WorldWideScience

Sample records for cancer cells partly

  1. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  2. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  3. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I.

    NARCIS (Netherlands)

    Krege, S.; Beyer, J.; Souchon, R.; Albers, P.; Albrecht, W.; Algaba, F.; Bamberg, M.; Bodrogi, I.; Bokemeyer, C.; Cavallin-Stahl, E.; Classen, J.; Clemm, C.; Cohn-Cedermark, G.; Culine, S.; Daugaard, G.; Mulder, P.H.M. de; Santis, M. de; Wit, M. de; Wit, R. de; Derigs, H.G.; Dieckmann, K.P.; Dieing, A.; Droz, J.P.; Fenner, M.; Fizazi, K.; Flechon, A.; Fossa, S.D.; Muro, X.G. del; Gauler, T.; Geczi, L.; Gerl, A.; Germa-Lluch, J.R.; Gillessen, S.; Hartmann, J.T.; Hartmann, M.; Heidenreich, A.; Hoeltl, W.; Horwich, A.; Huddart, R.; Jewett, M.; Joffe, J.; Jones, W.G.; Kisbenedek, L.; Klepp, O.; Kliesch, S.; Koehrmann, K.U.; Kollmannsberger, C.; Kuczyk, M.; Laguna, P.; Galvis, O.L.; Loy, V.; Mason, M.D.; Mead, G.M.; Mueller, R.; Nichols, C.; Nicolai, N.; Oliver, T.; Ondrus, D.; Oosterhof, G.O.; Ares, L.P.; Pizzocaro, G.; Pont, J.; Pottek, T.; Powles, T.; Rick, O.; Rosti, G.; Salvioni, R.; Scheiderbauer, J.; Schmelz, H.U.; Schmidberger, H.; Schmoll, H.J.; Schrader, M.; Sedlmayer, F.; Skakkebaek, N.E.; Sohaib, A.; Tjulandin, S.; Warde, P.; Weinknecht, S.; Weissbach, L.; Wittekind, C.; Winter, E.; Wood, L.; Maase, H. von der

    2008-01-01

    OBJECTIVES: The first consensus report presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in the year 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the Amst

  4. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II.

    NARCIS (Netherlands)

    Krege, S.; Beyer, J.; Souchon, R.; Albers, P.; Albrecht, W.; Algaba, F.; Bamberg, M.; Bodrogi, I.; Bokemeyer, C.; Cavallin-Stahl, E.; Classen, J.; Clemm, C.; Cohn-Cedermark, G.; Culine, S.; Daugaard, G.; Mulder, P.H.M. de; Santis, M. De; Wit, M. de; Wit, R. de; Derigs, H.G.; Dieckmann, K.P.; Dieing, A.; Droz, J.P.; Fenner, M.; Fizazi, K.; Flechon, A.; Fossa, S.D.; Muro, X.G. del; Gauler, T.; Geczi, L.; Gerl, A.; Germa-Lluch, J.R.; Gillessen, S.; Hartmann, J.T.; Hartmann, M.; Heidenreich, A.; Hoeltl, W.; Horwich, A.; Huddart, R.; Jewett, M.; Joffe, J.; Jones, W.G.; Kisbenedek, L.; Klepp, O.; Kliesch, S.; Koehrmann, K.U.; Kollmannsberger, C.; Kuczyk, M.; Laguna, P.; Galvis, O.L.; Loy, V.; Mason, M.D.; Mead, G.M.; Mueller, R.; Nichols, C.; Nicolai, N.; Oliver, T.; Ondrus, D.; Oosterhof, G.O.; Paz-Ares, L.; Pizzocaro, G.; Pont, J.; Pottek, T.; Powles, T.; Rick, O.; Rosti, G.; Salvioni, R.; Scheiderbauer, J.; Schmelz, H.U.; Schmidberger, H.; Schmoll, H.J.; Schrader, M.; Sedlmayer, F.; Skakkebaek, N.E.; Sohaib, A.; Tjulandin, S.; Warde, P.; Weinknecht, S.; Weissbach, L.; Wittekind, C.; Winter, E.; Wood, L.; Maase, H. von der

    2008-01-01

    OBJECTIVES: The first consensus report that had been presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the

  5. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II

    DEFF Research Database (Denmark)

    Krege, Susanne; Beyer, Jörg; Souchon, Rainer;

    2007-01-01

    OBJECTIVES: The first consensus report that had been presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of ...

  6. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I

    DEFF Research Database (Denmark)

    Krege, Susanne; Beyer, Jörg; Souchon, Rainer;

    2007-01-01

    OBJECTIVES: The first consensus report presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in the year 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the A...

  7. Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2.

    Directory of Open Access Journals (Sweden)

    Bethany N Smith

    Full Text Available Snail transcription factor is up-regulated in several cancers and associated with increased tumor migration and invasion via induction of epithelial-to-mesenchymal transition (EMT. MAPK (ERK1/2 signaling regulates cellular processes including cell motility, adhesion, and invasion. We investigated the regulation of ERK1/2 by Snail in breast cancer cells. ERK1/2 activity (p-ERK was higher in breast cancer patient tissue as compared to normal tissue. Snail and p-ERK were increased in several breast cancer cell lines as compared to normal mammary epithelial cells. Snail knockdown in MDA-MB-231 and T47-D breast cancer cells decreased or re-localized p-ERK from the nuclear compartment to the cytoplasm. Snail overexpression in MCF-7 breast cancer cells induced EMT, increased cell migration, decreased cell adhesion and also increased tumorigenicity. Snail induced nuclear translocation of p-ERK, and the activation of its subcellular downstream effector, Elk-1. Inhibiting MAPK activity with UO126 or knockdown of ERK2 isoform with siRNA in MCF-7 Snail cells reverted EMT induced by Snail as shown by decreased Snail and vimentin expression, decreased cell migration and increased cell adhesion. Overall, our data suggest that ERK2 isoform activation by Snail in aggressive breast cancer cells leads to EMT associated with increased cell migration and decreased cell adhesion. This regulation is enhanced by positive feedback regulation of Snail by ERK2. Therefore, therapeutic targeting of ERK2 isoform may be beneficial for breast cancer.

  8. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    Science.gov (United States)

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  9. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  10. PCNA--a cell proliferation marker in vocal cord cancer. Part II: Recurrence in malignant laryngeal lesions.

    Science.gov (United States)

    Broich, G; Lavezzi, A M; Biondo, B; Pignataro, L D

    1996-01-01

    Laryngeal squamous cell carcinoma constitutes the most frequent carcinoma found in the head and neck region. A precise prediction for recurrence potential cannot be done on site, treatment and histologic grading. Since Proliferating Cell Nuclear Antigen (PCNA) and DNA-cytometry have shown a good correlation between premalignant lesions and their progressive potential towards full-fledged carcinoma in the larynx as described in part I of this work, we have analyzed the PCNA index and DNA cytometry in specimen taken from vocal chord carcinomas with a 5-year follow-up, in order to assess its relationship with the presence or absence of tumour progression. 42 cases with (21) and without (2) recurrence have been examined. The DNA-index ranged from 1.01 to 1.43 (mean 1.10) in the group without and from 1.02 to 1.59 (mean 1.38) in the group with recurrent carcinoma (p = 0.002). The PCNA-index ranged from 0.00% to 18.90% (mean 6.97%) in the nonrecurrent group and from 0.00 to 3g.50% (mean 16.35%) in the patients with recurrence (p = 0.001). Both indices also correlated in a highly significant way. From these data emerges a highly significant correlation between the cytometric indices of cell proliferation and PCNA immunostaining. Furthermore the high correction between PCNA and DNA-index is of special interest for single case assessment. High DNA aberration and PCNA-index in vocal chord carcinoma may indicate a higher cellular aggressiveness of the tumour, resulting in a greater overall risk of metastases and local recurrences. Our results support the thesis that the indices of cellular proliferation within some cancers can define subsets of patients of high risk and help in isolating a population in which a more aggressive clinical protocol may be proposed.

  11. PCNA--a cell proliferation marker in vocal chord cancer. Part I: Premalignant laryngeal lesions.

    Science.gov (United States)

    Pignataro, L D; Broich, G; Lavezzi, A M; Biondo, B; Ottaviani, F

    1995-01-01

    Laryngeal hyperkeratotic lesions can progress to fully developed malignant carcinoma in some cases. These premalignant lesions are proliferative disorders whose potential for further tumour progression is perhaps difficult to assess by mere histology. Immunostaining with PCNA, a protein correlated with cell proliferation, has been used to study tissue behavior in 30 cases of premalignant laryngeal vocal chord lesions treated by epithelial stripping in microlaryngoscopy, 15 of whom had no progression and 15 had recurrence and final development of full malignancy. The results showed a statistically significantly higher PCNA-index in the cases which underwent further tumour progression towards malignancy. PCNA testing may thus be suggested as a marker for tumour progression potential and help in determining clinical treatment choices.

  12. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  13. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  14. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  15. Breast cancer, stem cells and sex hormones. Part 2: the impact of the reproductive years and pregnancy.

    Science.gov (United States)

    Eden, John A

    2010-11-01

    The primitive breast develops in utero and during infancy breast growth largely parallels the growth of the child. At puberty, the GnRH pulse generator starts up, initially with just 1-2 pulses daily. This results in very small amounts of unopposed estrogen being secreted by the ovary. As the GnRH pulse generator matures, ovarian secretion of estrogen increases. The pubertal breast responds to this increasing estrogen drive. Breast glandular increase in size is mostly due to growth and division of the primary ducts. Eventually, the terminal buds give rise alveolar buds which tend to cluster around a terminal duct. Lobule formation begins in the first 2 years that follow menarche. With the onset of ovulation, breast mitotic activity increases and is usually maximal in the luteal phase. The final stage of breast maturation occurs during the first full-term pregnancy. The breast undergoes marked changes in preparation for breast feeding. There is evidence that breast SC number decreases during that first pregnancy. Also, the remaining SC undergo significant change which seems to render them less likely to undergo malignant change. These alterations to breast SC number and function may explain, at least in part, why early first pregnancy reduces the risk of breast cancer later in life.

  16. Late effects and quality of life of childhood cancer survivors: part 1. Impact of stem cell transplantation.

    Science.gov (United States)

    Ishida, Yasushi; Honda, Misato; Ozono, Shuichi; Okamura, Jun; Asami, Keiko; Maeda, Naoko; Sakamoto, Naoko; Inada, Hiroko; Iwai, Tsuyako; Kamibeppu, Kiyoko; Kakee, Naoko; Horibe, Keizo

    2010-06-01

    To examine the late effects and health-related quality of life among childhood cancer survivors (CCS) after stem cell transplantation (SCT), we performed a cross-sectional survey using self-rating questionnaires. The subjects were divided into 3 groups: SCT-treated CCS, CCS treated without SCT, and the general population who matched for age, gender, residential area, and work status with the CCS. We analyzed the questionnaires of 185 CCS and 1,000 control participants. The median ages of CCS at diagnosis and survey were 8 and 22 years, respectively. The mean final heights of male and female participants were significantly lower for SCT-treated CCS than for CCS treated without SCT and the controls. Among the SCT-treated CCS, >40% were underweight (BMI 15 years' duration after therapy completion (OR 2.95; p = 0.014), solid tumors (4.31; p = 0.040), radiotherapy (2.82; p = 0.009), recurrence (4.22; p = 0.017), and SCT (3.39; p = 0.014) were significant risk factors for late effects. Subjective symptoms were significantly frequent in SCT-treated CCS. Physical dysfunction, psychological stress, and social adaptation problems were observed in >70% of SCT-treated CCS.

  17. PARK2, a Large Common Fragile Site Gene, is Part of a Stress Response Network in Normal Cells that is Disrupted During the Development of Ovarian Cancer

    Science.gov (United States)

    2008-01-01

    primary prostate tumor tissues. Top row RORA; Bottom row Actin. C. Ovary cancer cell lines, Lane 1 normal ovarian epithelium control (OSE); Lane 2...Liu D, Tang X, El-Naggar A, Hong WK, Mao L. Loss of Fhit expression is a predictor of poor outcome in tongue cancer. Cancer Res 2001: 61: 837-841. 7

  18. Breast cancer. Part 3: advanced cancer and psychological implications.

    Science.gov (United States)

    Harmer, Victoria

    This is the last article in this 3-part series on breast cancer. The previous two articles have outlined the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging, and treatment for breast cancer, including surgery, chemotherapy, radiotherapy and endocrine treatment. The series concludes by giving information on advanced disease, including when a patient presents late with a fungating breast lesion, or if the disease has metastasized from the breast to other organs. Lymphoedema is also described and discussed, and the latter half of this article discusses psychological implications of breast cancer, from diagnosis through the individual treatments.

  19. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  20. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  1. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  2. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and γ-radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo Yoen [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Hyun A; Kim, Jeong Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Jae Ha; Choi, Soo Im [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Han, Jeong Ran; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Cho, Eun Wie [Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-01-03

    Highlights: •DKK1 was expressed differently among non-small-cell lung cancer cell lines. •DKK1 negatively regulated ROMO1 gene expression. •Disturbance of DKK1 level induced the imbalance of cellular ROS. •DKK1/ROMO1-induced ROS imbalance is involved in cell survival in NSCLC. -- Abstract: Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cells than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.

  3. The cancer stem cell theory: is it correct?

    Science.gov (United States)

    Yoo, Min-Hyuk; Hatfield, Dolph L

    2008-11-30

    The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

  4. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  5. Laryngeal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2016-03-01

    Full Text Available Laryngeal squamous cell carcinoma (LSCC is one of the most commonly diagnosed malignancies in the head and neck region with an increased incidence rate worldwide. Cancer stem cells (CSCs are a group of cells with eternal life or infinite self-renewal ability, which have high migrating, infiltrative, and metastatic abilities. Though CSCs only account for a small proportion in tumors, the high resistance to traditional therapy exempts them from therapy killing and thus they can reconstruct tumors. Our current knowledge, about CSCs in the LSCC, largely depends on head and neck studies with a lack of systematic data about the evidences of CSCs in tumorigenesis of LSCC. Certainly, the combination of therapies aimed at debulking the tumour (e.g. surgery, conventional chemotherapy, radiotherapy together with targeted therapies aimed at the elimination of the CSCs might have a positive impact on the long-term outcome of patients with laryngeal cancer (LC in the future and may cast a new light on the cancer treatment.

  6. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  7. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  8. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  9. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  10. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  11. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  12. Intraoperative photodynamic therapy in laryngeal part of pharynx cancers

    Science.gov (United States)

    Loukatch, Erwin V.; Trojan, Vasily; Loukatch, Vjacheslav

    1996-12-01

    In clinic intraoperative photodynamic therapy (IPT) was done in patients with primal squamous cells cancer of the laryngeal part of the pharynx. The He-Ne laser and methylene blue as a photosensibilizator were used. Cobalt therapy in the postoperative period was done in dose 45 Gr. Patients of control groups (1-th group) with only laser and (2-th group) only methylene blue were controlled during three years with the main group. The statistics show certain differences of recidives in the main group compared to the control groups. These facts are allowing us to recommend the use of IPT as an additional method in ENT-oncology diseases treatment.

  13. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  14. Cancer stem cells in human gastrointestinal cancer.

    Science.gov (United States)

    Taniguchi, Hiroaki; Moriya, Chiharu; Igarashi, Hisayoshi; Saitoh, Anri; Yamamoto, Hiroyuki; Adachi, Yasushi; Imai, Kohzoh

    2016-11-01

    Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype.

  15. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  16. Cancer cells with irons in the fire.

    Science.gov (United States)

    Bystrom, Laura M; Rivella, Stefano

    2015-02-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.

  17. Enteric Bacteria and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2011-01-01

    Full Text Available Intestinal bacteria can contribute to cell proliferation and cancer development, particularly in chronic infectious diseases in which bacteria and/or bacterial components might interfere with cell function. The number of microbial cells within the gut lumen is estimated to be 100 trillion, which is about 10-times larger than the number of eukaryotic cells in the human body. Because of the complexity of the gut flora, identifying the specific microbial agents related to human diseases remains challenging. Recent studies have demonstrated that the stemness of colon cancer cells is, in part, orchestrated by the microenvironment and is defined by high Wnt activity. In this review article, we will discuss recent progress with respect to intestinal stem cells, cancer stem cells, and the molecular mechanisms of enteric bacteria in the activation of the Wnt pathway. We will also discuss the roles of other pathways, including JAK-STAT, JNK, and Notch, in regulating stem cell niches during bacterial infections using Drosophila models. Insights gained from understanding how host-bacterial interaction during inflammation and cancer may serve as a paradigm for understanding the nature of self-renewal signals.

  18. Choropleth Map Design for Cancer Incidence, Part 2

    Directory of Open Access Journals (Sweden)

    Thomas B. Richards, MD

    2010-01-01

    Full Text Available Choropleth maps are commonly used in cancer reports and community discussions about cancer rates. Cancer registries increasingly use geographic information system techniques. The Centers for Disease Control and Prevention’s Division of Cancer Prevention and Control convened a Map Work Group to help guide application of geographic information system mapping techniques and to promote choropleth mapping of data from central cancer registries supported by the National Program of Cancer Registries, especially for comprehensive cancer control planning and evaluation purposes. In this 2-part series, we answer frequently asked questions about choropleth map design to display cancer incidence data. We recommend that future initiatives consider more advanced mapping, spatial analysis, and spatial statistics techniques and include usability testing with representatives of state and local programs and other cancer prevention partners.

  19. Choropleth Map Design for Cancer Incidence, Part 1

    Directory of Open Access Journals (Sweden)

    Thomas B. Richards, MD

    2010-01-01

    Full Text Available Choropleth maps are commonly used in cancer reports and community discussions about cancer rates. Cancer registries increasingly use geographic information system techniques. The Centers for Disease Control and Prevention’s Division of Cancer Prevention and Control convened a Map Work Group to help guide application of geographic information systems mapping techniques and to promote choropleth mapping of data from central cancer registries supported by the National Program of Cancer Registries, especially for planning and evaluation of comprehensive cancer control programs. In this 2-part series in this issue of Preventing Chronic Disease, we answer frequently asked questions about choropleth map design to display cancer incidence data. We recommend that future initiatives consider more advanced mapping, spatial analysis, and spatial statistics techniques, and include usability testing with representatives of state and local programs and other cancer prevention partners.

  20. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  1. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  2. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  3. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  4. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  5. Therapeutic implications of colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Eros; Fabrizi; Simona; di; Martino; Federica; Pelacchi; Lucia; Ricci-Vitiani

    2010-01-01

    Colorectal cancer is the second most common cause of cancer-related death in many industrialized countries and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support with regard to several solid tumors, including colorectal cancer. According to the cancer stem cell hypothesis, cancer can be considered a disease in which mutations either convert no...

  6. Cell Phones and Cancer Risk

    Science.gov (United States)

    ... have the potential of accumulating more years of cell phone exposure than adults do. Thus far, the data from studies in children with cancer do not support this theory. The first published analysis came from a large ...

  7. Cancer Stem Cells in Osteosarcoma

    OpenAIRE

    Heymann, D; Brown, H K; Tellez-Gabriel, M.

    2017-01-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and...

  8. What Is Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  9. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  10. Breast cancer. Part 2: present and future treatment modalities.

    Science.gov (United States)

    Harmer, Victoria

    This is the second article in a series of three on breast cancer. Part 1 discussed breast anatomy, the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging. In this article, treatment for breast cancer is discussed. The article will follow the usual order of modalities in the trajectory, starting with surgery, then chemotherapy, radiotherapy and endocrine treatment, finishing with a discussion of future and biological treatments.

  11. Verrucous Squamous Cell Cancer in the Esophagus

    DEFF Research Database (Denmark)

    Egeland, Charlotte; Achiam, Michael P; Federspiel, Birgitte

    2016-01-01

    Verrucous carcinoma is a rare, slow-growing type of squamous cell cancer. Fewer than 50 patients with verrucous carcinoma in the esophagus have been described worldwide. In 2014, two male patients were diagnosed with verrucous carcinoma in the distal part of the esophagus. The endoscopic...... examinations showed a similar wart-like, white, irregular mucosa in both cases. The diagnosis was difficult to make since all biopsies taken from the affected area showed no malignancy. This cancer type has a relatively good prognosis when the diagnosis is finally obtained. Both our patients presented...

  12. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  13. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  14. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  15. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  16. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    Science.gov (United States)

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  17. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  18. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  19. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  20. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  1. Notch signaling in cancer stem cells.

    Science.gov (United States)

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  2. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  3. Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells.

    Science.gov (United States)

    Cardiff, Robert D; Couto, Suzana; Bolon, Brad

    2011-10-25

    Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease and malignant progression over time. These themes cooperate in breast cancer, as induction of epithelial-to-mesenchymal transition enhances self-renewal and expression of cancer stem cells, which are believed to facilitate tumor resistance.

  4. The relationship of cancer stem cells in urological cancers

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczyńska

    2013-08-01

    Full Text Available Numerous studies are ongoing to identify and isolate cancer stem cells from cancers of genito-urinary tracts. Better understanding of their role in prostate, urothelial and kidney cancer origin, growth and progression opens new pathways in development of more effective treatment methods. However there are still many issues before advances in this field can be introduced for clinical application. This review addresses current achievements in cancer stem cells research in uro-oncology.

  5. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  6. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  7. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  8. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  9. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  10. Astragalus extract inhibits destruction of gastric cancer cells to mesothelial cells by anti-apoptosis

    Institute of Scientific and Technical Information of China (English)

    Di Na; Fu-Nan Liu; Zhi-Feng Miao; Zong-Min Du; Hui-Mian Xu

    2009-01-01

    AIM: To determine the inhibitory effect of Astragalus memebranaceushas on gastric cancer cell supernatantinduced apoptosis of human peritoneal mesothelial cells. METHODS: Human peritoneal mesothelial cell (HPMC) line HMrSV5 was co-incubated with gastric cancer cell supernatant (MKN45) and/or Astragalus memebranaceushas. Morphological changes in gastric cancer cells were observed under phase-contrast microscope. Quantitative cell damage was determined by MTT assay. Apoptosis was determined under transmission electron microscope and quantified by detecting acridine orange/ethidium bromide-stained (AO/EB) condensed nuclei under fluorescent microscope or by flow cytometry. Expressions of Bcl-2 and Bax were evaluated with immunostaining. RESULTS: Morphological changes and exfoliation occurred and naked areas appeared in cultured HMrSV5 cells 24 h after they were treated with gastric cancer cell supernatant. Cell supernatant from MKN45 gastric cancer cells induced apoptosis of HMrSV5 cells in a time-dependent manner. Obvious morphological changes were observed in cell apoptosis, such as condensation of chromatin, nuclear fragmentations and apoptotic bodies. Astragalus memebranaceus could partly suppress these changes and regulate the expressions of Bcl-2 and Bax in HMrSV5 cells. CONCLUSION: Gastric cancer cells induce apoptosis of HPMCs through the supernatant. Astragalus memebranaceushas inhibits this phenomenon and can be used an adjuvant chemothera-peutic agent in gastric cancer therapy.

  11. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  12. The role of adhesive molecules in endometrial cancer: part II

    Directory of Open Access Journals (Sweden)

    Andrzej Malinowski

    2010-12-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutationin a gene encoding protein that is essential for cellular function. The subsequent cascade of eventsleads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology,disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear thatadhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsiblefor attachment of the cells to each other and to the extracellular matrix. These interactions are crucial forboth structural and functional tissue organization. Lack of this homeostasis destroys the tissue architectureand impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in allexamined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many casesdiagnosed and treated in early stages, and thus with good results, some patients cannot be cured. Completeknowledge of the pathogenesis of the disease will be helpful in identifying the patients with negative prognosticfactors, increased risk of recurrence and, perhaps, to find other therapeutic options. In the paper we are trying tosum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  13. The role of adhesive molecules in endometrial cancer: part I

    Directory of Open Access Journals (Sweden)

    Michał Wojciechowski

    2010-10-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutation in a gene encoding protein that is essential for cellular function. The subsequent cascade of events leads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology, disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear that adhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsible for attachment of the cells to each other and to the extracellular matrix. These interactions are crucial for both structural and functional tissue organization. Lack of this homeostasis destroys the tissue architecture, impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in all examined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many cases it is diagnosed and treated in early stages, and thus with good results, some patients cannot be cured. A complete knowledge of the pathogenesis of the disease will be helpful in identifying patients with negative prognostic factors, increased risk of recurrence and, perhaps, finding other therapeutic options. In the paper we are trying to sum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  14. Cancer stem cells: a new approach to tumor development

    Directory of Open Access Journals (Sweden)

    Natália Cristina Ciufa Kobayashi

    2015-02-01

    Full Text Available Many theories have been proposed to explain the origins of cancer. Currently, evidences show that not every tumor cell is capable of initiating a tumor. Only a small part of the cancer cells, called cancer stem cells (CSCs, can generate a tumor identical to the original one, when removed from human tumors and transplanted into immunosuppressed mice. The name given to these cells comes from the resemblance to normal stem cells, except for the fact that their ability to divide is infinite. These cells are also affected by their microenvironment. Many of the signaling pathways, such as Wnt, Notch and Hedgehog, are altered in this tumoral subpopulation, which also contributes to abnormal proliferation. Researchers have found several markers for CSCs; however, much remains to be studied, or perhaps a universal marker does not even exist, since they vary among tumor types and even from patient to patient. It was also found that cancer stem cells are resistant to radiotherapy and chemotherapy. This may explain the re-emergence of the disease, since they are not completely eliminated and minimal amounts of CSCs can repopulate a tumor. Once the diagnosis in the early stages greatly increases the chances of curing cancer, identifying CSCs in tumors is a goal for the development of more effective treatments. The objective of this article is to discuss the origin of cancer according to the theory of stem cell cancer, as well as its markers and therapies used for treatment.

  15. Anatomical relationship between traditional acupuncture point ST 36 and Omura's ST 36 (True ST 36) with their therapeutic effects: 1) inhibition of cancer cell division by markedly lowering cancer cell telomere while increasing normal cell telomere, 2) improving circulatory disturbances, with reduction of abnormal increase in high triglyceride, L-homocystein, CRP, or cardiac troponin I & T in blood by the stimulation of Omura's ST 36--Part 1.

    Science.gov (United States)

    Omura, Yoshiaki; Chen, Yemeng; Lu, Dominic P; Shimotsura, Yasuhiro; Ohki, Motomu; Duvvi, Harsha

    2007-01-01

    Using Bi-Digital O-Ring Test Resonance Phenomena between 2 identical substances, Omura, Y. succeeded in making the image of the outline of internal organs without use of standard imaging devices since 1982. When he imaged the outline of the stomach on the abdominal wall, a number of the lines came out from upper and lower parts of stomach wall. When the lines were followed, they were very close to the well-known stomach meridians. Subsequently, he found a method of localizing meridians and their corresponding acupuncture points as well as shapes and diameters accurately. At the anatomical location of ST 36 described in traditional textbooks, Omura, Y. found there is no acupuncture point. However, in the close vicinity, there is an acupuncture point which he named as true ST 36 in the mid 1980s, but it is generally known as Omura's ST 36. When the effects of the acupuncture on these 2 locations were compared, Omura's ST 36 (true ST 36) produced very significant well-known acupuncture beneficial effects including improved circulation and blood chemistry, while in the traditional ST 36, the effects were small. In this article, the anatomical relationship between these two acupuncture points, with a short distance of 0.6 approximately 1.5 cm between the centers of these locations, was described. In early 2000, Omura, Y. found Press Needle Stimulation of Omura's ST 36, using "Press-Release" procedure repeated 200 times, 4 times a day to cancer patients reduced high cancer cell telomere of 600-1500ng and high Oncogen C-fos Ab2 and Integrin alpha5beta1 of 100-700ng BDORT units to close to lyg (= 10(-24) g) BDORT units. In addition there was a significant reduction of Asbestos and Hg from cancer cells, while markedly reduced normal cell telomere of lyg was increased to optimally high amounts of 500-530ng BDORTunits. Thus, cancer cells can no longer divide and cancer activity is inhibited. The authors have successfully applied this method for a variety of cancers as well as

  16. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    Science.gov (United States)

    Tomasetti, Cristian; Li, Lu; Vogelstein, Bert

    2017-03-24

    Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.

  17. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy

    Science.gov (United States)

    Qin, Weiwei; Huang, Guan; Chen, Zuanguang; Zhang, Yuanqing

    2017-01-01

    Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.

  18. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... 2015 2014 2013 2012 Media Resources Media Contacts Multicultural Media ... This page lists cancer drugs approved by the Food and Drug Administration (FDA) for kidney (renal cell) cancer. The list ...

  19. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  20. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  1. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    Science.gov (United States)

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design.

  2. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  3. Cryotherapy in Treating Patients With Lung Cancer That Has Spread to the Other Lung or Parts of the Body

    Science.gov (United States)

    2017-01-17

    Advanced Malignant Mesothelioma; Extensive Stage Small Cell Lung Cancer; Lung Metastases; Recurrent Malignant Mesothelioma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  4. Pancreatic cancer stem cells: fact or fiction?

    Science.gov (United States)

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  5. Pharmacogenomics: from cell to clinic (Part 1).

    Science.gov (United States)

    Siest, Gérard; Medeiros, Rui; Melichar, Bohuslav; Stathopoulou, Maria; Van Schaik, Ron H N; Cacabelos, Ramon; Abt, Peter Meier; Monteiro, Carolino; Gurwitz, David; Queiroz, Jao; Mota-Filipe, Helder; Ndiaye, Ndieye Coumba; Visvikis-Siest, Sophie

    2014-04-01

    The second international European Society of Pharmacogenomics and Theranostics (ESPT) conference was organized in Lisbon, Portugal, and attracted 250 participants from 37 different countries. The participants could listen to 50 oral presentations, participate in five lunch symposia and were able to view 83 posters and an exhibition. The first part of this Conference Scene will focus on the pharmacogenomics and biomarkers used in medical oncology, and in particular solid tumors. In addition, this article covers the two keynote conference introductory lectures by Ann K Daly and Magnus Ingelman-Sundberg. The second part of this article will discuss the clinical implementation of pharmacogenomic tests; the role of transports and pharmacogenomics; how stem cells and other new tools are helping the development of pharmacogenomics and drug discovery; and an update on the clinical translation of pharmacogenomics to personalized medicine. Part two of this Conference Scene will be featured in the next issue of Pharmacogenomics.

  6. Inside the 2016 American Society of Clinical Oncology Genitourinary Cancers Symposium: part 1 - kidney cancer.

    Science.gov (United States)

    Buti, Sebastiano; Ciccarese, Chiara; Iacovelli, Roberto; Bersanelli, Melissa; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo; Tortora, Giampaolo; Massari, Francesco

    2016-09-01

    The American Society of Clinical Oncology Genitourinary Cancers Symposium, Moscone West Building, San Francisco, CA, USA, 7-9 January 2016 The American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium, held in San Francisco (CA, USA), from 7 to 9 January 2016, focused on 'patient-centric care: translating research to results'. Every year, this meeting is a must for anyone studying genitourinary tumors to keep abreast of the most recent innovations in this field, exchange views on behaviors customarily adopted in daily clinical practice, and discuss future topics of scientific research. This two-part report highlights the key themes presented at the 2016 ASCO Genitourinary Cancers Symposium, with part 1 reporting the main novelties of kidney cancer and part 2 discussing the most relevant issues which have emerged for bladder and prostate tumors.

  7. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  8. [Prostate cancer. Part 1: Review of cell kinetics over the years 1966-2015 and future perspectives of the new grading of the International Society of Urological Pathology (ISUP)].

    Science.gov (United States)

    Helpap, B; Bubendorf, L

    2016-02-01

    Using tritium-labeled thymidine histoautoradiography, the AgNOR staining technique and Ki67-MIB-1 immunohistochemistry to study cell kinetics, prostate cancer can be subdivided into slowly, moderately and rapidly proliferating tumors. These are important supplementary methods and prerequisites for a grading as low, intermediate and high-grade in addition to classical histology and cytology. Cytometry of DNA can confirm the cell kinetics of prostate cancer by detection of a predominance of diploid or aneuploid cell nuclei but should only be evaluated together with histological investigations. All histology-based analyses of cell kinetics encompass the classical highly and poorly differentiated glandular and cribriform patterns as well as solid undifferentiated structures and the various subcategories. The malignancy grading of prostate cancer can result from the summation of histological grading and cell kinetic analyses, as long as the named investigations are included. The future perspectives of individualized therapy options, including active surveillance in early low-grade and also for high-grade prostate cancer and new antihormonal treatment in advanced disease, may increasingly rely on tissue biomarkers and advanced technologies for whole genome analysis including next generation sequencing.

  9. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  10. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  11. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  12. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  13. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  14. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  15. Addressing future challenges for cancer services: part II.

    Science.gov (United States)

    Maher, Jane; Radford, Gina

    2016-02-01

    Jane Maher & Gina Radford speak to Gemma Westcott, Commissioning Editor Jane Maher has been Macmillan's Chief Medical Officer since 1999 and now shares the role as Joint Chief Medical Officer with general practitioner Rosie Loftus, reflecting the growing need for specialists and generalists to work more effectively together. She has been an National Health Service (NHS) improvement clinical leader for over 10 years and is a Consultant Clinical Oncologist at Mount Vernon Cancer Centre and Hillingdon Hospital where she has worked for more than 20 years, during which she helped develop nonsurgical oncology services in five district general hospitals. She is a senior Clinical Lecturer at University College London and Visiting Professor in Cancer and Supportive Care at the Centre for Complexity Management at the University of Hertfordshire. Jane chaired the Maher Committee for the Department of Health in 1995, led the UK National Audit of Late Effects Pelvic Radiotherapy for the Royal College of Radiologists (RCR) in 2000 and, most recently, chaired the National Cancer Survivorship Initiative Consequences of Treatment work stream. She co-founded one of the first Cancer Support and Information services in the UK, winning the Nye Bevan award in 1992 and there are now more than 60 units based on this model. She is a member of the Older People and Cancer Clinical Advisory Group. She has written more than 100 published articles and is a UK representative for cancer survivorship in Europe and advises on cancer survivorship programs in Denmark and Canada. Gina Radford is Deputy Chief Medical Officer for England, a post she took up in January 2015. Prior to that, she has held a number of roles in public health, at local and regional level. Most recently she was Centre Director for Anglia and Essex for Public Health England, and as a part of that role helped lead nationally on the public health response to Ebola. She was until very recently Chair of one of the NICE public health

  16. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Zhi-xiang Yuan; Jingxin Mo; Guixian Zhao; Gang Shu; Hua-lin Fu; Wei Zhao

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  17. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    Science.gov (United States)

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part.

  18. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  19. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  20. Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells

    OpenAIRE

    2011-01-01

    Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease an...

  1. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  2. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  3. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.

    2010-01-01

    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  4. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  5. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  6. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  7. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  8. Single-cell analysis in cancer genomics

    Science.gov (United States)

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2017-01-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper, we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  9. Review of MicroRNA Deregulation in Oral Cancer. Part I

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    2011-04-01

    Full Text Available Objectives: Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer.Material and Methods: A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review.Results: Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified.Conclusions: These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy.

  10. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  11. Visualizing how cancer chromosome abnormalities form in living cells

    Science.gov (United States)

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  12. An immunosurveillance mechanism controls cancer cell ploidy.

    Science.gov (United States)

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  13. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  14. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  15. Mast cells and cancer: enemies or allies?

    Science.gov (United States)

    Dyduch, Grzegorz; Kaczmarczyk, Karolina; Okoń, Krzysztof

    2012-03-01

    Mast cells are a component of cancer microenvironment the role of which is complex and poorly understood. Mast cells promote cancer growth by stimulation of neoangiogenesis, tissue remodeling and by modulation of the host immune response. The mediators of cancer promotion include protease-activated receptors, mitogen activated protein kinases, prostaglandins and histamine. Histamine may induce tumor proliferation and immunosuppression through H1 and H2 receptors, respectively. The mast cell-derived modulators of immune response include also interleukin 10 (IL-10), tumor necrosis factor α (TNF-α) and CD30L. Possibly stimulation of angiogenesis is the most important. Mast cells release potent proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGF-β), TNF- α and IL-8, and mast cells' enzymes, like metaloproteinases (MMPs), tryptase and chymase participate in vessels' formation. The anti-cancer actions of mast cells include direct growth inhibition, immunologic stimulation, inhibition of apoptosis and decreased cell mobility; the mediators of these processes include chymase, tryptase, TNF-α, IL-1 and IL-6. The very same mediators may exert both pro- or anti-cancer effects depending on concentration, presence of cofactors or location of secreting cells. In fact, peri- and intra-tumoral mast cells may have dissimilar effects. Understanding of the role of mast cells in cancer could lead to improved prognostication and development of therapeutic methods targeting the mast cells.

  16. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  17. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  18. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  19. Relevance of mortalin to cancer cell stemness and cancer therapy.

    Science.gov (United States)

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C; Wadhwa, Renu

    2017-02-06

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy.

  20. Relevance of mortalin to cancer cell stemness and cancer therapy

    Science.gov (United States)

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy. PMID:28165047

  1. Repression of cancer cell senescence by PKCι.

    Science.gov (United States)

    Paget, J A; Restall, I J; Daneshmand, M; Mersereau, J A; Simard, M A; Parolin, D A E; Lavictoire, S J; Amin, M S; Islam, S; Lorimer, I A J

    2012-08-02

    Senescence is an irreversible growth arrest phenotype adopted by cells that has a key role in protecting organisms from cancer. There is now considerable interest in therapeutic strategies that reactivate this process to control the growth of cancer cells. Protein kinase-Cι (PKCι) is a member of the atypical PKC family and an important downstream mediator in the phosphoinositide-3-kinase (PI-3-kinase) pathway. PKCι expression was found to be upregulated in a subset of breast cancers and breast cancer cell lines. Activation of the PI-3-kinase pathway by introduction of mutant, oncogenic PIK3CA into breast mammary epithelial cells increased both the expression and activation of PKCι. In breast cancer cells lines overexpressing PKCι, depletion of PKCι increased the number of senescent cells, as assessed by senescence-associated β-galactosidase, morphology and bromodeoxyuridine incorporation. This phenomenon was not restricted to breast cancer cells, as it was also seen in glioblastoma cells in which PKCι is activated by loss of PTEN. Senescence occurred in the absence of a detectable DNA-damage response, was dependent on p21 and was enhanced by the aurora kinase inhibitor VX-680, suggesting that senescence is triggered by defects in mitosis. Depletion of PKCι had no effect on senescence in normal mammary epithelial cell lines. We conclude that PKCι is overexpressed in a subset of cancers where it functions to suppress premature senescence. This function appears to be restricted to cancer cells and inhibition of PKCι may therefore be an effective way to selectively activate premature senescence in cancer cells.

  2. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  3. A novel strategy for cancer treatment:Targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; MA LeiNa; WANG YiGang; LIU XinYuan; QIAN QiJun

    2008-01-01

    Cancer stem cell/tumor-initiating cell (CSC/TIC) is a subclass of cancer cells possessing parts of properties of normal stem cell. It has a high capacity of proliferation and plays a pivotal role in tumor recurrence and tumor resistance to radiotherapy and chemotherapy. At present, small molecule in-hibitors and fusion proteins are widely used in the CSC-targeting strategy. Gene-virotherapy, which uses oncolytic adenovirus as a vector to mediate the expression of therapeutic gene, shows a signifi-cant superiority to other regimens of cancer treatment and has a good efficacy in the treatment of solid tumors. Thus, it is a promising choice to apply gene-virotherapy into the CSC-targeting treatment. Based on the molecular mechanism underlying CSC self-renewal, a series of effective strategies for targeting CSC have been established. This review will summarize the recent research progresses on CSC-targeting treatment.

  4. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  5. Nucleolar function and size in cancer cells.

    OpenAIRE

    Derenzini, M; Trerè, D; Pession, A; Montanaro, L; Sirri, V.; Ochs, R. L.

    1998-01-01

    We have have studied the relationship between nucleolar function and size and cell doubling time in cancer cells. Seven human cancer cell lines characterized by different proliferation rates were used. Nucleolar functional activity was evaluated by measuring RNA polymerase I activity and expression of RNA polymerase I upstream binding factor (UBF), DNA topoisomerase I, and fibrillarin, three proteins involved in synthesis and processing of rRNA. Transcriptional activity of RNA polymerase I wa...

  6. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  7. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  8. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  9. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  10. Effective Medicinal Plant in Cancer Treatment, Part 2.

    Science.gov (United States)

    Kooti, Wesam; Servatyari, Karo; Behzadifar, Masoud; Asadi-Samani, Majid; Sadeghi, Fatemeh; Nouri, Bijan; Zare Marzouni, Hadi

    2017-01-01

    Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords "traditional medicine," "plant compounds," "medicinal plant," "medicinal herb," "toxicity," "anticancer effect," "cell line," and "treatment" were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms.

  11. Stem cell concepts renew cancer research.

    Science.gov (United States)

    Dick, John E

    2008-12-15

    Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.

  12. Updates in colorectal cancer stem cell research

    Directory of Open Access Journals (Sweden)

    Chun-Jie Li

    2014-01-01

    Full Text Available Colorectal cancer (CRC is one of the world most common malignant tumors, also is the main disease, which cause tumor-associated death. Surgery and chemotherapy are the most used treatment of CRC. Recent research reported that, cancer stem cells (CSCs are considered as the origin of tumor genesis, development, metastasis and recurrence in theory. At present, it has been proved that, CSCs existed in many tumors including CRC. In this review, we summary the identification of CSCs according to the cell surface markers, and the development of drugs that target colorectal cancer stem cells.

  13. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  14. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  15. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  16. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  17. Induction of cancer cell stemness by chemotherapy.

    Science.gov (United States)

    Hu, Xingwang; Ghisolfi, Laura; Keates, Andrew C; Zhang, Jian; Xiang, Shuanglin; Lee, Dong-ki; Li, Chiang J

    2012-07-15

    Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.

  18. Cell Polarity Proteins in Breast Cancer Progression.

    Science.gov (United States)

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  19. Reducing bone cancer cell functions using selenium nanocomposites.

    Science.gov (United States)

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects.

  20. Advances and perspectives of colorectal cancer stem cell vaccine.

    Science.gov (United States)

    Guo, Mei; Dou, Jun

    2015-12-01

    Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.

  1. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    Thor Straten, Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell ...

  2. Low white blood cell count and cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000675.htm Low white blood cell count and cancer To use ... high blood pressure, or seizures Continue Reading How Low is too Low? When your blood is tested, ...

  3. Noncoding RNAs in cancer and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Tianzhi Huang; Angel Alvarez; Bo Hu; Shi-Yuan Cheng

    2013-01-01

    In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potential y useful diagnostic tools.

  4. Cancer Stem Cells in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Wang

    2011-01-01

    Full Text Available Head and neck cancer (HNC is the sixth most common malignancy world-wide, however the survival rate has not improved for the past 20 years. In recent years, the cancer stem cell (CSC hypothesis has gained ground in several malignancies and there is mounting evidence suggesting CSCs mediate tumor resistance to chemotherapy and radiation therapy. However, the CSC theory is also challenged at least in certain types of cancer. Here we review the progress of CSC studies in HNC, which suggest that HNC conforms to the CSC model. The identified CSC markers and their tumor initiation properties provide a framework for the development of novel therapeutic strategies for HNC.

  5. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  6. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    OpenAIRE

    Shigeo Koido; Eiichi Hara; Sadamu Homma; Yoshihisa Namiki; Toshifumi Ohkusa; Jianlin Gong; Hisao Tajiri

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived...

  7. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  8. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    progenitor cells (NPCs) by expressing an activated form of Notch1 (N1ICD) or oncogenic PIK3CA (PIK3CA*) in the developing mouse cerebellum, using cell...resistance, pediatric cancer, brain tumor, Notch1, PIK3CA, cell of origin, molecular subtypes, neural stem cells, neural progenitor cells, tumor initiation...neural progenitor cells, tumor initiation. 3. ACCOMPLISHMENTS: Major goals of the project: The stated goals of this project are to: 1) test the

  9. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  10. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  11. Cancer and deregulation of stem cells pathways

    Directory of Open Access Journals (Sweden)

    Filipe Correia Martins

    2011-12-01

    Full Text Available Stem cells may have an important etiological role in cancer. Their classic regulatory pathways are deregulated in tumors, strengthening the stem cell theory of cancer. In this manuscript, we review Wnt, Notch and Hedhehog pathways, describing which of their factors may be responsible for the neoplastic development. Furthermore, we classify these elements as oncogenes or tumor suppressor genes, demonstrating their mutation implications in cancer. The activation of these pathways is associated with the expression of certain genes which maintain proliferation and apoptosis inhibition. Further work should be carried out in the future in order to control tumor development by controlling these signaling cascades.

  12. Analysis of cytotoxic T cell epitopes in relation to cancer

    DEFF Research Database (Denmark)

    Stranzl, Thomas

    kill the infected cells. The focus of my PhD project has been on improving a method for CTL epitope pathway prediction, on analyzing the epitope density in the alternative cancer exome, and on a study investigating minor histocompatibility antigens (mHags) associated with leukemia. Part I......CTL methods, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively. Part III reports the results of an analysis investigating how the alternatively spliced cancer exome differs from the exome of normal tissue in terms of containing predicted MHC class I binding...... epitopes. We show that peptides unique to cancer splice variants comprise significantly fewer predicted HLA class I epitopes than peptides unique to spliced transcripts in normal tissue. We furthermore find that hydrophilic amino acids are significantly enriched in the unique carcinoma sequences, which...

  13. Surveys of complementary and alternative medicine: Part II. Use of alternative and complementary cancer therapies.

    Science.gov (United States)

    Sparber, A; Wootton, J C

    2001-06-01

    The second part of this series on surveys of complementary and alternative medicine (CAM) in the United States provides a "point-of-information" summary of the studies on patients with cancer and their use of CAM therapies. Surveys of patients with cancer were the precursors of the recent wave of studies on CAM prevalence and use. Three tables summarize the findings from a total of 18 surveys categorized by Childhood Cancer, Adult Cancer, and Breast Cancer studies.

  14. Autophagy Accompanied with Bisdemethoxycurcumin-induced Apoptosis in Non-small Cell Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XU Jin Hong; YANG He Ping; ZHOU Xiang Dong; WANG Hai Jing; GONG Liang; TANG Chun Lan

    2015-01-01

    Objective To investigate the effects of bisdemethoxycurcumin (BDMC) on non-small cell lung cancer (NSCLC) cell line, A549, and the highly metastatic lung cancer 95D cells. Methods CCK-8 assay was used to assess the effect of BDMC on cytotoxicity. Flow cytometry was used to evaluate apoptosis. Western blot analysis, electron microscopy, and quantification of GFP-LC3 punctuates were used to test the effect of BDMC on autophagy and apoptosis of lung cancer cells. Results BDMC inhibited the viability of NSCLC cells, but had no cytotoxic effects on lung small airway epithelial cells (SAECs). The apoptotic cell death induced by BDMC was accompanied with the induction of autophagy in NSCLC cells. Blockage of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) repressed the growth inhibitory effects and induction of apoptosis by BDMC. In addition, BDMC treatment significantly decreased smoothened (SMO) and the transcription factor glioma-associated oncogene 1 (Gli1) expression. Furthermore, depletion of Gli1 by siRNA and cyclopamine (a specific SMO inhibitor) induced autophagy. Conclusion Aberrant activation of Hedgehog (Hh) signaling has been implicated in several human cancers, including lung cancers. The present findings provide direct evidence that BDMC-induced autophagy plays a pro-death role in NSCLC, in part, by inhibiting Hedgehog signaling.

  15. Cancer cells exhibit clonal diversity in phenotypic plasticity.

    Science.gov (United States)

    Mathis, Robert Austin; Sokol, Ethan S; Gupta, Piyush B

    2017-02-01

    Phenotypic heterogeneity in cancers is associated with invasive progression and drug resistance. This heterogeneity arises in part from the ability of cancer cells to switch between phenotypic states, but the dynamics of this cellular plasticity remain poorly understood. Here we apply DNA barcodes to quantify and track phenotypic plasticity across hundreds of clones in a population of cancer cells exhibiting epithelial or mesenchymal differentiation phenotypes. We find that the epithelial-to-mesenchymal cell ratio is highly variable across the different clones in cancer cell populations, but remains stable for many generations within the progeny of any single clone-with a heritability of 0.89. To estimate the effects of combination therapies on phenotypically heterogeneous tumours, we generated quantitative simulations incorporating empirical data from our barcoding experiments. These analyses indicated that combination therapies which alternate between epithelial- and mesenchymal-specific treatments eventually select for clones with increased phenotypic plasticity. However, this selection could be minimized by increasing the frequency of alternation between treatments, identifying designs that may minimize selection for increased phenotypic plasticity. These findings establish new insights into phenotypic plasticity in cancer, and suggest design principles for optimizing the effectiveness of combination therapies for phenotypically heterogeneous tumours.

  16. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  17. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  18. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  19. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  20. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  1. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    Science.gov (United States)

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  2. Cell polarity signaling in the plasticity of cancer cell invasiveness.

    Science.gov (United States)

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-05-03

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.

  3. Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors

    OpenAIRE

    Oshima, Nobu

    2014-01-01

    Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, et al. (2014) Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors. PLoS ONE 9(7): e101735. doi:10.1371/journal.pone.0101735

  4. Squamous cell cancer of the rectum

    Institute of Scientific and Technical Information of China (English)

    Tara Dyson; Peter V Draganov

    2009-01-01

    Squamous cell carcinoma of the rectum is a rare malignancy. It appears to be associated with chronic inflammatory conditions and infections. The clear association seen between Human Papilloma Virus and various squamous cancers has not been firmly established for the squamous cell cancer of the rectum. The presentation is nonspecific and patients tend to present with advanced stage disease. Diagnosis relies on endoscopic examination with biopsy of the lesion. Distinction from squamous cell cancer of the anus can be difficult, but can be facilitated by immunohistochemical staining for cytokeratins. Staging of the cancer with endoscopic ultrasound and computed tomography provides essential information on prognosis and can guide therapy. At present, surgery remains the main therapeutic option; however recent advances have made chemoradiation a valuable therapeutic addition. Squamous cell carcinoma of the rectum is a distinct entity and it is of crucial importance for the practicing Gastroenterologist to be thoroughly familiar with this disease. Compared to adenocarcinoma of the rectum and squamous cell cancer of the anal canal, squamous cell carcinoma of the rectum has different epidemiology, etiology, pathogenesis, and prognosis but, most importantly, requires a different therapeutic approach. This review will examine and summarize the available information regarding this disease from the perspective of the practicing gastroenterologist.

  5. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  6. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N;

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated......Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  7. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake.

  8. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  9. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    Science.gov (United States)

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  10. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  11. Cancer Stem Cells: A Moving Target.

    Science.gov (United States)

    Francipane, Maria Giovanna; Chandler, Julie; Lagasse, Eric

    2013-06-01

    Even though the number of anti-cancer drugs entering clinical trials and approved by the FDA has increased in recent years, many cancer patients still experience poor survival outcome. The main explanation for such a dismal prognosis is that current therapies might leave behind a population of cancer cells with the capacity for long-term self-renewal, so-called cancer stem cells (CSCs), from which most tumors are believed to be derived and fueled. CSCs might favor local and distant recurrence even many years after initial treatment, thus representing a potential target for therapies aimed at improving clinical outcome. In this review, we will address the CSC hypothesis with a particular emphasis on its current paradigms and debates, and discuss several mechanisms of CSC resistance to conventional therapies.

  12. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  13. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  14. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  15. [Sentinel lymph node biopsy in endometrial cancer--a part of modern operative treatment].

    Science.gov (United States)

    Jordanov, A; Gorchev, G; Tomov, S; Hinkova, N

    2014-01-01

    After brest cancer the endometrial cancer is the most common gynaecological malignancy. The lymphno destatus is with great prognostic value. There is no agreement for the therapeutic valuae and the contents of the lymph node desectionin early stages. That is why the sentinel lymph node biopsy is a part of modern operative treatment of endometrial cancer.

  16. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  17. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy.

  18. ICAM1 Is a Potential Cancer Stem Cell Marker of Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Sheng-Ta Tsai

    Full Text Available Esophageal squamous cell carcinoma (ESCC accounts for about 90% of esophageal cancer diagnosed in Asian countries, with its incidence on the rise. Cancer stem cell (CSC; also known as tumor-initiating cells, TIC is inherently resistant to cytotoxic chemotherapy and radiation and associates with poor prognosis and therapy failure. Targeting therapy against cancer stem cell has emerged as a potential therapeutic approach to develop effective regimens. However, the suitable CSC marker of ESCC for identification and targeting is still limited. In this study, we screened the novel CSC membrane protein markers using two distinct stemness characteristics of cancer cell lines by a comparative approach. After the validation of RT-PCR, qPCR and western blot analyses, intercellular adhesion molecule 1 (ICAM1 was identified as a potential CSC marker of ESCC. ICAM1 promotes cancer cell migration, invasion as well as increasing mesenchymal marker expression and attenuating epithelial marker expression. In addition, ICAM1 contributes to CSC properties, including sphere formation, drug resistance, and tumorigenesis in mouse xenotransplantation model. Based on the analysis of ICAM1-regulated proteins, we speculated that ICAM1 regulates CSC properties partly through an ICAM1-PTTG1IP-p53-DNMT1 pathway. Moreover, we observed that ICAM1 and CD44 could have a compensation effect on maintaining the stemness characteristics of ESCC, suggesting that the combination of multi-targeting therapies should be under serious consideration to acquire a more potent therapeutic effect on CSC of ESCC.

  19. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine.

    Science.gov (United States)

    Randhawa, H; Kibble, K; Zeng, H; Moyer, M P; Reindl, K M

    2013-09-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concentration-dependent manners, but was not toxic toward normal colon mucosal cells at concentrations below 10 μM. Acute (0-60 min) and prolonged (24h) exposure of HT-29 cells to PPLGM resulted in phosphorylation of ERK. To investigate whether ERK signaling was involved in PPLGM-mediated cell death, we treated HT-29 cells with the MEK inhibitor U0126, prior to treating with PPLGM. We found that U0126 attenuated PPLGM-induced activation of ERK and partially protected against PPLGM-induced cell death. These results suggest that PPLGM works, at least in part, through the MEK/ERK pathway to result in colon cancer cell death. A more thorough understanding of the molecular mechanisms by which PPLGM induces colon cancer cell death will be useful in developing therapeutic strategies to treat colon cancer.

  20. Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe

    2011-09-01

    Full Text Available Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins. Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15 may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.

  1. Novel Roles for P53 in the Genesis and Targeting of Tetraploid Cancer Cells

    OpenAIRE

    Batzaya Davaadelger; Hong Shen; Maki, Carl G.

    2014-01-01

    Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the "tetraploidy checkpoint", p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipie...

  2. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  3. Sphingosine 1-Phosphate and Cancer: Lessons from Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kid Törnquist

    2013-05-01

    Full Text Available Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P, have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK, i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.

  4. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    Science.gov (United States)

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  5. The metabolic landscape of cancer stem cells.

    Science.gov (United States)

    Dando, Ilaria; Dalla Pozza, Elisa; Biondani, Giulia; Cordani, Marco; Palmieri, Marta; Donadelli, Massimo

    2015-09-01

    Cancer stem cells (CSCs) are a sub-population of quiescent cells endowed with self-renewal properties that can sustain the malignant behavior of the tumor mass giving rise to more differentiated cancer cells. For this reason, the specific killing of CSCs represents one of the most important challenges of the modern molecular oncology. However, their particular resistance to traditional chemotherapy and radiotherapy imposes a thorough understanding of their biological and biochemical features. The metabolic peculiarities of CSCs may be a therapeutic and diagnostic opportunity in cancer research. In this review, we summarize the most significant discoveries on the metabolism of CSCs describing and critically analyzing the studies supporting either glycolysis or mitochondrial oxidative phosphorylation as a primary source of energy for CSCs.

  6. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  7. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  8. Toward a stem cell gene therapy for breast cancer.

    Science.gov (United States)

    Li, ZongYi; Liu, Ying; Tuve, Sebastian; Xun, Ye; Fan, Xiaolong; Min, Liang; Feng, Qinghua; Kiviat, Nancy; Kiem, Hans-Peter; Disis, Mary Leonora; Lieber, André

    2009-05-28

    Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.

  9. An update on the biology of cancer stem cells in breast cancer.

    Science.gov (United States)

    García Bueno, José María; Ocaña, Alberto; Castro-García, Paola; Gil Gas, Carmen; Sánchez-Sánchez, Francisco; Poblet, Enrique; Serrano, Rosario; Calero, Raúl; Ramírez-Castillejo, Carmen

    2008-12-01

    Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24- select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.

  10. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT.

  11. What Is Kidney Cancer (Renal Cell Carcinoma)?

    Science.gov (United States)

    ... Treatment? Kidney Cancer About Kidney Cancer What Is Kidney Cancer? Kidney cancer is a cancer that starts ... and spread, see What Is Cancer? About the kidneys To understand more about kidney cancer, it helps ...

  12. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  13. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2009-01-01

    Full Text Available Dendritic cells (DCs are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination.

  14. Cancer Stem Cells and Pediatric Solid Tumors

    Directory of Open Access Journals (Sweden)

    Gregory K. Friedman

    2011-01-01

    Full Text Available Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC, has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.

  15. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  16. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  17. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer.

  18. Molecular Pathways: Reactive Oxygen Species Homeostasis in Cancer Cells and Implications for Cancer Therapy

    OpenAIRE

    Nogueira, Veronique; Hay, Nissim

    2013-01-01

    Reactive oxygen species (ROS) are important in regulating normal cellular processes, but deregulated ROS contribute to the development of various human diseases including cancers. Cancer cells have increased ROS levels compared to normal cells, because of their accelerated metabolism. The high ROS levels in cancer cells, which distinguish them from normal cells, could be pro-tumorigenic, but are also their Achilles’ heel. The high ROS content in cancer cells renders them more susceptible to o...

  19. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume re...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes...

  20. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  1. Understanding cancer stem cell heterogeneity and plasticity

    Institute of Scientific and Technical Information of China (English)

    Dean G Tang

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo.It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells.Somatic stem cells in adult organs are also heterogeneous,containing many subpopulations of self-renewing cells with distinct regenerative capacity.The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches.Like normal stem cells,recent data suggest that cancer stem cells(CSCs)similarly display significant phenotypic and functional heterogeneity,and that the CSC progeny can manifest diverse plasticity.Here,I discuss CSC heterogeneity and plasticity in the context of tumor development and progression,and by comparing with normal stem cell development.Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted.By understanding the interrelationship between CSCs and their differentiated progeny,we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.

  2. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  3. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  4. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  5. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    Science.gov (United States)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  6. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ilaria Chiodi

    2011-03-01

    Full Text Available Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  7. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia (Italy)

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  8. Decoding Key Nodes in the Metabolism of Cancer Cells: Sugar & Spice and All Things Nice

    OpenAIRE

    Shaw, Reuben J.; Cantley, Lewis C

    2012-01-01

    In the past 5 years, a convergence of studies has resulted in a broad appreciation in the cancer research community that reprogramming of cellular metabolism may be more central to cancer than appreciated in the past 30 years. The re-emergence of cancer metabolism stems in part from discoveries that a number of common oncogenes and tumor suppressor genes more directly control cell metabolism than previously thought. In addition, a number of what would previously have been called “card-carryin...

  9. Vasculogenic mimicry in small cell lung cancer.

    Science.gov (United States)

    Williamson, Stuart C; Metcalf, Robert L; Trapani, Francesca; Mohan, Sumitra; Antonello, Jenny; Abbott, Benjamin; Leong, Hui Sun; Chester, Christopher P E; Simms, Nicole; Polanski, Radoslaw; Nonaka, Daisuke; Priest, Lynsey; Fusi, Alberto; Carlsson, Fredrika; Carlsson, Anders; Hendrix, Mary J C; Seftor, Richard E B; Seftor, Elisabeth A; Rothwell, Dominic G; Hughes, Andrew; Hicks, James; Miller, Crispin; Kuhn, Peter; Brady, Ged; Simpson, Kathryn L; Blackhall, Fiona H; Dive, Caroline

    2016-11-09

    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (Pcisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention.

  10. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  11. Circulating Tumor Cells in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Brian [Institute of Urology, University of Southern California, 1441 Eastlake Avenue, Suite 7416, Los Angeles, CA 90033 (United States); Rochefort, Holly [Department of Surgery, University of Southern California, 1520 San Pablo Street, HCT 4300, Los Angeles, CA 90033 (United States); Goldkorn, Amir, E-mail: agoldkor@usc.edu [Department of Internal Medicine and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 (United States)

    2013-12-04

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  12. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  13. Lifestyle Plays Bigger Part Than Genes In Cancer Risk

    Institute of Scientific and Technical Information of China (English)

    江素序

    2000-01-01

    The world’s biggest study of cancer in twins has shown that the risk ofdeveloping the disease depends on how you live rather than who are your parents.Although genetic factors play a minor role in some cancers, including those of the

  14. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer.

    Science.gov (United States)

    Bao, Bin; Ali, Shadan; Ahmad, Aamir; Li, Yiwei; Banerjee, Sanjeev; Kong, Dejuan; Aboukameel, Amro; Mohammad, Ramzi; Van Buren, Eric; Azmi, Asfar S; Sarkar, Fazlul H

    2014-08-15

    Pancreatic cancer (PC) is one of the most deadly cancers. The higher mortality is in part due to treatment resistance and early onset of metastasis. The existence of cancer-stem-like cells (CSLCs) has been widely accepted to be responsible for tumor aggressiveness in PC. Emerging evidence suggests that CSLCs have the capacity for increased cell growth, cell migration/invasion, metastasis, and treatment resistance, which leads to poor clinical outcome. However, the molecular role of CSLCs in tumor development and progression is poorly understood. Therefore, mechanistic understanding, and targeted killing of CSLCs may provide a newer therapeutic strategy for the treatment of PC. It has been well accepted that microRNAs (miRNAs) play critical roles during tumor development and progression through deregulation of multiple genes. Moreover, deregulated expression of miRNAs may also play a key role in the regulation of CSLC characteristics and functions. Here we show that isolated CD44(+)/CD133(+)/EpCAM(+) cells (triple-marker-positive cells) from human PC cell lines, MiaPaCa-2 and L3.6pl cells, display aggressive characteristics, such as increased cell growth, clonogenicity, cell migration, and self-renewal capacity, which is consistent with overexpression of CSLC signatures/markers. We also found deregulated expression of over 400 miRNAs, including let-7, miR-30, miR-125b, and miR-335, in CSLCs. As a proof-of-concept, knockdown of miR-125b resulted in the inhibition of tumor cell aggressiveness of CSLCs (triple-marker-positive cells), consistent with the downregulation of CD44, EpCAM, EZH2, and snail. These results clearly suggest the importance of miRNAs in the regulation of CSLC characteristics, and may serve as novel targets for therapy.

  15. The role of STAT1 for crosstalk between fibroblasts and colon cancer cells

    Directory of Open Access Journals (Sweden)

    Pawan eKaler

    2014-04-01

    Full Text Available Signaling between tumor cells and the associated stroma has an important impact on cancer initiation and progression. The tumor microenvironment has a paradoxical role in tumor progression and fibroblasts, a major component of the tumor stroma, have been shown to either inhibit or promote cancer development. In this study we established that normal intestinal fibroblasts activate STAT1 signaling in colon cancer cells and, in contrast to cancer- associated fibroblasts, inhibit growth of tumor cells. Treatment of 18Co fibroblasts with the proinflammatory cytokine TNF interfered with their ability to trigger STAT1 signaling in cancer cells. Accordingly, intestinal myofibroblasts isolated from patients with Ulcerative colitis (UC or Crohn’s disease (CD, which are activated and produce high levels of TNF, failed to stimulate STAT1 signaling in tumor cells, demonstrating that activated myofibroblasts lose the ability to trigger growth-inhibitory STAT1 signaling in tumor cells. Finally, we confirmed that silencing of STAT1 in tumor cells alters the crosstalk between tumor cells and fibroblasts, suggesting STAT1 as a novel link between intestinal inflammation and colon cancer. We demonstrated that normal fibroblasts restrain the growth of carcinoma cells, at least in part, through the induction of STAT1 signaling in cancer cells. We showed that changes in the microenvironment, as they occur in inflammatory bowel disease, alter the crosstalk between carcinoma cells and fibroblasts, perturb the homeostasis of intestinal tissue and thereby contribute to tumor progression.

  16. Breast cancer. Part 1: Awareness and common benign diseases.

    Science.gov (United States)

    Harmer, Victoria

    Breast cancer is the most common cancer for women in the United Kingdom and topic on which there is much information. This article discusses the principles behind breast awareness and breast health, detailing common benign breast diseases that cause disproportionate anxiety. The NHS Breast Screening Programme is celebrating 20 years of screening this year, and in all randomized controlled trials of women aged 50 and over, mortality from breast cancer is reduced in those offered screening compared with unscreened controls (although the reduction is not statistically significant in all trials). Once a breast cancer is diagnosed, the different characteristics and stage of the disease can be identified through histopathology and scans. These factors will be discussed later in this article, including illustrating if a cancer is hormone sensitive or HER-2 positive, for example. These factors enable clinicians to recommend a treatment pathway suitable for each individual.

  17. Targeting cancer stem cells with p53 modulators

    Science.gov (United States)

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  18. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  19. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  20. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad . Breast cancer originates from subversions of...luminal epithelial cells embedded in a complex stromal matrix (‘mammary fat pad ’) comprised predominantly of fibroblasts, adipocytes and macrophages (Fig. 1...report, we showed that limited exposure (i.e., in utero and lactational only) of female rat offspring to a maternal diet containing soy protein isolate

  1. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  2. Forcing Cancer Cells to Commit Suicide

    NARCIS (Netherlands)

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Peeters, Marc

    2009-01-01

    Apoptosis plays a crucial role in the normal development, homeostasis of multicellular organisms, carcinogenic process, and response of cancer cells to anticancer drugs. It is a genetically strictly regulated process, controlled by the balance between pro-and antiapoptotic proteins. Resistance to st

  3. Rikkunshito Ameliorates Cancer Cachexia Partly through Elevation of Glucarate in Plasma

    Directory of Open Access Journals (Sweden)

    Katsuya Ohbuchi

    2015-01-01

    Full Text Available Cancer cachexia, which is characterized by decreased food intake, weight loss and systemic inflammation, increases patient’s morbidity and mortality. We previously showed that rikkunshito (RKT, a Japanese traditional herbal medicine (Kampo, ameliorated the symptoms of cancer cachexia through ghrelin signaling-dependent and independent pathways. To investigate other mechanisms of RKT action in cancer cachexia, we performed metabolome analysis of plasma in a rat model bearing the Yoshida AH-130 hepatoma. A total of 110 metabolites were detected in plasma and RKT treatment significantly altered levels of 23 of those metabolites in cachexia model rats. Among them, glucarate, which is known to have anticarcinogenic activity through detoxification of carcinogens via inhibition of β-glucuronidase, was increased in plasma following administration of RKT. In our AH-130 ascites-induced cachexia rat model, administration of glucarate delayed onset of weight loss, improved muscle atrophy, and reduced ascites content. Additionally, glucarate reduced levels of plasma interferon-γ (IFN-γ in tumor-bearing rats and was also found to suppress LPS-induced IFN-γ expression in splenocytes in vitro. These results suggest that glucarate has anti-inflammatory activity via a direct effect on immune host cells and suggest that RKT may also ameliorate inflammation partly through the elevation of glucarate in plasma.

  4. Fibroblast Growth Factor Receptor 1 (FGFR1), Partly Related to Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) and Microvessel Density, is an Independent Prognostic Factor for Non-Small Cell Lung Cancer

    Science.gov (United States)

    Pu, Dan; Liu, Jiewei; Li, Zhixi; Zhu, Jiang; Hou, Mei

    2017-01-01

    Background This study aimed to explore the correlation between FGFR1 and clinical features, including survival analysis and the promotion of angiogenesis by fibroblast growth factor receptor 1 (FGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2). FGFR1 gene amplification has been found in non-small cell lung cancer (NSCLC). However, the prognostic value of FGFR1 and the correlation between FGFR1 and clinical features are still controversial. Material/Methods A total of 92 patients with NSCLC who underwent R0 resection between July 2006 and July 2008 were enrolled in the study. The expression of FGFR1, VEGFR2, and CD34 was detected by immunohistochemistry. The correlations between the aforementioned markers and the patients’ clinical features were analyzed by the chi-square test. The impact factors of prognosis were evaluated by Cox regression analyses. Results The expression ratios of FGFR1 and VEGFR2 were 26.1% and 43.4%, respectively. The intensity of FGFR1 expression was related to VEGFR2 and histopathology. To some extent, the average microvessel density (MVD) had correlation to the expression of FGFR1 and VGEFR2. The pathological stages III–IV and high expression of FGFR1 were found to be independent prognostic factors. Conclusions The expression intensity of FGFR1 and VEGFR2 was associated with MVD, and the expression of FGFR1 is one of the independent prognostic indicators for NSCLC. PMID:28088809

  5. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  6. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression.

    Directory of Open Access Journals (Sweden)

    Ruoxiang Wang

    Full Text Available We have previously shown that human prostate cancer cells are capable of acquiring malignant attributes through interaction with stromal cells in the tumor microenvironment, while the interacting stromal cells can also become affected with both phenotypic and genotypic alterations. This study used a co-culture model to investigate the mechanism underlying the co-evolution of cancer and stromal cells. Red fluorescent androgen-dependent LNCaP prostate cancer cells were cultured with a matched pair of normal and cancer-associated prostate myofibroblast cells to simulate cancer-stromal interaction, and cellular changes in the co-culture were documented by tracking the red fluorescence. We found frequent spontaneous fusions between cancer and stromal cells throughout the co-culture. In colony formation assays assessing the fate of the hybrid cells, most of the cancer-stromal fusion hybrids remained growth-arrested and eventually perished. However, some of the hybrids survived to form colonies from the co-culture with cancer-associated stromal cells. These derivative clones showed genomic alterations together with androgen-independent phenotype. The results from this study reveal that prostate cancer cells are fusogenic, and cancer-stromal interaction can lead to spontaneous fusion between the two cell types. While a cancer-stromal fusion strategy may allow the stromal compartment to annihilate invading cancer cells, certain cancer-stromal hybrids with increased survival capability may escape annihilation to form a derivative cancer cell population with an altered genotype and increased malignancy. Cancer-stromal fusion thus lays a foundation for an incessant co-evolution between cancer and the cancer-associated stromal cells in the tumor microenvironment.

  7. New insights into pancreatic cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Chinthalapally V Rao; Altaf Mohammed

    2015-01-01

    Pancreatic cancer (PC) has been one of the deadliest of allcancers, with almost uniform lethality despite aggressivetreatment. Recently, there have been important advancesin the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recentnew targeted agents and the use of multiple therapeuticcombinations, no treatment option is viable in patients withadvanced cancer. Developing novel strategies to targetprogression of PC is of intense interest. A small populationof pancreatic cancer stem cells (CSCs) has been foundto be resistant to chemotherapy and radiation therapy.CSCs are believed to be responsible for tumor initiation,progression and metastasis. The CSC research has recentlyachieved much progress in a variety of solid tumors,including pancreatic cancer to some extent. This leads tofocus on understanding the role of pancreatic CSCs. Thefocus on CSCs may offer new targets for prevention andtreatment of this deadly cancer. We review the most salientdevelopments in important areas of pancreatic CSCs. Here,we provide a review of current updates and new insightson the role of CSCs in pancreatic tumor progression withspecial emphasis on DclK1 and Lgr5, signaling pathwaysaltered by CSCs, and the role of CSCs in prevention andtreatment of PC.

  8. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    Science.gov (United States)

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.

  9. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  10. Histological evidence of testicular dysgenesis in contralateral biopsies from 218 patients with testicular germ cell cancer

    DEFF Research Database (Denmark)

    Hoei-Hansen, Christina E; Holm, Mette; Rajpert-De Meyts, Ewa

    2003-01-01

    This study was prompted by a hypothesis that testicular germ cell cancer may be aetiologically linked to other male reproductive abnormalities as a part of the so-called 'testicular dysgenesis syndrome' (TDS). To corroborate the hypothesis of a common association of germ cell cancer with testicular...... dysgenesis, microscopic dysgenetic features were quantified in contralateral testicular biopsies in patients with a testicular germ cell tumour. Two hundred and eighty consecutive contralateral testicular biopsies from Danish patients with testicular cancer diagnosed in 1998-2001 were evaluated...... presenting with testicular germ cell neoplasms of the adolescent and young type. The findings therefore support the hypothesis that this cancer is part of a testicular dysgenesis syndrome. The presence of contralateral carcinoma in situ was higher in the present study than previously reported....

  11. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  12. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  13. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  14. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.

  15. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  16. Inside the 2016 American Society of Clinical Oncology Genitourinary Cancers Symposium: part 2 - prostate and bladder cancer.

    Science.gov (United States)

    Buti, Sebastiano; Ciccarese, Chiara; Iacovelli, Roberto; Bersanelli, Melissa; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo; Tortora, Giampaolo; Massari, Francesco

    2016-09-01

    The American Society of Clinical Oncology Genitourinary Cancers Symposium, Moscone West Building, San Francisco, CA, USA, 7-9 January 2016 The American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium, held in San Francisco (CA, USA), from 7 to 9 January 2016, focused on 'patient-centric care: translating research to results'. Every year, this meeting is a must for anyone studying genitourinary tumors to keep abreast of the most recent innovations in this field, exchange views on behaviors customarily adopted in daily clinical practice and discuss future topics of scientific research. This two-part report highlights the key themes presented at the 2016 ASCO Genitourinary Cancers Symposium, with part 1 reporting the main novelties of kidney cancer and part 2 discussing the most relevant issues which have emerged for bladder and prostate tumors.

  17. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  18. Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors

    OpenAIRE

    Li, Xi; Pathi, Satya S.; Safe, Stephen

    2015-01-01

    Background Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. Methods The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-...

  19. Cutaneous Metastasis of Large Cell Lung Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižsmail Gedik

    2016-05-01

    Full Text Available Lung cancer has the highest incidence among all cancer types in the world. Skin is an uncommon organ that lung cancers metastasize and the incidence of cutaneous metastasis has been reported between 1-12%. In this report, we would like to present the case of a 67 year old male patient who admitted to our hospital with the complaint of multiple swollen masses on the different parts of his skin and has a homogenous mass with the width of 3 cm on chest x ray. The nodule at the intersection of the right 6th intercostal space and the mid-axillary line and with the dimensions of 1.5x1 cm was excised under local anesthesia and the specimen was sent to the pathology laboratory for histopathological examination. The diagnosis of %u201Clarge cell neuroendocrine carcinoma%u201D was made histopathologically. The patient was diagnosed as the distant metastasis of the large cell lung cancer, considered inoperable and referred to oncology clinics.

  20. Light induced drug delivery into cancer cells.

    Science.gov (United States)

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  1. A Stochastic Model for Cancer Stem Cell Origin in Metastatic Colon Cancer

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W.; Gollin, Susanne M.; Gamblin, T. Clark; Geller, David A.; Lagasse, Eric

    2008-01-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and to the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally-derived tumor cells expressed many consistent (clonal), along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability. PMID:18757407

  2. Stiffness of cancer cells measured with an AFM indentation method.

    Science.gov (United States)

    Hayashi, Kozaburo; Iwata, Mayumi

    2015-09-01

    The stiffness of cancer cells and its changes during metastasis are very important for understanding the pathophysiology of cancer cells and the mechanisms of metastasis of cancer. As the first step of the studies on the mechanics of cancer cells during metastasis, we determined the elasticity and stiffness of cancer cells with an indentation method using an atomic force microscope (AFM), and compared with those of normal cells. In most of the past AFM studies, Young׳s elastic moduli of cells have been calculated from force-indentation data using Hertzian model. As this model is based on several important assumptions including infinitesimal strain and Hooke׳s linear stress-strain law, in the exact sense it cannot be applied to cells that deform very largely and nonlinearly. To overcome this problem, we previously proposed an equation F=a[exp(bδ)-1] to describe relations between force (F) and indentation (δ), where a and b are parameters relating with cellular stiffness. In the present study, we applied this method to cancer cells instead of Young׳s elastic modulus. The conclusions obtained are: 1) AFM indentation test data of cancer cells can be very well described by the above equation, 2) cancer cells are softer than normal cells, and 3) there are no significant locational differences in the stiffness of cancer cells between the central and the peripheral regions. These methods and results are useful for studying the mechanics of cancer cells and the mechanisms of metastasis.

  3. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  4. Primary cultures of human colon cancer as a model to study cancer stem cells.

    Science.gov (United States)

    Koshkin, Sergey; Danilova, Anna; Raskin, Grigory; Petrov, Nikolai; Bajenova, Olga; O'Brien, Stephen J; Tomilin, Alexey; Tolkunova, Elena

    2016-09-01

    The principal cause of death in cancer involves tumor progression and metastasis. Since only a small proportion of the primary tumor cells, cancer stem cells (CSCs), which are the most aggressive, have the capacity to metastasize and display properties of stem cells, it is imperative to characterize the gene expression of diagnostic markers and to evaluate the drug sensitivity in the CSCs themselves. Here, we have examined the key genes that are involved in the progression of colorectal cancer and are expressed in cancer stem cells. Primary cultures of colorectal cancer cells from a patient's tumors were studied using the flow cytometry and cytological methods. We have evaluated the clinical and stem cell marker expression in these cells, their resistance to 5-fluorouracil and irinotecan, and the ability of cells to form tumors in mice. The data shows the role of stem cell marker Oct4 in the resistance of primary colorectal cancer tumor cells to 5-fluorouracil.

  5. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  6. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Lee, Sung Hee; Hong, Hannah S; Liu, Zi Xiao; Kim, Reuben H; Kang, Mo K; Park, No-Hee; Shin, Ki-Hyuk

    2012-07-20

    Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.

  7. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    2001-01-01

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A sy

  8. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer.

    Science.gov (United States)

    Korkmaz, Deniz Taştemir; Demirhan, Osman; Abat, Deniz; Demirberk, Bülent; Tunç, Erdal; Kuleci, Sedat

    2015-09-01

    The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.

  9. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    Science.gov (United States)

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.

  10. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells

    Science.gov (United States)

    Cook, Matthew T; Liang, Yayun; Besch-Williford, Cynthia; Hyder, Salman M

    2017-01-01

    Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC. PMID:28096694

  11. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  12. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  13. Perceived factors affecting distress among women taking part in surgical continuity of care for breast cancer

    DEFF Research Database (Denmark)

    Jørgensen, Lone; Laursen, Birgitte Schantz

    2016-01-01

    REVIEW QUESTION/OBJECTIVE: The objective of this systematic review is to identify, appraise and synthesize the evidence on perceived factors affecting distress among women taking part in surgical continuity of care for breast cancer to provide evidence for improving support and care.The specific...... review question is: What are the perceived factors that contribute to an increase or a reduction in distress among women taking part in surgical continuity of care for breast cancer?...

  14. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  15. Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment

    Institute of Scientific and Technical Information of China (English)

    Danila CORADINI; Claudia CASARSA; Saro ORIANA

    2011-01-01

    Loss of cell-cell adhesion and cell polarity is commonly observed in tumors of epithelial origin and correlates with their invasion into adjacent tissues and formation of metastases. Growing evidence indicates that loss of cell polarity and cell-cell adhesion may also be important in early stage of cancer. In first part of this review, we delineate the current understanding of the mechanisms that establish and maintain the polarity of epithelial tissues and discuss the involvement of cell polarity and apical junctional complex components in tumor pathogenesis. In the second part we address the clinical significance of cell polarity and junctional complex components in can- cer diagnosis and prognosis. Finally, we explore their potential use as therapeutic targets in the treatment of cancer.

  16. Coagulation Factor Xa inhibits cancer cell migration via Protease-activated receptor-1 activation

    NARCIS (Netherlands)

    Borensztajn, Keren; Bijlsma, Maarten F.; Reitsma, Pieter H.; Peppelenbosch, Maikel R.; Spek, C. Arnold

    2009-01-01

    Cell migration is critically important in (patho) physiological processes. The metastatic potential of cancer cells partly depends on activation of the coagulation cascade. The aim of the present study was to determine whether coagulation factor X (FXa) can regulate the migration and invasion of can

  17. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  18. Raman spectra of single cell from gastrointestinal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xun-Ling Yan; Rui-Xin Dong; Lei Zhang; Xue-Jun Zhang; Zong-Wang Zhang

    2005-01-01

    AIM: To explore the difference between cancer cells and normal cells, we investigated the Raman spectra of singlecells from gastrointestinal cancer patients. METHODS: All samples were obtained from 30 diagnosed as gastrointestinal cancer patients. The flesh tumor specimen is located in the center of tumor tissue, while the normal ones were 5 cm away from the outside tumor section. The imprint was put under the microscope and a single cell was chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (British Renishaw) with NIR 780 nm laser.RESULTS: We measured the Raman spectra of several cells from gastrointestinal cancer patients. The result shows that there exists the strong line at 1 002/cm with less half-width assigned to the phenylalanine in several cells. The Raman lines of white cell were lower and less, while those of red cell were not only higher in intensity and more abundant, but also had a parti cular C-N breathing stretching band of pyrrole ring at 1 620-1 540/cm. The line at 1 084/cm assigned to phosphate backbone of DNA became obviously weaker in cancer cell. The Raman spectra of stomach cancer cells were similar to those of normal cells, but the Raman intensity of cancer cells was much lower than that of normal cells, and even some lines disappear. The lines of enteric cancer cells became weaker than spectra above and many lines disappeared, and the cancer cells in different position had different fluorescence intensity.CONCLUSION: The Raman spectra of several cells from cancer patients show that the structural changes of cancer cells happen and many bonds rupture so that the biological function of cells are lost. The results indicate that Raman spectra can offer the experiment basis for the cancer diagnosis and treatment.

  19. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation.

  20. From drug response profiling to target addiction scoring in cancer cell models

    Directory of Open Access Journals (Sweden)

    Bhagwan Yadav

    2015-10-01

    Full Text Available Deconvoluting the molecular target signals behind observed drug response phenotypes is an important part of phenotype-based drug discovery and repurposing efforts. We demonstrate here how our network-based deconvolution approach, named target addiction score (TAS, provides insights into the functional importance of druggable protein targets in cell-based drug sensitivity testing experiments. Using cancer cell line profiling data sets, we constructed a functional classification across 107 cancer cell models, based on their common and unique target addiction signatures. The pan-cancer addiction correlations could not be explained by the tissue of origin, and only correlated in part with molecular and genomic signatures of the heterogeneous cancer cells. The TAS-based cancer cell classification was also shown to be robust to drug response data resampling, as well as predictive of the transcriptomic patterns in an independent set of cancer cells that shared similar addiction signatures with the 107 cancers. The critical protein targets identified by the integrated approach were also shown to have clinically relevant mutation frequencies in patients with various cancer subtypes, including not only well-established pan-cancer genes, such as PTEN tumor suppressor, but also a number of targets that are less frequently mutated in specific cancer types, including ABL1 oncoprotein in acute myeloid leukemia. An application to leukemia patient primary cell models demonstrated how the target deconvolution approach offers functional insights into patient-specific addiction patterns, such as those indicative of their receptor-type tyrosine-protein kinase FLT3 internal tandem duplication (FLT3-ITD status and co-addiction partners, which may lead to clinically actionable, personalized drug treatment developments. To promote its application to the future drug testing studies, we have made available an open-source implementation of the TAS calculation in the form

  1. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  2. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  3. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  4. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  5. IL-33 facilitates endocrine resistance of breast cancer by inducing cancer stem cell properties.

    Science.gov (United States)

    Hu, Haiyan; Sun, Jiaxing; Wang, Chunhong; Bu, Xiangmao; Liu, Xiangping; Mao, Yan; Wang, Haibo

    2017-02-16

    Breast cancers with estrogen receptor (ER) expressions account for the majority of all clinical cases. Due to hormone therapy with tamoxifen, prognoses of patients with ER-positive breast cancer are significantly improved. However, endocrine resistance to tamoxifen is common and inevitable, leading to compromised efficacy of hormone therapy. Herein, we identify a crucial role of IL-33 in inducing endocrine resistance of breast cancer. IL-33 overexpression in breast cancer cells results in resistance to tamoxifen-induced tumor growth inhibition, while IL-33 knockdown corrects this problem. Mechanistically, IL-33 induces breast cancer stem cell properties evidenced by mammosphere formation and xenograft tumorigenesis, as well as expression of cancer stem cell genes including ALDH1A3, OCT4, NANOG and SOX2. In breast cancer patients, higher serum IL-33 levels portend advanced clinical stages, poorly differentiated cancer cells and tumor recurrence. IL-33 expression levels in patients' freshly isolated breast cancer cells predicts tamoxifen resistance and cancer stem cell features in individual patient. Collectively, IL-33 induces endocrine resistance of breast cancer by promoting cancer stem cell properties. These findings provide novel mechanisms connecting IL-33 with cancer pathogenesis and pinpoint IL-33 as a promising target for optimizing hormone therapy in clinical practice.

  6. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....

  7. Can a Cancer Cell Turn into a Normal Cell?

    Directory of Open Access Journals (Sweden)

    Ranan Gülhan Aktas

    2014-09-01

    Full Text Available HepG2 cells, a human liver cancer cell line (hepatocellular carcinoma, are being considered as a future model for bioartificial liver studies. They have the ability to differentiate and demonstrate some features of normal liver cells. Our previous studies focused on examination of the morphological and functional properties of these cells under different extracellular environmental conditions. We have created a culture model that these cells demonstrate remarkable changes after 30 days. These changes include an increase in the cytoplasmic organelles, formation of bile canaliculi, occurrence of junctional complexes between the adjacent cells, existence of microvilli on the apical surfaces, accumulation of glycogen particles in the cytoplasm, an increase at the density of albumin labeled areas and a rise at the Na-K ATPase level on cellular membranes.

  8. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  9. Skeletal Health Part 1: Overview Of Bone Health and Management In the Cancer Setting.

    Science.gov (United States)

    Turner, Bruce; Ali, Sacha; Drudge-Coates, Lawrence; Pati, Jhumur; Nargund, Vinod; Wells, Paula

    2016-01-01

    Cancer-induced bone disease and cancer therapy-induced bone loss are significant skeletal problems related to the treatment for urological and other cancers. Our team of specialists and nurse practitioners developed a nurse practitioner-led Bone Support Clinic for urologic cancer patients at a university hospital in London, England, United Kingdom, to address this issue. The clinic has been well-accepted, has made a positive impact on the patient journey, helps to ensure continuity of care, and highlights patients who require assessment or treatment for impending skeletal-related events in a timely fashion. This article has been divided into two parts for improved readability.

  10. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    OpenAIRE

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  11. Breast Cancer Cells May Change When They Spread to Brain

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162415.html Breast Cancer Cells May Change When They Spread to Brain: ... 2016 WEDNESDAY, Dec. 7, 2016 (HealthDay News) -- When breast cancer spreads to the brain, important molecular changes may ...

  12. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  13. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  14. Chromatin remodeling and cancer, Part I: Covalent histone modifications.

    Science.gov (United States)

    Wang, Gang G; Allis, C David; Chi, Ping

    2007-09-01

    Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.

  15. Docosahexaenoic acid suppresses breast cancer cell metastasis by targeting matrix-metalloproteinases

    Science.gov (United States)

    Shin, Soyeon; Kim, Soyeon; Heo, Jun-Young; Kweon, Gi-Ryang; Wu, Tong; Park, Jong-Il; Lim, Kyu

    2016-01-01

    Breast cancer is one of the most prevalent cancers in women, and nearly half of breast cancer patients develop distant metastatic disease after therapy. Despite the significant advances that have been achieved in understanding breast cancer metastasis in the past decades, metastatic cancer is still hard to cure. Here, we demonstrated an anti-cancer mechanism of docosahexaenoic acid (DHA) that suppressed lung metastasis in breast cancer. DHA could inhibit proliferation and invasion of breast cancer cells in vitro, and this was mainly through blocking Cox-2-PGE2-NF-κB-MMPs cascades. DHA treatment significantly decreased Cox-2 and NF-κB expression as well as nuclear translocation of NF-κB in MDA-MB-231 cells. In addition, DHA also reduced NF-κB binding to DNA which may lead to inactivation of MMPs. Moreover, in vivo studies using Fat-1 transgenic mice showed remarkable decrease of tumor growth and metastasis to EO771 cells to lung in DHA-rich environment. In conclusion, DHA attenuated breast cancer progression and lung metastasis in part through suppressing MMPs, and these findings suggest chemoprevention and potential therapeutic strategy to overcome malignant breast cancer. PMID:27363023

  16. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  17. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  18. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    Science.gov (United States)

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  19. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  20. Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines

    Science.gov (United States)

    Kloudová, Kamila; Hromádková, Hana; Partlová, Simona; Brtnický, Tomáš; Rob, Lukáš; Bartůňková, Jiřina; Hensler, Michal; Halaška, Michael J.; Špíšek, Radek; Fialová, Anna

    2016-01-01

    In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile. PMID:27323861

  1. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  2. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  3. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells.

    Science.gov (United States)

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-08-01

    Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.

  4. DUAL ROLES OF CANCER CELL-EXPRESSED IMMUNOGLOBULINS IN CANCER IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Gregory Lee

    2014-01-01

    Full Text Available While the expression of immunoglobulins and T cell receptors on cancer cells has been well-established for decades, the potential roles and mechanisms of action of these cancerous antigen receptors have not been fully elucidated. A monoclonal antibody designated as RP215, which reacts specifically with the carbohydrate-associated epitope located on the heavy chain region of cancerous immunoglobulins and T cell receptors, was used as a unique probe to study the roles of antigen receptors in the immunology of cancer cells. Through extensive cell-based biological and immunological studies, it was found that both anti-antigen receptors and RP215 demonstrated similar actions on the gene regulations involved in the growth/proliferation of cancer cells, as well as on toll-like receptors involved in innate immunity. In addition, RP215-specific cancerous immunoglobulins are believed to capture or neutralize circulating antigen/antibodies which may be harmful to cancer cells within the human body. In contrast to normal B and T cells and their respective receptors in the conventional immune system, cancer cells co-express both immunoglobulins and T cell receptors and immune protection is exercised by unique mechanisms. For example, these cancer cell-expressed antigen receptors display a lack of class switching, limited hyper-mutation, aberrant glycosylations and a strong influence on the toll-like receptors of cancer cells. Therefore, it is hypothesized that both normal and cancerous immune systems may co-exist and operate simultaneously within the human body. The balance of these two immune factors for respective surveillance and protection may be relevant to the outcome of cancer immunotherapy in humans. A potential therapeutic strategy is being developed by using RP215 as a drug candidate to target cancer cells based on these observations.

  5. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  6. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  7. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    Science.gov (United States)

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  8. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

    Science.gov (United States)

    Oser, Matthew G; Niederst, Matthew J; Sequist, Lecia V; Engelman, Jeffrey A

    2015-04-01

    Lung cancer is the most common cause of cancer deaths worldwide. The two broad histological subtypes of lung cancer are small-cell lung cancer (SCLC), which is the cause of 15% of cases, and non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Although NSCLC and SCLC are commonly thought to be different diseases owing to their distinct biology and genomic abnormalities, the idea that these malignant disorders might share common cells of origin has been gaining support. This idea has been supported by the unexpected findings that a subset of NSCLCs with mutated EGFR return as SCLC when resistance to EGFR tyrosine kinase inhibitors develops. Additionally, other case reports have described the coexistence of NSCLC and SCLC, further challenging the commonly accepted view of their distinct lineages. Here, we summarise the published clinical observations and biology underlying tumours with combined SCLC and NSCLC histology and cancers that transform from adenocarcinoma to SCLC. We also discuss pre-clinical studies pointing to common potential cells of origin, and speculate how the distinct paths of differentiation are determined by the genomics of each disease.

  9. Targeting Notch to target cancer stem cells.

    Science.gov (United States)

    Pannuti, Antonio; Foreman, Kimberly; Rizzo, Paola; Osipo, Clodia; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2010-06-15

    The cellular heterogeneity of neoplasms has been at the center of considerable interest since the "cancer stem cell hypothesis", originally formulated for hematologic malignancies, was extended to solid tumors. The origins of cancer "stem" cells (CSC) or tumor-initiating cells (TIC; henceforth referred to as CSCs) and the methods to identify them are hotly debated topics. Nevertheless, the existence of subpopulations of tumor cells with stem-like characteristics has significant therapeutic implications. The stem-like phenotype includes indefinite self-replication, pluripotency, and, importantly, resistance to chemotherapeutics. Thus, it is plausible that CSCs, regardless of their origin, may escape standard therapies and cause disease recurrences and/or metastasis after apparently complete remissions. Consequently, the idea of selectively targeting CSCs with novel therapeutics is gaining considerable interest. The Notch pathway is one of the most intensively studied putative therapeutic targets in CSC, and several investigational Notch inhibitors are being developed. However, successful targeting of Notch signaling in CSC will require a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to prove safe and effective. Additionally, to determine which patients are most likely to benefit from treatment with Notch-targeting therapeutics, reliable biomarkers to measure pathway activity in CSC from specific tumors will have to be identified and validated. This article summarizes the most recent developments in the field of Notch-targeted cancer therapeutics, with emphasis on CSC.

  10. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  11. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  12. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  13. How Taxol/paclitaxel kills cancer cells.

    Science.gov (United States)

    Weaver, Beth A

    2014-09-15

    Taxol (generic name paclitaxel) is a microtubule-stabilizing drug that is approved by the Food and Drug Administration for the treatment of ovarian, breast, and lung cancer, as well as Kaposi's sarcoma. It is used off-label to treat gastroesophageal, endometrial, cervical, prostate, and head and neck cancers, in addition to sarcoma, lymphoma, and leukemia. Paclitaxel has long been recognized to induce mitotic arrest, which leads to cell death in a subset of the arrested population. However, recent evidence demonstrates that intratumoral concentrations of paclitaxel are too low to cause mitotic arrest and result in multipolar divisions instead. It is hoped that this insight can now be used to develop a biomarker to identify the ∼50% of patients that will benefit from paclitaxel therapy. Here I discuss the history of paclitaxel and our recently evolved understanding of its mechanism of action.

  14. NK cell phenotypic modulation in lung cancer environment.

    Directory of Open Access Journals (Sweden)

    Shi Jin

    Full Text Available Nature killer (NK cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.Our study analyzed the change about NK cells surface markers (NK cells receptors through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.

  15. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  16. Multi-Walled Carbon Nanotubes Inhibit Breast Cancer Cell Migration.

    Science.gov (United States)

    Graham, Elizabeth G; Wailes, Elizabeth M; Levi-Polyachenko, Nicole H

    2016-02-01

    According to the American Cancer Society, breast cancer is the second leading cause of cancer death in the US. Cancerous cells may have inadequate adhesions to the extracellular matrix and adjacent cells. Previous work has suggested that restoring these contacts may negate the cancer phenotype. This work aims to restore those contacts using multi-walled carbon nanotubes (MWNTs). Varying concentrations of carboxylated MWNTs in water, with or without type I collagen, were dried to create a thin film upon which one of three breast cell lines were seeded: cancerous and metastatic MDA- MB-231 cells, cancerous but non-metastatic MCF7 cells, or non-cancerous MCF10A cells. Proliferation, adhesion, scratch and autophagy assays, western blots, and immunochemical staining were used to assess adhesion and E-cadherin expression. Breast cancer cells grown on a MWNT-collagen coated surface displayed increased adhesion and decreased migration which correlated with an increase in E-cadherin. This work suggests an alternative approach to cancer treatment by physically mediating the cells' microenvironment.

  17. Concentration of Cd, Pb, Hg, and Se in Different Parts of Human Breast Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Mohammadi

    2014-01-01

    Full Text Available Breast cancer is the major cause of cancer morbidity and mortality between women in the world. Metals involved in environmental toxicology are closely related to tumor growth and cancer. On the other hand, some metals such as selenium have anticarcinogenic properties. The aim of this study is to determine the concentration of cadmium, lead, mercury, and selenium in separated parts of tegmen, tumor, tumor adiposity, and tegmen adiposity of 14 breast cancer tissues which have been analyzed by graphite furnace atomic absorption (AA-670 and ICP-OES (ULTIMA 2CE. Our results show that Se and Hg have maximum and minimum concentration, respectively. Statistical analysis reveals no significant differences between metal accumulations in different parts of cancer tissues (P>0.05 and this observation might be due to the close relation of separated parts of fatty breast organ. Thus, we could conclude that a high level of these heavy metals is accumulated in Iranian cancerous breasts and their presence can be one of the reasons of cancer appearance.

  18. Androgen Depletion Induces Senescence in Prostate Cancer Cells through Down-regulation of Skp2

    Directory of Open Access Journals (Sweden)

    Zuzana Pernicová

    2011-06-01

    Full Text Available Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT, a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.

  19. Epigenetic therapy of cancer stem and progenitor cells bytargeting DNA methylation machineries

    Institute of Scientific and Technical Information of China (English)

    Patompon Wongtrakoongate

    2015-01-01

    Recent advances in stem cell biology have shed light onhow normal stem and progenitor cells can evolve to acquiremalignant characteristics during tumorigenesis. The cancercounterparts of normal stem and progenitor cells might beoccurred through alterations of stem cell fates includingan increase in self-renewal capability and a decreasein differentiation and/or apoptosis. This oncogenicevolution of cancer stem and progenitor cells, which oftenassociates with aggressive phenotypes of the tumorigeniccells, is controlled in part by dysregulated epigeneticmechanisms including aberrant DNA methylation leadingto abnormal epigenetic memory. Epigenetic therapy bytargeting DNA methyltransferases (DNMT) 1, DNMT3Aand DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successfultoward treatment of hematologic neoplasms especially forpatients with myelodysplastic syndrome. In this review,I summarize the current knowledge of mechanismsunderlying the inhibition of DNA methylation by Aza andAza-dC, and of their apoptotic- and differentiation-inducingeffects on cancer stem and progenitor cells in leukemia,medulloblastoma, glioblastoma, neuroblastoma, prostatecancer, pancreatic cancer and testicular germ cell tumors.Since cancer stem and progenitor cells are implicatedin cancer aggressiveness such as tumor formation,progression, metastasis and recurrence, I proposethat effective therapeutic strategies might be achievedthrough eradication of cancer stem and progenitor cellsby targeting the DNA methylation machineries to interferetheir "malignant memory".

  20. Grandparents' experiences of childhood cancer, part 1: doubled and silenced.

    Science.gov (United States)

    Moules, Nancy J; Laing, Catherine M; McCaffrey, Graham; Tapp, Dianne M; Strother, Douglas

    2012-01-01

    In this study, the authors examined the experiences of grandparents who have had, or have, a grandchild with childhood cancer. Sixteen grandparents were interviewed using unstructured interviews, and the data were analyzed according to hermeneutic-phenomenological tradition, as guided by the philosophical hermeneutics of Hans-Georg Gadamer. Interpretive findings indicate that grandparents suffer and worry in many complex ways that include a doubled worry for their own children as well as their grandchildren. According to the grandparents in this study, this worry was, at times, silenced in efforts to protect the parents of the grandchild from the burden of concern for the grandparent. Other interpretations include the nature of having one's universe shaken, of having lives put on hold, and a sense of helplessness. The grandparents in this study offer advice to other grandparents as well as to the health care system regarding what kinds of things might have been more helpful to them as one level of the family system, who, like other subsystems of the family, are also profoundly affected by the event of childhood cancer.

  1. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  2. Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

    Science.gov (United States)

    2015-10-01

    AD_________________ (Leave blank) Award Number: W81XWH-14-1-0350 TITLE: Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After...30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTILE Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy 5a. CONTRACT NUMBER...Innovative reporter gene systems are designed to mark quiescent or proliferating lung cancer cells (Aim 1) and then used to track and trace the dynamics of

  3. RhoC and ROCKs regulate cancer cell interactions with endothelial cells.

    Science.gov (United States)

    Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Cox, Susan; Soyer, Magali; Riou, Philippe; Colomba, Audrey; Muschel, Ruth J; Ridley, Anne J

    2015-06-01

    RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression.

  4. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells.

    Science.gov (United States)

    Mills, Shirley C; Goh, Poh Hui; Kudatsih, Jossie; Ncube, Sithembile; Gurung, Renu; Maxwell, Will; Mueller, Anja

    2016-04-01

    Chemotaxis or directed cell migration is mediated by signalling events initiated by binding of chemokines to their cognate receptors and the activation of a complex signalling cascade. The molecular signalling pathways involved in cell migration are important to understand cancer cell metastasis. Therefore, we investigated the molecular mechanisms of CXCL12 induced cell migration and the importance of different signalling cascades that become activated by CXCR4 in leukemic cells versus breast cancer cells. We identified Src kinase as being essential for cell migration in both cancer types, with strong involvement of the Raf/MEK/ERK1/2 pathway. We did not detect any involvement of Ras or JAK2/STAT3 in CXCL12 induced migration in Jurkat cells. Preventing PKC activation with inhibitors does not affect migration in Jurkat cells at all, unlike in the adherent breast cancer cell line MCF-7 cells. However, in both cell lines, knock down of PKCα prevents migration towards CXCL12, whereas the expression of PKCζ is less crucial for migration. PI3K activation is essential in both cell types, however LY294002 usage in MCF-7 cells does not block migration significantly. These results highlight the importance of verifying specific signalling pathways in different cell settings and with different approaches.

  5. The granulocyte macrophage–colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Yong-tong Zhu

    2014-07-01

    Full Text Available The MB49 bladder cancer cell vaccine was effective against bladder cancer in the mice model in previous studies. However, part of the tumors regrew as the vaccine could not eliminate the cancer stem cells (CSCs. MB49 bladder cancer stem cells (MCSCs were isolated by a combination of the limited dilution method and the serum free culture medium method. MCSCs possessed higher expression of CD133, CD44, OCT4, NANOG, and ABCG2, the ability of differentiation, higher proliferative abilities, lower susceptibility to chemotherapy, greater migration in vitro, and stronger tumorigenic abilities in vivo. Then streptavidin–mouse granulocyte macrophage–colony stimulating factor (SA–mGM–CSF MCSCs vaccine was prepared. SA–mGM–CSF MCSCs vaccine extended the survival of the mice and inhibited the growth of tumor in protective, therapeutic, memorial and specific immune response experiments. The level of immunoglobulin G and the ratio of dendritic cells and CD4+ and CD8+ T cells were highest in the experimental group when compared to those in other four control groups, as well as for the cytotoxicity assay. We demonstrated that SA–mGM–CSF MCSCs vaccine induces an antitumor immune response to metastatic bladder cancer.

  6. HS-4, a highly potent inhibitor of cell proliferation of human cancer cell

    Institute of Scientific and Technical Information of China (English)

    Gui-Lan Xing; Shu-Hong Tian; Xue-Li Xie; Jian Fu

    2015-01-01

    Objective:To investigate the antitumor activity of the compound HS-4 and the action mechanism.Methods:MTT method was used to testin vitroantitumor activity of the compound HS-4. Orthotopic xenotransplantation tumor model of liver cancer was established in nude mice, and,in vivoantitumor activity of compound HS-4 was tested with a small animal in-vivo imaging system. Sequencing of small RNA library and RNA library was performed in HS-4 treated tumor cell group and control group to investigate the anti-cancer mechanism of HS-4 at level of functional genomics, using high-throughput sequencing technology. Results:HS-4 was found to have relatively highin-vitro antitumor activity against liver cancer cells, gastric cancer cells, renal cancer cells, lung cancer cells, breast cancer cells and colon cancer cells. The IC50 values against SMMC-7721 and Bel-7402 of liver cancer cells were 0.14 and 0.13 nmol/L respectively, while the IC50 values against MGC-803 and SGC-7901 of gastric cancer cells were 0.19 and 0.21 nmol/L, respectively. It was demonstrated that HS- 4 possessed a better therapeutic effect in liver cancer.Conclusions: A new reliable orthotopic xenotransplantation tumor model of liver cancer in nude mice is established. The new compounds HS-4 was found to possess relatively highin vivo andin vitroantitumor activity against liver cancer cells.

  7. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines.

    Science.gov (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I

    2002-11-01

    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  8. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  9. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Fabien J Cousin

    Full Text Available BACKGROUND: Gastric cancer is one of the most common cancers in the world. The "economically developed countries" life style, including diet, constitutes a risk factor favoring this cancer. Diet modulation may lower digestive cancer incidence. Among promising food components, dairy propionibacteria were shown to trigger apoptosis of human colon cancer cells, via the release of short-chain fatty acids acetate and propionate. METHODOLOGY/PRINCIPAL FINDINGS: A fermented milk, exclusively fermented by P. freudenreichii, was recently designed. In this work, the pro-apoptotic potential of this new fermented milk was demonstrated on HGT-1 human gastric cancer cells. Fermented milk supernatant induced typical features of apoptosis including chromatin condensation, formation of apoptotic bodies, DNA laddering, cell cycle arrest and emergence of a subG1 population, phosphatidylserine exposure at the plasma membrane outer leaflet, reactive oxygen species accumulation, mitochondrial transmembrane potential disruption, caspase activation and cytochrome c release. Remarkably, this new fermented milk containing P. freudenreichii enhanced the cytotoxicity of camptothecin, a drug used in gastric cancer chemotherapy. CONCLUSIONS/SIGNIFICANCE: Such new probiotic fermented milk may thus be useful as part of a preventive diet designed to prevent gastric cancer and/or as a food supplement to potentiate cancer therapeutic treatments.

  10. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    Science.gov (United States)

    2016-08-25

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  11. Top Notch cancer stem cells by paracrine NF-κB signaling in breast cancer.

    Science.gov (United States)

    Zhang, Weizhou; Grivennikov, Sergei I

    2013-01-01

    Cancer stem cells are likely to play critical roles in metastasis, therapy resistance, and recurrence of hematological and solid malignancies. It is well known that the stem cell niche plays a key role for asymmetric division and homeostasis of normal stem cells, whereas cancer stem cells seem to use these niches. Among many pathways involved in self-renewal of cancer stem cells, nuclear factor-kappa B (NF-κB) signaling has been documented to promote their expansion in a cell-autonomous fashion. A recent study, however, suggests that paracrine NF-κB activation promotes the expansion of cancer stem cells through the activation of Notch in basal-type breast cancer cells.

  12. Delirium: assessment and treatment of patients with cancer. PART 2.

    Science.gov (United States)

    Brown, Michelle; Hardy, Kersten

    Delirium at the end of life may present significant ethical dilemmas in clinical practice: whether to simply treat it in order to maximise symptom relief, with the resulting side effect being palliative sedation, or to attempt to reverse delirium and risk prolonging suffering. Determining whether the delirium can be reversed involves comprehensive assessment using established tools, which may or may not provide the answer to the question posed. This article examines the evidence surrounding several assessment tools that have been suggested as effective in identifying delirium, and the consequences of various approaches to the management of delirium in a patient with a cancer diagnosis. It also considers the impact delirium may have on the health professional and those close to the patient.

  13. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44+ ...

  14. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    Science.gov (United States)

    2016-03-01

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  15. Human prostate cancer stem cells: new features unveiled

    Institute of Scientific and Technical Information of China (English)

    Yuting Sun; Wei-Qiang Gao

    2011-01-01

    @@ Cancer stem cells (CSCs) are a rare sub-population of phenotypically distinct cancer cells exhibiting stem cell characteristics.They are tumourigenic, meanwhile capable of self-renewal and forming differentiated progenies.CSCs are believed to be resistant to the standard therapeutics, and provide the cell reservoir for tumour initiation.1 Understanding CSCs or in another word, tumour-initiating cells, is of critical therapeutic importance.

  16. BREAST AND/OR OVARIAN CANCER AS PART OF FAMILY CANCER SYNDROME

    Directory of Open Access Journals (Sweden)

    L. N. Lyubchenko

    2009-01-01

    Full Text Available The problems in the early diagnosis, primary and secondary prevention of family cancer of the breast and/or ovaries are successfully solved within medical genetic counseling at a cancer clinic. Its genetic diagnosis is confirmed, individual risks for breast and/or ovarian cancer are calculated, risk-modifying factors are studied, and treatment, family planning, and childbirth are discussed during clinicogenetic studies.

  17. Role of microRNAs in maintaining cancer stem cells.

    Science.gov (United States)

    Garofalo, Michela; Croce, Carlo M

    2015-01-01

    Increasing evidence sustains that the establishment and maintenance of many, if not all, human cancers are due to cancer stem cells (CSCs), tumor cells with stem cell properties, such as the capacity to self-renew or generate progenitor and differentiated cells. CSCs seem to play a major role in tumor metastasis and drug resistance, but albeit the potential clinical importance, their regulation at the molecular level is not clear. Recent studies have highlighted several miRNAs to be differentially expressed in normal and cancer stem cells and established their role in targeting genes and pathways supporting cancer stemness properties. This review focuses on the last advances on the role of microRNAs in the regulation of stem cell properties and cancer stem cells in different tumors.

  18. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  19. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  20. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0280 TITLE: Cells of Origin of Epithelial Ovarian Cancers PRINCIPAL INVESTIGATOR: Zhe Li, PhD CONTRACTING...Xie, Zhe Li 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: zli4@rics.bwh.harvard.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Lined Inclusion Cysts or Teratomas. PLoS ONE 8, e65067. Sherman-Baust, C.A., Kuhn, E., Valle, B.L., Shih Ie, M., Kurman, R.J., Wang , T.L., Amano, T

  1. Implication of expression of Nanog in prostate cancer cells and their stem cells.

    Science.gov (United States)

    Gong, Chen; Liao, Hui; Guo, Fengjin; Qin, Liang; Qi, Jun

    2012-04-01

    Recent studies suggested that the prostate cancer may arise from prostate cancer stem cells that share some same characteristics with normal stem cells. The purpose of this study was to detect the differences of Nanog expression between PC3 prostate cancer cell line and its tumor stem cells, and the relationship was preliminarily examined between Nanog and prostate cancer and its tumor stem cells. By using magnetic active cell sorting (MACS), we isolated a population of CD44(+)/CD133(+) prostate cancer cells that display stem cell characteristics from PC3 cell line. Immunohistochemistry revealed positive expressions of CD44, CD133 and α(2)β(1)-integin in the isolated cells. CCK-8 analysis showed that isolated cells had a strong proliferative ability. The formation of the cell spheres in serum-free medium and holoclones in serum-supplied medium showed that the cells were capable of self-renewing, indicating that the isolated cells were a population of cancer stem-like cells derived from PC3 cell line. Western blotting exhibited that the isolated cells had higher experession of Nanog, an embryonic stem marker, as compared with PC3 cells. Our study showed that Nanog might be helpful in sustaining the self-renewal and the undifferentiation of prostate cancer stem cells, and may serve as a marker for prostate cancer stem cells for isolation and identification.

  2. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part II: Alkaloids, Terpenoids and Flavonoids.

    Science.gov (United States)

    Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele

    2016-01-01

    Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids.

  3. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  4. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  5. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  6. Regulation of apoptosis pathways in cancer stem cells.

    Science.gov (United States)

    Fulda, Simone

    2013-09-10

    Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.

  7. A multi-phenotypic cancer model with cell plasticity.

    Science.gov (United States)

    Zhou, Da; Wang, Yue; Wu, Bin

    2014-09-21

    The conventional cancer stem cell (CSC) theory indicates a hierarchy of CSCs and non-stem cancer cells (NSCCs), that is, CSCs can differentiate into NSCCs but not vice versa. However, an alternative paradigm of CSC theory with reversible cell plasticity among cancer cells has received much attention very recently. Here we present a generalized multi-phenotypic cancer model by integrating cell plasticity with the conventional hierarchical structure of cancer cells. We prove that under very weak assumption, the nonlinear dynamics of multi-phenotypic proportions in our model has only one stable steady state and no stable limit cycle. This result theoretically explains the phenotypic equilibrium phenomena reported in various cancer cell lines. Furthermore, according to the transient analysis of our model, it is found that cancer cell plasticity plays an essential role in maintaining the phenotypic diversity in cancer especially during the transient dynamics. Two biological examples with experimental data show that the phenotypic conversions from NCSSs to CSCs greatly contribute to the transient growth of CSCs proportion shortly after the drastic reduction of it. In particular, an interesting overshooting phenomenon of CSCs proportion arises in three-phenotypic example. Our work may pave the way for modeling and analyzing the multi-phenotypic cell population dynamics with cell plasticity.

  8. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Halbach, Sebastian; Erbes, Thalia; Stickeler, Elmar; Kammerer, Bernd

    2015-09-01

    Although the concept of aerobic glycolysis in cancer was already reported in the 1930s by Otto Warburg, the understanding of metabolic pathways remains challenging especially due to the heterogeneity of cancer. In consideration of four different time points (1, 2, 4, and 7 days of incubation), GC-MS profiling of metabolites was performed on cell extracts and supernatants of breast cancer cell lines (MDA-MB-231, -453, BT-474) with different sub classification and the breast epithelial cell line MCF-10A. To the exclusion of trypsinization, direct methanolic extraction, cell scraping and cell disruption was executed to obtain central metabolites. Major differences in biochemical pathways have been observed in the breast cancer cell lines compared to the breast epithelial cell line, as well as between the breast cancer cell lines themselves. Characteristics of breast cancer subtypes could be correlated to their individual metabolic profiles. PLS-DA revealed the discrimination of breast cancer cell lines from MCF-10A based on elevated amino acid levels. The observed metabolic signatures have great potential as biomarker for breast cancer as well as an improved understanding of subtype specific phenomenons of breast cancer.

  9. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate.

    Science.gov (United States)

    Hovinga, Koos E; Shimizu, Fumiko; Wang, Rong; Panagiotakos, Georgia; Van Der Heijden, Maartje; Moayedpardazi, Hamideh; Correia, Ana Sofia; Soulet, Denis; Major, Tamara; Menon, Jayanthi; Tabar, Viviane

    2010-06-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to therapy. Tumor stem cells are thought to reside within a vascular niche that provides structural and functional support. However, most GBM studies involve isolated tumor cells grown under various culture conditions. Here, we use a novel three-dimensional organotypic "explant" system of surgical GBM specimens that preserves cytoarchitecture and tumor stroma along with tumor cells. Notch inhibition in explants results in decreased proliferation and self-renewal of tumor cells but is also associated with a decrease in endothelial cells. When endothelial cells are selectively eliminated from the explants via a toxin conjugate, we also observed a decrease in self-renewal of tumor stem cells. These findings support a critical role for tumor endothelial cells in GBM stem cell maintenance, mediated at least in part by Notch signaling. The explant system further highlighted differences in the response to radiation between explants and isolated tumor neurospheres. Combination treatment with Notch blockade and radiation resulted in a substantial decrease in proliferation and in self-renewal in tumor explants while radiation alone was less effective. This data suggests that the Notch pathway plays a critical role in linking angiogenesis and cancer stem cell self-renewal and is thus a potential therapeutic target. Three-dimensional explant systems provide a novel approach for the study of tumor and microenvironment interactions.

  10. Experimental studies on ultralow frequency pulsed gradient magnetic field inducing apoptosis of cancer cell and inhibiting growth of cancer cell

    Institute of Scientific and Technical Information of China (English)

    曾繁清; 郑从义; 张新晨; 李宗山; 李朝阳; 王川婴; 张新松; 黄晓玲; 张沪生

    2002-01-01

    The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums(ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling(TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency(ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indicating that magnetic field can block DNA replication and inhibit mitosis of cancer cells. It was suggested that magnetic field could inhibit the metabolism of cancer cell, lower its malignancy, and restrain its rapid and heteromorphic growth. Since ULF pulsed gradient magnetic field can induce apoptosis of cancer cells and inhibit the growth of malignant tumour, it could be used as a new method to treat cancer.

  11. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells.

    Science.gov (United States)

    Espinoza, Ingrid; Miele, Lucio

    2013-11-28

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal and postnatal tissue differentiation. Roles for Notch in carcinogenesis, in the biology of cancer stem cells, tumor angiogenesis and epithelial-to-mesenchymal transition (EMT) have been reported. This mini-review describes the role of Notch signaling deregulation in EMT and tumor aggressiveness. We describe how accumulated evidence suggests that Notch inhibition is an attractive strategy for the treatment of several cancers, at least in part because of its potential to reverse or prevent EMT.

  12. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  13. Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers

    Institute of Scientific and Technical Information of China (English)

    Han-Chen Li; Calin Stoicov; Arlin B Rogers; JeanMarie Houghton

    2006-01-01

    Cancer commonly arises at the sites of chronic inflammation and infection. Although this association has long been recognized, the reason has remained unclear. Within the gastrointestinal tract, there are many examples of inflammatory conditions associated with cancer, and these include reflux disease and Barrett's adenocarcinoma of the esophagus, Helicobacter infection and gastric cancer, inflammatory bowel disease and colorectal cancer and viral hepatitis leading to hepatocellular carcinoma.There are several mechanisms by which chronic inflammation has been postulated to lead to cancer which includes enhanced proliferation in an endless attempt to heal damage, the presence of a persistent inflammatory environment creating a pro-carcinogenic environment and more recently a role for engraftment of circulating marrow-derived stem cells which may contribute to the stromal components of the tumor as well as the tumor mass itself. Here we review the recent advances in our understanding of the contributions of circulating bone marrow-derived stem cells to the formation of tumors in animal models as well as in human beings.

  14. Human lung cancer cell line SPC-A1 contains cells with characteristics of cancer stem cells.

    Science.gov (United States)

    Zhou, C H; Yang, S F; Li, P Q

    2012-01-01

    Cancer stem cells (CSCs) play important roles in occurrence, development, recurrence and metastasis of cancer. Isolation and identification of CSCs have been performed from some cancer tissues or cells. In this paper, human lung adenocarcinoma stem cells were induced and isolated from SPC-A1 cells and their characteristics were determined. SPC-A1 cells were cultured in serum-free medium and epidermal growth factor and basic fibroblast growth factor were added into the medium to induce the formation of multicellular tumor spheroids. The results showed that floating multicellular tumor spheroids (named pulmospheres) were formed 5-10 d after the induction of SPC-A1 cells. Real-time PCR analysis showed that in the pulmospheres, the marker of bronchioalveolar stem cells, Clara cell secretary protein and the marker of AT2 cells, alveolar surfactant protein C were highly expressed. Furthermore, such embryonic stem cell markers as octamer-binding transcription factor 4 (OCT-4), Bmi-1, and thyroid transcription factor -1 (TTF-1) were also highly expressed. Some miRNAs as hsa-miR-126, hsa-miR-145, hsa-let-7g, hsa-let-7d, hsa-let-7c, hsa-let-7e and hsa-miR-98, which were lowly expressed in SPC-A1 cells, were not expressed in the pulmospheres. Cell cycle analysis showed that 94.29 % of the pulmosphere cells were in G1 stages. Further study showed that these cells possessed higher proliferation and invasion activity than SPC-A1 cells. Tumorigenicity activity experiments on BALB/c nude mice showed that 1 × 103 of the pulmosphere cells could form tumors with similar pathological features with lung adenocarcinoma. In conclusion, lung adenocarcinoma stem cells were enriched in the pulmosphere cells and were with high tumorigenicity.

  15. The Interconnectedness of Cancer Cell Signaling

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2011-12-01

    Full Text Available The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein– coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic data-base that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.

  16. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  17. Gene-modified bone marrow cell therapy for prostate cancer.

    Science.gov (United States)

    Wang, H; Thompson, T C

    2008-05-01

    There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.

  18. Impact of Annexin A3 expression in gastric cancer cells.

    Science.gov (United States)

    Yu, S Y; Li, Y; Fan, L Q; Zhao, Q; Tan, B B; Liu, Y

    2014-01-01

    Annexin A3 participates in various biological processes, including tumorigenesis, drug resistance, and metastasis. The aim of this study was to investigate the expression of Annexin A3 in gastric cancer and its relationship with cell differentiation, migration, and invasion of gastric cancer cells. Annexin A3 expression in gastric cancer tissues was detected by quantitative real-time PCR and Western blotting. The proliferation of gastric cancer cells was measured by the MTT assay. Cell migration and invasion were determined via wound healing and transwell assays, respectively. Knock down of endogenous Annexin A3 in gastric cancer BGC823 cells was performed using siRNA technology. The expression of Annexin A3 was significantly upregulated in gastric cancer tissues, and negatively correlated with the differentiation degree. Silencing of endogenous Annexin A3 suppressed the proliferation, migration, and invasion of BGC823 cells. Additionally, the expression of p21, p27, TIMP-1, and TIMP-2 was upregulated, and the expression of PCNA, cyclin D1, MMP-1, and MMP-2 decreased in cells treated with Annexin A3-siRNA. Annexin A3 was upregulated in gastric cancer cells. Deletion of endogenous Annexin A3 significantly inhibited gastric cancer cell proliferation, migration, and invasion.

  19. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  20. Definition of molecular determinants of prostate cancer cell bone extravasation.

    Science.gov (United States)

    Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J

    2013-01-15

    Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.

  1. The role of regulatory T cells in cancer immunology

    OpenAIRE

    Whiteside TL

    2015-01-01

    Theresa L Whiteside University of Pittsburgh Cancer Institute, Pittsburgh, PA, US Abstract: Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well und...

  2. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  3. Exometabolom analysis of breast cancer cell lines: Metabolic signature.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-08-21

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.

  4. Selectins mediate small cell lung cancer systemic metastasis.

    Directory of Open Access Journals (Sweden)

    Franziska Heidemann

    Full Text Available Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181. However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.

  5. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation

    Science.gov (United States)

    Cidado, Justin; Wong, Hong Yuen; Rosen, D. Marc; Cimino-Mathews, Ashley; Garay, Joseph P.; Fessler, Abigail G.; Rasheed, Zeshaan A.; Hicks, Jessica; Cochran, Rory L.; Croessmann, Sarah; Zabransky, Daniel J.; Mohseni, Morassa; Beaver, Julia A.; Chu, David; Cravero, Karen; Christenson, Eric S.; Medford, Arielle; Mattox, Austin; De Marzo, Angelo M.; Argani, Pedram; Chawla, Ajay; Hurley, Paula J.; Lauring, Josh; Park, Ben Ho

    2016-01-01

    Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies. PMID:26823390

  6. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b.

    Science.gov (United States)

    Roscigno, Giuseppina; Quintavalle, Cristina; Donnarumma, Elvira; Puoti, Ilaria; Diaz-Lagares, Angel; Iaboni, Margherita; Fiore, Danilo; Russo, Valentina; Todaro, Matilde; Romano, Giulia; Thomas, Renato; Cortino, Giuseppina; Gaggianesi, Miriam; Esteller, Manel; Croce, Carlo M; Condorelli, Gerolama

    2016-01-05

    Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221's targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4, acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression.

  7. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  8. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  9. Tumor metabolism: cancer cells give and take lactate.

    Science.gov (United States)

    Semenza, Gregg L

    2008-12-01

    Tumors contain well-oxygenated (aerobic) and poorly oxygenated (hypoxic) regions, which were thought to utilize glucose for oxidative and glycolytic metabolism, respectively. In this issue of the JCI, Sonveaux et al. show that human cancer cells cultured under hypoxic conditions convert glucose to lactate and extrude it, whereas aerobic cancer cells take up lactate via monocarboxylate transporter 1 (MCT1) and utilize it for oxidative phosphorylation (see the related article beginning on page 3930). When MCT1 is inhibited, aerobic cancer cells take up glucose rather than lactate, and hypoxic cancer cells die due to glucose deprivation. Treatment of tumor-bearing mice with an inhibitor of MCT1 retarded tumor growth. MCT1 expression was detected exclusively in nonhypoxic regions of human cancer biopsy samples, and in combination, these data suggest that MCT1 inhibition holds potential as a novel cancer therapy.

  10. Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy.

    Science.gov (United States)

    Yuk, Jae-Min; Shin, Dong-Min; Song, Kyoung-Sub; Lim, Kyu; Kim, Ki-Hye; Lee, Sang-Hee; Kim, Jin-Man; Lee, Ji-Sook; Paik, Tae-Hyun; Kim, Jun-Sang; Jo, Eun-Kyeong

    2010-01-01

    The cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guerin (BCG/CWS) is an effective antitumor immunotherapy agent. Here, we demonstrate that BCG/CWS has a radiosensitizing effect on colon cancer cells through the induction of autophagic cell death. Exposure of HCT116 colon cancer cells to BCG/CWS before ionizing radiation (IR) resulted in increased cell death in a caspase-independent manner. Treatment with BCG/CWS plus IR resulted in the induction of autophagy in colon cancer cells. Either the autophagy inhibitor 3-methyladenine or knockdown of beclin 1 or Atg7 significantly reduced tumor cell death induced by BCG/CWS plus IR, whereas the caspase inhibitor z-VAD-fmk failed to do so. BCG/CWS plus IR-mediated autophagy and cell death was mediated predominantly by the generation of reactive oxygen species (ROS). The c-Jun NH(2)-terminal kinase pathway functioned upstream of ROS generation in the induction of autophagy and cell death in HCT116 cells after co-treatment with BCG/CWS and IR. Furthermore, toll-like receptor (TLR) 2, and in part, TLR4, were responsible for BCG/CWS-induced radiosensitization. In vivo studies revealed that BCG/CWS-mediated radiosensitization of HCT116 xenograft growth is accompanied predominantly by autophagy. Our data suggest that BCG/CWS in combination with IR is a promising therapeutic strategy for enhancing radiation therapy in colon cancer cells through the induction of autophagy.

  11. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  12. Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-pu; LIU Yan; ZHONG Wei; YU Dan; WEN Lian-ji; JIN Chun-shun

    2011-01-01

    Background Mounting evidence suggests that tumors are histologically heterogeneous and are maintained by a small population of tumor cells termed cancer stem cells. CD133 has been identified as a candidate marker of cancer stem cells in laryngeal carcinoma. This study aimed to analyze the chemoresistance of CD133+ cancer stem cells.Methods The response of Hep-2 cells to different chemotherapeutic agents was investigated and the expression of CD133 was studied. Fluorescence-activated cell sorting analysis was used to identify CD133,and the CD133+ subset of cells was separated and analyzed in colony formation assays,cell invasion assays,chemotherapy resistance studies,and analyzed for the expression of the drug resistance gene ABCG2.Results About 1%-2% of Hep-2 cells were CD133+ cells,and the CD133+ proportion was enriched by chemotherapy.CD133+ cancer stem cells exhibited higher potential for clonogenicity and invasion,and were more resistant to chemotherapy. This resistance was correlated with higher expression of ABCG2.Conclusions This study suggested that CD133+ cancer stem cells are more resistant to chemotherapy. The expression of ABCG2 could be partially responsible for this. Targeting this small population of CD133+ cancer stem cells could be a strategy to develop more effective treatments for laryngeal carcinoma.

  13. Long-Term Surgical Complications in the Oral Cancer Patient: a Comprehensive Review. Part I

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    2010-07-01

    Full Text Available Objectives: Oral and oropharyngeal cancer remains among the top ten most common malignancies in the United States and worldwide. Over the last several decades the approach to treatment of oral cancer has changed very little with regards to primary tumour extirpation while the approach to the “at risk” lymph nodes has evolved significantly. Perhaps the most significant change in the surgical treatment of cancer is the introduction of free flap for reconstruction post resection. Despite these surgical advances, oral cancer ablation, still results in the sacrifice of several functional and aesthetic organs. The aim of this article was to provide a comprehensive review of the potential long-term complications associated with surgical treatment of oral cancer and their management.Material and Methods: The available English language literature relevant to long-term surgical complications associated with surgical treatment of oral cancer was reviewed. The potential common as well as rarer complications that may be encountered and their treatment are summarized.Results: In total 50 literature sources were obtained and reviewed. The topics covered in the first part of this review series include ablative surgery complications, issues with speech, swallowing and chewing and neurologic dysfunction.Conclusions: The early complications associated with oncologic surgery for oral cancer are similar to other surgical procedures. The potential long-term complications however are quite challenging for the oncologic team and the patient who survives oral cancer, primarily due to the highly specialized regional tissues involved in the surgical field.

  14. Identification of drugs that restore primary cilium expression in cancer cells.

    Science.gov (United States)

    Khan, Niamat Ali; Willemarck, Nicolas; Talebi, Ali; Marchand, Arnaud; Binda, Maria Mercedes; Dehairs, Jonas; Rueda-Rincon, Natalia; Daniels, Veerle W; Bagadi, Muralidhararao; Thimiri Govinda Raj, Deepak Balaji; Vanderhoydonc, Frank; Munck, Sebastian; Chaltin, Patrick; Swinnen, Johannes V

    2016-03-01

    The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties.

  15. Growth Inhibition and Apoptosis Inducing Mechanisms of Curcumin on Human Ovarian Cancer Cell Line A2780

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; TONG Qiang-song; WU Cui-huan

    2006-01-01

    Objective: To explore the growth inhibition effects and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Methods: After treatment with 10-50 μmol/L curcumin for 6-24 h, the growth activity of A2780 cancer cells were studied by [ 4, 5-dimethylthiazol-2-yl]-2, 5-diphenyItetrazolium bromide (MTT) colorimetry. Cellular apoptosis was inspected by flow cytometery and acridine orange-ethidium bromide fluorescent staining methods. The fragmentation of cellular chromosome DNA was detected by DNA ladder, the ultrastructural change was observed under a transmission electron microscope,and the protein levels of nuclear factor-kappa B (NF-κB, P65) and cysteinyl aspartate specific protease-3 (Caspase-3) in ovarian cancer cells were measured by immunohistochemistry. Results: After treatment with various concentrations of curcumin, the growth inhibition rates of cancer cells reached 62.05%- 89.24%,with sub-G1 peaks appearing on histogram. Part of the cancer cells showed characteristic morphological changes of apoptosis under fluorescence and electron microscopes, and the rate of apoptosis was 21.5 % -33.5%. The protein expression of NF-κB was decreased, while that of Caspase-3 was increased in a timedependent manner. Conclusion: Curcumin could significantly inhibit the growth of human ovarian cancer cells;inducing apoptosis through up-regulating Caspase-3 and down-regulating gene expression of NF-κB is probably one of its molecular mechanisms.

  16. [Biology of cancer cell-stroma interaction in carcinogenesis and cancer progression].

    Science.gov (United States)

    Fujita, S; Sugihara, H; Ito, R; Tsuchihashi, Y

    1984-03-01

    Cancer cells are dependent on physical and chemical supports of stroma no less than non-cancerous cells and tissues are. The role of stroma should, therefore, be important in genesis and progression of cancers growing in vivo. But this aspect underlying carcinogenesis and manifestation of human cancers has long been neglected or attracted less attention in the investigations of oncology. Focusing particular attention on parenchyma-stromal interaction in gastrointestinal mucosa, the authors have found that, quite unexpectedly, in normal gastric as well as intestinal mucosa of all the animal species so for studied, vascularity is always poorly developed in the generative cell zones. Cross-sectional area of vascular bed is markedly reduced in this zone. Application of Hagen-Poiseulle law revealed that the reduced total cross-sectional area, resulting in a rapid drop in hydrostatic pressure, creates here a situation particularly favorable for proliferating cell population. Since the transport of water soluble material together with tissue fluid through the capillary wall is driven by the hydrostatic pressure, the generative cell zones are found to be present at the site where the turnover of the material is the most active. Before the zone of the rapid pressure drop, there appears zone of relatively high intravascular hydrostatic pressure, where secretory function seems to be facilitated. This zone, as is well known, corresponds to glandular portion of the mucosa. After the zone of the rapid pressure drop (in surface of the mucosa), zone of a low intravascular hydrostatic pressure appears, where absorptive function is to be facilitated. Within such zones, in gastric mucosa surface epithelium and in intestinal mucosa absorptive villi cells are located. It is likely that architecture of gastrointestinal epithelium and vascular pattern in the stroma is closely correlated and that the former is determined, at least partly, by the latter. When human gastric mucosa shows

  17. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    Science.gov (United States)

    1998-07-01

    In: Cancer: Principles and Practice of Oncology . DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB Lippincott Co., Philadelphia, p. 293, 1993. 2...Alteration of signal transduction in T cells from cancer patients. In: Important Advances in Oncology 1995. DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB...Rosenberg SA: Cell transfer therapy: Clinical applications. In: Biologic Therapy of Cancer. DeVita Jr VT, Hellman S, Rosenberg SA (eds.), JB Lippincott

  18. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  19. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  20. Pitavastatin suppressed liver cancer cells in vitro and in vivo

    Science.gov (United States)

    You, He-Yi; Zhang, Wei-Jian; Xie, Xue-Meng; Zheng, Zhi-Hai; Zhu, Heng-Liang; Jiang, Fei-Zhao

    2016-01-01

    Pitavastatin classically functions as a blood cholesterol-lowering drug. Previously, it was discovered with antiglioma stem cell properties through drug screening. However, whether it can be used for liver cancer cell therapy has never been reported. In this study, the cell viability and colony formation assay were utilized to analyze the cytotoxicity of pitavastatin on liver cancer cells. The cell cycle alteration was checked after pitavastatin treatment. Apoptosis-related protein expression and the effect of caspase inhibitor were also checked. The in vivo inhibitory effect of pitavastatin on the growth of liver tumor was also tested. It was found that pitavastatin inhibited growth and colony formation of liver cancer Huh-7 cells and SMMC7721 cells. It induced arrest of liver cancer cells at the G1 phase. Increased proportion of sub-G1 cells was observed after pitavastatin treatment. Pitavastatin promoted caspase-9 cleavage and caspase-3 cleavage in liver cancer cells. Caspase inhibitor Z-VAD-FMK reversed the cleavage of cytotoxic effect of pitavastatin. Moreover, pitavastatin decreased the tumor growth and improved the survival of tumor-bearing mice. This study suggested the antiliver cancer effect of the old drug pitavastatin. It may be developed as a drug for liver cancer therapy. PMID:27621652

  1. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    The SSX family of cancer and germline antigens is mainly expressed in the germ cells of healthy individuals as well as wide range of cancers and is therefore potential targets for immunotherapy. However, little is known about the role of SSX proteins in tumorigenesis and normal cell function. Here......, we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... an increase in the number of gamma-H2AX ‘DNA damage foci’, indicating replicative stress, which may lead to genomic instability. As the p53 tumor suppressor is an inducer of G1 arrest after DNA damage and often deregulated in cancer cells, we investigated if the growth reduction due to SSX2 expression was p53...

  2. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fennell Dean A

    2012-06-01

    Full Text Available Abstract Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.

  3. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon [Korea Institute of Radiologicaland Medical Sciences, Seoul (Korea, Republic of)

    2010-11-15

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  4. Cost utility analysis of everolimus in the treatment of metastatic renal cell cancer in the Netherlands

    NARCIS (Netherlands)

    Mihajlović, J.; Minović, I.; Bruinsma, A.; Postma, M.J.

    2013-01-01

    Objectives: Metastatic renal cell cancer (mRCC) is becoming an important part of Dutch health care expenditure due to expensive pharmaceutical options for disease control and lack of adequate prevention methods. New targeted therapeutics, such as sunitinib, sorafenib and everolimus, have recently em

  5. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    Science.gov (United States)

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future.

  6. a Simple Evolutionary Model for Cancer Cell Population and its Implications on Cancer Therapy

    Science.gov (United States)

    Yao, Peng; Wen, Shutang; Li, Baoshun; Li, Yuxiao

    We established a simple evolutionary model based on the cancer stem cell hypothesis. By taking cellular interactions into consideration, we introduced the evolutionary games theory into the quasispecies model. The fitness values are determined by both genotypes and cellular interactions. In the evolutionary model, a cancer cell population can evolve in different patterns. For single peak intrinsic fitness landscape, the evolution pattern can transit with increasing differentiation probability from malignant cells to benign cells in four different modes. For a large enough value of differentiation probability, the evolution is always the case that the malignant cells extinct ultimately, which might give some implications on cancer therapy.

  7. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  8. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  9. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells......% of the samples. When the GRP(14-27) peptide was added exogenously to breast cancer and SCLC cell lines under serum-free culture conditions, (3H)-thymidine incorporation was stimulated by GRP(14-27) in the SCLC cell lines. Of the breast cancer cell lines only the T47D cell line responded with an increase in (3H......)-thymidine incorporation comparable to the increase observed with SCLC cells. Recently, it has been reported that GRP-like receptors are present in some human breast cancer cell lines, including the T47D cell line studied here. The breast cancer cell line T47D therefore expresses the GRP peptide and the receptor for GRP...

  10. Human Papillomavirus Is Associated with Breast Cancer in the North Part of Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Sigaroodi

    2012-01-01

    Full Text Available We have analyzed the possible relevance of HPV infection for breast cancer risk among Iranian women from north part of Iran. Among women with breast cancer, 25.9% had positive test results for HPV DNA in breast tumor samples in contrast to 2.4% of women with noncancer status (P=0.002. The infection of HPV has increased the risk of breast cancer (OR 14.247; 95% CI 1.558–130.284, P=0.019. The high-risk HPV genotypes (types 16 and 18 in samples of breast cancer patients were the predominant types (53.34%. Other genotypes detected in breast cancer were HPV-6, HPV-11, HPV-15, HPV-23, and HPV-124, and one isolate could not be genotyped compared to HPV reference sequences. While the sole detected HPV in control specimens was HPV-124. Our study reveals that HPV infection and age are the risk factors in breast cancer development in the north part of Iran.

  11. Human Papillomavirus Is Associated with Breast Cancer in the North Part of Iran

    Science.gov (United States)

    Sigaroodi, Afsaneh; Nadji, Seyed Alireza; Naghshvar, Farshad; Nategh, Rakhshandeh; Emami, Habib; Velayati, Ali Akbar

    2012-01-01

    We have analyzed the possible relevance of HPV infection for breast cancer risk among Iranian women from north part of Iran. Among women with breast cancer, 25.9% had positive test results for HPV DNA in breast tumor samples in contrast to 2.4% of women with noncancer status (P = 0.002). The infection of HPV has increased the risk of breast cancer (OR 14.247; 95% CI 1.558–130.284, P = 0.019). The high-risk HPV genotypes (types 16 and 18) in samples of breast cancer patients were the predominant types (53.34%). Other genotypes detected in breast cancer were HPV-6, HPV-11, HPV-15, HPV-23, and HPV-124, and one isolate could not be genotyped compared to HPV reference sequences. While the sole detected HPV in control specimens was HPV-124. Our study reveals that HPV infection and age are the risk factors in breast cancer development in the north part of Iran. PMID:22566779

  12. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  13. Differential pathway dependency discovery associated with drug response across cancer cell lines. | Office of Cancer Genomics

    Science.gov (United States)

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines.

  14. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment.

    Science.gov (United States)

    Gupte, Anshul; Mumper, Russell J

    2009-02-01

    As we gain a better understanding of the factors affecting cancer etiology, we can design improved treatment strategies. Over the past three to four decades, there have been numerous successful efforts in recognizing important cellular proteins essential in cancer growth and therefore these proteins have been targeted for cancer treatment. However, studies have shown that targeting one or two proteins in the complex cancer cascade may not be sufficient in controlling and/or inhibiting cancer growth. Therefore, there is a need to examine features which are potentially involved in multiple facets of cancer development. In this review we discuss the targeting of the elevated copper (both in serum and tumor) and oxidative stress levels in cancer with the aid of a copper chelator d-penicillamine (d-pen) for potential cancer treatment. Numerous studies in the literature have reported that both the serum and tumor copper levels are elevated in a variety of malignancies, including both solid tumor and blood cancer. Further, the elevated copper levels have been shown to be directly correlated to cancer progression. Enhanced levels of intrinsic oxidative stress has been shown in variety of tumors, possibly due to the combination of factors such as elevated active metabolism, mitochondrial mutation, cytokines, and inflammation. The cancer cells under sustained ROS stress tend to heavily utilize adaptation mechanisms and may exhaust cellular ROS-buffering capacity. Therefore, the elevated copper levels and increased oxidative stress in cancer cells provide for a prospect of selective cancer treatment.

  15. Current advances in T-cell-based cancer immunotherapy.

    Science.gov (United States)

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy.

  16. Characteristics of liver cancer stem cells and clinical correlations.

    Science.gov (United States)

    Cheng, Zhuo; Li, Xiaofeng; Ding, Jin

    2016-09-01

    Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.

  17. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    Directory of Open Access Journals (Sweden)

    Arif Malik

    2016-01-01

    Full Text Available Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  18. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    Zhao, Bing; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  19. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    Science.gov (United States)

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.

  20. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  1. The Role of Proteasome Inhibition in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mauricio Escobar

    2011-01-01

    Full Text Available Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  2. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  3. The Warburg effect and mitochondrial stability in cancer cells.

    Science.gov (United States)

    Gogvadze, Vladimir; Zhivotovsky, Boris; Orrenius, Sten

    2010-02-01

    The last decade has witnessed a renaissance of Otto Warburg's fundamental hypothesis, which he put forward more than 80 years ago, that mitochondrial malfunction and subsequent stimulation of cellular glucose utilization lead to the development of cancer. Since most tumor cells demonstrate a remarkable resistance to drugs that kill non-malignant cells, the question has arisen whether such resistance might be a consequence of the abnormalities in tumor mitochondria predicted by Warburg. The present review discusses potential mechanisms underlying the upregulation of glycolysis and silencing of mitochondrial activity in cancer cells, and how pharmaceutical intervention in cellular energy metabolism might make tumor cells more susceptible to anti-cancer treatment.

  4. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  5. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism.

    Science.gov (United States)

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-04-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells toward mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer.

  6. Music therapy as part of the alternative-complementary therapy in cancer patients in hospital

    Directory of Open Access Journals (Sweden)

    Efstratios Athanassakis

    2012-01-01

    Full Text Available Cancer is one of the modern health problems of people living in developed countries. Furthermore, therapeutic approaches to cancer patients is constantly updated with new data. Aim: The aim of the present study was to review the international literature referred to the application of music therapy in the treatment for pediatric and adult patients with cancer. Method and materials: The method of this study included bibliography research from both the review and the research literature on MEDLINE (2000-2010 database and using as key words music, music therapy, alternative-complementary therapy, cancer, children. Results: Music therapy, the last few years, seems to be one of the forms of alternative-complementary therapy for patients treated for cancer. Music therapy is applied as part of complementary therapy in pediatric and adult patients with cancer. Complementary-alternative methods are non-invasive, non-toxic, cheap, safe and can be easily used by the patients themselves. Primarily, the music therapy aimed to the reduction of the emotional trauma and the feeling of the pain during the process of the treatment (radiotherapy, chemotherapy, other painful procedures but also in the whole patients life. Conclusions: Scientific bibliographic databases research concerning the music therapy in patients with cancer seem encouraging, especially in children. Nevertheless, the further study of the role of the music during hospitalization in the outcome of the treatment is essential

  7. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  8. The culture of cancer cell lines as tumorspheres does not systematically result in cancer stem cell enrichment.

    Science.gov (United States)

    Calvet, Christophe Y; André, Franck M; Mir, Lluis M

    2014-01-01

    Cancer stem cells (CSC) have raised great excitement during the last decade and are promising targets for an efficient treatment of tumors without relapses and metastases. Among the various methods that enable to enrich cancer cell lines in CSC, tumorspheres culture has been predominantly used. In this report, we attempted to generate tumorspheres from several murine and human cancer cell lines: B16-F10, HT-29, MCF-7 and MDA-MB-231 cells. Tumorspheres were obtained with variable efficiencies from all cell lines except from MDA-MB-231 cells. Then, we studied several CSC characteristics in both tumorspheres and adherent cultures of the B16-F10, HT-29 and MCF-7 cells. Unexpectedly, tumorspheres-forming cells were less clonogenic and, in the case of B16-F10, less proliferative than attached cells. In addition, we did not observe any enrichment in the population expressing CSC surface markers in tumorspheres from B16-F10 (CD133, CD44 and CD24 markers) or MCF-7 (CD44 and CD24 markers) cells. On the contrary, tumorspheres culture of HT-29 cells appeared to enrich in cells expressing colon CSC markers, i.e. CD133 and CD44 proteins. For the B16-F10 cell line, when 1 000 cells were injected in syngenic C57BL/6 mice, tumorspheres-forming cells displayed a significantly lower tumorigenic potential than adherent cells. Finally, tumorspheres culture of B16-F10 cells induced a down-regulation of vimentin which could explain, at least partially, the lower tumorigenicity of tumorspheres-forming cells. All these results, along with the literature, indicate that tumorspheres culture of cancer cell lines can induce an enrichment in CSC but in a cell line-dependent manner. In conclusion, extensive characterization of CSC properties in tumorspheres derived from any cancer cell line or cancer tissue must be performed in order to ensure that the generated tumorspheres are actually enriched in CSC.

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Manuela Schwegler

    2015-01-01

    Full Text Available Background. In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. Methods. The phenomenon of one cell being internalized into another, which we refer to as “cell-in-cell event,” was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. Results. Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm2. Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients’ survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (p=0.008. Conclusion. Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies.

  11. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...... except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  12. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  13. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  14. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  15. MET and Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gelsomino, Francesco, E-mail: francesco.gelsomino@istitutotumori.mi.it [Medical Oncology Unit 1, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milano (Italy); Rossi, Giulio [Operative Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo 71, 41124 Modena (Italy); Tiseo, Marcello [Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Viale A. Gramsci 14, 43126 Parma (Italy)

    2014-10-13

    Small-cell lung cancer (SCLC) is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  16. MET and Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Francesco Gelsomino

    2014-10-01

    Full Text Available Small-cell lung cancer (SCLC is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  17. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    Directory of Open Access Journals (Sweden)

    Hummel Michael

    2010-11-01

    Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic

  18. [Advances of molecular targeted therapy in squamous cell lung cancer].

    Science.gov (United States)

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  19. Breast cancer stem cells: current advances and clinical implications.

    Science.gov (United States)

    Luo, Ming; Clouthier, Shawn G; Deol, Yadwinder; Liu, Suling; Nagrath, Sunitha; Azizi, Ebrahim; Wicha, Max S

    2015-01-01

    There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.

  20. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  1. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  2. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro

    OpenAIRE

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the h...

  3. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  4. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    CERN Document Server

    Heyden, Stefanie

    2015-01-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  5. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    Science.gov (United States)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  6. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    Science.gov (United States)

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE.

  7. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  8. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  9. Dendritic Cell-Based Immunotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hanka Jähnisch

    2010-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells (APCs, which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. Thus, clinical trials enrolling prostate cancer patients were conducted, which were based on the administration of DCs loaded with tumor-associated antigens. These clinical trials revealed that DC-based immunotherapeutic strategies represent safe and feasible concepts for the induction of immunological and clinical responses in prostate cancer patients. In this context, the administration of the vaccine sipuleucel-T consisting of autologous peripheral blood mononuclear cells including APCs, which were pre-exposed in vitro to the fusion protein PA2024, resulted in a prolonged overall survival among patients with metastatic castration-resistent prostate cancer. In April 2010, sipuleucel-T was approved by the United States Food and Drug Administration for prostate cancer therapy.

  10. Squamous Cell Lung Cancer Presenting as a Malar Mass

    Directory of Open Access Journals (Sweden)

    Ganesh Veerappan

    2003-09-01

    Full Text Available Introduction: Lung cancer metastasizing to the face has rarely been reported and is an even more unusual presentation. Case: This is the case of a 49-year-old man diagnosed with squamous cell carcinoma of the face, scheduled for resection. Preoperative radiographs revealed a left upper lobe mass, found to be squamous cell carcinoma. Diagnosis was changed to Stage IV primary lung cancer. The patient did not undergo resection. Discussion: No previous cases of primary lung cancer presenting as a malar mass have been reported. Facial lesions can be the presenting feature of primary lung cancer. Discovery of the true primary lesion can alter therapy and prognosis.

  11. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.

    Directory of Open Access Journals (Sweden)

    Guillaume Vares

    Full Text Available Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs. In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression, which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.

  12. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  13. Transdifferentiation between Luminal- and Basal-Type Cancer Cells

    Science.gov (United States)

    2013-12-01

    growth factor receptor 3; EREG, epiregulin (a member of EGF family); ITGA6; Integrin alpha 6; ITGB4, Integrin beta 4; Cox2, Cyclooxygenase 2; IL 1B...targets E-cadherin in LNCaP, an E-cadherin positive prostate cancer cell line, can reduce PKD1 activation as judged by S910 autophosphorylation (Fig 1C...purchased from Open Biosystems/Thermo Scientific. Cell culture and immunofluorescence staining. Prostate LNCaP and lung cancer cell lines were

  14. Fascin promotes the motility and invasiveness of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Feng Xu; Shuang-Ni Yu; Zhao-Hui Lu; Jian-Ping Liu; Jie Chen

    2011-01-01

    AIM: To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS: The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS: Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION: Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.

  15. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  16. The prognostic value of clinical factors and cancer stem cell-related markers in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard

    2014-01-01

    -renewal, proliferation, and differentiation during development of different (normal) tissues. The same characteristics were identified in cancer cells, and recently a major part of the glioma research has focused on the cancer stem cell (CSC) hypothesis, suggesting that only CSCs posses the ability of initiating new......-1, and the absence of neurological deficits were associated with a better prognosis in patients with LGGs. In patients with HGGs younger age, having PS 0-1, absence of neurological deficits, having a tumour that does not cross the midline, and receiving curatively intended post-surgical treatment were associated...

  17. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  18. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  19. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  20. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    Science.gov (United States)

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming.

  1. Conference scene: pharmacogenomics: from cell to clinic (part 2).

    Science.gov (United States)

    Siest, Gérard; Medeiros, Rui; Melichar, Bohuslav; Stathopoulou, Maria; Van Schaik, Ron Hn; Cacabelos, Ramon; Abt, Peter Meier; Monteiro, Carolino; Gurwitz, David; Queiroz, Jao; Mota-Filipe, Helder; Ndiaye, Ndeye Coumba; Visvikis-Siest, Sophie

    2014-04-01

    Second International ESPT Meeting Lisbon, Portugal, 26-28 September 2013 The second European Society of Pharmacogenomics and Theranostics (ESPT) conference was organized in Lisbon, Portugal, and attracted 250 participants from 37 different countries. The participants could listen to 50 oral presentations, participate in five lunch symposia and were able to view 83 posters and an exhibition. Part 1 of this Conference Scene was presented in the previous issue of Pharmacogenomics. This second part will focus on: clinical implementation of pharmacogenomics tests; transporters and pharmacogenomics; stem cells and other new tools for pharmacogenomics and drug discovery; from system pharmacogenomics to personalized medicine; and, finally, we will discuss the Posters and Awards that were presented at the conference.

  2. Stemness & Niche sans Frontiers – The Cancer Stem Cell myth

    Directory of Open Access Journals (Sweden)

    Editorial

    2014-04-01

    Full Text Available The niche or the environment in which the cells reside and/or develop plays a major role in influencing the behaviour and characteristics of those cells. In case of normal stem cells, the niche acts as a physical anchoring site and the adhesion molecules therein help with their interaction [1]. The niche secretes extrinsic factors that control the self-renewal and lineage differentiation of the stem cells, thereby guiding them towards a pre-determined path of differentiation. For eg. stem cells in the corneal limbus give rise to corneal epithelial cells, stem cells in liver give rise to hepatocytes etc. which happen within the same organ or tissue. The bone marrow stem cells however have been found to come out of the marrow into the circulation, reach sites far away from their origin and have been reported to home to the site of injury and help in tissue repair either by direct differentiation to the cells native to the site of injury or by paracrine effect or other mechanisms [2]. In both these examples, the stem cells of relevance tend to differentiate into a mature cell of the surrounding niche/organ. However when it comes to cancer stem cells, the niche needs to be perceived in a different light. The cancer stem cells possess the ability to mobilize to distant sites and instead of differentiating to the cell type native to the distant metastasized site, these cancer stem cells either stay in a latent state or establish the tumour there, which makes us hypothesize that they might possess the capacity to modify the environment or the niche at that distant metastasized site. For instance, tumour cells in breast cancer have been found to disseminate to the bone marrow at a very early stage of cancer and these disseminated tumor cells (DTC have been found to possess a cancer stem cell phenotype [3]. These DTCs have been reported to persist for long and have been suggested to play a role in cancer recurrence [4]. Also these DTCs acquire a highly

  3. The Anoikis Effector Bit1 Displays Tumor Suppressive Function in Lung Cancer Cells

    OpenAIRE

    Xin Yao; Scott Jennings; Shubha Kale Ireland; Tri Pham; Brandi Temple; Mya Davis; Renwei Chen; Ian Davenport; Hector Biliran

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independenc...

  4. Prostate cancer cells metastasize to the hematopoietic stem cell niche in bone

    Institute of Scientific and Technical Information of China (English)

    Evan T Keller

    2011-01-01

    @@ The majority of men with advanced prostate cancer develop bone metastases as opposed to metastases at other sites.1 It has been unclear why prostate cancer selectively metastasizes to and proliferates in bone.Recently, Shiozawa et al.Delineated a mechanism that may account for the establishment of prostate cancer in bone.2 Specifically, they identified that prostate cancer cells compete with hematopoietic stem cells (HSC) for the osteoblast in the HSC niche of the bone.Defining the mechanisms through which prostate cancer cells establish themselves in bone is critical towards developing effective therapeutic strategies to prevent or target bone metastases.

  5. Metastasis regulation by PPARD expression in cancer cells

    Science.gov (United States)

    Zuo, Xiangsheng; Xu, Weiguo; Xu, Min; Tian, Rui; Moussalli, Micheline J.; Mao, Fei; Zheng, Xiaofeng; Wang, Jing; Morris, Jeffrey S.; Eng, Cathy; Maru, Dipen M.; Rashid, Asif; Broaddus, Russell; Wei, Daoyan; Hung, Mien-Chie; Sood, Anil K.

    2017-01-01

    Peroxisome proliferator–activated receptor–δ (PPARD) is upregulated in many major human cancers, but the role that its expression in cancer cells has in metastasis remains poorly understood. Here, we show that specific PPARD downregulation or genetic deletion of PPARD in cancer cells significantly repressed metastasis in various cancer models in vivo. Mechanistically, PPARD promoted angiogenesis via interleukin 8 in vivo and in vitro. Analysis of transcriptome profiling of HCT116 colon cancer cells with or without genetic deletion of PPARD and gene expression patterns in The Cancer Genome Atlas colorectal adenocarcinoma database identified novel pro-metastatic genes (GJA1, VIM, SPARC, STC1, SNCG) as PPARD targets. PPARD expression in cancer cells drastically affected epithelial-mesenchymal transition, migration, and invasion, further underscoring its necessity for metastasis. Clinically, high PPARD expression in various major human cancers (e.g., colorectal, lung, breast) was associated with significantly reduced metastasis-free survival. Our results demonstrate that PPARD, a druggable protein, is an important molecular target in metastatic cancer. PMID:28097239

  6. Stem cell biology in thyroid cancer: Insights for novel therapies

    Institute of Scientific and Technical Information of China (English)

    Parisha; Bhatia; Koji; Tsumagari; Zakaria; Y; Abd; Elmageed; Paul; Friedlander; Joseph; F; Buell; Emad; Kandil

    2014-01-01

    Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review.

  7. Stem cell biology in thyroid cancer: Insights for novel therapies

    Science.gov (United States)

    Bhatia, Parisha; Tsumagari, Koji; Abd Elmageed, Zakaria Y; Friedlander, Paul; Buell, Joseph F; Kandil, Emad

    2014-01-01

    Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review. PMID:25426258

  8. Stem Cell Based Gene Therapy in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    2014-01-01

    Full Text Available Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.

  9. Consensus nomenclature for CD8+ T cell phenotypes in cancer

    Science.gov (United States)

    Apetoh, Lionel; Smyth, Mark J.; Drake, Charles G.; Abastado, Jean-Pierre; Apte, Ron N.; Ayyoub, Maha; Blay, Jean-Yves; Bonneville, Marc; Butterfield, Lisa H.; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Esteban; Chen, Lieping; Colombo, Mario P.; Comin-Anduix, Begoña; Coukos, Georges; Dhodapkar, Madhav V.; Dranoff, Glenn; Frazer, Ian H.; Fridman, Wolf-Hervé; Gabrilovich, Dmitry I.; Gilboa, Eli; Gnjatic, Sacha; Jäger, Dirk; Kalinski, Pawel; Kaufman, Howard L.; Kiessling, Rolf; Kirkwood, John; Knuth, Alexander; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Marincola, Francesco; Melero, Ignacio; Melief, Cornelis J.; Mempel, Thorsten R.; Mittendorf, Elizabeth A.; Odun, Kunle; Overwijk, Willem W.; Palucka, Anna Karolina; Parmiani, Giorgio; Ribas, Antoni; Romero, Pedro; Schreiber, Robert D.; Schuler, Gerold; Srivastava, Pramod K.; Tartour, Eric; Valmori, Danila; van der Burg, Sjoerd H.; van der Bruggen, Pierre; van den Eynde, Benoît J.; Wang, Ena; Zou, Weiping; Whiteside, Theresa L.; Speiser, Daniel E.; Pardoll, Drew M.; Restifo, Nicholas P.; Anderson, Ana C.

    2015-01-01

    Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T cells in cancer calls for a more precise definition of the CD8+ T cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and “antitumor.” Based on recent studies investigating the functions of CD8+ T cells in cancer, we here propose some guidelines to precisely define the functional states of CD8+ T cells in cancer. PMID:26137416

  10. 3D printing of biomimetic microstructures for cancer cell migration

    Science.gov (United States)

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2013-01-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies PMID:24150602

  11. From T cell "exhaustion" to anti-cancer immunity.

    Science.gov (United States)

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E

    2016-01-01

    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  12. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  13. Apoptotic effect of noscapine in breast cancer cell lines.

    Science.gov (United States)

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  14. Are primary renal cell carcinoma and metastases of renal cell carcinoma the same cancer?

    Science.gov (United States)

    Semeniuk-Wojtaś, Aleksandra; Stec, Rafał; Szczylik, Cezary

    2016-05-01

    Metastasis is a process consisting of cells spreading from the primary site of the cancer to distant parts of the body. Our understanding of this spread is limited and molecular mechanisms causing particular characteristics of metastasis are still unknown. There is some evidence that primary renal cell carcinoma (RCC) and metastases of RCC exhibit molecular differences that may effect on the biological characteristics of the tumor. Some authors have detected differences in clear cell and nonclear cell component between these 2 groups of tumors. Investigators have also determined that primary RCC and metastases of RCC diverge in their range of renal-specific markers and other protein expression, gene expression pattern, and microRNA expression. There are also certain proteins that are variously expressed in primary RCCs and their metastases and have effect on clinical outcome, e.g., endothelin receptor type B, phos-S6, and CD44. However, further studies are needed on large cohorts of patients to identify differences representing promising targets for prognostic purposes predicting disease-free survival and the metastatic burden of a patient as well as their suitability as potential therapeutic targets. To sum up, in this review we have attempted to summarize studies connected with differences between primary RCC and its metastases and their influence on the biological characteristics of renal cancer.

  15. Hereditary nonpolyposis colorectal cancer and familial colorectal cancer in Central part of Iran, Isfahan

    Directory of Open Access Journals (Sweden)

    Amin Nemati

    2012-01-01

    Full Text Available Background: There is a lack of data on familial aggregation of colorectal cancer (CRC in Iran. We aimed to deter-mine the frequency of hereditary nonpolyposis colorectal cancer (HNPCC and familial colorectal cancer (FCC and to determine the frequency of extracolonic cancers in these families in Isfahan. Methods: We reviewed documents of all patients with a pathologically confirmed diagnosis of CRC admitted to Isfa-han referral hospitals between 1995 and 2006. We also studied our CRC registry at Poursina Hakim Research Institute from 2003 to 2008. We found HNPCC and FCC families based on the Amsterdam II criteria and interviewed them for family history of CRC and extracolonic tumors. The family history was taken at least up to the second-degree relatives. Results: During 1996 to 2008, a total of 2580 CRC cases have been diagnosed. We found 14 HNPCC and 53 FCC families. Mean age of CRC at diagnosis was 48.0 ΁ 14.6 and 49.0 ΁ 13.9 years in the HNPCC and FCC families, re-spectively (p > 0.05. The total numbers of observed extracolonic tumors were 70 (21.6%; mean age = 53.6 ΁ 11.0 years and 157 (13.8%; mean age = 54.8 ΁ 18.0 years in HNPCC and FCC families, respectively (p > 0.05. CRC was respectively found in 52 and 76 members of the HNPCC and FCC families, revealing the frequency of HNPCC and FCC as 2.0% (52/2580 and 2.9% (76/2580, respectively. Conclusions: We found a relative high frequency of HNPCC (2.0% and FCC (2.9% among CRC cases in our socie-ty and high incidence of extracolonic tumors in their families. Further studies focusing on molecular basis in this field and designing a specific screening and national cancer registry program for HNPCC and FCC families should be con-ducted.

  16. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  17. Bmi1-positive cells in the lingual epithelium could serve as cancer stem cells in tongue cancer.

    Science.gov (United States)

    Tanaka, Toshihiro; Atsumi, Naho; Nakamura, Naohiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Ohsugi, Haruyuki; Tokuyama, Yoko; Imahashi, Yuki; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Okazaki, Kazuichi; Ueno, Hiroo

    2016-12-22

    We recently reported that the polycomb complex protein Bmi1 is a marker for lingual epithelial stem cells (LESCs), which are involved in the long-term maintenance of lingual epithelial tissue in the physiological state. However, the precise role of LESCs in generating tongue tumors and Bmi1-positive cell lineage dynamics in tongue cancers are unclear. Here, using a mouse model of chemically (4-nitroquinoline-1-oxide: 4-NQO) induced tongue cancer and the multicolor lineage tracing method, we found that each unit of the tumor was generated by a single cell and that the assembly of such cells formed a polyclonal tumor. Although many Bmi1-positive cells within the tongue cancer specimens failed to proliferate, some proliferated continuously and supplied tumor cells to the surrounding area. This process eventually led to the formation of areas derived from single cells after 1-3 months, as determined using the multicolor lineage tracing method, indicating that such cells could serve as cancer stem cells. These results indicate that LESCs could serve as the origin for tongue cancer and that cancer stem cells are present in tongue tumors.

  18. An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis

    Science.gov (United States)

    Matkar, Smita; Sharma, Paras; Gao, Shubin; Gurung, Buddha; Katona, Bryson W; Liao, Jennifer; Muhammad, Abdul Bari; Kong, Xiang-Cheng; Wang, Lei; Jin, Guanghui; Dang, Chi; Hua, Xianxin

    2016-01-01

    SUMMARY Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. However, the cancer cells often quickly develop an adaptive response to HER2 kinase inhibitors. We found that an epigenetic pathway involving MLL2 is crucial for growth of HER2+ cells and MLL2 reduces sensitivity of the cancer cells to a HER2 inhibitor, Lapatinib. Lapatinib-induced FOXO transcription factors, normally tumor-suppressing, paradoxically upregulate c-Myc epigenetically, in concert with a cascade of MLL2-associating epigenetic regulators, to dampen sensitivity of the cancer cells to Lapatinib. An epigenetic inhibitor suppressing c-Myc synergizes with Lapatinib to suppress cancer growth in vivo, partly by repressing the FOXO/c-Myc axis, unraveling an epigenetically regulated FOXO/c-Myc axis as a potential target to improve therapy. PMID:26461093

  19. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells

    DEFF Research Database (Denmark)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B;

    2013-01-01

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles...... of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced...... significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest...

  20. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Esmaiel Jabbari

    Full Text Available The growth and expression of cancer stem cells (CSCs depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells' tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA hydrogel without the interference of other factors in the microenvironment.Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers.The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 μm.The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells' tissue origin.

  1. Cell size and cancer: a new solution to Peto's paradox?

    Science.gov (United States)

    Maciak, Sebastian; Michalak, Pawel

    2015-01-01

    Cancer, one of the leading health concerns for humans, is by no means a human-unique malady. Accumulating evidence shows that cancer kills domestic and wild animals at a similar rate to humans and can even pose a conservation threat to certain species. Assuming that each physiologically active and proliferating cell is at risk of malignant transformation, any evolutionary increase in the number of cells (and thus body mass) will lead to a higher cancer frequency, all else being equal. However, available data fail to support the prediction that bigger animals are affected by cancer more than smaller ones. The unexpected lack of correlation between body size (and life span) and cancer risk across taxa was dubbed Peto's paradox. In this perspective, several plausible explanations of Peto's paradox are presented, with the emphasis on a largely underappreciated relation of cell size to both metabolism and cell division rates across species, which we believe are key factors underlying the paradox. We conclude that larger organisms have bigger and slowly dividing cells with lower energy turnover, all significantly reducing the risk of cancer initiation. Solving Peto's paradox will enhance our understanding the evolution of cancer and may provide new implications for cancer prevention and treatment.

  2. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  3. Dendritic-tumor fusion cells in cancer immunotherapy.

    Science.gov (United States)

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  4. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  5. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  6. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  7. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  8. Responses of Cancer Cells Induced by Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2013-01-01

    Full Text Available Photodynamic therapy (PDT involves the administration of a photosensitizer, followed by local irradiation of tumor tissues using a laser of an appropriate wavelength to activate the photosensitizer. Since multiple cellular signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic effect, understanding the responses of cancer cells to PDT will aid in the development of new interventions. This review describes the possible cell-death signaling pathways initiated by PDT. In addition, we describe our latest findings regarding the induction of expression of miRNAs specific to apoptosis in cancer cells and the induction of antitumor immunity following PDT against cancer cells. A more detailed understanding of the molecular mechanisms related to PDT will potentially improve long-term survival of PDT treated patients.

  9. The NF-κB Pathway and Cancer Stem Cells.

    Science.gov (United States)

    Rinkenbaugh, Amanda L; Baldwin, Albert S

    2016-04-06

    The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells (cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem cell biology.

  10. The metabolic switch and its regulation in cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, in-volves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.

  11. Advances on Driver Oncogenes of Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei HONG

    2014-05-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide. Next to adenocarcinoma, squamous cell carcinoma (SCC of the lung is the most frequent histologic subtype in non-small cell lung cancer. Several molecular alterations have been defined as "driver oncogenes" responsible for both the initiation and maintenance of the malignancy. The squamous cell carcinoma of the lung has recently shown peculiar molecular characteristics which relate with both carcinogenesis and response to targeted drugs. So far, about 40% of lung squamous cell carcinoma has been found harbouring driver oncogenes, in which fibroblast growth factor receptor 1 (FGFR1 plays important roles. In this review, we will report the mainly advances on some latest driver mutations of squamous cell lung cancer.

  12. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)

    CHAITANYA KUMAR; SAKSHI KOHLI; POONAMALLE PARTHASARATHY BAPSY; ASHOK KUMAR VAID; MINISH JAIN; VENKATA SATHYA SURESH ATTILI; BANDANA SHARAN

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  13. Personalization of loco-regional care for primary breast cancer patients (part 2).

    Science.gov (United States)

    Toi, Masakazu; Winer, Eric P; Benson, John R; Inamoto, Takashi; Forbes, John F; von Minckwitz, Gunter; Robertson, John F R; Grobmyer, Stephen R; Jatoi, Ismail; Sasano, Hironobu; Kunkler, Ian; Ho, Alice Y; Yamauchi, Chikako; Chow, Louis W C; Huang, Chiun-Sheng; Han, Wonshik; Noguchi, Shinzaburo; Pegram, Mark D; Yamauchi, Hideko; Lee, Eun-Sook; Larionov, Alexey A; Bevilacqua, Jose L B; Yoshimura, Michio; Sugie, Tomoharu; Yamauchi, Akira; Krop, Ian E; Noh, Dong Young; Klimberg, V Suzanne

    2015-01-01

    Kyoto Breast Cancer Consensus Conference, Kyoto, Japan, 18-20 February 2014 The loco-regional management of breast cancer is increasingly complex with application of primary systemic therapies, oncoplastic techniques and genetic testing for breast cancer susceptibility. Personalization of loco-regional treatment is integral to optimization of breast cancer care. Clinical and pathological tumor stage, biological features and host factors influence loco-regional treatment strategies and extent of surgical procedures. Key issues including axillary staging, axillary treatment, radiation therapy, primary systemic therapy (PST), preoperative hormonal therapy and genetic predisposition were identified and discussed at the Kyoto Breast Cancer Consensus Conference (KBCCC2014). In the second of a two part conference scene, consensus recommendations for radiation treatment, primary systemic therapies and management of genetic predisposition are reported and focus on the following topics: influence of both clinical response to PST and stage at presentation on recommendations for postmastectomy radiotherapy; use of regional nodal irradiation in selected node-positive patients and those with adverse pathological factors; extent of surgical resection following downstaging of tumors with PST; use of preoperative hormonal therapy in premenopausal women with larger, node-negative luminal A-like tumors and managing increasing demands for contralateral prophylactic mastectomy in patients with a unilateral sporadic breast cancer.

  14. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits.

    Science.gov (United States)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi; Liu, Jianwen; Ni, Lei

    2014-07-18

    Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  15. Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment

    Science.gov (United States)

    Wang, Y; Nangia-Makker, P; Balan, V; Hogan, V; Raz, A

    2010-01-01

    Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers. PMID:21368866

  16. Biological Marker Analysis as Part of the CIBERES-RTIC Cancer-SEPAR Strategic Project on Lung Cancer.

    Science.gov (United States)

    Monsó, Eduard; Montuenga, Luis M; Sánchez de Cos, Julio; Villena, Cristina

    2015-09-01

    The aim of the Clinical and Molecular Staging of Stage I-IIp Lung Cancer Project is to identify molecular variables that improve the prognostic and predictive accuracy of TMN classification in stage I/IIp non-small cell lung cancer (NSCLC). Clinical data and lung tissue, tumor and blood samples will be collected from 3 patient cohorts created for this purpose. The prognostic protein signature will be validated from these samples, and micro-RNA, ALK, Ros1, Pdl-1, and TKT, TKTL1 y G6PD expression will be analyzed. Tissue inflammatory markers and stromal cell markers will also be analyzed. Methylation of p16, DAPK, RASSF1a, APC and CDH13 genes in the tissue samples will be determined, and inflammatory markers in peripheral blood will also be analyzed. Variables that improve the prognostic and predictive accuracy of TNM in NSCLC by molecular staging may be identified from this extensive analytical panel.

  17. Cell biomechanics and metastatic spreading: a study on human breast cancer cells

    OpenAIRE

    Tavano, Federica

    1982-01-01

    Despite the intensive research of the past decades in oncology, cancer invasion and metastasis still represent the most important problem for treatment and the most common cause of death in cancer patients. Metastasis refers to the spread of malignant cells from a primary tumour to distant sites of the body and the adaptation of these cancer cells to a new and different tissue microenvironment. Usually, millions of cells can be released by a tumour into the circulation every day, but only a t...

  18. Natural Killer cells as helper cells in Dendritic cell cancer vaccines

    Directory of Open Access Journals (Sweden)

    María Betina Pampena

    2015-01-01

    Full Text Available Vaccine-based cancer immunotherapy has generated highly variable clinical results due to differing methods of vaccine preparation and variation in patient populations, among other lesser factors. Moreover, these clinical responses do not necessarily correspond with the induction of tumor-specific cytotoxic lymphocytes. Here we review the participation of natural killer (NK cells as alternative immune components that could cooperate in successful vaccination treatment. NK cells have been described as helper cells in dendritic cell-based cancer vaccines, but the role in other kinds of vaccination strategies (whole cells, peptide or DNA- based vaccines is poorly understood. In this article we address the following issues regarding the role of NK cells in cancer vaccines: NK cell anti-tumor action sites, and the loci of NK cell interaction with other immune cells; descriptions of new data on the memory characteristics of NK cells described in infectious diseases; and finally phenotypical and functional changes after vaccination measured by immunomonitoring in preclinical and clinical settings.

  19. Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism.

    Science.gov (United States)

    Chartoumpekis, Dionysios V; Wakabayashi, Nobunao; Kensler, Thomas W

    2015-08-01

    Cancer cells adapt their metabolism to their increased needs for energy and substrates for protein, lipid and nucleic acid synthesis. Nuclear erythroid factor 2-like 2 (Nrf2) pathway is usually activated in cancers and has been suggested to promote cancer cell survival mainly by inducing a large battery of cytoprotective genes. This mini review focuses on metabolic pathways, beyond cytoprotection, which can be directly or indirectly regulated by Nrf2 in cancer cells to affect their survival. The pentose phosphate pathway (PPP) is enhanced by Nrf2 in cancers and aids their growth. PPP has also been found to be up-regulated in non-cancer tissues and other pathways, such as de novo lipogenesis, have been found to be repressed after activation of the Nrf2 pathway. The importance of these Nrf2-regulated metabolic pathways in cancer compared with non-cancer state remains to be determined. Last but not least, the importance of context about Nrf2 and cancer is highlighted as the Nrf2 pathway may be activated in cancers but its pharmacological activators are useful in chemoprevention.

  20. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  1. Application of non-small cell lung cancer pleural effusion cell blocks in molecular pathological detection

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Nan Jiang; Dongdong Qian; Xiangzhou Li; Yu Zhou; Jia Mei; Xiaohui Cao

    2014-01-01

    Objective:The tumor tissues used in molecular pathological detection were usual y obtained by surgery, which would cause trauma and may not be suitable for the terminal cancer patients. This paper evaluated the value of the non-smal celllung cancer (NSCLC) pleural ef usion cellblocks as tumor tissues replacement materials in the application of molecular pathological detection. Methods: Tumor cells were made into cellblocks through stratified centrifugal from 30 NSCLC pa-tients with the pleural ef usion. The immunohistochemistry, fluorescence in situ hybridization (FISH) and gene sequencing methods were employed in our experiments. Results:The tumor cells of cellblock section were rich and could keep part of histological structure. Immunohistochemistry staining could assist diagnosis and tumor parting. Epidermal growth factor receptor (EGFR) FISH-positive was found in 33.33%of the group, high polysomy in 6 cases, amplification in 4 cases. EGFR gene mutations were found in 8 cases of 30 samples, with an incidence of 26.67%, 6 cases were detected in the exon 19, and 2 cases were detected in the exon 21. Conclusion:The NSCLC pleural ef usion cellblocks are useful for the diagnosis and determining the primary source of tumor, instructed targeted therapy.

  2. Epidemiologic characteristics and risk factors for renal cell cancer

    Directory of Open Access Journals (Sweden)

    Loren Lipworth

    2009-04-01

    Full Text Available Loren Lipworth1,2, Robert E Tarone1,2, Lars Lund2,3, Joseph K McLaughlin1,21International Epidemiology Institute, Rockville, MD, USA; 2Department of Medicine (JKM, RET and Preventive Medicine (LL, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 3Department of Urology, Viborg Hospital, Viborg, DenmarkAbstract: Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches

  3. Role of stem cell proteins and microRNAs in embryogenesis and germ cell cancer

    NARCIS (Netherlands)

    R. Eini (Ronak); L.C.J. Dorssers (Lambert); L.H.J. Looijenga (Leendert)

    2013-01-01

    textabstractEmbryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the blastocyst. These cells can proliferate indefinitely and differentiate into all cell lineages. Germ cell cancers (GCC) mimic embryonic development to a certain extent. The origin of GCC trace back to

  4. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    Science.gov (United States)

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  5. Advances of Molecular Targeted Therapy in Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li MA

    2013-12-01

    Full Text Available Squamous cell lung cancer (SQCLC is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR inhibitors or anaplastic lymphoma kinase (ALK inhibitors that show exquisite activity in lungadenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1 gene, the discoidin domain receptor 2 (DDR2 gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lungcancer assessing the value of novel therapeutics addressing these targets.

  6. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min‑1). Further, in response to a fast flow (5 µl min‑1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  7. The role of regulatory T cells in cancer immunology.

    Science.gov (United States)

    Whiteside, Theresa L

    2015-01-01

    Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well understood. This review attempts to provide insights into the importance of Treg subsets in cancer development and its progression. It also considers the role of Treg as potential biomarkers of clinical outcome in cancer. The strategies for monitoring Treg in cancer patients are discussed as is the need for caution in the use of therapies which indiscriminately ablate Treg. A greater understanding of molecular pathways operating in various tumor microenvironments is necessary for defining the Treg impact on cancer and for selecting immunotherapies targeting Treg.

  8. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    Science.gov (United States)

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  9. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy.

    Science.gov (United States)

    Esfandiary, Ali; Ghafouri-Fard, Soudeh

    2015-01-01

    New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a known cancer testis gene with exceptional immunogenicity and prevalent expression in many cancer types. These characteristics have made it an appropriate vaccine candidate with the potential application against various malignancies. This article reviews recent knowledge about the NY-ESO-1 biology, function, immunogenicity and expression in cancers as well as and the results of clinical trials with this antigen.

  10. HuR knockdown changes the oncogenic potential of oral cancer cells.

    Science.gov (United States)

    Kakuguchi, Wataru; Kitamura, Tetsuya; Kuroshima, Takeshi; Ishikawa, Makoto; Kitagawa, Yoshimasa; Totsuka, Yasunori; Shindoh, Masanobu; Higashino, Fumihiro

    2010-04-01

    HuR binds to AU-rich element-containing mRNA to protect them from rapid degradation. Here, we show that knockdown of HuR changes the oncogenic properties of oral cancer cells. Oral squamous cell carcinoma cell lines, HSC-3 and Ca9.22, which express HuR protein and cytoplasmic AU-rich element mRNA more abundantly than normal cells, were subjected to HuR knockdown. In the HuR-knockdown cancer cells, the cytoplasmic expression of c-fos, c-myc, and COX-2 mRNAs was inhibited compared with those in cells that had been transfected with a control small interfering RNA, and the half-lives of these mRNAs were shorter than those of their counterparts in the control cells. HuR-knockdown cells failed to make colonies in soft agar, suggesting that the cells had lost their ability for anchorage-independent cell growth. Additionally, the motile and invasive activities of the cells decreased remarkably by HuR knockdown. Furthermore, the expression of cell cycle-related proteins, such as cyclin A, cyclin B1, cyclin D1, and cyclin-dependent kinase 1, was reduced in HuR-knockdown cancer cells, and HuR bound to cdk1 mRNA to stabilize it. These findings suggest that HuR knockdown changes the features of oral cancer cells, at least in part, by affecting their cell cycle and shows potential as an effective therapeutic approach.

  11. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Science.gov (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  12. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  13. Therapeutic potential of mTOR inhibitors for targeting cancer stem cells.

    Science.gov (United States)

    Francipane, Maria Giovanna; Lagasse, Eric

    2016-11-01

    The mammalian target of rapamycin (mTOR) pathway is aberrantly activated in many cancer types. As the intricate network of regulatory mechanisms controlling mTOR activity is uncovered, more refined drugs are designed and tested in clinical trials. While first generation mTOR inhibitors have failed to show clinical efficacy due partly to the feedback relief of oncogenetic circuits, newly developed inhibitors show greater promise as anti-cancer agents. An effective drug must defeat the cancer stem cells (CSCs) while sparing the normal stem cells. Due to its opposing role on normal and malignant stem cells, mTOR lends itself very well as a therapeutic target. Indeed, a preferential inhibitory effect on CSCs has already been shown for some mTOR inhibitors. These results provide a compelling rationale for the clinical development of mTOR-targeted therapies.

  14. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers.

    Science.gov (United States)

    Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai

    2015-01-01

    Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis.

  15. Common stemness regulators of embryonic and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Christiana; Hadjimichael; Konstantina; Chanoumidou; Natalia; Papadopoulou; Panagiota; Arampatzi; Joseph; Papamatheakis; Androniki; Kretsovali

    2015-01-01

    Pluripotency of embryonic stem cells(ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal trans-ducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors(cancer stem cells), provides a common conceptual and research frame-work for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  16. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  17. The Roles of Regulatory B Cells in Cancer

    Directory of Open Access Journals (Sweden)

    Yan He

    2014-01-01

    Full Text Available Regulatory B cells (Bregs, a newly described subset of B cells, have been proved to play a suppressive role in immune system. Bregs can inhibit other immune cells through cytokines secretion and antigen presentation, which give them the role in the pathogenesis of autoimmune diseases and cancers. There are no clear criteria to identify Bregs; different markers were used in the different experimental conditions. Massive researches had described the functions of immune cells such as regulatory T cells (Tregs, dendritic cells (DCs, and B cells in the autoimmune disorder diseases and cancers. More and more researches focused on the roles of Bregs and the cytokines such as Interleukin-10 (IL-10 and transforming growth factor beta (TGF-β secreted by Bregs. The aim of this review is to summarize the characteristics of Bregs and the roles of Bregs in cancer.

  18. Losartan sensitizes selectively prostate cancer cell to ionizing radiation.

    Science.gov (United States)

    Yazdannejat, H; Hosseinimehr, S J; Ghasemi, A; Pourfallah, T A; Rafiei, A

    2016-01-11

    Losartan is an angiotensin II receptor (AT-II-R) blocker that is widely used by human for blood pressure regulation. Also, it has antitumor property. In this study, we investigated the radiosensitizing effect of losartan on cellular toxicity induced by ionizing radiation on prostate cancer and non-malignant fibroblast cells. Human prostate cancer (DU-145) and human non-malignant fibroblast cells (HFFF2) were treated with losartan at different concentrations (0.5, 1, 10, 50 and 100 µM) and then these cells were exposed to ionizing radiation. The cell proliferation was determined using MTT assay. Our results showed that losartan exhibited antitumor effect on prostate cancer cells; it was reduced cell survival to 66% at concentration 1 µM. Losartan showed an additive killing effect in combination with ionizing radiation on prostate cancer cell. The cell proliferation was reduced to 54% in the prostate cancer cells treated with losartan at concentration 1 µM in combination with ionizing radiation. Losartan did not exhibit any toxicity on HFFF2 cell. This result shows a promising effect of losartan on enhancement of therapeutic effect of ionizing radiation in patients during therapy.

  19. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation.

    Science.gov (United States)

    Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J

    2011-07-01

    The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours