, could be inhibited by pretreatment with BBSKE (5 μmol/l). As a TR inhibitor, BBSKE enhanced the efficacy of radiation therapy both in vivo and in vitro without observable toxicity. BBSKE was found to suppress irradiation-induced NF-κB activation dramatically when using A549 cells stably transfected with NF-κB luciferase reporter. These results show the critical role of TR in the radioresistance of NSCLC and suggest that BBSKE is a potentially promising agent for the treatment of patients with NSCLC clinically. PMID:21562407

  5. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  6. GSK3β and β-Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Watson

    2010-05-01

    Full Text Available BACKGROUND: Knowledge of factors and mechanisms contributing to the inherent radioresistance of pancreatic cancer may improve cancer treatment. Irradiation inhibits glycogen synthase kinase 3β (GSK3β by phosphorylation at serine 9. In turn, release of cytosolic membrane β-catenin with subsequent nuclear translocation promotes survival. Both GSK3β and β-catenin have been implicated in cancer cell proliferation and resistance to death. METHODS: We investigated pancreatic cancer cell survival after radiation in vitro and in vivo, with a particular focus on the role of the function of the GSK3β/β-catenin axis. RESULTS: Lithium chloride, RNAi-medicated silencing of GSK3β, or the expression of a kinase dead mutant GSK3β resulted in radioresistance of Panc1 and BxPC3 pancreatic cancer cells. Conversely, ectopic expression of a constitutively active form of GSK3β resulted in radiosensitization of Panc1 cells. GSK3β silencing increased radiation-induced β-catenin target gene expression asmeasured by studies of AXIN2 and LEF1 transcript levels. Western blot analysis of total and phosphorylated levels of GSK3β and β-catenin showed that GSK3β inhibition resulted in stabilization of β-catenin. Xenografts of both BxPC3 and Panc1 with targeted silencing of GSK3β exhibited radioresistance in vivo. Silencing of β-catenin resulted in radiosensitization, whereas a nondegradable β-catenin construct induced radioresistance. CONCLUSIONS: These data support the hypothesis that GSK3β modulates the cellular response to radiation in a β-catenin-dependent mechanism. Further understanding of this pathway may enhance the development of clinical trials combining drugs inhibiting β-catenin activation with radiation and chemotherapy in locally advanced pancreatic cancer.

  7. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  8. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  9. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  10. Cancer Stem Cells in Lung Tumorigenesis

    OpenAIRE

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2010-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continue...

  11. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  12. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  13. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  14. Insulin-Like Growth Factor-Type 1 Receptor Inhibitor NVP-AEW541 Enhances Radiosensitivity of PTEN Wild-Type but Not PTEN-Deficient Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Purpose: During the past decade, many clinical trials with both monoclonal antibodies and small molecules that target the insulin-like growth factor-type 1 receptor (IGF-1R) have been launched. Despite the important role of IGF-1R signaling in radioresistance, studies of such agents in combination with radiotherapy are lagging behind. Therefore, the aim of this study was to investigate the effect of the small molecule IGF-1R kinase inhibitor NVP-AEW541 on the intrinsic radioresistance of prostate cancer cells. Methods and Materials: The effect of NVP-AEW541 on cell proliferation, cell viability, IGF-1R signaling, radiosensitivity, cell cycle distribution, and double strand break repair was determined in three human prostate cancer cell lines (PC3, DU145, 22Rv1). Moreover, the importance of the PTEN pathway status was explored by means of transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Results: NVP-AEW541 inhibited cell proliferation and decreased cell viability in a time-and dose-dependent manner in all three cell lines. Radiosensitization was observed in the PTEN wild-type cell lines DU145 and 22Rv1 but not in the PTEN-deficient PC3 cell line. NVP-AEW541-induced radiosensitization coincided with downregulation of phospho-Akt levels and high levels of residual double strand breaks. The importance of PTEN status in the radiosensitization effect was confirmed by transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Conclusions: NVP-AEW541 enhances the effect of ionizing radiation in PTEN wild-type, but not in PTEN-deficient, prostate cancer cells. Proper patient selection based on the PTEN status of the tumor will be critical to the achievement of optimal results in clinical trials in which the combination of radiotherapy and this IGF-1R inhibitor is being explored.

  15. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  16. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. PMID:27457094

  17. Markers of small cell lung cancer

    OpenAIRE

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  18. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  19. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  20. Targeting prostate cancer stem cells for cancer therapy

    OpenAIRE

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, ...

  1. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  2. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  3. Ganetespib radiosensitization for liver cancer therapy

    Science.gov (United States)

    Chettiar, Sivarajan T.; Malek, Reem; Annadanam, Anvesh; Nugent, Katriana M.; Kato, Yoshinori; Wang, Hailun; Cades, Jessica A.; Taparra, Kekoa; Belcaid, Zineb; Ballew, Matthew; Manmiller, Sarah; Proia, David; Lim, Michael; Anders, Robert A.; Herman, Joseph M.; Tran, Phuoc T.

    2016-01-01

    ABSTRACT Therapies for liver cancer particularly those including radiation are still inadequate. Inhibiting the stress response machinery is an appealing anti-cancer and radiosensitizing therapeutic strategy. Heat-shock-protein-90 (HSP90) is a molecular chaperone that is a prominent effector of the stress response machinery and is overexpressed in liver cancer cells. HSP90 client proteins include critical components of pathways implicated in liver cancer cell survival and radioresistance. The effects of a novel non-geldanamycin HSP90 inhibitor, ganetespib, combined with radiation were examined on 3 liver cancer cell lines, Hep3b, HepG2 and HUH7, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γH2AX foci kinetics and client protein expression in pathways important for liver cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined ganetespib-radiation treatment on tumor cell proliferation in a HepG2 hind-flank tumor graft model. Nanomolar levels of ganetespib alone exhibited liver cancer cell anti-cancer activity in vitro as shown by decreased clonogenic survival that was associated with increased apoptotic cell death, prominent G2-M arrest and marked changes in PI3K/AKT/mTOR and RAS/MAPK client protein activity. Ganetespib caused a supra-additive radiosensitization in all liver cancer cell lines at low nanomolar doses with enhancement ratios between 1.33–1.78. These results were confirmed in vivo, where the ganetespib-radiation combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in HepG2 tumor grafts. Our data suggest that combined ganetespib-radiation therapy exhibits promising activity against liver cancer cells, which should be investigated in clinical studies. PMID:26980196

  4. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  5. Tracheal metastasis of small cell lung cancer

    OpenAIRE

    De, Sajal

    2009-01-01

    Endotracheal metastases of primary lung cancer are rare. Only one case of tracheal metastasis from small cell lung cancer has been reported in literature. Here, we report a rare case of a 45-year-old woman who was admitted for sudden-onset breathlessness with respiratory failure and required ventilatory support. Endotracheal growth was identified during bronchoscopy, and biopsy revealed endotracheal metastasis of small cell lung cancer.

  6. Repopulation of Ovarian Cancer Cells After Chemotherapy

    OpenAIRE

    Telleria, Carlos M.

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  7. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  8. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  9. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  10. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  11. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  12. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  13. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    International Nuclear Information System (INIS)

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis

  14. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  15. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  16. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  17. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  18. Cancer Stem Cells in the Thyroid

    Science.gov (United States)

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  19. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  20. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    OpenAIRE

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is ...

  1. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.;

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  2. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  3. Cancer stem cells in head and neck cancer.

    Science.gov (United States)

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  4. Mechanisms of linear energy transfer-dependent radiation resistance in myeloid leukemia cells

    Science.gov (United States)

    Haro, Kurtis John

    Ionizing radiations (IRs) of high linear energy transfer (LET), such as alpha particles, produce fundamentally different forms of DNA damage in cells than conventional low LET radiation, such as gamma rays. Alpha particle therapies have recently emerged as important potential treatments of cancer, particularly for relatively easily-accessible malignancies of the hematopoietic system. Therefore, we created stable radioresistant myeloid leukemia HL60 cell clones derived after irradiation from either gamma rays (RG) or alpha particles (RA) in order to understand whether resistance to high LET (IR) was possible and the potential differences in radioresistance that could arise from radiations of different LET. Repeated irradiations yielded radioresistant HL60 clones and, regardless of derivation, displayed similar levels of resistance to IR of either type of radiation. The resistant phenotype in each type of radioresistant clone was driven by similar, multifactorial changes that included significant reductions in apoptosis, a decreased late G2/M checkpoint accumulation that was indicative of increased genomic instability, as well as more robust repair of specific types of DNA lesions that included DNA double-strand breaks (DSBs). The relative changes in resistance to alpha particles, however, were substantially lower than the increase in resistance to gamma rays. The data suggest that these processes were interdependent, as inhibition of homology directed repair in the resistant clones sensitized them to gamma IR to a larger extent than naive HL60 cells. Finally, we identified the downregulation of iron regulatory protein 1 (IRP1) in gamma-resistant cells but not in alpha-resistant cells. Short-hairpin RNA-mediated reductions in expression of IRP1 in radiation-naive HL60 cells led to significant radioresistance to gamma rays, but not alpha particles. The IRP1-mediated radioresistance was associated with changes in iron-mediated oxidative stress that led to significant

  5. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  6. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  7. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  8. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  9. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  10. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  11. Cancer stem cells: progress and challenges in lung cancer.

    Science.gov (United States)

    Templeton, Amanda K; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama; Ramesh, Rajagopal

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  12. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  13. Treatment Option Overview (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  14. Stages of Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  15. General Information about Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  16. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key Points Non- ...

  17. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  18. New molecular analysis of differential gene expressions to evaluate new exposure markers and radioresistance

    International Nuclear Information System (INIS)

    Molecular techniques, such as macro array and representation difference analysis (RDA) (1), allow to detect subtle variations into complex biological processes induced by exposure to ionising radiation. One of the most reliable method to investigate radioresistance in vitro is to select a clone with acquired or intrinsic resistant phenotype by delivering repeated fractions of low-dose X-irradiation to a parent cell line. The resulting isolated resistant clone is then suitable for molecular techniques to analyse differential genes which expressions are important in characterising response and resistance to radiation. The cDNA expression arrays allow to perform the analysis of hundreds of known genes while RDA permits the comparison of genomic cDNA also from higher eukaryotes. The aim of the present work was to verify the suitable of these new molecular approaches to recognize the expression of genes hypothetically useful as radioprotection markers. To this end, a relatively high dose of X-rays was used (2 Gy), differentially expressed genes were isolated, and new experiments based on high sensitive and reproducible RT-PCR are foreseen for lower doses. Human neuroblastoma cell lines IMR32 and its resistant clone (Clone F), previously isolated by repeated 2 Gy X-irradiation( 2), were irradiated with a single 2 Gy X-rays. Six hours later, cells were monitored for surviving fraction, index of apoptosis and RNAs were extracted, purified and analysed either by human macro array with 205 cDNA of apoptosis genes related spiked on and either by RDA methodology. Human apoptosis macro array confirmed higher expression of genes related both to apoptosis regulator (Bax) and apoptosis effectors (caspase-2) in IMR32 cell line. RDA showed several differentially expressed genes in the resistant clone. Among these genes, two unknown forms of a protein with a putative enzymatic activity are cloned and transfected in the sensitive cell line to understand their role in radioresistance

  19. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Bøhn Siv K

    2012-09-01

    Full Text Available Abstract Background We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Methods Out of 87 patients (histologically verified, 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. Results There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791, and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716. Conclusions Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Trial registration Raw data are available at ArrayExpress under accession number E-MEXP-2460.

  20. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  1. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  2. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme.

    Science.gov (United States)

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T; Peng, Lifeng; Davis, Paul F; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology. PMID:27148537

  3. Learning about Cancer by Studying Stem Cells

    Science.gov (United States)

    ... View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem Cells By Sharon ... culture. Credit: Anne Weston, London Research Institute, CRUK (image available under a Creative Commons Attribution, Non-Commercial, ...

  4. Noncoding RNAs in cancer and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Tianzhi Huang; Angel Alvarez; Bo Hu; Shi-Yuan Cheng

    2013-01-01

    In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potential y useful diagnostic tools.

  5. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  6. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  7. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie;

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  8. Markers of small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Sharma SK

    2004-05-01

    Full Text Available Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.

  9. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  10. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  11. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  12. Biomechanical investigation of colorectal cancer cells

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  13. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  14. Cellular basis of the immunohematologic defects observed in short-term semiallogeneic B6C3F1→C3H chimeras: evidence for host-versus-graft reaction initiated by radioresistant T cells

    International Nuclear Information System (INIS)

    Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 x 106) of B6C3F1 bone marrow cells (B6C3F1→C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf→C3Hf or B6C3F1→B6C3F1) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F1-derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F1→C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2/sup b/) when assesed by 51Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in shortterm F1 to parent bone marrow chimeras (B6C3F1→C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed

  15. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Shin eHamada; Atsushi eMasamune; Tooru eShimosegawa

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also...

  16. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction

    OpenAIRE

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and al...

  17. Development of radiation countermeasure using novel radioresistant bacteria

    International Nuclear Information System (INIS)

    Radioresistant bacteria sustain their lives in extreme radiation environment and have capabilities to combat radiation induced oxidative stress. Therefore, factors associated with radioresistancy in bacteria may also provide trans-species radioprotection. To test this hypothesis, present work was initiated at INMAS long back. With this background a novel radioresistant bacterium Bacillus sp. INM-1 isolated and its novel secondary metabolite i.e. Semiquinone Glucoside Derivative (SQGD) carrying radioprotective capabilities was purified. SQGD was evaluated for its free radical scavenging, protein, enzymes, plasmid and biological membranes radioprotection capabilities in vitro. SQGD was also tested for its whole body radioprotective efficacy using oral route of administration. Systemic radioprotection offered by SQGD to gastrointestinal, haematopoietic and male reproductive system was studied. Modulation in endogenous antioxidant enzymes and cytoprotective cytokines expression upon irradiation and SQGD pretreatment was determined. A laboratory process for chemical synthesis of bacterial radioprotective molecule has also been developed (Patent filed No. 2075/DEL/2014). Results of the study demonstrated that SQGD efficiently scavenge free radicals in vitro. SQGD provides excellent protection to structural and functional proteins, plasmid DNA and biomembranes against radiation induced oxidative damage. SQGD was observed to offer ∼ 83% whole body survival to lethally irradiated mice when administered 2h before irradiation by oral route. SQGD was found to ensure significant radioprotection to gastro-intestinal, hematopoietic and male reproductive system of irradiated mice. Protein expression studies revealed that SQGD pretreatment to the irradiated mice significantly increased expression of G-CSF, GM-CSF, MCSF; NFkB, IL-2, IL-12, IL-23, IL-6, PCNA and PARP. In conclusion, present study decisively justified the radioprotective potential of bacterial metabolite SQGD

  18. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  19. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Fengming [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China); Radiation Oncology Department, Tianjin Hospital, Tianjin (China); Yue, Xiao [Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin (China); Ren, Gang; Li, Hongqi; Ping, Li; Wang, Yingjie [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China); Xia, Tingyi, E-mail: xiatingyi1959@163.com [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China)

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

  20. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    International Nuclear Information System (INIS)

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment

  1. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan;

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  2. Dietary enhancement of intestinal radioresistance during fractionated irradiation

    International Nuclear Information System (INIS)

    Rats fed laboratory chow or elemental diet 3 were given fractions of 240 rads of 60Co γ radiation abdominally (1200 rads/week) until all animals had died. Changes in appetite, body weight, and mortality were monitored as a function of the cumulative dose received. More radiation was needed in the diet-fed group to achieve both 0 and 100% mortality, a difference of 37% at the mean lethal dose level. Both groups developed similar progressive anorexia but the diet-fed animals lost weight more slowly. Data indicate that basic intestinal radioresistance is enhanced by feeding the elemental diet

  3. Increasing of organism radioresistance by MR-33 metabolic drug

    International Nuclear Information System (INIS)

    Using acute radiation injury model and mother-embryo system the radioprotective effect is studied of original metabolic preparation MR-33 (L-glutamine acid + glycine + cysteine) the characteristic feature of which is the ability to increase the intracellular level of glutathione (GSH) and GSH-depending system. Rats-males and pregnant females were used for experiments as well as volunteers. It is shown that the MR-33 increase adult and embryo radioresistance in case of γ-irradiation using 60Co source

  4. Polymorphism of radioresistance of soft spring wheat of various morphophysiological types grown from gamma-irradiation seeds

    International Nuclear Information System (INIS)

    Ig has been shown by a number of criteria of radioresistance of dormant and germinating seeds that there exists a genetically determined radioresistance polymorphism of varieties within the morphological types of soft spring wheat. Maximal (10-fold) differences between the varients have been revealed for the fourth morpjhological type involving wheat varieties adapted to frigid and damp climate. The most radioresistant varients, that belong to different morphophysiological types exhibited a 3-fold variation in the potential radioresistance level

  5. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  6. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  7. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N;

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated......Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  8. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  9. Squamous cell cancer of the rectum

    Institute of Scientific and Technical Information of China (English)

    Tara Dyson; Peter V Draganov

    2009-01-01

    Squamous cell carcinoma of the rectum is a rare malignancy. It appears to be associated with chronic inflammatory conditions and infections. The clear association seen between Human Papilloma Virus and various squamous cancers has not been firmly established for the squamous cell cancer of the rectum. The presentation is nonspecific and patients tend to present with advanced stage disease. Diagnosis relies on endoscopic examination with biopsy of the lesion. Distinction from squamous cell cancer of the anus can be difficult, but can be facilitated by immunohistochemical staining for cytokeratins. Staging of the cancer with endoscopic ultrasound and computed tomography provides essential information on prognosis and can guide therapy. At present, surgery remains the main therapeutic option; however recent advances have made chemoradiation a valuable therapeutic addition. Squamous cell carcinoma of the rectum is a distinct entity and it is of crucial importance for the practicing Gastroenterologist to be thoroughly familiar with this disease. Compared to adenocarcinoma of the rectum and squamous cell cancer of the anal canal, squamous cell carcinoma of the rectum has different epidemiology, etiology, pathogenesis, and prognosis but, most importantly, requires a different therapeutic approach. This review will examine and summarize the available information regarding this disease from the perspective of the practicing gastroenterologist.

  10. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  11. Cancer Stem Cells: From Identification To Eradication

    International Nuclear Information System (INIS)

    A fundamental problem in cancer research is identification of the cells within a tumor that sustain the growth of the neoplastic clone. The concept that only a subpopulation of rare cancer stem cells (CSCs) is responsible for maintenance of the neoplasm emerged nearly 50 years ago: however, conclusive proof for the existence of a CSC was obtained only relatively recently. As definition, cancer stem cells (CSCs) are a sub-population of cancer cells (found within solid tumors or hematological malignancies) that possess characteristics normally associated with stem cells as high self-renewal potential. These cells are believed to be tumorige forming) in contrast to the bulk of cancer cells, which are thought to be non-tumorigenic. The first conclusive evidence for CSCs was published in 1997 in Nature Medicine by Bonnet and Dick who isolated a subpopulation of leukemic cells in AML that express a specific surface marker CD34 but lacks the CD38 marker. The authors established that the CD34+/CD38– subpopulation is capable of initiating leukemia in NOD/SCID mice that is histologically similar to the donor [1]. This subpopulation of cells is termed SCID Leukemia-initiating cells (SLIC). A theory suggests that such cells act as a reservoir for disease recurrence, are the origin of metastasis and exert resistance towards classical antitumor regimens. This resistance was attributed to a combination of several factors [2], suggesting that conventional antitumor regimens are targeting the bulk of the tumor not the dormant stubborn CSCs. Purpose Better understanding of the leukemogenic process and the biology of CSCS to define the most applicable procedures for their identification and isolation in order to design specific targeted therapies aiming at reducing disease burden to very low levels .. up to eradication of the tumor

  12. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, J.M. (Miami Univ., Oxford, OH (USA). Dept. of Zoology)

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs.

  13. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    International Nuclear Information System (INIS)

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs

  14. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  15. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    Directory of Open Access Journals (Sweden)

    Wenbo Wang

    Full Text Available The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3 as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.

  16. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-μmol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 μmol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  17. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  18. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  19. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  20. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  1. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  2. Targeting cancer stem cells in hepatocellular carcinoma

    OpenAIRE

    MISHRA, LOPA

    2014-01-01

    Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC) is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the fun...

  3. How Taxol/paclitaxel kills cancer cells

    OpenAIRE

    Weaver, Beth A

    2014-01-01

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, r...

  4. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  5. Reversibility of apoptosis in cancer cells

    OpenAIRE

    Tang, H. L.; Yuen, K L; Tang, H M; Fung, M C

    2008-01-01

    Apoptosis is a cell suicide programme characterised by unique cellular events such as mitochondrial fragmentation and dysfunction, nuclear condensation, cytoplasmic shrinkage and activation of apoptotic protease caspases, and these serve as the noticeable apoptotic markers for the commitment of cell demise. Here, we show that, however, the characterised apoptotic dying cancer cells can regain their normal morphology and proliferate after removal of apoptotic inducers. In addition, we demonstr...

  6. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  7. Mapping proteolytic cancer cell-extracellular matrix interfaces.

    NARCIS (Netherlands)

    Wolf, K.A.; Friedl, P.H.A.

    2009-01-01

    For cancer progression and metastatic dissemination, cancer cells migrate and penetrate through extracellular tissues. Cancer invasion is frequently facilitated by proteolytic processing of components of the extracellular matrix (ECM). The cellular regions mediating proteolysis are diverse and depen

  8. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  9. 诱导建立乳腺癌MCF-7放射耐受细胞亚株的实验研究%Inducing and Establishing Cell Sublines with Radiation Resistance in Human Breast Cancer MCF-7 Cells

    Institute of Scientific and Technical Information of China (English)

    向晶; 周明利; 谢荣俊; 张树友

    2012-01-01

    目的:探索诱导并建立人乳腺癌MCF-7放射耐受细胞亚株的体外实验方法.方法:体外培养MCF-7细胞株,应用梯度递增的X线对MCF-7进行诱导照射,照射剂量达到59Gy时,得到放射耐受细胞亚株(MCF-7R),扫描电镜和透射电镜观察亲本株MCF-7与放射耐受细胞亚株MCF-7R细胞超微结构,流式细胞仪检测其细胞周期分布,集落形成实验检测其放射敏感性,并计算存活分数,多靶单击模型拟合细胞存活曲线.结果:与MCF-7相比,MCF-7R外形及细胞器均出现明显改变;G2/M期比例明显降低;(13.32%vs.9.43%)放射敏感性参数SF2即照射2 Gy时的细胞存活分数升高34%(P<0.001),准域剂量Dq值由2.261 Gy升高至3.695 Gy(P<0.05),平均致死剂量Do值由1.215 Gy升高至1.834 Gy(P<0.05).结论:照射剂量梯度递增法是可行的建立人乳腺癌放射耐受细胞亚株的方法,得到的放射耐受亚株细胞形态及细胞生物学特性与亲本株细胞相比较有明显差异.%Objectives: To induce and establish breast cancer cell sublines with radiation resistance in MCF-7. Methods: Breast cancer cell MCF-7 cells were repeatedly given individual doses of X-rays with liner accelerator to induce radiation resistance with adequate dosage. The intracellular ultrastnicture of the strains was observed through scanning electron microscopy and transmission electron microscopy. The cell cycle distribution was examined by flow cytometry. Cell radiosensitivity as assayed by colony formation assay, and the survival fraction was calculated. The multi-target model that fit the cell survival curve was selected. Results: At the same irradiation condition and radiation dose, the radio-resistant sub-cell MCF-7R showed significant morphological changes, such as shape and organelles, compared with the parent strain MCF-7. Cell cycle analysis showed that MCF-7R had lower Percentage G2/ M and slower proliferation tendency. Cell clone analysis demonstrated that MCF-7R had

  10. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.

  11. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs. PMID:26337609

  12. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  13. An update on the biology of cancer stem cells in breast cancer.

    Science.gov (United States)

    García Bueno, José María; Ocaña, Alberto; Castro-García, Paola; Gil Gas, Carmen; Sánchez-Sánchez, Francisco; Poblet, Enrique; Serrano, Rosario; Calero, Raúl; Ramírez-Castillejo, Carmen

    2008-12-01

    Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24- select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.

  14. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation

    International Nuclear Information System (INIS)

    Mammalian cells often exhibit a hyper-radiosensitivity (HRS) to radiation doses <20 cGy, followed by increased radioresistance (IRR) at slightly higher doses (∼20-30 cGy). Here, the influence of DNA double-strand break repair (DSBR) on IRR was examined. The failure of Ataxia telangiectasia (AT) cells to undergo IRR reported by others was confirmed. Flow cytometric analysis indicated that normal cells fail to show a measurable increase in serine 1981 phosphorylated AT-mutated (ATM) protein after 10 cGy up to 4 h post irradiation, but a two- to fourfold increase after 25 cGy. Similarly, more proficient reduction of phosphorylated histone H2AX was observed 24 h after 25 cGy than after 10 cGy, suggesting that DSBR is more efficient during IRR than HRS. A direct examination of the consequences of inefficient DNA repair per se (as opposed to ATM-mediated signal transduction/cell cycle responses), by determining the clonogenic survival of cells lacking the DNA repair enzyme polynucleotide kinase/phosphatase, indicated that these cells have a response similar to AT cells, i.e. HRS but no IRR, strongly linking IRR to DSBR. (authors)

  15. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  16. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha;

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods. Nontumourige......Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Results. Based on the clonogenic assay the nontumourigenic cell...

  17. Resveratrol Impedes the Stemness, Epithelial-Mesenchymal Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 Activation

    Directory of Open Access Journals (Sweden)

    Yao-An Shen

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are able to self-renew and are refractory to cancer treatment. To investigate the effects of resveratrol on CSCs of nasopharyngeal carcinoma (NPC, we employed a behavior selection strategy to isolate CSCs based on radioresistance, chemoresistance, and tumor sphere formation ability. These NPC CSCs displayed stem cell properties and underwent metabolic shift to predominately rely on glycolysis for energy supply. Intriguingly, we found that resveratrol turned off the metabolic switch, increased the reactive oxygen species (ROS level, and depolarized mitochondrial membranes. These alterations in metabolism occurred concomitantly with the suppression of CSC properties including resistance to therapy, self-renewal capacity, tumor initiation capacity, and metastatic potential in NPC CSCs. We found that resveratrol impeded CSC properties through the activation of p53 and this effect could be reversed by knockdown of p53. Furthermore, resveratrol suppressed the stemness and EMT through reactivating p53 and inducing miR-145 and miR-200c, which were downregulated in NPC CSCs. In conclusion, we demonstrated that resveratrol employed the p53 pathway in regulating stemness, EMT, and metabolic reprogramming. Further investigation of the molecular mechanism of p53 activation by resveratrol may provide useful information for the development of novel therapies for cancer treatment through targeting to CSCs.

  18. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  19. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer.

  20. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  1. Understanding cancer stem cell heterogeneity and plasticity

    Institute of Scientific and Technical Information of China (English)

    Dean G Tang

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo.It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells.Somatic stem cells in adult organs are also heterogeneous,containing many subpopulations of self-renewing cells with distinct regenerative capacity.The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches.Like normal stem cells,recent data suggest that cancer stem cells(CSCs)similarly display significant phenotypic and functional heterogeneity,and that the CSC progeny can manifest diverse plasticity.Here,I discuss CSC heterogeneity and plasticity in the context of tumor development and progression,and by comparing with normal stem cell development.Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted.By understanding the interrelationship between CSCs and their differentiated progeny,we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.

  2. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  3. Foxp3 expression in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Konstantinos I

    2008-04-01

    Full Text Available Abstract Objective Transcription factor forkhead box protein 3 (Foxp3 specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs. Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively in various tumor types. Materials and methods Twenty five tumor cell lines of different tissue origins (lung cancer, colon cancer, breast cancer, melanoma, erythroid leukemia, acute T-cell leukemia were studied. Detection of Foxp3 mRNA was performed using both conventional RT-PCR and quantitative real-time PCR while protein expression was assessed by immunocytochemistry and flow cytometry, using different antibody clones. Results Foxp3 mRNA as well as Foxp3 protein was detected in all tumor cell lines, albeit in variable levels, not related to the tissue of origin. This expression correlated with the expression levels of IL-10 and TGFb1. Conclusion We offer evidence that Foxp3 expression, characterizes tumor cells of various tissue origins. The biological significance of these findings warrants further investigation in the context of tumor immune escape, and especially under the light of current anti-cancer efforts interfering with Foxp3 expression.

  4. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  5. Proteomic analysis of cancer stem cells in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Kyung; Cho, Hyungdon [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  6. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  7. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  8. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  9. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia (Italy)

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  10. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ilaria Chiodi

    2011-03-01

    Full Text Available Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  11. Side population cells isolated from KATO Ⅲ human gastric cancer cell line have cancer stem cell-like characteristics

    Institute of Scientific and Technical Information of China (English)

    Jun-Jun She; Peng-Ge Zhang; Xuan Wang; Xiang-Ming Che; Zi-Ming Wang

    2012-01-01

    AIM:To investigate whether the side population (SP)cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer.METHODS:We analyzed the presence of SP cells in different human gastric carcinoma cell lines,and then isolated and identified the SP cells from the KATO Ⅲ human gastric cancer cell line by flow cytometry.The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays.The related genes were determined by reverse transcription polymerase chain reaction.To compare tumorigenic ability,SP and non-side population (NSP) cells from the KATO Ⅲ human gastric cancer cell line were subcutaneously injected into nude mice.RESULTS:SP cells from the total population accounted for 0.57% in KATO Ⅲ,1.04% in Hs-746T,and 0.02% in AGS (CRL-1739).SP cells could grow clonally and have self-renewal capability in conditioned media.The expression of ABCG2,MDRI,Bmi-1 and Oct-4 was different between SP and NSP cells.However,there was no apparent difference between SP and NSP cells when they were injected into nude mice.CONCLUSION:SP cells have some cancer stem celllike characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  12. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  13. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  14. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway.

    Science.gov (United States)

    Wang, Lei; Li, Xiankui; Song, Yi-Min; Wang, Bin; Zhang, Fu-Rui; Yang, Rui; Wang, Hua-Qi; Zhang, Guo-Jun

    2015-07-01

    At present, it is elusive how non-small cell lung cancer (NSCLC) develops resistance to γ-radiation; however, the transcription factor nuclear factor-κB (NF-κB) and NF-κB-regulated gene products have been proposed as mediators. Ginsenoside Rg3 is a steroidal saponin, which was isolated from Panax ginseng. Ginsenoside Rg3 possesses high pharmacological activity and has previously been shown to suppress NF-κB activation in various types of tumor cell. Therefore, the present study aimed to determine whether Rg3 could suppress NF-κB activation in NSCLC cells and sensitize NSCLC to γ-radiation, using an NSCLC cell line and NSCLC xenograft. A clone formation assay and lung tumor xenograft experiment were used to assess the radiosensitizing effects of ginsenoside Rg3. NF-κB/inhibitor of NF-κB (IκB) modulation was ascertained using an electrophoretic mobility shift assay and western blot analysis. NF-κB-regulated gene products were monitored by western blot analysis. The present study demonstrated that ginsenoside Rg3 was able to sensitize A549 and H1299 lung carcinoma cells to γ-radiation and significantly enhance the efficacy of radiation therapy in C57BL/6 mice bearing a Lewis lung carcinoma cell xenograft tumor. Furthermore, ginsenoside Rg3 suppressed NF-κB activation, phosphorylation of IκB protein and expression of NF-κB-regulated gene products (cyclin D1, c-myc, B-cell lymphoma 2, cyclooxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor), a number of which were induced by radiation therapy and mediate radioresistance. In conclusion, the results of the present study suggested that ginsenoside Rg3 may potentiate the antitumor effects of radiation therapy in NSCLC by suppressing NF-κB activity and NF-κB-regulated gene products, leading to the inhibition of tumor progression.

  15. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  16. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  17. Orthotopic Injection of Pancreatic Cancer Cells.

    Science.gov (United States)

    Aiello, Nicole M; Rhim, Andrew D; Stanger, Ben Z

    2016-01-01

    Pancreatic ductal adenocarcinoma is an aggressive disease with a 5-yr survival rate of only 5%. The location of the pancreas in the abdomen, where it is obscured by other organs, makes it a difficult tissue to study and manipulate. This protocol describes in detail how to orthotopically inject cancer cells into the pancreas in mice. This technique is particularly useful when the cells must be manipulated in ways that cannot be modeled genetically. PMID:26729902

  18. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  19. Forcing Cancer Cells to Commit Suicide

    NARCIS (Netherlands)

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Peeters, Marc

    2009-01-01

    Apoptosis plays a crucial role in the normal development, homeostasis of multicellular organisms, carcinogenic process, and response of cancer cells to anticancer drugs. It is a genetically strictly regulated process, controlled by the balance between pro-and antiapoptotic proteins. Resistance to st

  20. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  1. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  2. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu C

    2015-03-01

    Full Text Available Chenxia Hu,1 Martin Niestroj,2,3 Daniel Yuan,4 Steven Chang,5 Jie Chen5,6 1Faculty of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China; 2Canadian Light Source, Saskatoon, SK, Canada; 3Physics Department, Bonn University, Bonn, Germany; 4Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA; 5Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; 6Canadian National Research Council/National Institute for Nanotechnology, Edmonton, AB, Canada Abstract: Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain. Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs with thio-PEG (polyethylene glycol and thio-glucose, the resulting functionalized GNPs (Glu-GNPs were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption

  3. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  4. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  5. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  6. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer

    OpenAIRE

    Roh, Jong-Lyel; Kim, Eun Hye; Park, Jin Young; Kim, Ji Won; Kwon, Minsu; Lee, Byung-Heon

    2014-01-01

    Adaptation to cellular stress is not a vital function of normal cells but is required of cancer cells, and as such might be a sensible target in cancer therapy. Piperlongumine is a naturally occurring small molecule selectively toxic to cancer cells. This study assesses the cytotoxicity of piperlongumine and its combination with cisplatin in head-and-neck cancer (HNC) cells in vitro and in vivo. The effect of piperlongumine, alone and in combination with cisplatin, was assessed in human HNC c...

  7. New insights into pancreatic cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Chinthalapally V Rao; Altaf Mohammed

    2015-01-01

    Pancreatic cancer (PC) has been one of the deadliest of allcancers, with almost uniform lethality despite aggressivetreatment. Recently, there have been important advancesin the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recentnew targeted agents and the use of multiple therapeuticcombinations, no treatment option is viable in patients withadvanced cancer. Developing novel strategies to targetprogression of PC is of intense interest. A small populationof pancreatic cancer stem cells (CSCs) has been foundto be resistant to chemotherapy and radiation therapy.CSCs are believed to be responsible for tumor initiation,progression and metastasis. The CSC research has recentlyachieved much progress in a variety of solid tumors,including pancreatic cancer to some extent. This leads tofocus on understanding the role of pancreatic CSCs. Thefocus on CSCs may offer new targets for prevention andtreatment of this deadly cancer. We review the most salientdevelopments in important areas of pancreatic CSCs. Here,we provide a review of current updates and new insightson the role of CSCs in pancreatic tumor progression withspecial emphasis on DclK1 and Lgr5, signaling pathwaysaltered by CSCs, and the role of CSCs in prevention andtreatment of PC.

  8. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  9. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  10. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Anastasov Nataša

    2012-12-01

    Full Text Available Abstract Background There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up. Methods The miR-21 expression levels were quantified (qRT-PCR in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361 by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis. Results The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029. Conclusions Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours.

  11. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells

    International Nuclear Information System (INIS)

    There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up. The miR-21 expression levels were quantified (qRT-PCR) in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361) by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis. The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029). Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours

  12. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  13. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  14. Novel pattern of post-γ ray de novo DNA synthesis in a radioresistant human strain

    International Nuclear Information System (INIS)

    Enhanced resistance to radiation cytotoxicity in a fibroblast strain from an afflicted member of a Li-Fraumeni syndrome family may be largely ascribable to a change in the pattern of DNA replicative synthesis following γ ray exposure. That is, the extent of the initial radiogenic inhibition of replicative synthesis and the time interval before its subsequent recovery were both found to be greater in radioresistant (RR) compared to normal cells. In addition, the post-recovery replication rates in the RR cells were both higher and longer lasting than those in the control cells. A similar differential pattern was also seen following treatment with 4NQO, another DNA-damaging agent to which this RR strain displays enhanced resistance. Moreover, several conventional DNA repair assays indicated that the RR cells repair radiogenic damage at normal rates. The authors therefore suggest that the increased inhibition and prolonged lag in resumption of replicative synthesis seen in the RR strain upon exposure to certain genotoxic agents may enhance cellular recovery by ''buying additional time'' for processing of potentially lethal lesions

  15. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  16. Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation

    Science.gov (United States)

    2011-11-28

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  17. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  18. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  19. Thyroid stem cells: lessons from normal development and thyroid cancer

    OpenAIRE

    Thomas, Dolly; Friedman, Susan; Lin, Reigh-Yi

    2008-01-01

    Ongoing advances in stem cell research have opened new avenues for therapy for many human disorders. Until recently, however, thyroid stem cells have been relatively understudied. Here, we review what is known about thyroid stem cells and explore their utility as models of normal and malignant biological development. We also discuss the cellular origin of thyroid cancer stem cells and explore the clinical implications of cancer stem cells in the thyroid gland. Since thyroid cancer is the most...

  20. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  1. Selective killing of cancer cells by nanoparticle-assisted ultrasound

    OpenAIRE

    Kosheleva, Olga K.; Lai, Tsung-Ching; Chen, Nelson G.; Hsiao, Michael; Chen, Chung-Hsuan

    2016-01-01

    Background Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells. Results Co-cultures of BEAS-2B normal lung cells and A549 cancerous lung cells labeled with green and red fluorescent proteins, res...

  2. Gastric cancer stem cells: A novel therapeutic target

    OpenAIRE

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, ...

  3. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    2001-01-01

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A sy

  4. Clinical experience with hyperthermia in cancer radiotherapy: Special reference to in vivo thermometry

    International Nuclear Information System (INIS)

    Combined use of heat and ionizing radiation is a promising treatment of radioresistant tumors, because the two modalities act complementary for cell killing in vitro. Cells in S phase and chronically hypoxic cells, which as a consequence have a low pH, are vulnerable to heat. This chapter describes the authors' clinical experiences of combined localized hypethermia in cancer radiotherapy and discusses mainly problems associated with temperature measurement and its evaluation, including the effects of electromagnetic waves on the thermometer system, the difference of temperature distribution in static phantom and in vivo, and the method for evaluating the heat dose, administered under conditions of various temperatures

  5. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  6. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer.

    Science.gov (United States)

    Korkmaz, Deniz Taştemir; Demirhan, Osman; Abat, Deniz; Demirberk, Bülent; Tunç, Erdal; Kuleci, Sedat

    2015-09-01

    The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.

  7. Sequential Treatment by Ionizing Radiation and Sodium Arsenite Dramatically Accelerates TRAIL-Mediated Apoptosis of Human Melanoma Cells

    OpenAIRE

    Ivanov, Vladimir N.; Zhou, Hongning; Hei, Tom K.

    2007-01-01

    Melanoma is the most lethal form of skin cancer. There is a lack of effective treatments for individuals with advanced disease. Many melanomas exhibit high levels of radioresistance. The direct consequence of γ-irradiation for most melanoma cells is growth arrest at the G2-M phase of cell cycle. However, radiation-induced signaling pathways may affect numerous additional targets in cancer cells. We show in the present study that γ-irradiation, as well as α-particle exposure, dramatically incr...

  8. Effect of individual and group housing of mice on the level of radioresistance

    Directory of Open Access Journals (Sweden)

    Dorozhkina O.V.

    2015-12-01

    Full Text Available Aim: to examine the effect of individual and group housing of mice on radioresistance. Material and methods. Effects of individual and group housing of mice on immunity and blood systems were studied on ICR (CD-1 and C57BI6 male mice before and after proton irradiation. Results. Group housing of intact animals resulted in a decline in the number of nucleated cells in the femur bone marrow and thymus mass. The irradiation with proton with energy of 171 MeV at a dose of 1 Gy causes a statistically significant greater reduction of the number of nucleated cells in the femur bone marrow in group-housed mice. A trend toward greater safety of the number of leukocytes in the peripheral blood and higher proliferative activity of bone marrow cells, as well as lower level of aberrant mitoses have been noted in individually-housed mice. Reduction processes in the recovery period of radiation sickness take place at a greater rate in group-housed mice. Conclusion. Group housing of male mice causes increased sensitivity of the blood and immunity systems to the effects of radiation and at the same time accelerates processes of radiation recovery.

  9. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models.

    Directory of Open Access Journals (Sweden)

    Kwang Woon Kim

    Full Text Available BACKGROUND: Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro. METHODS AND FINDINGS: M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007 compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO mouse embryonic fibroblasts (MEF cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment. CONCLUSIONS: M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation

  10. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  11. Cancer stem cells, metabolism, and therapeutic significance.

    Science.gov (United States)

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  12. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  13. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  14. Electrodynamic activity of healthy and cancer cells

    International Nuclear Information System (INIS)

    Microtubules in the cell form a structure capable of generating electrodynamic field and mitochondria form their supporting system for physical processes including energy supply. Mitochondria transfer protons from their matrix space into cytosol, create strong static field around them that causes ordering of water and altering it into quasi-elastic medium with reduced viscous damping. Microtubules are composed of heterodimers that are electric dipoles. Microtubule oscillations generate an electrodynamic field. The greatest energy supply may be provided by liberation of non-utilized energy from mitochondria. Microtubules and mitochondria form a unique cooperating system in the cell. Mitochondria form a boundary element whose function depends on chemical-genetic control but their output is essential for physical processes in the cell. Mitochondrial dysfunction in cancer cells results in diminished intensity of the static electric field, disturbed water ordering, increased damping of microtubule oscillations and their shift towards linear region, and decreased energy supply. Power and coherence of oscillations and generated electrodynamic field is weakened. Malignant properties of cancer cell, in particular local invasion and metastasis, may depend on disturbed electrodynamic field. Nanotechnology is promising for investigation of electrodynamic activity in living cells.

  15. Clinical significance of T cell metabolic reprogramming in cancer.

    Science.gov (United States)

    Herbel, Christoph; Patsoukis, Nikolaos; Bardhan, Kankana; Seth, Pankaj; Weaver, Jessica D; Boussiotis, Vassiliki A

    2016-12-01

    Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy. PMID:27510264

  16. The fibroblast growth factor-2 (F.G.F.-2) expression predicts the tumoral response and the local of non at small cells bronchi cancers after chemoradiotherapy

    International Nuclear Information System (INIS)

    The tumoral expression of the fibroblast growth factor-2 is correlated with a bad response to chemotherapy and a strong rate of local recurrence. F.G.F.-2 would define a radioresistant phenotype of non at small cells bronchi carcinoma. (N.C.)

  17. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  18. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  19. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  20. Raman spectra of single cell from gastrointestinal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xun-Ling Yan; Rui-Xin Dong; Lei Zhang; Xue-Jun Zhang; Zong-Wang Zhang

    2005-01-01

    AIM: To explore the difference between cancer cells and normal cells, we investigated the Raman spectra of singlecells from gastrointestinal cancer patients. METHODS: All samples were obtained from 30 diagnosed as gastrointestinal cancer patients. The flesh tumor specimen is located in the center of tumor tissue, while the normal ones were 5 cm away from the outside tumor section. The imprint was put under the microscope and a single cell was chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (British Renishaw) with NIR 780 nm laser.RESULTS: We measured the Raman spectra of several cells from gastrointestinal cancer patients. The result shows that there exists the strong line at 1 002/cm with less half-width assigned to the phenylalanine in several cells. The Raman lines of white cell were lower and less, while those of red cell were not only higher in intensity and more abundant, but also had a parti cular C-N breathing stretching band of pyrrole ring at 1 620-1 540/cm. The line at 1 084/cm assigned to phosphate backbone of DNA became obviously weaker in cancer cell. The Raman spectra of stomach cancer cells were similar to those of normal cells, but the Raman intensity of cancer cells was much lower than that of normal cells, and even some lines disappear. The lines of enteric cancer cells became weaker than spectra above and many lines disappeared, and the cancer cells in different position had different fluorescence intensity.CONCLUSION: The Raman spectra of several cells from cancer patients show that the structural changes of cancer cells happen and many bonds rupture so that the biological function of cells are lost. The results indicate that Raman spectra can offer the experiment basis for the cancer diagnosis and treatment.

  1. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  2. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    Science.gov (United States)

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  3. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  4. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  5. Cancer stem cells in haematological malignancies

    OpenAIRE

    Zagozdzon, Radoslaw; Golab, Jakub

    2015-01-01

    At least several types of human haematological malignancies can now be seen as ‘stem-cell diseases’. The best-studied in this context is acute myeloid leukaemia (AML). It has been shown that these diseases are driven by a pool of ‘leukaemia stem cells (LSC)’, which remain in the quiescent state, have the capacity to survive and self-renew, and are responsible for the recurrence of cancer after classical chemotherapy. It has been understood that LSC must be eliminated in order to cure patients...

  6. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  7. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    Hoffman, Robert M.

    2013-01-01<