WorldWideScience

Sample records for cancer cells partly

  1. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  2. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell

    Science.gov (United States)

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell. PMID:25456211

  3. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell.

    Science.gov (United States)

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell.

  4. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II

    DEFF Research Database (Denmark)

    Krege, Susanne; Beyer, Jörg; Souchon, Rainer

    2007-01-01

    OBJECTIVES: The first consensus report that had been presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology...... trials. Despite technical improvements, expert clinical skills will continue to be one of the major determinants for the prognosis of patients with germ cell cancer. In addition, the particular needs of testicular cancer survivors have been acknowledged Udgivelsesdato: 2008/3...

  5. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I

    DEFF Research Database (Denmark)

    Krege, Susanne; Beyer, Jörg; Souchon, Rainer

    2007-01-01

    OBJECTIVES: The first consensus report presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in the year 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the A......OBJECTIVES: The first consensus report presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in the year 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology...... in 2004 remain valid 3 yr later, refinements in the treatment of early- and advanced-stage testicular cancer have emerged from clinical trials. Despite technical improvements, expert clinical skills will continue to be one of the major determinants for the prognosis of patients with germ cell cancer...

  6. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell

    OpenAIRE

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2014-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 a...

  7. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I.

    NARCIS (Netherlands)

    Krege, S.; Beyer, J.; Souchon, R.; Albers, P.; Albrecht, W.; Algaba, F.; Bamberg, M.; Bodrogi, I.; Bokemeyer, C.; Cavallin-Stahl, E.; Classen, J.; Clemm, C.; Cohn-Cedermark, G.; Culine, S.; Daugaard, G.; Mulder, P.H.M. de; Santis, M. de; Wit, M. de; Wit, R. de; Derigs, H.G.; Dieckmann, K.P.; Dieing, A.; Droz, J.P.; Fenner, M.; Fizazi, K.; Flechon, A.; Fossa, S.D.; Muro, X.G. del; Gauler, T.; Geczi, L.; Gerl, A.; Germa-Lluch, J.R.; Gillessen, S.; Hartmann, J.T.; Hartmann, M.; Heidenreich, A.; Hoeltl, W.; Horwich, A.; Huddart, R.; Jewett, M.; Joffe, J.; Jones, W.G.; Kisbenedek, L.; Klepp, O.; Kliesch, S.; Koehrmann, K.U.; Kollmannsberger, C.; Kuczyk, M.; Laguna, P.; Galvis, O.L.; Loy, V.; Mason, M.D.; Mead, G.M.; Mueller, R.; Nichols, C.; Nicolai, N.; Oliver, T.; Ondrus, D.; Oosterhof, G.O.; Ares, L.P.; Pizzocaro, G.; Pont, J.; Pottek, T.; Powles, T.; Rick, O.; Rosti, G.; Salvioni, R.; Scheiderbauer, J.; Schmelz, H.U.; Schmidberger, H.; Schmoll, H.J.; Schrader, M.; Sedlmayer, F.; Skakkebaek, N.E.; Sohaib, A.; Tjulandin, S.; Warde, P.; Weinknecht, S.; Weissbach, L.; Wittekind, C.; Winter, E.; Wood, L.; Maase, H. von der

    2008-01-01

    OBJECTIVES: The first consensus report presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in the year 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the

  8. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II.

    NARCIS (Netherlands)

    Krege, S.; Beyer, J.; Souchon, R.; Albers, P.; Albrecht, W.; Algaba, F.; Bamberg, M.; Bodrogi, I.; Bokemeyer, C.; Cavallin-Stahl, E.; Classen, J.; Clemm, C.; Cohn-Cedermark, G.; Culine, S.; Daugaard, G.; Mulder, P.H.M. de; Santis, M. De; Wit, M. de; Wit, R. de; Derigs, H.G.; Dieckmann, K.P.; Dieing, A.; Droz, J.P.; Fenner, M.; Fizazi, K.; Flechon, A.; Fossa, S.D.; Muro, X.G. del; Gauler, T.; Geczi, L.; Gerl, A.; Germa-Lluch, J.R.; Gillessen, S.; Hartmann, J.T.; Hartmann, M.; Heidenreich, A.; Hoeltl, W.; Horwich, A.; Huddart, R.; Jewett, M.; Joffe, J.; Jones, W.G.; Kisbenedek, L.; Klepp, O.; Kliesch, S.; Koehrmann, K.U.; Kollmannsberger, C.; Kuczyk, M.; Laguna, P.; Galvis, O.L.; Loy, V.; Mason, M.D.; Mead, G.M.; Mueller, R.; Nichols, C.; Nicolai, N.; Oliver, T.; Ondrus, D.; Oosterhof, G.O.; Paz-Ares, L.; Pizzocaro, G.; Pont, J.; Pottek, T.; Powles, T.; Rick, O.; Rosti, G.; Salvioni, R.; Scheiderbauer, J.; Schmelz, H.U.; Schmidberger, H.; Schmoll, H.J.; Schrader, M.; Sedlmayer, F.; Skakkebaek, N.E.; Sohaib, A.; Tjulandin, S.; Warde, P.; Weinknecht, S.; Weissbach, L.; Wittekind, C.; Winter, E.; Wood, L.; Maase, H. von der

    2008-01-01

    OBJECTIVES: The first consensus report that had been presented by the European Germ Cell Cancer Consensus Group (EGCCCG) in 2004 has found widespread approval by many colleagues throughout the world. In November 2006, the group met a second time under the auspices of the Department of Urology of the

  9. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    Science.gov (United States)

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  10. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB‑231 partly through suppression of the Akt pathway.

    Science.gov (United States)

    Jin, Hana; Lee, Won Sup; Eun, So Young; Jung, Ji Hyun; Park, Hyeon-Soo; Kim, Gonsup; Choi, Yung Hyun; Ryu, Chung Ho; Jung, Jin Myung; Hong, Soon Chan; Shin, Sung Chul; Kim, Hye Jung

    2014-10-01

    Morin, a flavonoid found in figs and other Moraceae, displays a variety of biological actions, such as anti-oxidant, anti-inflammatory and anti-carcinogenic. However, the anticancer effects of morin and in particular its anti-metastatic effects are not well known. Therefore, in the present study, we investigated the anticancer effects of morin on highly metastatic human breast cancer cells. Our results showed that morin significantly inhibited the colony forming ability of highly metastatic MDA-MB‑231 breast cancer cells from low doses (50 µM) without cytotoxicity. In addition, morin changed MDA-MB‑231 cell morphology from mesenchymal shape to epithelial shape and inhibited the invasion of MDA-MB‑231 cells in a dose-dependent manner. Morin decreased matrix metalloproteinase-9 (MMP-9) secretion and expression of the mesenchymal marker N-cadherin of MDA-MB‑231 cells, suggesting that morin might suppress the EMT process. Furthermore, morin significantly decreased the phosphorylation of Akt, and inhibition of the Akt pathway significantly reduced MDA-MB‑231 invasion. In an in vivo xenograft mouse model, morin suppressed MDA-MB‑231 cancer cell progression. Taken together, our findings suggest that morin exhibits an inhibitory effect on the cancer progression and EMT process of highly metastatic breast cancer cells at least in part through inhibiting Akt activation. This study provides evidence that morin may have anticancer effects against metastatic breast cancer.

  11. Studies on quinones. Part 45: novel 7-aminoisoquinoline-5,8-quinone derivatives with antitumor properties on cancer cell lines.

    Science.gov (United States)

    Valderrama, Jaime A; Ibacache, J Andrea; Arancibia, Verónica; Rodriguez, Jaime; Theoduloz, Cristina

    2009-04-01

    A variety of 7-aminoisoquinoline-5,8-quinone derivatives were prepared from 2,5-dihydroxyacetophenone, methyl aminocrotonate, and the corresponding amines, through a highly efficient three-step sequence. The members of this series were tested on normal human fibroblasts and on a panel of three human cancer cell lines and their redox properties were determined by cyclic voltammetry in acetonitrile. Both the cytotoxicity and antitumor activity of 7-phenylaminoisoquinoline-5,8-quinone derivatives showed correlation with their half wave potentials and lipophilicities.

  12. Lung cancer - small cell

    Science.gov (United States)

    ... carcinoma Small cell carcinoma Squamous cell carcinoma Secondhand smoke and lung cancer Normal lungs and alveoli Respiratory system Smoking hazards Bronchoscope References Horn L, Eisenberg R, ...

  13. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  14. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  15. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression.

    Science.gov (United States)

    Cai, Liqiong; Wang, Zehua; Liu, Denghua

    2016-05-01

    Cervical cancer is one of the most common female malignancies in the world, and chemotherapeutic drug resistance is a major obstacle to cancer therapy. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and catalyzes the repressive histone H3 lysine 27 trimethylation (H3K27me3). However, the role of EZH2 on the chemotherapy drug resistance in cervical cancers remains unclear. In the present study, the cervical carcinoma specimens and paired normal tissue specimens were obtained and the expression of EZH2 was detected by western blotting. The results showed that high levels of EZH2 were detected in cervical carcinoma tissues, compared with paired control tissues (**p EZH2 were designed and used to interfere with endogenous EZH2 expression. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays following treatment with various concentrations of cisplatin in HeLa and HeLa/DDP cells. The MTT assay results showed that knockdown of EZH2 in HeLa/DDP cells caused a 2.29- or 1.83-fold decrease in the cisplatin IC50 values (for shRNA1-EZH2, 34.88 vs. 15.21 μg/mL; p EZH2, 34.88 vs. 19.09 μg/mL; p EZH2 activity was also suppressed by 3-deazaneplanocin A (DZNep), EZH2 inhibitor, and the results demonstrated that, meanwhile, DZNep potently inhibited cell viability of HeLa/DDP cells, partly by suppression the levels of EZH2 and H3K27me3, but not H3K27me2, which was detected by western blotting analysis. Moreover, cell migration assay results showed that knockdown of EZH2 decreased cell metastasis of cervical cancer cells. Furthermore, cell cycle was detected by fluorescence-activated cell sorting (FACS) assay and the results demonstrated that interference with EZH2 expression increased the percentage of cells at G0/G1 phase and the HeLa/DDP cells were blocked at G0/G1 phase. Interestingly, western blotting results revealed that higher expression of EZH2 was related with

  16. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  17. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  18. Basal cell cancer (image)

    Science.gov (United States)

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  19. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  1. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  2. Basal cell skin cancer

    Science.gov (United States)

    Basal cell skin cancer almost never spreads. If it is left untreated, it may spread into surrounding areas and nearby tissues and bone. In these cases, treatment can injure the appearance of the skin.

  3. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  4. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  5. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and γ-radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo Yoen [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Hyun A; Kim, Jeong Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Jae Ha; Choi, Soo Im [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Han, Jeong Ran; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Cho, Eun Wie [Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-01-03

    Highlights: •DKK1 was expressed differently among non-small-cell lung cancer cell lines. •DKK1 negatively regulated ROMO1 gene expression. •Disturbance of DKK1 level induced the imbalance of cellular ROS. •DKK1/ROMO1-induced ROS imbalance is involved in cell survival in NSCLC. -- Abstract: Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cells than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.

  7. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  8. Squamous cell skin cancer

    Science.gov (United States)

    ... squamous cell cancer include: Having light-colored skin, blue or green eyes, or blond or red hair Long-term, daily sun exposure (such as in people who work outside) Many severe sunburns early in life Older age Having had many x-rays Chemical exposure A weakened immune system, especially in ...

  9. Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica).

    Science.gov (United States)

    Roy, Molay Kumar; Kobori, Masuko; Takenaka, Makiko; Nakahara, Kazuhiko; Shinmoto, Hiroshi; Isobe, Seiichiro; Tsushida, Tojiro

    2007-03-01

    Nimbolide, a triterpenoid extracted from the flowers of the neem tree (Azadirachta indica), was found to have antiproliferative activity against some cancer cell lines. Treatment of cells with 0.5-5.0 microm concentrations of nimbolide resulted in moderate to very strong growth inhibition in U937, HL-60, THP1 and B16 cell lines. Flow cytometric analysis of U937 cells showed that nimbolide treatment (1-2.5 microm) resulted in cell cycle disruption by decreasing the number of cells in G0/G1 phase, with initial increases in S and G2/M phases. Cells exposed to a higher dose of nimbolide for a longer period displayed a severely damaged DNA profile, resulting in a remarkable increase in the number of cells in the sub-G1 fraction, with a reciprocal decrease of cells in all phases. Quantification of the expression of phosphatidylserine in the outer cell membrane showed that doses of nimbolide higher than 0.4 microm exerted remarkable lethality, with over 60% of cells exhibiting apoptotic features after exposure to 1.2 microm nimbolide. The antiproliferative effect of nimbolide and its apoptosis-inducing property raise hope for its use in anticancer therapy by enhancing the effectiveness of cell cycle disruption.

  10. Alcohol and Cancer Stem Cells

    OpenAIRE

    Mei Xu; Jia Luo

    2017-01-01

    Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and ...

  11. Cancer Stem Cells and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sheetal Dyall

    2010-01-01

    Full Text Available The cancer stem cell hypothesis is becoming more widely accepted as a model for carcinogenesis. Tumours are heterogeneous both at the molecular and cellular level, containing a small population of cells that possess highly tumourigenic “stem-cell” properties. Cancer stem cells (CSCs, or tumour-initiating cells, have the ability to self-renew, generate xenografts reminiscent of the primary tumour that they were derived from, and are chemoresistant. The characterisation of the CSC population within a tumour that drives its growth could provide novel target therapeutics against these cells specifically, eradicating the cancer completely. There have been several reports describing the isolation of putative cancer stem cell populations in several cancers; however, no defined set of markers has been identified that conclusively characterises “stem-like” cancer cells. This paper highlights the current experimental approaches that have been used in the field and discusses their limitations, with specific emphasis on the identification and characterisation of the CSC population in epithelial ovarian cancer.

  12. Zeolite scaffolds for cultures of human breast cancer cells. Part II: Effect of pure and hybrid zeolite membranes on neoplastic and metastatic activity control.

    Science.gov (United States)

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-11-01

    This work is focused on the response of two invasive phenotypes of human breast cancer cells, MCF-7 and MDA-MB-231, grown on synthesized zeolite scaffolds in order to study the influence of those biomaterials in controlled conditions with and without anti-tumoral drug treatments. Our research was directed to the use of doxorubicin (DOX) and bergapten (5-MOP). The former is broadly considered the most active single agent available for the treatment of breast cancer, the second is a natural psoralen with an apoptotic effect. The results indicate that both drugs inhibit the cell viability of all cell lines grown on all zeolite scaffolds and that all Pure Zeolite Membranes are more responsive with respect to all Mixed Matrix Membranes. Moreover, the results after treatment with DOX at a concentration of 7.4μM for 24h, show that the expression of the matrix metalloproteinases (MMP-2 and MMP-9) is greatly reduced in both cell lines, especially in those adherent on Pure Zeolite Scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cancer treatments transform residual cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    Harless William W

    2011-01-01

    Full Text Available Abstract Background Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor. Presentation of the hypothesis Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1 facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2 induce residual cancer stem cell proliferation. Testing the hypothesis Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression and cancer stem cell enrichment (stem cell markers upregulated. Implications of the hypothesis Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor repair may be amenable to treatment intervention at the time it is upregulated.

  14. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  15. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  16. Jonckheere Double Star Photometry - Part V: Cancer

    Science.gov (United States)

    Knapp, Wilfried

    2017-07-01

    If any double star discoverer is in urgent need of photometry then it is Jonckheere. There are over 3000 Jonckheere objects listed in the WDS catalog and a good part of them have magnitudes which are obviously far too bright. This report covers the Jonckheere objects in the constellation Cancer. Only one image per object was taken as despite the risk of random effects even a single measurement is better than the currently usually given estimation, although the J-objects in this constellation seem with some exceptions better covered with observations as usual for Jonckheere doubles.

  17. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Antineoplastic agents 582. Part 1: Isolation and structure of a cyclobutane-type sesquiterpene cancer cell growth inhibitor from Coprinus cinereus (Coprinaceae).

    Science.gov (United States)

    Pettit, George R; Meng, Yanhui; Pettit, Robin K; Herald, Delbert L; Hogan, Fiona; Cichacz, Zbigniew A

    2010-07-15

    Bioassay-guided (murine P388 lymphocytic leukemia and human cancer cell lines) separation of an ethyl acetate extract prepared from the inky cap fungus Coprinus cinereus led to the isolation of three new sesquiterpenes, 7,7a-diepicoprinastatin 1 (1), 14-hydroxy-5-desoxy-2S,3S,9R-illudosin (2), and 4,5-dehydro-5-deoxyarmillol (3), together with the known armillol (4). The structure and relative configuration of 1 was determined by single-crystal X-ray diffraction experiments. The structures of compounds 2, 3, and 4 were each deduced by a combination of HRMS and 1D and 2D NMR techniques. Cyclobutane 2 led to modest inhibition of the murine P388 leukemia cell line.

  19. From Vegetable Waste to New Agents for Potential Health Applications: Antioxidant Properties and Effects of Extracts, Fractions and Pinocembrin from Glycyrrhiza glabra L. Aerial Parts on Viability of Five Human Cancer Cell Lines.

    Science.gov (United States)

    Aiello, Francesca; Armentano, Biagio; Polerà, Nicoletta; Carullo, Gabriele; Loizzo, Monica Rosa; Bonesi, Marco; Cappello, Maria Stella; Capobianco, Loredana; Tundis, Rosa

    2017-09-13

    Glycyrrhiza glabra cultivation and harvesting produces substantial quantities of aerial parts as waste. With the aim to prospect an innovative valorization of these byproducts, the aerial parts were harvested in May and October and analyzed for their chemical profile, antioxidant properties, and effects on viability of five cancer cell lines. Pinocembrin was the main constituent. A significant protection of lipid peroxidation was observed with the May total extract (IC50 of 4.2 ± 0.4 μg/mL at 30 min of incubation). The effects on viability of HeLa, MCF-7, MDA-MB-231, Caco-2, and PC3 human cancer cells were investigated. All samples shown a remarkable activity with IC50 values below 25 μg/mL. Samples from plants harvested in May exhibited greater activity than those harvested in October. MCF-7 and HeLa were the most sensitive cells with IC50 in the range 2.73-3.01 and 3.28-5.53 μg/mL, respectively. G. glabra aerial parts represent a good source of valuable products.

  20. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  1. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  2. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  3. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  4. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation

    Directory of Open Access Journals (Sweden)

    Jing-Ru Weng

    2013-01-01

    Full Text Available Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L. has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3β,7β-dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC, a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPARγ, and pharmacological inhibition of PPARγ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPARγ-targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF-κB, and estrogen receptor α, and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPARγ-targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd.

  5. Mechanotransduction in cancer stem cells.

    Science.gov (United States)

    Hao, Jin; Zhang, Yueling; Ye, Rui; Zheng, Yingcheng; Zhao, Zhihe; Li, Juan

    2013-09-01

    The cancer stem cell (CSC) concept, which arose about a decade ago, proposes that tumor growth is sustained by a subpopulation of highly malignant cells. These cells, termed CSCs, are capable of extensive self-renewal that contributes to metastasis and treatment resistance. Therefore, therapeutic strategies that target CSCs should be developed for improving outcomes of cancer patients. Recent progress has highlighted the importance of physical properties of the extracellular matrix and mechanotransduction pathway in cancer cells during cancer development. On the other hand, the significance of CXCR1, an upstream signal of FAK/PI3K/Akt has been revealed in CSCs. FAK/PI3K/Akt is a key signal mediator in mechanotransduction pathway. Therefore, mechanotransduction could be a new target for CSCs, and would be an innovative way to treat cancer by inhibiting FAK/PI3K/Akt. © 2013 International Federation for Cell Biology.

  6. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  8. Intraoperative photodynamic therapy in laryngeal part of pharynx cancers

    Science.gov (United States)

    Loukatch, Erwin V.; Trojan, Vasily; Loukatch, Vjacheslav

    1996-12-01

    In clinic intraoperative photodynamic therapy (IPT) was done in patients with primal squamous cells cancer of the laryngeal part of the pharynx. The He-Ne laser and methylene blue as a photosensibilizator were used. Cobalt therapy in the postoperative period was done in dose 45 Gr. Patients of control groups (1-th group) with only laser and (2-th group) only methylene blue were controlled during three years with the main group. The statistics show certain differences of recidives in the main group compared to the control groups. These facts are allowing us to recommend the use of IPT as an additional method in ENT-oncology diseases treatment.

  9. Multifaceted Interpretation of Colon Cancer Stem Cells

    OpenAIRE

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-01-01

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but...

  10. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterising Castrate Tolerant Prostate Cancer Cells

    OpenAIRE

    ASHLEE KATE CLARK

    2017-01-01

    Prostate cancer is a prevalent disease in aging males. This thesis explores prostate cancer cells that escape current therapy and give rise to end-stage disease. Using sophisticated experimental approaches, this important cancer cell population was identified and characterised in human prostate cancer tissues.  Our discoveries will eventually lead to improved cancer treatments for men with prostate cancer.

  12. Cell Phones and Cancer Risk

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... interagency program headquartered at the National Institute of Environmental Health Sciences (NIEHS), which is part of the ...

  13. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  14. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  15. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  16. Antcin-H Isolated from Antrodia cinnamomea Inhibits Renal Cancer Cell Invasion Partly through Inactivation of FAK-ERK-C/EBP-β/c-Fos-MMP-7 Pathways

    Directory of Open Access Journals (Sweden)

    Kun-Yuan Chiu

    2017-01-01

    Full Text Available Antcin-H, a natural triterpene, is purified from a famous anticancer medicinal mushroom, Antrodia cinnamomea, in Taiwan. This study showed that antcin-H inhibited the growth of human renal carcinoma 786-0 cells; the IC50 value (for 48 h was 170 μM. Besides, the migration and invasion of 786-0 cells were suppressed by antcin-H under noncytotoxic concentrations (<100 μM; these events were accompanied by inhibition of FAK and Src kinase activities, decrease of paxillin phosphorylation, impairment of lamellipodium formation, and upregulation of TIMPs and downregulation of MMPs, especially MMP-7 expression. Luciferase reporter assay showed that antcin-H repressed the MMP-7 promoter activity, in parallel to inhibiting c-Fos/AP-1 and C/EBP-β transactivation abilities. Moreover, antcin-H suppressed the activity of ERK1/2 and decreased the binding ability of C/EBP-β and c-Fos on the upstream/enhancer region of MMP-7 promoter. Overall, this study demonstrated that the anti-invasive effect of antcin-H in human renal carcinoma 786-0 cells might be at least in part by abrogating focal adhesion complex and lamellipodium formation through inhibiting the Src/FAK-paxillin signaling pathways and decreasing MMP-7 expression through suppressing the ERK1/2-AP-1/c-Fos and C/EBP-β signaling axis. Our findings provide the evidence that antcin-H may be an active component existing in A. cinnamomea with anticancer effect.

  17. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H.; Boersma-van Ek, Wytske; Terstappen, Leon W. M. M.; Groen, Harry J. M.; Timens, Wim; Kruyt, Frank A. E.; Hiltermann, T. Jeroen N.

    2016-01-01

    The prognostic value of markers of cancer stem cells and epithelial to mesenchymal transition in small cell lung cancer is not known. We retrospectively studied these markers in the biopsy tissue of patients with small cell lung cancer and correlated them with overall survival and the strongest

  18. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    Science.gov (United States)

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  19. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  20. PARK2, a Large Common Fragile Site Gene, is Part of a Stress Response Network in Normal Cells that is Disrupted During the Development of Ovarian Cancer

    Science.gov (United States)

    2008-01-01

    Zimonjic DB, Druck T, Ohta M, Kastury K, Croce CM, Popescu NC, Huebner K. Positions of chromosome 3p14.2 fragile sites (FRA3B) within the FHIT gene. Cancer...common fragile site gene, is involved in cellular stress response. Oncogene2006; 25: 2901-2908. 15) Sirashi T, Druck T, Mimori K, Flomenberg J

  1. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  2. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P.

    Science.gov (United States)

    Huang, Bin; Huang, Yi Jun; Yao, Zhi Jun; Chen, Xu; Guo, Sheng Jie; Mao, Xiao Peng; Wang, Dao Hu; Chen, Jun Xing; Qiu, Shao Peng

    2013-01-01

    Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells as compared with other four cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  3. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  4. Breast cancer circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Maria Joao Carvalho

    2011-12-01

    Full Text Available Metastasization of breast cancer involves various mechanisms responsible for progression from invasive lesion to dissemination in distant organs. Regional lymph node metastasization was considered an initial step in this process, but it is now recognized that hematogenous dissemination is a deviation from lymphatic circulation. The detection of circulating tumor cells (CTC is an aim in several oncology areas. For this purpose, several techniques have been used to detect CTC, including the use of antibodies and techniques with nucleic acids. This study reviews the published studies considering the detection of breast cancer CTC. There are focused the difficulties in identifying a CTC in a heterogeneous population, the handling of the sample, criteria of positivity, analytical techniques, and specific markers. There are systematized various specific markers of breast cancer cells also the problems with false positive results. Finally, we hypothesize clinical applications either as a prognostic marker or as a therapeutic response monitor.

  5. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  6. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  7. Stem cells in prostate cancer.

    Science.gov (United States)

    Mateo, Francesca; Fernandez, Pedro L; Thomson, Timothy M

    2013-06-01

    Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.

  8. Hypothesis of mitochondrial oncogenesis as the trigger of normal cells to cancer cells.

    Science.gov (United States)

    Du, Jianping

    2014-06-01

    The Warburg Effect showed that energy metabolism of cancer cells was similar to prokaryotic cells, which were different from normal eucaryotic cells. The Endosymbiotic Theory offered a plausible explanation that the eucaryotic cells were evolved from prokaryotic cells, by which host cells (ancient prokaryotic cells) had ingested mitochondria (ancient aerobic bacteria), which depended on oxidative phosphorylation rather than glycolysis for generating energy. The alteration of energy metabolism might mean that the survival style of cancer cells were the re-evolution from eucaryotic cells to prokaryotic cells. But how this alteration happened was still unknown. This hypothesis tries to explain how mitochondria take part in the re-evolution from normal cell to cancer cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, M.M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, Leonardus Wendelinus Mathias Marie; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.N.J.

    2016-01-01

    Background Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and

  10. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  11. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  12. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  13. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  14. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  15. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Cancer Stem Cells and the Ontogeny of Lung Cancer

    OpenAIRE

    Peacock, Craig D.; Watkins, D. Neil

    2008-01-01

    Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth, survival, and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramou...

  17. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  18. Suppression of MHC gene expression in cancer cells

    NARCIS (Netherlands)

    Bernards, R.A.

    1987-01-01

    The class I antigens of the major histocompatibility complex play a crucial part in the recognition of foreign antigens by cytotoxic T lymphocytes. Some cancer cells exhibit a reduced expression of these antigens and this may help these cells to escape immune surveillance.

  19. Cancer stem cells: the theory and perspectives in cancer therapy.

    Science.gov (United States)

    Gil, Justyna; Stembalska, Agnieszka; Pesz, Karolina A; Sasiadek, Maria M

    2008-01-01

    The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour's ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The 'niche' hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.

  20. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  1. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth

    Science.gov (United States)

    Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make canc...

  2. Verrucous Squamous Cell Cancer in the Esophagus

    DEFF Research Database (Denmark)

    Egeland, C; Achiam, M P; Federspiel, B

    2016-01-01

    Verrucous carcinoma is a rare, slow-growing type of squamous cell cancer. Fewer than 50 patients with verrucous carcinoma in the esophagus have been described worldwide. In 2014, two male patients were diagnosed with verrucous carcinoma in the distal part of the esophagus. The endoscopic examinat...... with dysphagia, weight loss, and an endoscopically malignant tumor, but surgery was not performed until after 9 and 10 months, respectively, and then in order to get a diagnosis. At the last follow-up, both patients were without any recurrence of the disease....

  3. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  4. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells.

    Science.gov (United States)

    Shi, Ying; Cao, Tong; Huang, Hua; Lian, Chaoqun; Yang, Ying; Wang, Zhiwei; Ma, Jia; Xia, Jun

    2017-10-05

    Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.

  5. The role of adhesive molecules in endometrial cancer: part II

    Directory of Open Access Journals (Sweden)

    Andrzej Malinowski

    2010-12-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutationin a gene encoding protein that is essential for cellular function. The subsequent cascade of eventsleads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology,disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear thatadhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsiblefor attachment of the cells to each other and to the extracellular matrix. These interactions are crucial forboth structural and functional tissue organization. Lack of this homeostasis destroys the tissue architectureand impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in allexamined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many casesdiagnosed and treated in early stages, and thus with good results, some patients cannot be cured. Completeknowledge of the pathogenesis of the disease will be helpful in identifying the patients with negative prognosticfactors, increased risk of recurrence and, perhaps, to find other therapeutic options. In the paper we are trying tosum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  6. The role of adhesive molecules in endometrial cancer: part I

    Directory of Open Access Journals (Sweden)

    Michał Wojciechowski

    2010-10-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutation in a gene encoding protein that is essential for cellular function. The subsequent cascade of events leads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology, disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear that adhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsible for attachment of the cells to each other and to the extracellular matrix. These interactions are crucial for both structural and functional tissue organization. Lack of this homeostasis destroys the tissue architecture, impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in all examined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many cases it is diagnosed and treated in early stages, and thus with good results, some patients cannot be cured. A complete knowledge of the pathogenesis of the disease will be helpful in identifying patients with negative prognostic factors, increased risk of recurrence and, perhaps, finding other therapeutic options. In the paper we are trying to sum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  7. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  8. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Directory of Open Access Journals (Sweden)

    Felicite K. Noubissi

    2016-09-01

    Full Text Available Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

  9. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Wei ZHAO

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  10. Cryotherapy in Treating Patients With Lung Cancer That Has Spread to the Other Lung or Parts of the Body

    Science.gov (United States)

    2017-05-25

    Advanced Malignant Mesothelioma; Extensive Stage Small Cell Lung Cancer; Lung Metastases; Recurrent Malignant Mesothelioma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  11. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  12. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  13. One microenvironment does not fit all: heterogeneity beyond cancer cells.

    Science.gov (United States)

    Kim, Ik Sun; Zhang, Xiang H-F

    2016-12-01

    Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.

  14. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  15. Ovarian Cancer Stem Cells: A New Target for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Qinglei Zhan

    2013-01-01

    Full Text Available Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.

  16. Cancer stem cell targeted therapy: progress amid controversies

    Science.gov (United States)

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  17. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  18. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  19. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  20. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Molecular Biology of Liver Cancer Stem Cells

    National Research Council Canada - National Science Library

    Oishi, Naoki; Yamashita, Taro; Kaneko, Shuichi

    2014-01-01

    .... The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased...

  2. Cancer Stem Cells: Repair Gone Awry?

    Directory of Open Access Journals (Sweden)

    Fatima Rangwala

    2011-01-01

    Full Text Available Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh, that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors.

  3. NK Cells and Virus-Related Cancers

    OpenAIRE

    Mishra, Rabinarayan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2014-01-01

    Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.

  4. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics ......, help us both in the identification and characterization of cancer stem cells and in the further development of therapeutic strategies including tissue engineering...

  5. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  6. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  7. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  8. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  9. Betulinic Acid Kills Colon Cancer Stem Cells

    NARCIS (Netherlands)

    Potze, Lisette; Di Franco, Simone; Kessler, Jan H.; Stassi, Giorgio; Medema, Jan Paul

    2016-01-01

    Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad

  10. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  11. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  12. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  13. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    Science.gov (United States)

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Of germ cells, trophoblasts, and cancer stem cells.

    Science.gov (United States)

    Burleigh, Angela R

    2008-12-01

    The trophoblastic theory of cancer, proposed in the early 1900s by Dr John Beard, may not initially seem relevant to current cancer models and treatments. However, the underpinnings of this theory are remarkably similar to those of the cancer stem cell (CSC) theory. Beard noticed that a significant fraction of germ cells never reach their final destination as they migrate during embryonic development from the hindgut to the germinal ridge. In certain situations, upon aberrant stimulation, these vagrant germ cells are able to generate tumors. Simplistically, the CSC theory surmises that a small population of tumorigenic cells exists, which initiate and maintain tumors, and these cells have a likely origin in normal stem cells. Both these theories are based on the potential of a single primitive cell to form a tumor. This has a major implication for cancer therapy, in that only a small percentage of cells need to be targeted to ablate a tumor.

  15. Single Cell Characterization of Prostate Cancer Circulating Tumor Cells

    Science.gov (United States)

    2011-08-01

    CTCs from patient blood, a single T24 bladder and LNCaP prostate cancer cells, a pool of 8 prostate CTCs, and one leukocyte isolated from the blood...amplify 66% of mRNA pool from a single cell. Clustering analysis does differentiate CTCs from LNCaP and T24 bladder cell lines (Figure 4). At present we...profiles could distinguish a CTC from prostate cancer cell line LNCaP and T24 bladder cancer cell line.  There was intra and inter patient heterogeneity

  16. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  17. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  18. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  19. Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells.

    Science.gov (United States)

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-12-01

    Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. Copyright © 2016. Published by Elsevier B.V.

  20. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Directory of Open Access Journals (Sweden)

    Thomas W.J. Lennard

    2011-04-01

    Full Text Available In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP, have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC, combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  1. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  2. Cisplatin induces differentiation of breast cancer cells.

    Science.gov (United States)

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.

  3. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation

    Science.gov (United States)

    Szalayova, Gabriela; Ogrodnik, Aleksandra; Spencer, Brianna; Wade, Jacqueline; Bunn, Janice; Ambaye, Abiy; James, Ted; Rincon, Mercedes

    2016-01-01

    Background Chronic inflammation is known to facilitate cancer progression and metastasis. Less is known about the effect of acute inflammation within the tumor microenvironment, resulting from standard invasive procedures. Recent studies in mouse models have shown that the acute inflammatory response triggered by a biopsy in mammary cancer increases the frequency of distal metastases. Although tumor biopsies are part of the standard clinical practice in breast cancer diagnosis, no studies have reported their effect on inflammatory response. The objective of this study is to 1) determine whether core needle biopsies in breast cancer patients trigger an inflammatory response, 2) characterize the type of inflammatory response present, and 3) evaluate the potential effect of any acute inflammatory response on residual tumor cells. Methods The biopsy wound site was identified in the primary tumor resection tissue samples from breast cancer patients. The inflammatory response in areas adjacent (i.e. immediately around previous biopsy site) and distant to the wound biopsy was investigated by histology and immunohistochemistry analysis. Proliferation of tumor cells was also assayed. Results We demonstrate that diagnostic core needle biopsies trigger a selective recruitment of inflammatory cells at the site of the biopsy and they persist for extended periods of time. While macrophages were part of the inflammatory response, an unexpected accumulation of eosinophils at the edge of the biopsy wound was also identified. Importantly, we show that biopsy causes an increase in the proliferation rate of tumor cells located in the area adjacent to the biopsy wound. Conclusions Diagnostic core needle biopsies in breast cancer patients do induce a unique acute inflammatory response within the tumor microenvironment and have an effect on the surrounding tumor cells. Therefore biopsy-induced inflammation could have an impact on residual tumor cell progression and/or metastasis in human

  4. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  5. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, B; Holck, Susanne; Christensen, Ib Jarle

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  6. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However...

  7. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  8. Lipid degradation promotes prostate cancer cell survival

    Science.gov (United States)

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Lau, Chung Ho; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J.; Takhar, Mandeep; Heemers, Hannelore V.; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L.; Clarke, Noel; Swinnen, Johan V.; Keun, Hector C.; Rekvig, Ole P.; Mills, Ian G.

    2017-01-01

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. PMID:28415728

  9. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45.

    Science.gov (United States)

    Zhang, Hai-hong; Cai, Ai-zhen; Wei, Xue-ming; Ding, Li; Li, Feng-zhi; Zheng, Ai-ming; Dai, Da-jiang; Huang, Rong-rong; Cao, Hou-jun; Zhou, Hai-yang; Wang, Jian-mei; Wang, Xue-jing; Shi, Wei; Zhu, Heng; Yuan, Xiao-ying; Chen, Lin

    2013-03-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many kinds of cell lines and tissues have demonstrated the presence of SP cells, including several gastric cancer cell lines. This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45. We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells. This study found that the SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness-related gene expression profiles, including OCT-4, SOX-2, NANOG, CD44, and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2, were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Western blot was used to show the difference of protein expression between SP and MP cells. Both results show that there was significantly higher protein expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells show higher tumorigenesis tendency than MP cells. These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  10. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  11. Secretory products of breast cancer cells specifically affect human osteoblastic cells: partial characterization of active factors.

    Science.gov (United States)

    Siwek, B; Lacroix, M; De Pollak, C; Marie, P; Body, J J

    1997-04-01

    The pathogenesis of tumor-induced osteolysis (TIO) following breast cancer metastases in bone remains unclear. We postulated that osteoblasts could be target cells for the secretory products of breast cancer cells. We previously showed that serum-free conditioned medium (CM) of the breast cancer cell line MCF-7 inhibits DNA synthesis by 75% of control values in osteoblast-like cells SaOS-2 and that this effect is only in a minor part due to transforming growth factor beta secretion. To establish the specificity of our observations and to look for other biologically active factors, we have tested the effects of medium conditioned by several cancer and noncancer cell lines (breast, colon, placenta, or fibrosarcoma) on the proliferation of osteoblast-like cells (SaOS-2, MG-63), normal human osteoblasts, human fibrosarcoma cells, and normal human fibroblasts. Culture medium (1:2) of the breast cancer cell lines MCF-7, T-47D, MDA-MB-231, and SK-BR-3 inhibited by 25-50% the proliferation of osteoblast-like cells SaOS-2, MG-63, and normal osteoblasts as evaluated by the MTT survival test or [3H]thymidine incorporation. MCF-7 cells completely inhibited the proliferation of normal human osteoblasts in coculture. This inhibitory effect was reversible and not due to cytotoxicity. Moreover, the cyclic adenosine monophosphate (cAMP) response to parathyroid hormone (PTH) of osteoblast-like cells SaOS-2 was also increased by 100-240% by the same CM. Such activities were, however, not detected in medium from the breast noncancer cell line HBL-100 or in the medium conditioned by non-breast cancer cell lines (COLO 320DM, HT-29, JAR, or HT-1080). Medium from the breast cancer cells had no effect on normal human fibroblasts or fibrosarcoma cells (HT-1080), suggesting the specificity of their action on human osteoblasts. After partial purification by ultrafiltration and size-exclusion chromatography, we found that medium of T-47D cells contained at least three nonprostanoid factors of

  12. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Germana Castelli

    2017-09-01

    Full Text Available Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (iCCA. Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV infection (frequent in Asia and Africa, hepatitis C virus (HCV, chronic alcohol abuse, or metabolic syndrome (frequent in Western countries. In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47; the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.

  13. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  14. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  16. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment.

    Science.gov (United States)

    Menko, Fred H; Maher, Eamonn R; Schmidt, Laura S; Middelton, Lindsay A; Aittomäki, Kristiina; Tomlinson, Ian; Richard, Stéphane; Linehan, W Marston

    2014-12-01

    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant condition in which susceptible individuals are at risk for the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene which inactivate the enzyme and alters the function of the tricarboxylic acid (Krebs) cycle. Issues surrounding surveillance and treatment for HLRCC-associated renal cell cancer were considered as part of a recent international symposium on HLRCC. The management protocol proposed in this article is based on a literature review and a consensus meeting. The lifetime renal cancer risk for FH mutation carriers is estimated to be 15 %. In view of the potential for early onset of RCC in HLRCC, periodic renal imaging and, when available, predictive testing for a FH mutation is recommended from 8 to 10 years of age. However, the small risk of renal cell cancer in the 10-20 years age range and the potential drawbacks of screening should be carefully discussed on an individual basis. Surveillance preferably consists of annual abdominal MRI. Treatment of renal tumours should be prompt and generally consist of wide-margin surgical excision and consideration of retroperitoneal lymph node dissection. The choice for systemic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts of families.

  17. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Renal cancer risk, surveillance and treatment

    Science.gov (United States)

    Menko, Fred H.; Maher, Eamonn; Schmidt, Laura S.; Middelton, Lindsay A.; Aittomäki, Kristiina; Tomlinson, Ian; Richard, Stéphane; Linehan, W. Marston

    2015-01-01

    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant condition in which susceptible individuals are at risk for the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene, which inactivates the enzyme and alters the function of the tricarboxylic acid (TCA/ Krebs) cycle. Issues surrounding surveillance and treatment for HLRCC-associated renal cell cancer were considered as part of a recent international symposium on HLRCC. The management protocol proposed in this article is based on a literature review and a consensus meeting. The estimated lifetime renal cancer risk for FH mutation carriers is estimated to be 15%. In view of the potential for early onset of RCC in HLRCC, periodic renal imaging and, when available, predictive testing for a FH mutation is recommended from 8 to 10 years of age. However, the small risk of renal cell cancer in the 10-20 years age range and the potential drawbacks of screening should be carefully discussed on an individual basis. Surveillance preferably consists of annual abdominal MRI. Treatment of renal tumours should be prompt and generally consist of wide-margin surgical excision and consideration of retroperitoneal lymph node dissection. The choice for systemic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts of families. PMID:25012257

  18. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  19. Alterations of calcium homeostasis in cancer cells.

    Science.gov (United States)

    Marchi, Saverio; Pinton, Paolo

    2016-08-01

    Typical hallmarks of cancer include programmed cell death evasion, uncontrolled cell growth, invasion, and metastasis. Changes in intracellular Ca(2+) levels can modulate signaling pathways that control a broad range of cellular events, including those important to tumorigenesis and cancer progression. Here we discuss how known molecular mediators of cellular Ca(2+) homeostasis impact tumor dynamics and how deregulation of major oncogenes and tumor suppressors is tightly associated with Ca(2+) signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lgr5-Positive Cells are Cancer-Stem-Cell-Like Cells in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhongli Wang

    2015-07-01

    Full Text Available Background/Aims: Effective treatment of gastric cancer (GC requires better understanding of the molecular regulation of its carcinogenesis. Identification of cancer stem cells (CSCs in GC appears to be a critical question. Methods: We analyzed Lgr5 expression in GC specimen. We used an adeno-associated virus (AAV that carries diphtheria toxin fragment A (DTA under the control of Lgr5 promoter (AAV-pLgr5-DTA to transduce human GC cells. The growth of GC cells with/without depletion of Lgr5-positive cells was studied in vitro in an MTT assay, and in vivo by analyzing bioluminescence levels. Results: A portion of GC cells in the resected specimen expressed Lgr5. GC cells that formed tumor spheres expressed high Lgr5. Selective depletion of Lgr5-positive GC cells resulted in significant growth inhibition of GC cells in vitro and in vivo. Conclusion: Lgr5-positive cells may be CSCs-like cells in GC and may play a pivotal role in the tumorigenesis of GC. Treating Lgr5-positive GC cells may substantially improve the therapeutic outcome.

  1. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Science.gov (United States)

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  2. Epigenetics of solid cancer stem cells.

    Science.gov (United States)

    Mishra, Alok; Verma, Mukesh

    2012-01-01

    Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

  3. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    2011-01-01

    Full Text Available Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  4. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    Science.gov (United States)

    Haustein, Maria; Ramer, Robert; Linnebacher, Michael; Manda, Katrin; Hinz, Burkhard

    2014-11-15

    Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  6. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  7. Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion.

    Science.gov (United States)

    Jiang, Yuanjun; Han, Yushuang; Sun, Chaonan; Han, Chuyang; Han, Ning; Zhi, Weiwei; Qiao, Qiao

    2016-06-01

    Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway.

  8. Cancer

    Science.gov (United States)

    ... Prostate cancer Lung cancer Colorectal cancer In US women, other than skin cancer the three most common cancers are: Breast cancer Lung cancer Colorectal cancer Some cancers are more common in certain parts of the world. For example, in Japan, there are many cases of stomach cancer . But ...

  9. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  10. Targeting cancer stem cells in solid tumors by vitamin D.

    Science.gov (United States)

    So, Jae Young; Suh, Nanjoo

    2015-04-01

    Cancer stem cells (CSCs) are a small subset of cells that may be responsible for initiation, progression, and recurrence of tumors. Recent studies have demonstrated that CSCs are highly tumorigenic and resistant to conventional chemotherapies, making them a promising target for the development of preventive/therapeutic agents. A single or combination of various markers, such as CD44, EpCAM, CD49f, CD133, CXCR4, ALDH-1, and CD24, were utilized to isolate CSCs from various types of human cancers. Notch, Hedgehog, Wnt, and TGF-β signalingregulate self-renewal and differentiation of normal stem cells andare aberrantly activated in CSCs. In addition, many studies have demonstrated that these stem cell-associated signaling pathways are required for the maintenance of CSCs in different malignancies, including breast, colorectal, prostate, and pancreatic cancers. Accumulating evidence has shown inhibitory effects of vitamin D and its analogs on the cancer stem cell signaling pathways, suggesting vitamin D as a potential preventive/therapeutic agent against CSCs. In this review, we summarize recent findings about the roles of Notch, Hedgehog, Wnt, and TGF-β signaling in CSCs as well as the effects of vitamin D on these stem cell signaling pathways. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  12. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our under...

  13. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our understanding of ...

  14. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  15. Cancer cells exhibit clonal diversity in phenotypic plasticity.

    Science.gov (United States)

    Mathis, Robert Austin; Sokol, Ethan S; Gupta, Piyush B

    2017-02-01

    Phenotypic heterogeneity in cancers is associated with invasive progression and drug resistance. This heterogeneity arises in part from the ability of cancer cells to switch between phenotypic states, but the dynamics of this cellular plasticity remain poorly understood. Here we apply DNA barcodes to quantify and track phenotypic plasticity across hundreds of clones in a population of cancer cells exhibiting epithelial or mesenchymal differentiation phenotypes. We find that the epithelial-to-mesenchymal cell ratio is highly variable across the different clones in cancer cell populations, but remains stable for many generations within the progeny of any single clone-with a heritability of 0.89. To estimate the effects of combination therapies on phenotypically heterogeneous tumours, we generated quantitative simulations incorporating empirical data from our barcoding experiments. These analyses indicated that combination therapies which alternate between epithelial- and mesenchymal-specific treatments eventually select for clones with increased phenotypic plasticity. However, this selection could be minimized by increasing the frequency of alternation between treatments, identifying designs that may minimize selection for increased phenotypic plasticity. These findings establish new insights into phenotypic plasticity in cancer, and suggest design principles for optimizing the effectiveness of combination therapies for phenotypically heterogeneous tumours. © 2017 The Authors.

  16. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Gao, Quanli; Geng, Li; Kvalheim, Gunnar; Gaudernack, Gustav; Suo, Zhenhe

    2009-01-01

    Side population (SP) cells may enrich stem-like cells in many normal and malignant tissues. However, SP method application has drawn special attention to the field of stem cell research, and the existence of SP cells in cell culture is being debated, most probably because different cell lines require different technical modifications, especially when cell staining is considered. In this study, the authors aimed to disclose whether the hoechst33342 staining required extensive optimization for identifying SP cells in the human ovarian cancer cell line OVCAR-3. After systematic evaluations, it was found that only 2.5 microg/mL hoechst33342 staining of the cells for 60 min could get an ideal SP population, which accounted for 0.9% of the whole cell population. The sorted SP cells showed significantly higher colony formation efficiency than the non-side population (NSP) cells, and only the SP cells could form holoclones. Real-time PCR disclosed that SP cells expressed higher levels of "stemness" gene Oct3/4 than the NSP cells did, indicating that the SP cells might harbor cancer stem cells in this cell line. The results highlight the necessity of SP method optimization in cell studies, and the SP cells in this cell line merit further studies when cancer stem cell identification and isolation are considered.

  17. Movers and shakers: cell cytoskeleton in cancer metastasis.

    Science.gov (United States)

    Fife, C M; McCarroll, J A; Kavallaris, M

    2014-12-01

    Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24. © 2014 The British Pharmacological Society.

  18. Cancer stem cells and their implication in breast cancer.

    Science.gov (United States)

    Carrasco, E; Alvarez, Pablo J; Prados, José; Melguizo, Consolación; Rama, Ana R; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2014-07-01

    The cancer stem cell (CSC) hypothesis on the origin of cancer has recently gained considerable support. CSCs are tumour cells with the capacity for self-renewal and differentiation that direct the origin and progression of the disease and may be responsible for relapse, metastasis and treatment failures. This article reviews breast CSCs (BCSCs) phenotyping, clinical implications and clinical trials focused on BCSCs in breast cancer. Relevant studies were found through PubMed and Clinicaltrials.gov databases. Cancer stem cells are identified and isolated using membrane and cell activity markers; in the case of BCSCs, these are CD44(+) /CD24(low/-) and show aldehyde dehydrogenase activity, alongside their capacity to grow and form mammospheres. The presence of stem cell properties is associated with a worse outcome. Hence, these cells have important clinical implications, and elucidation of the mechanisms underlying their activity will allow the development of novel effective therapies and diagnostic instruments, improving the prognosis of these patients. Standard treatments are directed against the tumour mass and do not eliminate CSCs. There is therefore a need for specific anti-CSC therapies, and numerous authors are investigating new targets to this end, as reported in this review. It is also necessary for clinical trials to be undertaken to allow this new knowledge to be applied in the clinical setting. However, there have been few trials on anti-BCSCs therapies to date. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  19. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    OpenAIRE

    Halliday A Idikio

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...

  20. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  1. The therapeutic promise of the cancer stem cell concept

    National Research Council Canada - National Science Library

    Frank, Natasha Y; Schatton, Tobias; Frank, Markus H

    2010-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation...

  2. Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells.

    Science.gov (United States)

    Zhang, Shunhua; Ma, Cong; Pang, Haijie; Zeng, Fanpeng; Cheng, Long; Fang, Binbin; Ma, Jia; Shi, Ying; Hong, Haiyu; Chen, Jianyan; Wang, Zhiwei; Xia, Jun

    2016-01-01

    Accumulating evidence has demonstrated that arsenic trioxide (ATO) exhibits its anti-cancer activities in a variety of human malignancies. Recent studies have revealed that ATO regulated multiple microRNAs (miRNAs) in human cancers. However, the exact mechanism of ATO-mediated tumor suppressive function has not been fully elucidated. In the present study, we explore whether ATO governed oncogenic miR-27a in breast cancer cells by multiple methods such as MTT assay, RT-PCR, Wound healing assay, Western blotting analysis, migration, Transwell invasion assay, and transfection. Our results showed that ATO inhibited cell growth, migration, invasion, and induced cell apoptosis in breast cancer cells. Further molecular analysis dissected that ATO inhibited miR-27a expression in breast cancer cells. Moreover, inhibition of miR-27a suppressed cell growth, migration, invasion, and trigged cell apoptosis, whereas overexpression of miR-27a enhanced cell growth, motility, and inhibited apoptosis in breast cancer cells. Notably, we found that miR-27a inhibitor treatment potentiates ATO-induced breast cancer cell growth inhibition, apoptosis and motility inhibition. However, overexpression of miR-27a partly abrogated ATO-mediated anti-tumor activity. Our findings provide a novel anti-tumor mechanism of ATO involved in miR-27a for the treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. Copyright © 2010 AACR.

  4. Liver cancer stem cells as an important target in liver cancer therapies.

    Science.gov (United States)

    Zou, Gang-Ming

    2010-02-01

    Hepatic cancer is one of most common cause of cancer-related death. Hepato-epithelial cancers are believed to originate from the malignant transformation of liver-resident stem/progenitor cells. Liver cancer stem cells have been characterized recently and the phenotype of liver cancer stem cells has been defined as CD133+ CD44+ cancer cells. Recently, it has been also demonstrated about the relevance of targeting liver cancer stem cells, due to cancer stem cells are related to cancer metastasis. These advances no doubt to bring the new strategy in liver cancer treatment and control in this disease. This review describes the current status and progress about cancer stem cell research in liver and discuss of the implications of these studies in new liver cancer treatment strategies.

  5. Cells as delivery vehicles for cancer therapeutics.

    Science.gov (United States)

    Basel, Matthew T; Shrestha, Tej B; Bossmann, Stefan H; Troyer, Deryl L

    2014-05-01

    Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.

  6. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  7. IL-4-mediated drug resistance in colon cancer stem cells

    NARCIS (Netherlands)

    Todaro, Matilde; Perez Alea, Mileidys; Scopelliti, Alessandro; Medema, Jan Paul; Stassi, Giorgio

    2008-01-01

    Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently

  8. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  9. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  10. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  11. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... immunology approach is applied. Via in silico screening of the protein sequences, 415 peptides were predicted as HLA-A*0201 and HLA-B*0702 binders. Subsequent in vitro binding analysis in a MHC ELISA platform confirmed binding for 147 of the 415 predicted binders. The 147 peptides were evaluated for T cell...

  12. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  13. Phenotypic Heterogeneity of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Aurelio Lorico

    2011-01-01

    Full Text Available Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006, and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006. The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005, has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et al., 2006 has suggested that current anticancer drugs, which inhibit bulk replicating cancer cells, may not effectively inhibit CSC. The clinical relevance of targeting CSC-associated genes is supported by several recent studies, including CD44 targeting for treatment of acute myeloid leukemia (Jin et al., 2006, CD24 targeting for treatment of colon and pancreatic cancer (Sagiv et al., 2008, and CD133 targeting for hepatocellular and gastric cancer (Smith et al., 2008. One promising approach is to target CSC survival signaling pathways, where leukemia stem cell research has already made some progress (Mikkola et al., 2010.

  14. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  15. Cancer stem cells in the development of liver cancer

    Science.gov (United States)

    Yamashita, Taro; Wang, Xin Wei

    2013-01-01

    Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs. PMID:23635789

  16. Oral Cancer

    Science.gov (United States)

    Oral cancer can form in any part of the mouth. Most oral cancers begin in the flat cells that cover the ... your mouth, tongue, and lips. Anyone can get oral cancer, but the risk is higher if you are ...

  17. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  18. with esophageal squamous cell cancer

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-02-01

    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT. Material and methods : From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results : The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS and local-regional control (LRC were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010, according to univariate analysis. The 5-year OS (LRC was 37.3% (58.6% for patients aged 70-74 years and 14.5% (47.9% for patients aged > 74 years (p = 0.010 and p = 0.038. In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]. From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6% patients experienced fistula and 15 (7.9% experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027, higher NBT dose/fraction (20-25 Gy/5 fractions, and higher total dose (> 66 Gy. Conclusions : The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients.

  19. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  20. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  1. Dendritic cell immunotherapy in uterine cancer.

    Science.gov (United States)

    Coosemans, An; Tuyaerts, Sandra; Vanderstraeten, Anke; Vergote, Ignace; Amant, Frédéric; Van Gool, Stefaan W

    2014-01-01

    Uterine cancer is the most common pelvic gynecological malignancy. Uterine sarcomas and relapsed uterine carcinomas have limited treatment options. The search for new therapies is urgent. Dendritic cell (DC) immunotherapy holds much promise, though has been poorly explored in uterine cancer. This commentary gives an insight in existing DC immunotherapy studies in uterine cancer and summarizes the possibilities and the importance of the loading of tumor antigens onto DC and their subsequent maturation. However, the sole application of DC immunotherapy to target uterine cancer will be insufficient because of tumor-induced immunosuppression, which will hamper the establishment of an effective anti-tumor immune response. The authors give an overview on the limited existing immunosuppressive data and propose a novel approach on DC immunotherapy in uterine cancer.

  2. Dormancy activation mechanism of oral cavity cancer stem cells.

    Science.gov (United States)

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  3. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only...experience in ovary research (ovarian physiology , oogonial stem cells) to work on this project. We also ! 5! obtained approval of our animal

  4. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  5. The evolving cancer stem cell paradigm: implications in veterinary oncology.

    Science.gov (United States)

    Pang, Lisa Y; Argyle, David J

    2015-08-01

    The existence of subpopulations of cells in cancer with increased tumour-initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics formed the basis of the cancer stem cell model. Some tumours have since been viewed as aberrant tissues with a unidirectional hierarchical structure consisting of cancer stem cells at the apex, driving tumour growth, metastasis and relapse after therapy. Here, recent developments in cancer stem cell research are reviewed with a focus on tumour heterogeneity, cellular plasticity and cancer stem cell reprogramming. The impact of these findings on the cancer stem cell model is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Characterization of side population cells isolated from the gastric cancer cell line SGC-7901.

    Science.gov (United States)

    Li, Rong; Wu, Xiaoling; Wei, Huang; Tian, Shangkun

    2013-03-01

    Side population (SP) cells are a subset of stem cells that have been isolated from several different gastrointestinal cancer cell lines. Using flow cytometry and the DNA-binding dye Hoechst 33342, we isolated SP cells from SGC-7901 human gastric tumor cell lines and found that they comprise 2.3±0.78% of the tumor cells. Using the Cell Counting Kit-8 (CCK-8) assay, we demonstrated that SP cells have a stronger proliferative activity than non-SP cells. Additionally, we observed tumor mass formation following the cultivation of SP cells in serum-free medium, indicating the capability of these cells for self-renewal. SP cells were observed to undergo non-symmetrical division, which is characteristic of stem cells. A drug resistance assay revealed that SP cells have a high survival rate when exposed to the chemotherapy drug 5-fluorouracil; the results of western blot analysis suggest that this stems from the abundant expression of the chemoresistance-associated proteins ABCG2 and Bcl-2. We also used fluorescence quantitative PCR to reveal that SP cells have relatively high expression levels of the stem cell-related genes Musashi-1 and CD44. In vivo experiments in mice revealed that the subcutaneous injection of 2×10(3) SP cells resulted in the formation of tumors, while the injection of 2×10(4) non-SP cells did not. Cumulatively, our results suggest that gastric tumorigenesis associated with SGC-7901 may partly be driven by the activity of SP cells, which exhibit certain biological characteristics of stem cells. Our results also show that the SP cell sorting method is an effective means for isolating and identifying gastric cancer stem cells during early screening.

  7. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  8. Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe

    2011-09-01

    Full Text Available Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins. Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15 may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.

  9. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics.

    Science.gov (United States)

    She, Jun-Jun; Zhang, Peng-Ge; Wang, Xuan; Che, Xiang-Ming; Wang, Zi-Ming

    2012-09-07

    To investigate whether the side population (SP) cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer. We analyzed the presence of SP cells in different human gastric carcinoma cell lines, and then isolated and identified the SP cells from the KATO III human gastric cancer cell line by flow cytometry. The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays. The related genes were determined by reverse transcription polymerase chain reaction. To compare tumorigenic ability, SP and non-side population (NSP) cells from the KATO III human gastric cancer cell line were subcutaneously injected into nude mice. SP cells from the total population accounted for 0.57% in KATO III, 1.04% in Hs-746T, and 0.02% in AGS (CRL-1739). SP cells could grow clonally and have self-renewal capability in conditioned media. The expression of ABCG2, MDRI, Bmi-1 and Oct-4 was different between SP and NSP cells. However, there was no apparent difference between SP and NSP cells when they were injected into nude mice. SP cells have some cancer stem cell-like characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  10. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells.

    Science.gov (United States)

    Debeb, Bisrat G; Zhang, Xiaomei; Krishnamurthy, Savitri; Gao, Hui; Cohen, Evan; Li, Li; Rodriguez, Angel A; Landis, Melissa D; Lucci, Anthony; Ueno, Naoto T; Robertson, Fredika; Xu, Wei; Lacerda, Lara; Buchholz, Thomas A; Cristofanilli, Massimo; Reuben, James M; Lewis, Michael T; Woodward, Wendy A

    2010-07-08

    Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced by serial xenograft passages through transplantation. Herein we fully characterize cancer stem cell-like features in 293T human embryonic kidney cells. 293T cells can be readily cultured and passaged as spheres in serum-free stem cell promoting culture conditions. Cells cultured in vitro as three-dimensional spheres (3D) were shown to contain higher ALDH1 and CD44+/CD24- population compared to monolayer cells. These cells were also resistant to radiation and upregulate stem cell survival signaling including beta-catenin, Notch1 and Survivin in response to radiation. Moreover, 3D spheres generated from the 293T cells have increased expression of mesenchymal genes including vimentin, n-cadherin, zeb1, snail and slug as well as pro-metastatic genes RhoC, Tenascin C and MTA1. In addition, microRNAs implicated in self-renewal and metastases were markedly reduced in 3D spheres. 293T cells exhibit a cancer stem cell-like phenotype when cultured as 3D spheres and represent an important research tool for studying the molecular and biological mechanisms of cancer stem cells and for testing and developing novel targets for cancer therapy.

  11. Lipid Storage and Autophagy in Melanoma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Giampietri

    2017-06-01

    Full Text Available Cancer stem cells (CSC represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1 and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ. An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3 lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK and Phospho-mammalian Target of Rapamycin (P-mTOR were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology.

  12. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  13. Natural compounds as regulators of the cancer cell metabolism.

    Science.gov (United States)

    Cerella, Claudia; Radogna, Flavia; Dicato, Mario; Diederich, Marc

    2013-01-01

    Even though altered metabolism is an "old" physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration) and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  14. Stemness is Derived from Thyroid Cancer Cells

    Science.gov (United States)

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  15. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  16. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  17. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  18. Mathematical models of cell phenotype regulation and reprogramming: Make cancer cells sensitive again!

    Science.gov (United States)

    Wooten, David J; Quaranta, Vito

    2017-04-01

    A cell's phenotype is the observable actualization of complex interactions between its genome, epigenome, and local environment. While traditional views in cancer have held that cellular and tumor phenotypes are largely functions of genomic instability, increasing attention has recently been given to epigenetic and microenvironmental influences. Such non-genetic factors allow cancer cells to experience intrinsic diversity and plasticity, and at the tumor level can result in phenotypic heterogeneity and treatment evasion. In 2006, Takahashi and Yamanaka exploited the epigenome's plasticity by "reprogramming" differentiated cells into a pluripotent state by inducing expression of a cocktail of four transcription factors. Recent advances in cancer biology have shown not only that cellular reprogramming is possible for malignant cells, but it may provide a foundation for future therapies. Nevertheless, cell reprogramming experiments are frequently plagued by low efficiency, activation of aberrant transcriptional programs, instability, and often rely on expertise gathered from systems which may not translate directly to cancer. Here, we review a theoretical framework tracing back to Waddington's epigenetic landscape which may be used to derive quantitative and qualitative understanding of cellular reprogramming. Implications for tumor heterogeneity, evolution and adaptation are discussed in the context of designing new treatments to re-sensitize recalcitrant tumors. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017. Published by Elsevier B.V.

  19. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts

    Directory of Open Access Journals (Sweden)

    Norashikin Zakaria

    2017-05-01

    Full Text Available Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC, which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.

  20. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  1. Analysis of cytotoxic T cell epitopes in relation to cancer

    DEFF Research Database (Denmark)

    Stranzl, Thomas

    kill the infected cells. The focus of my PhD project has been on improving a method for CTL epitope pathway prediction, on analyzing the epitope density in the alternative cancer exome, and on a study investigating minor histocompatibility antigens (mHags) associated with leukemia. Part I...... is an introduction to the fields covered in the thesis. Part II describes a pan-specific, integrative approach for the prediction of CTL epitopes. The presented method, NetCTLpan, an improved and extended version of NetCTL, performs predictions for all MHC class I molecules with known protein sequence and allows...

  2. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    Science.gov (United States)

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Innate immune cells in inflammation and cancer.

    Science.gov (United States)

    Nowarski, Roni; Gagliani, Nicola; Huber, Samuel; Flavell, Richard A

    2013-08-01

    The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development. ©2013 AACR.

  4. Cancer stem cells: a minor cancer subpopulation that redefines global cancer features

    Directory of Open Access Journals (Sweden)

    Heiko eEnderling

    2013-04-01

    Full Text Available In recent years cancer stem cells (CSCs have been hypothesized to comprise only a minor subpopulation in solid tumors that drives tumor initiation, development and metastasis; the so-called cancer stem cell hypothesis. While a seemingly trivial statement about numbers, much is put at stake. If true, the conclusions of many studies of cancer cell populations could be challenged, as the bulk assay methods upon which they depend have, by and large, taken for granted the notion that a ‘typical’ cell of the population possesses the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the CSC hypothesis, populations enriched for so-called ‘tumor-initiating’ cells have demonstrated a corresponding increase in tumorigenicity as measured by dilution assay, although estimates have varied widely as to what the fractional contribution of tumor-initiating cells is in any given population. Some have taken this variability to suggest the CSC fraction may be nearly 100% after all, countering the CSC hypothesis, and that there are simply assay-dependent error rates in our ability to ‘reconfirm’ CSC status at the cell level. To explore this controversy more quantitatively, we developed a simple theoretical model of cancer stem cell-driven tumor growth dynamics. Assuming CSC and non-stem cancer cell subpopulations coexist to some degree, we evaluated the impact of an environmentally-dependent cancer stem cell symmetric division probability and a non-stem cancer cell proliferation capacity on tumor progression and morphology. Our model predicts, as expected, that the frequency of CSC divisions that are symmetric highly influences the frequency of CSCs in the population, but goes on to predict the two frequencies can be widely divergent, and that spatial constraints will tend to increase the CSC fraction over time.

  5. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  6. Sphingosine 1-Phosphate and Cancer: Lessons from Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kid Törnquist

    2013-05-01

    Full Text Available Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P, have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK, i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.

  7. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  8. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  9. Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change.

    Directory of Open Access Journals (Sweden)

    Shiaw-Wei Tyan

    Full Text Available Microenvironment plays an important role in cancer development. We have reported that the cancer-associated stromal cells exhibit phenotypic and functional changes compared to stromal cells neighboring to normal tissues. However, the molecular mechanisms as well as the maintenance of these changes remain elusive. Here we showed that through co-culture with breast cancer cells for at least three to four passages, breast normal tissue-associated fibroblasts (NAFs gained persistent activity for promoting cancer cell invasion, partly via up-regulating ADAM metallopeptidase with thrombospondin type 1 motif, 1 (ADAMTS1. Furthermore, we demonstrated that the DNA methylation pattern in the ADAMTS1 promoter has no alteration. Instead, the loss of EZH2 binding to the ADAMTS1 promoter and the resulting decrease of promoter-associated histone H3K27 methylation may account for the up-regulation of ADAMTS1. Importantly, the lack of EZH2 binding and the H3K27 methylation on the ADAMTS1 promoter were sustained in cancer cell-precocultured NAFs after removal of cancer cells. These results suggest that cancer cells are capable of inducing stromal fibroblasts to secrete ADAMTS1 persistently for their invasion and the effect is epigenetically inheritable.

  10. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  11. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    OpenAIRE

    Kanada, Masamitsu; Zhang, Jinyan; Libo YAN; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility re...

  12. Storytelling as part of cancer rehabilitation to support cancer patients and their relatives.

    Science.gov (United States)

    la Cour, Karen; Ledderer, Loni; Hansen, Helle Ploug

    2016-01-01

    Previous research on psychosocial support for cancer-related concerns has primarily focused on either patients or their relatives, although limited research is available on how patients and their relatives can be supported together. The aim of this article is to explore the use of storytelling as a part of a residential cancer rehabilitation intervention for patients together with their relatives, with a specific focus on their management of cancer-related concerns. Ten pairs participated in the intervention and data were generated through ethnographic fieldwork, including participant observations, informal conversations and follow-up interviews conducted one month after completing the intervention. Analysis was performed drawing on narrative theory combined with social practice theory. The results demonstrate that the use of storytelling and metaphors intertwined with other course activities, such as dancing and arts & crafts, provided the patients and their relatives with strategies to manage cancer-related concerns, which they were later able to apply in their everyday lives. The study results may be useful to other professionals in clinical practice for rehabilitation purposes for addressing issues of fear and worry.

  13. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    abrogated by small interfering RNA to PTEN, indicating PTEN-dependence. Using FACS analysis , we showed that GEN induced cell cycle arrest at G0-G1 phase...isolated from WT (PND 100) and Tg (PND75) mice. The percentage of mammary SCs was quantified by Fluorescence activated cell sorting analysis of...fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms underlying their presumed anti-tumor activities

  14. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  15. SMARCAD1 knockdown uncovers its role in breast cancer cell migration, invasion, and metastasis.

    Science.gov (United States)

    Al Kubaisy, Elham; Arafat, Kholoud; De Wever, Olivier; Hassan, Ahmed H; Attoub, Samir

    2016-09-01

    Breast cancer is the most common cancer seen in women worldwide and breast cancer patients are at high risk of recurrence in the form of metastatic disease. Identification of genes associated with invasion and metastasis is crucial in order to develop novel anti-metastasis targeted therapy. It has been demonstrated that the DEAD-BOX helicase DP103 was implicated in breast cancer invasion and metastasis. SMARCAD1 is also a DEAD/H box-containing helicase, suggested to play a role in genetic instability. However, its involvement in cancer migration, invasion, and metastasis has never been explored. Using two different designs of shRNA targeting SMARCAD1, we investigated the impact of SMARCAD1 knockdown on the migration, invasion, and metastasis potential of the breast cancer cells MDA-MB-231 and T47D. We observed that SMARCAD1 knockdown in the invasive breast cancer cells MDA-MB-231, unlike in the non-invasive breast cancer cells T47D, was associated with an increased cell-cell adhesion and a significant decrease in cell migration, invasion, and metastasis due at least in part to a strong inhibition of STAT3 phosphorylation. These results indicate that SMARCAD1 is involved in breast cancer metastasis and can be a promising target for metastatic breast cancer therapy.

  16. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and. L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquid-.

  17. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    1998-01-01

    Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  18. Cancer stem cells: the challenges ahead

    NARCIS (Netherlands)

    Medema, Jan Paul

    2013-01-01

    Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this

  19. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  20. DNA repair of cancer stem cells

    National Research Council Canada - National Science Library

    Mathews, Lesley A; Cabarcas, Stephanie M; Hurt, Elaine M

    2013-01-01

    ... leukemia by John E. Dick from the University of Toronto. The heterogeneity of human leukemia and the presence of stem cells in cancer was further translated into solid tumors by Al-Hajj et al. when they published a provocative paper in Proceedings of the National Academy of Sciences discussing the ability to distinguish tumorigenic (tumor-initi...

  1. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  2. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. TAK1 regulates Paneth cell integrity partly through blocking necroptosis.

    Science.gov (United States)

    Simmons, A N; Kajino-Sakamoto, R; Ninomiya-Tsuji, J

    2016-04-14

    Paneth cells reside at the base of crypts of the small intestine and secrete antimicrobial factors to control gut microbiota. Paneth cell loss is observed in the chronically inflamed intestine, which is often associated with increased reactive oxygen species (ROS). However, the relationship between Paneth cell loss and ROS is not yet clear. Intestinal epithelial-specific deletion of a protein kinase Tak1 depletes Paneth cells and highly upregulates ROS in the mouse model. We found that depletion of gut bacteria or myeloid differentiation factor 88 (Myd88), a mediator of bacteria-derived cell signaling, reduced ROS but did not block Paneth cell loss, suggesting that gut bacteria are the cause of ROS accumulation but bacteria-induced ROS are not the cause of Paneth cell loss. In contrast, deletion of the necroptotic cell death signaling intermediate, receptor-interacting protein kinase 3 (Ripk3), partially blocked Paneth cell loss. Thus, Tak1 deletion causes Paneth cell loss in part through necroptotic cell death. These results suggest that TAK1 participates in intestinal integrity through separately modulating bacteria-derived ROS and RIPK3-dependent Paneth cell loss.

  4. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes.

    Science.gov (United States)

    Correia de Sá, Tiago Ribeiro; Silva, Roberto; Lopes, José Manuel

    2015-11-01

    Basal cell carcinoma (BCC) is the most common skin cancer worldwide with increasing incidence, but difficult to assess due to the current under registration practice. Despite the low mortality rate, BCC is a cause of great morbidity and an economic burden to health services. There are several risk factors that increase the risk of BCC and partly explain its incidence. Low-penetrance susceptibility alleles, as well as genetic alterations in signaling pathways, namely SHH pathway, also contribute to the carcinogenesis. BCC associate with several genetic syndromes, of which basal cell nevus syndrome is the most common.

  5. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  6. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  7. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell.

    Science.gov (United States)

    Lu, Yuhua; Lu, Jingjing; Li, Xiaohong; Zhu, Hui; Fan, Xiangjun; Zhu, Shajun; Wang, Yao; Guo, Qingsong; Wang, Lei; Huang, Yan; Zhu, Mingyan; Wang, Zhiwei

    2014-02-12

    Pancreatic cancer is one of the most aggressive cancers, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells. And miR-200 has been identified as a powerful regulator of EMT. Cancer Stem Cells (CSCs) of human pancreatic cancer cell line PANC-1 were processed for CD24, CD44 and ESA multi-colorstaining, and sorted out on a BD FACS Aria II machine. RT-qPCR was performed using the miScript PCR Kit to assay the expression of miR-200 family. In order to find the role of miR-200a in the process of EMT, miR-200a mimic was transfected to CSCs. Pancreatic cancer cells with EMT phenotype displayed stem-like cell features characterized by the expression of cell surface markers CD24, CD44 and epithelial-specific antigen (ESA), which was associated with decreased expression of miR-200a. Moreover, overexpression of miR-200a was resulted in down-regulation of N-cadherin, ZEB1 and vimentin, but up-regulation of E-cadherin. In addition, miR-200a overexpression inhibited cell migration and invasion in CSCs. In our study, we found that miR-200a played an important role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in pancreatic cancer. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to mesenchymal-to-epithelial transition (MET) phenotype using novel agents would be useful for prevention and/or treatment of pancreatic cancer.

  8. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Science.gov (United States)

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  9. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  10. Levobuipivacaine-Induced Dissemination of A549 Lung Cancer Cells.

    Science.gov (United States)

    Chan, Shun-Ming; Lin, Bo-Feng; Wong, Chih-Shung; Chuang, Wen-Ting; Chou, Yu-Ting; Wu, Zhi-Fu

    2017-08-17

    While anaesthetics are frequently used on cancer patients during surgical procedures, their consequence on cancer progression remains to be elucidated. In this study, we sought to investigate the influence of local anesthetics on lung cancer cell dissemination in vitro and in vivo. A549 human non-small lung cancer cells were treated with various local anaesthetics including ropivacaine, lidocaine, levobupivacaine and bupivacaine. Cell barrier property was assessed using an electric cell-substrate impedance sensing (ECIS) system. The epithelial-to-mesenchymal transition (EMT) of treated cells was studied by immunofluorescence staining. In vitro and in vivo cancer cell dissemination were investigated.Gene expression microarray and quantitative real-time PCR (qrt-PCR) assays were used to identify the genes responsible for levobupivacaine-mediated cancer cell dissemination.The results illustrated that only levobupivacaine induced EMT in the treated cells and also caused the dissemination of cancer cells in vitro. In addition, after intravenous injection, levobupivacaine encouraged cancer cell dissemination in vivo. Gene expression microarray, qrt-PCR and immunoblotting revealed that after levobupivacaine treatment, the hypoxia-inducible factor (HIF)- 2α gene was upregulated in cancer cells. Our findings suggest that levobupivacaine may induce A549 lung cancer cell dissemination both in vitro and in vivo. More specifically, HIF-2α signaling possibly contributes to levobupivacaine-mediated A549 lung cancer cell dissemination.

  11. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hereditary kidney cancer (renal cell cancer) syndromes include von Hippel-Lindau disease, hereditary leiomyomatosis and renal cell cancer, Birt-Hogg-Dubé syndrome, and hereditary papillary renal carcinoma. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  12. Metformin induces degradation of mTOR protein in breast cancer cells.

    Science.gov (United States)

    Alalem, Mohamed; Ray, Alpana; Ray, Bimal K

    2016-11-01

    Activation of mTOR is implicated in the development and progression of breast cancer. mTOR inhibition exhibited promising antitumor effects in breast cancer; however, its effect is compromised by several feedback mechanisms. One of such mechanisms is the upregulation of mTOR pathway in breast cancer cells. Despite the established role of mTOR activation in breast cancer, the status of total mTOR protein and its impact on the tumor behavior and response to treatment are poorly understood. Besides, the mechanisms underlying mTOR protein degradation in normal and cancer breast cells are still largely unknown. We and others found that total mTOR protein level is elevated in breast cancer cells compared to their nonmalignant counterparts. We have detected defective proteolysis of mTOR protein in breast cancer cells, which could, at least in part, explain the high level of mTOR protein in these cells. We show that metformin treatment in MCF-7 breast cancer cells induced degradation of mTOR and sequestration of this protein in a perinuclear region. The decrease in mTOR protein level in these cells correlated positively with a concomitant inhibition of proliferation and migration potentials of these cells. These findings provided a novel mechanism for the metformin action in breast cancer treatment. Understanding the proteolytic mechanism responsible for mTOR level in breast cancer may pave the way for improving the efficacy of breast cancer treatment regimens and mitigating drug resistance as well as providing a basis for potential novel therapeutic modalities for breast cancer. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  14. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  15. Are All Highly Malignant Cancer Cells Identical?

    Science.gov (United States)

    1979-01-01

    ADA3665 ARE AL HIGHL MAGNANTCANCER CELLS DENOIALU) PENNSYLVANIA HOSPITAL PHILADELPHIA DEPT OF MOLECULAR BIOLOGY G NIGET AL 199 N00014-ACA026 UNCLASFE...embryo cells or even the original fertilized ovum . If this speculation has validity, the carcinogenesis and differentiation have the same destinies but...F/G /5 N 1111 2Z111117 1 125iiI 1 1. 1111_L6. -11 O=M 1 MrCROCOP RErSOLUTICN TEST CHART N, APoP SN A’ ,- ARE ALL HIGHLY MALIGNANT CANCER CELLS

  16. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells...

  17. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  18. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells.

    Directory of Open Access Journals (Sweden)

    Shuping Yin

    Full Text Available Women with triple negative breast cancer (TNBC have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA and European American (EA women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women. Our in vitro studies indicate that cancer stem-like cells (CSCs derived from AA TNBC cell lines have significantly higher self-renewal potential (mammosphere formation than CSCs derived from EA cell lines. TNBC tumors express high levels of Myc compared to luminal A or HER2 expressing breast cancers. We studied the effects of c-Myc overexpression on CSCs and chemotherapy in AA, and EA derived TNBC cell line(s. Overexpression of c-Myc in AA derived MDA-MB-468 (Myc/MDA-468 cells resulted in a significant increase in CSCs and with minimal changes in epithelial-to-mesenchymal transition (EMT compared to the control group. In contrast, overexpression of c-Myc in EA derived MDA-MB-231(Myc/MDA-231 cells led to increased epithelial-to-mesenchymal transition (EMT, with a minimal increase in CSCs compared to the control group. Myc/MDA-468 cells were resistant to standard chemotherapeutic treatments such as iniparib (PARP inhibitor plus cisplatin, / iniparib, cisplatin, paclitaxel and docetaxel. However, Myc/MDA-231 cells, which showed EMT changes responded to iniparib with cisplatin, but were resistant to other drugs, such as iniparib, cisplatin, paclitaxel and docetaxel. Collectively, our results indicate that intrinsic differences in the tumor biology may contribute to the breast cancer disparities.

  19. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A

  20. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Mouth Cancer for Clinicians Part 3: Risk Factors (Traditional: Tobacco).

    Science.gov (United States)

    Kalavrezos, Nicholas; Scully, Crispian

    2015-06-01

    A MEDLINE search early in 2015 revealed more than 250,000 papers on head and neck cancer; over 100,000 on oral cancer; and over 60,000 on mouth cancer. Not all publications contain robust evidence. We endeavour to encapsulate the most important of the latest information and advances now employed in practice, in a form comprehensible to healthcare workers, patients and their carers. This series offers the primary care dental team, in particular, an overview of the aetiopathogenesis, prevention, diagnosis and multidisciplinary care of mouth cancer, the functional and psychosocial implications, and minimization of the impact on the quality of life of patient and family. CPD/CLINICAL RELEVANCE: This article offers the dental team an overview of the main cancer risk factors, tobacco and alcohol, betel and other chewing habits, and environmental factors.

  2. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  3. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    Science.gov (United States)

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  4. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation. Copyright © 2013 Wiley Periodicals

  5. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2016-09-01

    Full Text Available The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.

  6. Calcium wave signaling in cancer cells

    Science.gov (United States)

    PARKASH, JAI; ASOTRA, KAMLESH

    2010-01-01

    Ca2+ functions as an important signaling messenger right from beginning of the life to final moment of the end of the life. Ca2+ is needed at several steps of the cell cycle such as early G1, at the G1/S, and G2/M transitions. The Ca2+ signals in the form of time-dependent changes in intracellular Ca2+ concentrations, [Ca2+]i, are presented as brief spikes organized into regenerative Ca2+ waves. Ca2+-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca2+ oscillations arise from Ca2+ waves initiated locally, it results in stochastic oscillations because although each cell has many IP3Rs and Ca2+ ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP3Rs due to steep Ca2+ concentration gradients. The specific Ca2+ signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca2+ oscillations and decoded again at a later stage. Since Ca2+ channels or pumps involved in regulating Ca2+ signaling pathways show altered expression in cancer, one can target these Ca2+ channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca2+ wave patterns in carcinogenesis and lead to development of newer technologies based on Ca2+ waves for the diagnosis and therapy of cancer. PMID:20875431

  7. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  8. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  9. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  10. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Cui, Dan; Kuramitsu, Yasuhiro; Matsumoto, Takuya; Ikeda, Eiji; Okano, Hideyuki; Ueyama, Yoshiya

    2016-07-27

    The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor

  11. Transcription profiles of non-immortalized breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Holland James F

    2006-04-01

    Full Text Available Abstract Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs were used in addition to commercially-available normal breast epithelial cells (HMECs, established breast cancer cell lines (T-est and established normal breast cells (N-est. The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research.

  12. Natural killer cells enhance the immune surveillance of cancer

    African Journals Online (AJOL)

    Faisal Nouroz

    2015-09-11

    Sep 11, 2015 ... All the cells of the immune sys- tem cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells ..... Cancer stem cells (CSCs) retain the growth of tumor and resist chemotherapy [25]. ... radiation therapy and mushroom beta glucans showed only 1 nodule. The experiments ...

  13. Crucial role of interleukin-4 in the survival of colon cancer stem cells

    NARCIS (Netherlands)

    Francipane, Maria Giovanna; Alea, Mileidys Perez; Lombardo, Ylenia; Todaro, Matilde; Medema, J. P.; Stassi, Giorgio

    2008-01-01

    Colon tumors may be maintained by a rare fraction of cancer stem-like cells (CSC) that express the cell surface marker CD133. Self-renewing CSCs exhibit relatively greater resistance to clinical cytotoxic therapies and recent work suggests that this resistance may be mediated in part by an autocrine

  14. Digital Assays Part II: Digital Protein and Cell Assays.

    Science.gov (United States)

    Basu, Amar S

    2017-08-01

    A digital assay is one in which the sample is partitioned into many containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, . . .). A powerful technique in the biologist's toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotype and phenotype. Where part I of this review focused on the fundamentals of partitioning and digital PCR, part II turns its attention to digital protein and cell assays. Digital enzyme assays measure the kinetics of single proteins with enzymatic activity. Digital enzyme-linked immunoassays (ELISAs) quantify antigenic proteins with 2 to 3 log lower detection limit than conventional ELISA, making them well suited for low-abundance biomarkers. Digital cell assays probe single-cell genotype and phenotype, including gene expression, intracellular and surface proteins, metabolic activity, cytotoxicity, and transcriptomes (scRNA-seq). These methods exploit partitioning to 1) isolate single cells or proteins, 2) detect their activity via enzymatic amplification, and 3) tag them individually by coencapsulating them with molecular barcodes. When scaled, digital assays reveal stochastic differences between proteins or cells within a population, a key to understanding biological heterogeneity. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows.

  15. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-07

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  16. A stochastic model for cancer stem cell origin in metastatic colon cancer.

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W; Gollin, Susanne M; Gamblin, T Clark; Geller, David A; Lagasse, Eric

    2008-09-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here, we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally derived tumor cells expressed many consistent (clonal) along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability.

  17. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.

    Science.gov (United States)

    Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie

    2017-11-14

    Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.

  18. Surgery for nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Loïc Lang-Lazdunski

    2013-09-01

    Full Text Available Surgery remains the best curative option in patients with early stage lung cancer (stage I and II. Developments in minimally invasive techniques now allow surgeons to perform lung resections on elderly patients, patients with poor pulmonary function or significant cardiopulmonary comorbidities. New techniques, such as stereotactic radiotherapy and ablative procedures, are being evaluated in early-stage lung cancer and may represent an alternative to surgery in patients unfit for lung resection. Perioperative mortality rates have dropped significantly at most institutions in the past two decades and complications are managed more efficiently. Progress in imaging and staging techniques have helped cut futile thoracotomy rates and offer patients the most adequate treatment options. Large randomised trials have helped clarify the role of neoadjuvant, induction and adjuvant chemotherapy, as well as radiotherapy. Surgery remains an essential step in the multimodality therapy of selected patients with advanced-stage lung cancer (stage III and IV. Interventional and endoscopic techniques have reduced the role of surgery in the diagnosis and staging of nonsmall cell lung cancer, but surgery remains an important tool in the palliation of advanced-stage lung cancer. Large national/international surgical databases have been developed and predictive risk-models for surgical mortality/morbidity published by learned surgical societies. Nonetheless, lung cancer overall survival rates remain deceptively low and it is hoped that early detection/screening, better understanding of tumour biology and development of biomarkers, and development of efficient targeted therapies will help improve the prognosis of lung cancer patients in the next decade.

  19. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  20. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  1. Optical imaging of cancer and cell death

    OpenAIRE

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic and macroscopic level. Because we believe optical imaging in particular represents a technology that has unique potential to exploit further our knowledge in preclinical research. First, we imaged...

  2. Natural and induced T regulatory cells in cancer

    Directory of Open Access Journals (Sweden)

    Dennis O Adeegbe

    2013-07-01

    Full Text Available CD4+Foxp3+ T regulatory (Treg cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self-antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3 typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or assault signals stemming from the underlying immune disorder. The policing activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg-cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg-cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity.

  3. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    14 4 1. Introduction Prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer- related deaths in American men...internalization by MSCs (red (DiI) - MPs, green ( cholera toxin) - cell membrane, blue (Hoechst) - cell nucleus). (d) To assess drug release from G114 MP-loaded

  4. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells.

    Science.gov (United States)

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-06-30

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.

  5. Novel regulators of prostate cancer stem cells and tumor aggressiveness

    NARCIS (Netherlands)

    Zoni, E.

    2016-01-01

    In the past decade it became increasingly clear that tumor heterogeneity represents one of the major problems for cancer treatment, also in prostate cancer. The identification of the molecular properties of highly aggressive cells (Cancer Stem Cells, CSCs) dispersed within the tumor represents a

  6. Differentiation of Prostate Cancer Cells by Using Flexible Fluorescent Polymers

    Science.gov (United States)

    Scott, Michael D.; Dutta, Rinku; Haldar, Manas K.; Guo, Bin; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Using water soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. By using a step-wise linear discriminant analysis we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and non-cancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. PMID:22148518

  7. Breast Cancer Stem Cells and Tumor Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Wendy W. Hwang-Verslues

    2008-10-01

    Full Text Available Studies of breast cancer stem cells are in their infancy and many fundamental questions have yet to be fully addressed. The molecular distinction between normal and cancerous breast stem cells is not clear. While there have been recent breakthroughs in mouse mammary stem cells and lineage determination in mammary glands, little has been determined in human cells. Microarray analyses have provided molecular categorization of breast cancer. However, the cellular origin of different types of breast cancer is largely unknown. In addition, the relationship between breast cancer stem cells and mammary progenitor cells has yet to be clarified. One of the key questions is how a normal mammary stem cell becomes a breast cancer stem cell. Importantly, the existence of different types of human breast cancers with distinct pathologic and molecular signatures suggests the possibility that different types of breast cancer stem cells may exist. Here, we aim to review the current evidence for the existence of different subtypes of breast cancer stem cells and provide further insight into how tumor suppressors might be involved in the initiation of breast cancer stem cells.

  8. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  9. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  10. From drug response profiling to target addiction scoring in cancer cell models

    Directory of Open Access Journals (Sweden)

    Bhagwan Yadav

    2015-10-01

    Full Text Available Deconvoluting the molecular target signals behind observed drug response phenotypes is an important part of phenotype-based drug discovery and repurposing efforts. We demonstrate here how our network-based deconvolution approach, named target addiction score (TAS, provides insights into the functional importance of druggable protein targets in cell-based drug sensitivity testing experiments. Using cancer cell line profiling data sets, we constructed a functional classification across 107 cancer cell models, based on their common and unique target addiction signatures. The pan-cancer addiction correlations could not be explained by the tissue of origin, and only correlated in part with molecular and genomic signatures of the heterogeneous cancer cells. The TAS-based cancer cell classification was also shown to be robust to drug response data resampling, as well as predictive of the transcriptomic patterns in an independent set of cancer cells that shared similar addiction signatures with the 107 cancers. The critical protein targets identified by the integrated approach were also shown to have clinically relevant mutation frequencies in patients with various cancer subtypes, including not only well-established pan-cancer genes, such as PTEN tumor suppressor, but also a number of targets that are less frequently mutated in specific cancer types, including ABL1 oncoprotein in acute myeloid leukemia. An application to leukemia patient primary cell models demonstrated how the target deconvolution approach offers functional insights into patient-specific addiction patterns, such as those indicative of their receptor-type tyrosine-protein kinase FLT3 internal tandem duplication (FLT3-ITD status and co-addiction partners, which may lead to clinically actionable, personalized drug treatment developments. To promote its application to the future drug testing studies, we have made available an open-source implementation of the TAS calculation in the form

  11. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  12. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Zu-Yau Lin

    2013-06-01

    Full Text Available Cancer-associated fibroblast (CAF is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif ligand 2 (CCL2, chemokine (C-C motif ligand 26 (CCL26, interleukin 6 (IL6, and lysyl oxidase-like 2 (LOXL2 genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH and two human CAF cell lines (F26/KMUH, F28/KMUH were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005 and migration (all p < 0.0001 of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001. Eleven up-regulated cancer-promoting genes, including apelin (APLN, CCL2, CCL26, fibroblast growth factor 1 (FGF1, fibroblast growth factor 2 (FGF2, IL6, mucin 1 (MUC1, LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA, phosphoglycerate kinase 1 (PGK1, and vascular endothelial growth factor A (VEGFA detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene

  13. Breast cancer stem cells, cytokine networks, and the tumor microenvironment

    National Research Council Canada - National Science Library

    Korkaya, Hasan; Liu, Suling; Wicha, Max S

    2011-01-01

    .... These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment - including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune...

  14. Benefits of Cervical Cancer Screening by Liquid-Based Cytology as Part of Routine Antenatal Assessment.

    Science.gov (United States)

    Parkpinyo, Nichamon; Inthasorn, Perapong; Laiwejpithaya, Somsak; Punnarat, Tippawan

    2016-01-01

    To determine the prevalence of abnormal cervical cytology, as diagnosed using a liquid-based cytology technique, in pregnant women attending the Antenatal Care (ANC) clinic at Siriraj Hospital. This cross-sectional study included 655 first-visit pregnant women who attended ANC clinic at Siriraj Hospital during June to November 2015 study period. After receiving routine antenatal care, cervical cytology screening was performed with the Siriraj liquid-based cytology technique. All specimens were reviewed by a certi ed cytopathologist using Bethesda System 2001 criteria. Patients with abnormal PAP results characterized as epithelial cell abnormalities were referred to a gynecologic oncologist for further management according to ASCCP Guidelines 2012. Mean age of participants was 28.9±6.2 years. Prevalence of abnormal cervical cytology was 3.4% (95% CI: 2.0-4.7). Among this group, there were ASC-US, ASC-H, LSIL, HSIL for 12(1.8%), 2(0.3%), 7(1.1%) and 1(0.2%), respectively. In 633 specimens of the normal group, infection was identified in 158 specimens (24.1%) which were caused by Candida spp. and Trichomonas vaginalis. Regarding patient perception about the importance of cervical cancer screening, although most women perceived screening to be important, 54% of participants had never been screened for cervical cancer. Rate of loss to follow-up in the postpartum period was as high as 41.8%. Prevalence of abnormal cervical cytology in pregnant women attending the ANC clinic at Siriraj Hospital was 3.4%. Inclusion of cervical cancer screening as part of antenatal assessment can help to identify precancerous lesions or cervical cancers in patients who might otherwise not be screened, thereby facilitating early treatment and improved patient outcomes.

  15. PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture.

    Science.gov (United States)

    Pradhan, Shantanu; Hassani, Iman; Seeto, Wen J; Lipke, Elizabeth A

    2017-01-01

    Tissue-engineered three-dimensional (3D) cancer models employing biomimetic hydrogels as cellular scaffolds provide contextual in vitro recapitulation of the native tumor microenvironment, thereby improving their relevance for use in cancer research. This study reports the use of poly(ethylene glycol)-fibrinogen (PF) as a suitable biosynthetic hydrogel for the 3D culture of three breast cancer cell lines: MCF7, SK-BR-3, and MDA-MB-231. Modification of the matrix characteristics of PF hydrogels was achieved by addition of excess poly(ethylene glycol) diacrylate, which resulted in differences in Young's moduli, degradation behavior, release kinetics, and ultrastructural variations in scaffold microarchitecture. Cancer cells were maintained in 3D culture with high viability within these hydrogels and resulted in cell-type dependent morphological changes over time. Cell proliferation and 3D morphology within the hydrogels were visualized through immunofluorescence staining. Finally, spatial heterogeneity of colony area within the hydrogels was quantified, with peripheral cells forming colonies of higher area compared to those in the interior regions. Overall, PF-based hydrogels facilitate 3D culture of breast cancer cells and investigation of cellular behavior in response to varying matrix characteristics. PF-based cancer models could be potentially used in future investigations of cancer biology and in anti-cancer drug-testing applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 236-252, 2017. © 2016 Wiley Periodicals, Inc.

  16. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    Science.gov (United States)

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  17. Cell Pleomorphism and Cytoskeleton Disorganization in Human Liver Cancer.

    Science.gov (United States)

    Cheng, Chiung-Chi; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Chao, Wei-Ting; Tseng, Yu-Hui; Hsu, Yung-Hsiang; Chen, You-Yin; Liu, Yi-Hsiang

    Nucleoskeleton maintains the framework of a cell nucleus that is required for a variety of nuclear functions. However, the nature of nucleoskeleton structure has not been yet clearly elucidated due to microscopy visualization limitations. Plectin, a nuclear pore-permeable component of cytoskeleton, exhibits a role of cross-linking between cytoplasmic intermediate filaments and nuclear lamins. Presumably, plectin is also a part of nucleoskeleton. Previously, we demonstrated that pleomorphism of hepatoma cells is the consequence of cytoskeletal changes mediated by plectin deficiency. In this study, we applied a variety of technologies to detect the cytoskeletons in liver cells. The images of confocal microscopy did not show the existence of plectin, intermediate filaments, microfilaments and microtubules in hepatic nuclei. However, in the isolated nuclear preparation, immunohistochemical staining revealed positive results for plectin and cytoskeletal proteins that may contribute to the contamination derived from cytoplasmic residues. Therefore, confocal microscopy provides a simple and effective technology to observe the framework of nucleoskeleton. Accordingly, we verified that cytoskeletons are not found in hepatic cell nuclei. Furthermore, the siRNA-mediated knockdown of plectin in liver cells leads to collapsed cytoskeleton, cell transformation and pleomorphic nuclei. Plectin and cytoskeletons were not detected in the nuclei of liver cells compared to the results of confocal microscopy. Despite the absence of nuclear plectin and cytoskeletal filaments, the evidence provided support that nuclear pleomorphism of cancer cells is correlated with the cytoplasmic disorganization of cytoskeleton. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Induction of tumor stem cell differentiation--novel strategy to overcome therapy resistance in gastric cancer.

    Science.gov (United States)

    Zieker, Derek; Bühler, Sarah; Ustündag, Zeynep; Königsrainer, Ingmar; Manncke, Sebastian; Bajaeifer, Khaled; Vollmer, Jörg; Fend, Falko; Northoff, Hinnak; Königsrainer, Alfred; Glatzle, Jörg

    2013-04-01

    Metastases are a frequent finding in gastric cancer and are associated with poor prognosis. A recently discovered link between metabolic changes, differentiation, and therapy resistance due to tumor stem cells could depict a novel approach in cancer research and therapy. Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme and is known to be involved in enabling gastric cancer cells to be invasive and to disseminate. In this study, we investigated if PGK1 is a promising candidate in inducing stem cell differentiation in gastric cancer. MKN45 gastric cancer cells were used due to their known cancer stem cell population, which is defined by the surface marker CD44. MKN45 cells were separated between CD44+ and CD44- cells and, in equal parts, incubated with shRNA anti-PGK1 using fluorescence-activated cell sorting (FACS) analysis; they were then injected into nude mice to evaluate their tumor growth behavior in vivo. Further, the invasive potential of gastric cancer cells was evaluated in vitro using the xCelligence analyzing system. CD44+ gastric cancer cells treated with and without shRNA anti-PGK1 were capable to cause tumor growth in vivo, whereas tumor growth in CD44+ cells treated with shRNA anti-PGK1 was considerably smaller in comparison with that in CD44+ cells without treatment. CD44- cells did not show any noticeable tumor growth in vivo. By targeting PGK1, the invasive potential of gastric cancer cells was impressively reduced in vitro. In all our cells, which were targeted with shRNA anti-PGK1, we did not find any change that is in accordance with the phenotype of the cells using FACS analysis. Our findings suggest that targeting the key metabolic enzyme PGK1 in gastric cancer cells may open a new chapter in cancer treatment, which is well worth for further exploration in combination with recent chemotherapy, and might be a promising possibility to overcome therapy resistance in gastric cancer.

  19. Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  20. Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  1. Stages of Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  2. NCI Designated Cancer Centers

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  3. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  4. Esophageal Cancer Prevention

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  5. Stages of Vulvar Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  6. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Teodoro Anderson

    2012-08-01

    Full Text Available Abstract Background Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound’s action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. Methods Human cell lines were treated with lycopene (1–5 μM for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL and by DAPI. Results Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7 after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145 when cells were treated with lycopene. Conclusions Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.

  7. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  8. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties.

    Science.gov (United States)

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-02-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

  9. Multipotent mesenchymal stromal cells in liver cancer: implications for tumor biology and therapy.

    Science.gov (United States)

    Hernanda, Pratika Y; Pedroza-Gonzalez, Alexander; Sprengers, Dave; Peppelenbosch, Maikel P; Pan, Qiuwei

    2014-12-01

    Remodeling of tumor microenvironment is a hallmark in the pathogenesis of liver cancer. Being a pivotal part of tumor stroma, multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells (MSCs), are recruited and enriched in liver tumors. Owing to their tumor tropism, MSCs are now emerging as vehicles for anticancer drug/gene delivery against liver cancer. However, the exact impact of MSCs on liver cancer remains elusive, as a variety of effects of these cells that have been reported included a plethora of tumor-promoting effects and anti-oncogenic properties. This review aims to dissect the mechanistic insight regarding this observed discrepancy in different experimental settings of liver cancer. Furthermore, we call for caution using MSCs to treat liver cancer or even premalignant liver diseases, before conclusive evidence for safety and efficacy having been obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  11. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    Science.gov (United States)

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  12. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  13. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.

  14. Renal cell cancer among African Americans: an epidemiologic review

    National Research Council Canada - National Science Library

    Lipworth, Loren; Tarone, Robert E; McLaughlin, Joseph K

    2011-01-01

    Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease...

  15. Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M.; Muller, William J.

    2009-01-01

    Summary Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis. PMID:19118213

  16. Integrins in mammary-stem-cell biology and breast-cancer progression--a role in cancer stem cells?

    Science.gov (United States)

    Pontier, Stephanie M; Muller, William J

    2009-01-15

    Cancer cells with stem cell-like properties (cancer stem cells) are believed to drive cancer and are associated with poor prognosis. Data from mouse models have demonstrated that integrins, the major cellular receptors for extracellular-matrix components, have essential roles both during cancer initiation and progression, and during cell differentiation in normal development. By presenting an overview of the role of integrins in stem-cell biology and in cancer progression, this Commentary aims to present evidence for a role of integrins in the biology of cancer stem cells. Given the recent interest in the role of integrins in breast-cancer initiation and progression, we focus on the role of the members of the integrin family and their coupled signaling pathways in mammary-gland development and tumorigenesis.

  17. Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device

    Science.gov (United States)

    Hondroulis, Evangelia; Zhang, Rui; Zhang, Chengxiao; Chen, Chunying; Ino, Kosuke; Matsue, Tomokazu; Li, Chen-Zhong

    2014-01-01

    Electrical properties of cells determine most of the cellular functions, particularly ones which occur in the cell's membrane. Manipulation of these electrical properties may provide a powerful electrotherapy option for the treatment of cancer as cancerous cells have been shown to be more electronegative than normal proliferating cells. Previously, we used an electrical impedance sensing system (EIS) to explore the responses of cancerous SKOV3 cells and normal HUVEC cells to low intensity (electrotherapy for clinical and drug delivery applications. PMID:25057316

  18. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. The Antimetastatic and Antiangiogenesis Effects of Kefir Water on Murine Breast Cancer Cells.

    Science.gov (United States)

    Zamberi, Nur Rizi; Abu, Nadiah; Mohamed, Nurul Elyani; Nordin, Noraini; Keong, Yeap Swee; Beh, Boon Kee; Zakaria, Zuki Abu Bakar; Nik Abdul Rahman, Nik Mohd Afizan; Alitheen, Noorjahan Banu

    2016-12-01

    Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells. 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days. Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water-treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water-treated group. Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment. © The Author(s) 2016.

  20. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Science.gov (United States)

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    2015-01-01

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors. PMID:26436135

  1. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Timothy P Cripe

    Full Text Available Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  2. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    OpenAIRE

    Jiefu Jin; Balaji Krishnamachary; Yelena Mironchik; Hisataka Kobayashi; Zaver M. Bhujwalla

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed...

  3. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Alvero, Ayesha B; Yang, Yingkui

    2011-01-01

    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44......+ EOC stem cells in ovarian cancer tumors and progression-free survival. EOC stem cells exist as clusters located close to the stroma forming the cancer stem cell "niche". 17.1% of the samples reveled high number of CD44+ EOC stem cells (>20% positive cells). In addition, the number of CD44+ EOC stem...... cells was significantly higher in patients with early-stage ovarian cancer (FIGO I/II), and it was associated with shorter progression-free survival (P = 0.026). This study suggests that quantification of the number of EOC stem cells in the tumor can be used as a predictor of disease and could...

  4. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment....... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  5. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-07-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as reflected by their ability to initiate and drive micro and macro-metastases. The other important contributing factor for CSCs in cancer management is their function in causing treatment resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many different therapeutic approaches are being tested for prevention and treatment of cancer recurrence. These may include treatment strategies targeting altered genetic signalling pathways by blocking specific cell surface molecules, altering the cancer microenvironments that nurture cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [Case of heterochronous triple urogenital cancer (renal cell carcinoma, bladder cancer, prostatic cancer)].

    Science.gov (United States)

    Okumura, Akiou; Tsuritani, Shinji; Takagawa, Kiyoshi; Fuse, Hideki

    2013-11-01

    We report a case of a 73-year-old male with heterochronous triple urogenital cancer. The patient was referred to our hospital because serum PSA was elevated (7.0 ng/ml) in 1998. Prostatic needle biopsy revealed prostatic cancer in the right lobe, and total prostatectomy was performed. The histopathological diagnosis was moderately differentiated adenocarcinoma (TlcNOMO). Non-muscle invasive bladder cancer (NMIBC) was detected during an examination for microhematuria in 2002. Transurethral resection of the bladder tumor (TURBT) procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). A right renal mass was detected incidentally on follow-up CT for bladder cancer in 2008. Renal enucleation was performed in 2009. The histopathological diagnosis was grade 2 clear cell renal cell carcinoma (pTlaNXMO). NMIBC was detected on follow-up urethrocystoscopy in 2011. The TURBT procedure was performed, and the histopathological diagnosis was grade 2 urothelial carcinoma (pTa). On follow-up for urogenital cancer patients, it is important to investigate recurrence of the primary cancer and also heterochronous canceration of other urogenital organs.

  7. From gametogenesis and stem cells to cancer: common metabolic themes.

    Science.gov (United States)

    Pereira, Sandro L; Rodrigues, Ana Sofia; Sousa, Maria Inês; Correia, Marcelo; Perestrelo, Tânia; Ramalho-Santos, João

    2014-01-01

    Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  8. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  9. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  10. Oct-4 expression maintained stem cell properties in prostate cancer ...

    African Journals Online (AJOL)

    The purpose of the present study is to isolate cancerous stem-like cells from normal healthy volunteers and prostate cancer patients (CD133+) which also express MDR1 and to ascertain the influence of Oct-4 on 'stem-ness' and differentiation of these CD133+ cells towards epithelium. Methods: CD133+ cells were isolated ...

  11. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. ... Cytotoxicity of SEE on cancer (HepG2 and CT26) and normal (CHO and rat fibroblast) cell lines was evaluated by MTT assay. IC50 of SEE on ... African Journal of Biotechnology Vol.

  12. Targeting Apoptotic Activity Against Prostate Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2017-07-01

    Full Text Available Numerous data suggest that an increase of cancer stem cells (CSCs in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24− cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an activator of apoptosis in tumor cells. However, some tumors are TRAIL-resistant. Cancer cells can be re-sensitized to TRAIL induced apoptosis by a combination of TRAIL and taxanes. The aim of this work was to analyze the enhancement of the anticancer effect of TRAIL by paclitaxel, cabazitaxel and docetaxel in the whole population of PC3 and DU145 prostate cancer cells, but also in CD44+/CD24− prostate cancer stem cells. We examined the apoptotic effect of TRAIL and taxanes using flow cytometry and Annexin-V-PE staining. The co-treatment with taxanes and TRAIL enhanced significantly the apoptosis in CD44+/CD24− cells only in PC3 cell line but not in DU145 cells. We discovered also that taxanes can increase the expression of death receptor TRAIL-R2 in PC3 prostate cancer cells. The results of our study show that treatment with paclitaxel, cabazitaxel and docetaxel is able to enhance the apoptosis induced by TRAIL even in prostate cancer stem cells.

  13. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  14. Milk stimulates growth of prostate cancer cells in culture.

    Science.gov (United States)

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes.

  15. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  16. Advanced Merkel cell cancer and the elderly.

    LENUS (Irish Health Repository)

    Bird, B R

    2012-02-03

    BACKGROUND: Merkel cell cancer (MCC) is an uncommon neuroendocrine skin cancer occurring predominantly in elderly Caucasians. It tends to metastasize to regional lymph nodes and viscera and is sensitive to chemotherapy but recurs rapidly. AIM: To report one such case, its response to chemotherapy and briefly review the literature. METHODS: A 73-year-old male with a fungating primary lesion on his left knee and ulcerated inguinal lymph nodes was diagnosed with MCC and treated with chemotherapy. The two largest case series and reviews of case reports were summarised. RESULTS: His ulcer healed after two cycles of carboplatin and etoposide with improvement in quality of life. Overall response rates of nearly 60% to chemotherapy are reported but median survival is only nine months with metastatic disease. CONCLUSIONS: Chemotherapy should be considered for fit elderly patients with MCC who have recurrent or advanced disease.

  17. Androgen Depletion Induces Senescence in Prostate Cancer Cells through Down-regulation of Skp2

    Directory of Open Access Journals (Sweden)

    Zuzana Pernicová

    2011-06-01

    Full Text Available Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT, a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.

  18. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion.

    Science.gov (United States)

    Omidvar, Ramin; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Rostami, Mostafa

    2014-10-17

    The adhesiveness of cancerous cells to their neighboring cells significantly contributes to tumor progression and metastasis. The single-cell force spectroscopy (SCFS) approach was implemented to survey the cell-cell adhesion force between cancerous cells in three cancerous breast cell lines (MCF-7, T47D, and MDA-MB-231). The gene expression levels of two dominant cell adhesion markers (E-cadherin and N-cadherin) were quantified by real-time PCR. Additionally, the local stiffness of the cell bodies was measured by atomic force microscopy (AFM), and the actin cytoskeletal organization was examined by confocal microscopy. Results indicated that the adhesion force between cells was conversely correlated with their invasion potential. The highest adhesion force was observed in the MCF-7 cells. A reduction in cell-cell adhesion, which is required for the detachment of cells from the main tumor during metastasis, is partly due to the loss of E-cadherin expression and the enhanced expression of N-cadherins. The reduced adhesion was accompanied by the softening of cells, as described by the rearrangement of actin filaments through confocal microscopy observations. The softening of the cell body and the reduced cellular adhesiveness are two adaptive mechanisms through which malignant cells achieve the increased deformability, motility, and strong metastasis potential necessary for passage through endothelial junctions and positioning in host tissue. This study presented application of SCFS to survey cell phenotype transformation during cancer progression. The results can be implemented as a platform for further investigations that target the manipulation of cellular adhesiveness and stiffness as a therapeutic choice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  20. Spheroid Cultures of Primary Urothelial Cancer Cells: Cancer Tissue-Originated Spheroid (CTOS) Method.

    Science.gov (United States)

    Yoshida, Takahiro; Okuyama, Hiroaki; Endo, Hiroko; Inoue, Masahiro

    2018-01-01

    Increasingly, it has been recognized that studying cancer samples from individual patients is important for the development of effective therapeutic strategies and in endeavors to overcome therapy resistance. Primary cultures of cancer cells acutely dissected from individual patients can provide a platform that enables the study and characterization of individual tumors. To that end, we have developed a method for preparing cancer cells in the form of multi-cellular spheroids. The cells can be derived from patient tumors (primary cells), from patient-derived xenografts, or from genetically- or chemically induced animal tumors. This method of culturing spheroids composed of cells derived from cancer tissues can be applied to various types of cancer, including urothelial cancer. The method is based on the principle of retaining cell-cell contact throughout cancer cell preparation and culturing. The first step is a partial digestion of the tumor specimen into small fragments; these fragments spontaneously form spheroidal shapes within several hours. The spheroid is referred to as a cancer tissue-originated spheroid (CTOS). The advantage of the CTOS method is that it allows one to prepare pure cancer cells at high yield. CTOSs can be stably cultured in serum-free conditions. The CTOS method can be applied to drug sensitivity assays, drug screening, and analyses of intracellular signaling. Moreover, the CTOS method provides a platform for studying the nature of cancer cell clusters.

  1. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.

    Science.gov (United States)

    Liu, Yi; Zhang, Weihe; Cao, Yanyan; Liu, Yan; Bergmeier, Stephen; Chen, Xiaozhuo

    2010-12-08

    Cancer cells depend heavily on glucose as both energy and biosynthesis sources and are found to upregulate glucose transport and switch their main energy supply pathway from oxidative phosphorylation to glycolysis. These molecular and metabolic changes also provide targets for cancer treatment. Here we report that novel small molecules inhibited basal glucose transport and cell proliferation, and induced apoptosis in lung and breast cancer cells without affecting much their normal cell counterparts. Cancer cells survived the compound treatment lost their capability to proliferate. Mechanistic study indicates that the cancer cell inhibition by the test compounds has a component of apoptosis and the induced apoptosis was p53-independent and caspase 3-dependent, similar to those resulted from glucose deprivation. Compound treatment also led to cell cycle arrest in G1/S phase. The inhibition of cancer cell growth was partially relieved when additional glucose was supplied to cells, suggesting that the inhibition was due to, at least in part, the inhibition of basal glucose transport. When used in combination, the test compounds demonstrated synergistic effects with anticancer drugs cisplatin or paclitaxel in inhibition of cancer cell growth. All these results suggest that these glucose transport inhibitors mimic glucose deprivation and work through inhibiting basal glucose transport. These inhibitors have the potential to complement and replace traditional glucose deprivation, which cannot be used in animals, as new tools to study the effects of glucose transport and metabolism on cancer and normal cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  3. Storytelling intervention for patients with cancer: part 2--pilot testing.

    Science.gov (United States)

    Crogan, Neva L; Evans, Bronwynne C; Bendel, Robert

    2008-03-01

    To evaluate symptom reports and the impact of a nurse-led storytelling intervention in a supportive group setting on mood, stress level, coping with stress, pain, self-efficacy, and satisfaction with life in patients with cancer. Descriptive pilot project using a pretest/post-test control group. Local regional medical center in the Pacific Northwest region of the United States. Convenience sample of 10 patients with various cancer diagnoses; 7 completed the intervention. Participants were randomly assigned to a storytelling or control group. Using a tool kit generated for this project, a nurse facilitator guided storytelling group participants in 12 1.5-hour sessions. Six instruments, symptom assessments, and a retrospective physician chart review were completed for each group. Data were analyzed using repeated measures analysis of variance. Mood, stress, coping, pain, self-efficacy, and satisfaction with life. Comparison of changes in group mean scores revealed a significant decrease in anxiety in the storytelling group despite disease progression. Documentation of psychosocial symptomatology by physicians is limited; however, nursing assessments were useful in determining psychosocial status before and after the intervention. Results can be viewed only in context of a feasibility study and are not generalizable because of a limited sample size. A trained oncology nurse was able to use the storytelling intervention. Initial results are promising and warrant further study. After additional testing, the intervention could be used to enhance storytelling groups for patients with cancer or for individuals who are uncomfortable in or do not have access to storytelling groups.

  4. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

    Science.gov (United States)

    Lawson, Devon A.; Bhakta, Nirav R.; Kessenbrock, Kai; Prummel, Karin D.; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-01-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality1. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours2–5. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown2. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are

  5. Risk of spilling cancer cells during total laparoscopic hysterectomy in low-risk endometrial cancer

    Directory of Open Access Journals (Sweden)

    Satoshi Shinohara

    2017-08-01

    Conclusion: We conclude that fallopian tubal cauterization is sufficient to provide protection from the dissemination of cancer cells into the peritoneal cavity at the time of TLH for endometrial cancers in early stages.

  6. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  7. Differentiation of prostate cancer cells using flexible fluorescent polymers.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Guo, Bin; Friesner, Daniel L; Mallik, Sanku

    2012-01-03

    Using water-soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. Using a stepwise linear discriminant analysis, we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and noncancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. © 2011 American Chemical Society

  8. Cancer stem cell: fundamental experimental pathological concepts and updates.

    Science.gov (United States)

    Islam, Farhadul; Qiao, Bin; Smith, Robert A; Gopalan, Vinod; Lam, Alfred K-Y

    2015-04-01

    Cancer stem cells (CSCs) are a subset of cancer cells which play a key role in predicting the biological aggressiveness of cancer due to its ability of self-renewal and multi-lineage differentiation (stemness). The CSC model is a dynamic one with a functional subpopulation of cancer cells rather than a stable cell population responsible for tumour regeneration. Hypotheses regarding the origins of CSCs include (1) malignant transformation of normal stem cells; (2) mature cancer cell de-differentiation with epithelial-mesenchymal transition and (3) induced pluripotent cancer cells. Surprisingly, the cancer stem cell hypothesis originated in the late nineteenth century and the existence of haematopoietic stem cells was demonstrated a century later, demonstrating that the concept was possible. In the last decade, CSCs have been identified and isolated in different cancers. The hallmark traits of CSCs include their heterogeneity, interaction with microenvironments and plasticity. Understanding these basic concepts of CSCs is important for translational applications using CSCs in the management of patients with cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. MicroRNA-29a inhibits cell migration and invasion via targeting Roundabout homolog 1 in gastric cancer cells.

    Science.gov (United States)

    Liu, Xueting; Cai, Jun; Sun, Yanjun; Gong, Renhua; Sun, Dengqun; Zhong, Xingguo; Jiang, Shitao; He, Xinmiao; Bao, Enwu; Yang, Liusheng; Li, Yongxiang

    2015-09-01

    Deregulation of Roundabout homolog 1 (Robo1) has been demonstrated to be associated with several types of human cancer, including gastric cancer. However, the detailed role of Robo1 and its regulatory mechanism in gastric cancer remain largely unclear. In the current study, it was demonstrated that the expression of microRNA (miR)‑29a was frequently reduced in gastric cancer tissues, compared with their matched normal adjacent tissues. Similar results were additionally observed in AGS and SGC‑7901 human gastric cancer cells. Overexpression of miR‑29a led to reduced migration and invasion of AGS cells. To explore the targets of miR‑29a in gastric cancer, bioinformatics analysis was conducted and Robo1 was identified as a putative target of miR‑29a. Further western blotting and luciferase activity assay data confirmed that miR‑29a was able to negatively regulate the protein expression of Robo1, through directly binding to the 3'‑untranslated region of Robo1 mRNA in gastric cancer cells. In addition, it was demonstrated that Robo1 was frequently upregulated in gastric cancer tissues compared with their matched adjacent normal tissues, and a significant inverse correlation was identified between miR‑29a and Robo1 expression. In addition, knockdown of Robo1 by small interfering RNA markedly inhibited the migratory and invasive capabilities of AGS cells, which the results obtained with overexpression of miR‑29a. In conclusion, to the best of our knowledge the current study suggested for the first time, that miR‑29a inhibits migration and invasion in part via direct inhibition of Robo1 in gastric cancer cells. Therefore, Robo1 and miR‑29a may serve as diagnostic or therapeutic targets for gastric cancer.

  10. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro

    2017-02-01

    Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.

  11. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    , we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... dependent. The growth reduction was similar in isogenic colon cancer cells with and without p53, indicating that SSX2 is able to inhibit the growth of cancer cells, even in absence of functional p53. Our results show that SSX2 acts as an inhibitor of cancer cell proliferation, possibly through replicative...... stress, and therefore have important implications for the use of SSX2 as a target for cancer therapy....

  13. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  14. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  15. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary O. Rankin

    2013-03-01

    Full Text Available Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70 cell lines and a normal ovarian cell line (IOSE-364 were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 µM for baicalin and 25–40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein. Baicalin decreased expression of VEGF (20 µM, cMyc (80 µM, and NFkB (20 µM; baicalein decreased expression of VEGF (10 µM, HIF-1α (20 µM, cMyc (20 µM, and NFkB (40 µM. Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers.

  16. Identification of genes involved in breast cancer and breast cancer stem cells

    OpenAIRE

    Apostolou P; Toloudi M; Papasotiriou I

    2015-01-01

    Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs), which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed t...

  17. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells.

    Science.gov (United States)

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-10-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription‑quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, as well as in PSCs. An enzyme‑linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)‑α and transforming growth factor‑β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co‑cultured adhesive potential of Panc‑1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc‑1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc‑1 cells. The expression of TNF‑α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc

  18. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2017-09-01

    chose to make new medulloblastoma models with oncogenic PIK3CA (PIK3CAH1047R). However, this change caused major delay in our progress since we have not...these tumors. 15. SUBJECT TERMS cancer stem cells, medulloblastoma, targeted therapy, therapy resistance , pediatric cancer, brain tumor, Notch1...Keywords……………………………………………………………. 4 3. Accomplishments………..………………………………………….. 4 4. Impact…………………………...…………………………………… 8 5. Changes /Problems

  19. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Directory of Open Access Journals (Sweden)

    Simona Catalani

    Full Text Available Essential oils from the aerial parts (leaves, twigs and berries of Pistacia lentiscus (PLEO have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity.Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS, the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line.A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells.Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  20. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Science.gov (United States)

    Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2017-01-01

    Essential oils from the aerial parts (leaves, twigs and berries) of Pistacia lentiscus (PLEO) have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity. Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml) were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS), the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line. A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells. Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  1. Squamous Cell Lung Cancer: From Tumor Genomics to Cancer Therapeutics

    Science.gov (United States)

    Gandara, David R.; Hammerman, Peter S.; Sos, Martin L.; Lara, Primo N.; Hirsch, Fred R.

    2016-01-01

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the last several years, therapeutic progress in SCC has lagged behind the now more common NSCLC histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC. PMID:25979930

  2. Selectins mediate small cell lung cancer systemic metastasis.

    Directory of Open Access Journals (Sweden)

    Franziska Heidemann

    Full Text Available Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181. However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.

  3. Phototheranostics of CD44-positive cell populations in triple negative breast cancer.

    Science.gov (United States)

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M

    2016-06-15

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44(high)/CD24(low), and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC.

  4. Comparing the effects of endogenous and synthetic cannabinoid receptor agonists on survival of gastric cancer cells.

    Science.gov (United States)

    Ortega, A; García-Hernández, V M; Ruiz-García, E; Meneses-García, A; Herrera-Gómez, A; Aguilar-Ponce, J L; Montes-Servín, E; Prospero-García, O; Del Angel, S A

    2016-11-15

    Anti-neoplastic activity induced by cannabinoids has been extensively documented for a number of cancer cell types; however, this topic has been explored in gastric cancer cells only in a limited number of approaches. Thus, the need of integrative and comparative studies still persists. In this study we tested and compared the effects of three different cannabinoid receptor agonists-anandamide (AEA), (R)-(+)-methanandamide (Meth-AEA) and CP 55,940 (CP)- on gastric cancer cell morphology, viability and death events in order to provide new insights to the use of these agents for therapeutic purposes. The three agents tested exhibited similar concentration-dependent effects in the induction of changes in cell morphology and cell loss, as well as in the decrease of cell viability and DNA laddering in the human gastric adenocarcinoma cell line (AGS). Differences among the cannabinoids tested were mostly observed in the density of cells found in early and late apoptosis and necrosis, favoring AEA and CP as the more effective inducers of apoptotic mechanisms, and Meth-AEA as a more effective inducer of necrosis through transient and rapid apoptosis. Through a comparative approach, our results support and confirm the therapeutic potential that cannabinoid receptor agonists exert in gastric cancer cells and open possibilities to use cannabinoids as part of a new gastric cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Fabien J Cousin

    Full Text Available BACKGROUND: Gastric cancer is one of the most common cancers in the world. The "economically developed countries" life style, including diet, constitutes a risk factor favoring this cancer. Diet modulation may lower digestive cancer incidence. Among promising food components, dairy propionibacteria were shown to trigger apoptosis of human colon cancer cells, via the release of short-chain fatty acids acetate and propionate. METHODOLOGY/PRINCIPAL FINDINGS: A fermented milk, exclusively fermented by P. freudenreichii, was recently designed. In this work, the pro-apoptotic potential of this new fermented milk was demonstrated on HGT-1 human gastric cancer cells. Fermented milk supernatant induced typical features of apoptosis including chromatin condensation, formation of apoptotic bodies, DNA laddering, cell cycle arrest and emergence of a subG1 population, phosphatidylserine exposure at the plasma membrane outer leaflet, reactive oxygen species accumulation, mitochondrial transmembrane potential disruption, caspase activation and cytochrome c release. Remarkably, this new fermented milk containing P. freudenreichii enhanced the cytotoxicity of camptothecin, a drug used in gastric cancer chemotherapy. CONCLUSIONS/SIGNIFICANCE: Such new probiotic fermented milk may thus be useful as part of a preventive diet designed to prevent gastric cancer and/or as a food supplement to potentiate cancer therapeutic treatments.

  6. Mislocalization of the exitatory amino-acid transporters (EAATs in human astrocytoma and non-astrocytoma cancer cells: effect of the cell confluence

    Directory of Open Access Journals (Sweden)

    Varini Karine

    2012-02-01

    Full Text Available Abstract Background Astrocytomas are cancers of the brain in which high levels of extracellular glutamate plays a critical role in tumor growth and resistance to conventional treatments. This is due for part to a decrease in the activity of the glutamate transporters, i.e. the Excitatory Amino Acid Transporters or EAATs, in relation to their nuclear mislocalization in astrocytoma cells. Although non-astrocytoma cancers express EAATs, the localization of EAATs and the handling of L-glutamate in that case have not been investigated. Methods We looked at the cellular localization and activity of EAATs in human astrocytoma and non-astrocytoma cancer cells by immunofluorescence, cell fractionation and L-glutamate transport studies. Results We demonstrated that the nuclear mislocalization of EAATs was not restricted to astrocytoma and happened in all sub-confluent non-astrocytoma cancer cells we tested. In addition, we found that cell-cell contact caused the relocalization of EAATs from the nuclei to the plasma membrane in all human cancer cells tested, except astrocytoma. Conclusions Taken together, our results demonstrated that the mislocalization of the EAATs and its associated altered handling of glutamate are not restricted to astrocytomas but were also found in human non-astrocytoma cancers. Importantly, we found that a cell contact-dependent signal caused the relocalization of EAATs at the plasma membrane at least in human non-astrocytoma cancer cells, resulting in the correction of the altered transport of glutamate in such cancer cells but not in astrocytoma.

  7. HSP90 as a novel molecular target in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Esfahani K

    2016-03-01

    Full Text Available Khashayar Esfahani, Victor Cohen Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, Canada Abstract: Lung cancer remains the most lethal cancer, with over 160,000 annual deaths in the USA alone. Over the past decade, the discovery of driver mutations has changed the landscape for the treatment of non-small-cell lung cancer (NSCLC. Targeted therapies against epidermal growth factor receptor (EGFR or anaplastic lymphoma kinase (ALK have now been approved by the Food and Drug Administration as part of the standard first-line treatment of NSCLC. Despite good initial responses, most patients develop resistance within 8–12 months and have disease progression. Keywords: non-small-cell lung cancer, driver mutations, targeted therapy, heat shock protein 90 (HSP90

  8. Grandparents' experiences of childhood cancer, part 1: doubled and silenced.

    Science.gov (United States)

    Moules, Nancy J; Laing, Catherine M; McCaffrey, Graham; Tapp, Dianne M; Strother, Douglas

    2012-01-01

    In this study, the authors examined the experiences of grandparents who have had, or have, a grandchild with childhood cancer. Sixteen grandparents were interviewed using unstructured interviews, and the data were analyzed according to hermeneutic-phenomenological tradition, as guided by the philosophical hermeneutics of Hans-Georg Gadamer. Interpretive findings indicate that grandparents suffer and worry in many complex ways that include a doubled worry for their own children as well as their grandchildren. According to the grandparents in this study, this worry was, at times, silenced in efforts to protect the parents of the grandchild from the burden of concern for the grandparent. Other interpretations include the nature of having one's universe shaken, of having lives put on hold, and a sense of helplessness. The grandparents in this study offer advice to other grandparents as well as to the health care system regarding what kinds of things might have been more helpful to them as one level of the family system, who, like other subsystems of the family, are also profoundly affected by the event of childhood cancer.

  9. Tracking the Evolution of Non-Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Jamal-Hanjani, Mariam; Wilson, Gareth A.; McGranahan, Nicholas

    2017-01-01

    Background Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine...... as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .)....

  10. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  11. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  12. [Expression of a new lung cancer drug resistance-related gene in lung cancer tissues and lung cancer cell strains].

    Science.gov (United States)

    Liu, Ling-Zhi; Qian, Gui-Sheng; Zhou, Xiang-Dong

    2003-02-01

    A new drug resistance-related gene fragment which was 494 bp long was found using suppression subtractive hybridization (SSH) and its full-length cDNA fragment was cloned by the authors. This study was designed to determine the expression of this lung cancer drug resistance-related gene (LCDRG) in lung cancer tissues, juxtacancerous tissues, and five lung cancer cell strains. The expression of LCDRG was determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method in 38 lung cancer tissues,12 juxtacancerous tissues, and 5 lung cancer cell strains. The expression of LCDRG in cancer tissues was significantly higher than that in juxtacancerous tissue (Pcancer cell strains, the expression levels of LCDRG in adenocarcinoma cell strains SPC-A-1 and A549, big cell lung cancer cell strain H460, small cell lung cancer cell strains H446 and SH77 were decreased gradually. LCDRG is closely related to lung cancer and may be involved in the pathogenesis of lung cancer.

  13. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A.; Dharmawardhane, Suranganie F.

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  14. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  15. Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.

  16. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  17. Protective mechanism against cancer found in progeria patient cells

    Science.gov (United States)

    NCI scientists have studied cells of patients with an extremely rare genetic disease that is characterized by drastic premature aging and discovered a new protective cellular mechanism against cancer. They found that cells from patients with Hutchinson Gi

  18. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  19. Engineering chemically modified viruses for prostate cancer cell recognition.

    Science.gov (United States)

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  20. The complexity of the complicity of mast cells in cancer.

    Science.gov (United States)

    Nechushtan, Hovav

    2010-05-01

    Mast cells are evolutionarly ancient cells of the immune cells which can secrete a variety of effector molecules. Animal and pathologic studies suggest that mast cells may promote tumor growth in some cancer types but may act in an opposite manner in others. In several mouse models a critical role of mast cells for tumor promotion was demonstrated. In humans mast cells are dependent upon the tyrosine kinase receptor c-Kit. This receptor is inhibited by many of the new anti-cancer tyrosine kinase inhibitors including Pazopanib, Imatinib and Masitinib. These drugs probably ablate some tumor mast cells, in addition to their other known antitumor effects. Understanding the complex roles of mast cells in cancer should aid in understanding mechanisms of current tyrosine kinase inhibitors, and the development of innovative anti-cancer therapies. 2009 Elsevier Ltd. All rights reserved.

  1. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  2. Cancer metabolism: the volatile signature of glycolysis-in vitro model in lung cancer cells.

    Science.gov (United States)

    Feinberg, Tali; Herbig, Jens; Kohl, Ingrid; Las, Guy; Cancilla, John C; Torrecilla, Jose S; Ilouze, Maya; Haick, Hossam; Peled, Nir

    2017-01-09

    Discovering the volatile signature of cancer cells is an emerging approach in cancer research, as it may contribute to a fast and simple diagnosis of tumors in vivo and in vitro. One of the main contributors to such a volatile signature is hyperglycolysis, which characterizes the cancerous cell. The metabolic perturbation in cancer cells is known as the Warburg effect; glycolysis is preferred over oxidative phosphorylation (OXPHOS), even in the presence of oxygen. The precise mitochondrial alterations that underlie the increased dependence of cancer cells on aerobic glycolysis for energy generation have remained a mystery. We aimed to profile the volatile signature of the glycolysis activity in lung cancer cells. For that an in vitro model, using lung cancer cell line cultures (A549, H2030, H358, H322), was developed. The volatile signature was measured by proton transfer reaction mass spectrometry under normal conditions and glycolysis inhibition. Glycolysis inhibition and mitochondrial activity were also assessed by mitochondrial respiration capacity measurements. Cells were divided into two groups upon their glycolytic profile (PET positive and PET negative). Glycolysis blockade had a unique characteristic that was shared by all cells. Furthermore, each group had a characteristic volatile signature that enabled us to discriminate between those sub-groups of cells. In conclusion, lung cancer cells may have different subpopulations of cells upon low and high mitochondrial capacity. In both groups, glycolysis blockade induced a unique volatile signature.

  3. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    Science.gov (United States)

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  5. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Donatella D’Eliseo

    2016-01-01

    Full Text Available Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.

  6. Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

    Science.gov (United States)

    Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R

    2017-09-01

    Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.

  7. Evolution and phenotypic selection of cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2015-03-01

    Full Text Available Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC, as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes.

  8. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  9. Oncogene-directed alterations in cancer cell metabolism.

    Science.gov (United States)

    Nagarajan, Arvindhan; Malvi, Parmanand; Wajapeyee, Narendra

    2016-07-01

    Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.

  10. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Manuela Schwegler

    2015-01-01

    Full Text Available Background. In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. Methods. The phenomenon of one cell being internalized into another, which we refer to as “cell-in-cell event,” was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. Results. Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm2. Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients’ survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (p=0.008. Conclusion. Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies.

  11. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Clinical Trials Information A to Z List of Cancer Drugs Complementary & Alternative Medicine (CAM) Questions to Ask about ... Treatment Types of Treatment Side Effects Clinical Trials Cancer Drugs Complementary & Alternative Medicine Coping Feelings & Cancer Adjusting to ...

  12. Modeling selective elimination of quiescent cancer cells from bone marrow.

    Science.gov (United States)

    Cavnar, Stephen P; Rickelmann, Andrew D; Meguiar, Kaille F; Xiao, Annie; Dosch, Joseph; Leung, Brendan M; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E; Takayama, Shuichi; Luker, Gary D

    2015-08-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cytotoxic effect of TDZ on human cervical cancer cells.

    Science.gov (United States)

    Enkhtaivan, Gansukh; Kim, Doo Hwan; Pandurangan, Muthuraman

    2017-08-01

    The present study investigates the anticancer activity of Thidiazuron (TDZ). Anticancer activity of TDZ was evaluated in cervical carcinoma cells (HeLa cells). Sulforhodamine-B (SRB) assay indicates that TDZ was about 100 times more toxic to the cancer cell than normal cells. TUNEL assay showed TDZ induced DNA damage in tumor cells. The loss of mitochondrial membrane potential (MMP) in cancer cells was observed following TDZ treatment. The Bax and bcl-2 gene expression ratio are highly responsible for the regulation of MMP balance, and these ratio was significantly altered following TDZ treatment. The p53 and caspase-3 expressions were increased in cancer cells following treatment. Caspase-3 activation is the key factor for apoptosis. Cytotoxicity of TDZ on HeLa cells was 100 times higher than normal kidney cell (MDCK cells). Moreover, the anticancer activity of TDZ was tested by DNA damage, mitochondrial dysfunction, some gene expression and caspase-3 inhibition in silico. TDZ detected has higher ability on early apoptosis of cancer cell through DNA damage. Additionally, cancer cellular MMP was significantly reduced under inoculation of TDZ. In silico assay confirmed that TDZ was able to bind with the active site of the capase-3 protein. Therefore, taking all these data together it is suggested that the TDZ may be a potential agent to act against cervical cancer cells. Copyright © 2017. Published by Elsevier B.V.

  14. Gene therapy strategies using engineered stem cells for treating gynecologic and breast cancer patients (Review).

    Science.gov (United States)

    Kim, Ye-Seul; Hwang, Kyung-A; Go, Ryeo-Eun; Kim, Cho-Won; Choi, Kyung-Chul

    2015-05-01

    There are three types of stem cells: embryonic stem (ES) cells, adult stem (AS) cells and induced pluripotent stem (iPS) cells. These stem cells have many benefits including the potential ability to differentiate into various organs. In addition, engineered stem cells (GESTECs) designed for delivering therapeutic genes may be capable of treating human diseases including malignant cancers. Stem cells have been found to possess the potential for serving as novel delivery vehicles for therapeutic or suicide genes to primary or metastatic cancer formation sites as a part of gene-directed enzyme/prodrug combination therapy (GEPT). Given the advantageous properties of stem cells, tissue-derived stem cells are emerging as a new tool for anticancer therapy combined with prodrugs. In this review, the effects of GESTECs with different origins, i.e., neural, amniotic membrane and amniotic fluid, introduced to treat patients with diverse types of gynecologic and breast cancers are discussed. Data from the literature indicate the therapeutic potential of these cells as a part of gene therapy strategies to selectively target malignancies in women at clinically terminal stages.

  15. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    user

    2011-02-18

    Feb 18, 2011 ... To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells. (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No.

  16. Sensitizing Cancer Cells: Is It Really All about U?

    OpenAIRE

    Stover, Patrick J.; Weiss, Robert S.

    2012-01-01

    In this issue of Cancer Cell, Hu et al. report that TMPK and RNR, two key enzymes in deoxyribonucleotide biosynthesis, co-localize to damaged DNA and produce nucleotides necessary for DNA repair while suppressing uracil incorporation. TMPK inhibition disrupts this balance and selectively sensitizes cancer cells to low-dose chemotherapy.

  17. Dendritic cell-based immunotherapy in ovarian cancer.

    Science.gov (United States)

    Coosemans, An; Vergote, Ignace; Van Gool, Stefaan W

    2013-12-01

    Worldwide, 80% of patients with ovarian cancer die of the disease. New treatments for this aggressive disease are therefore being intensively searched. Although dendritic cell-based vaccines against gynecological malignancies are in their infancy, this immunotherapeutic approach holds much promise. Here, we present our view on an optimal dendritic cell-based immunotherapeutic strategy against ovarian cancer.

  18. Intravital characterization of tumor cell migration in pancreatic cancer

    NARCIS (Netherlands)

    Beerling, Evelyne; Oosterom, Ilse; Voest, Emile E; Lolkema, Martijn P; van Rheenen, Jacco

    2016-01-01

    Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior

  19. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No severe toxicity ...

  20. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  1. Cell proliferation and apoptosis in gastric cancer and intestinal metaplasia

    OpenAIRE

    Nora Manoukian Forones; Ana Paula Souza Carvalho; Oswaldo Giannotti-Filho; Laércio Gomes Lourenço; Celina Tizuko Fujiyama Oshima

    2005-01-01

    BACKGROUND: Higher proliferation is commonly observed in cancer cells. Apoptosis can be a useful measure of a tumor cell kinetic. Alteration of the balance between proliferation and apoptosis is associated with cancer. AIM: To study proliferation and apoptosis on gastric cancer and in intestinal metaplasia. METHODOLOGY: Twenty-two samples from gastric adenocarcinomas and 22 biopsies from intestinal metaplasia were studied. The apoptotic bodies in hematoxylin-eosin slides and the expression of...

  2. Renal cell cancer among African Americans: an epidemiologic review

    Science.gov (United States)

    2011-01-01

    Incidence rates for renal cell cancer, which accounts for 85% of kidney cancers, have been rising more rapidly among blacks than whites, almost entirely accounted for by an excess of localized disease. This excess dates back to the 1970s, despite less access among blacks to imaging procedures in the past. In contrast, mortality rates for this cancer have been virtually identical among blacks and whites since the early 1990s, despite the fact that nephrectomy rates, regardless of stage, are lower among blacks than among whites. These observations suggest that renal cell cancer may be a less aggressive tumor in blacks. We have reviewed the epidemiology of renal cell cancer, with emphasis on factors which may potentially play a role in the observed differences in incidence and mortality patterns of renal cell cancer among blacks and whites. To date, the factors most consistently, albeit modestly, associated with increased renal cell cancer risk in epidemiologic studies among whites - obesity, hypertension, cigarette smoking - likely account for less than half of these cancers, and there is virtually no epidemiologic evidence in the literature pertaining to their association with renal cell cancer among blacks. There is a long overdue need for detailed etiologic cohort and case-control studies of renal cell cancer among blacks, as they now represent the population at highest risk in the United States. In particular, investigation of the influence on renal cell cancer development of hypertension and chronic kidney disease, both of which occur substantially more frequently among blacks, is warranted, as well as investigations into the biology and natural history of this cancer among blacks. PMID:21486465

  3. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part II: Alkaloids, Terpenoids and Flavonoids.

    Science.gov (United States)

    Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele

    2016-01-01

    Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids.

  4. An overview of concepts for cancer stem cells.

    Science.gov (United States)

    Chen, Shih-Yin; Huang, Yu-Chuen; Liu, Shih-Ping; Tsai, Fuu-Jen; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    For many years, cancer research has focused on the adult stem cells present in malignant tumors. It is believed that current cancer treatments sometimes fail because they do not target these cells. According to classic models of carcinogenesis, these events can occur in any cell. In contrast, the cancer stem cell (CSC) hypothesis states that the preferential targets of oncogenic transformation are tissue stem cells or early progenitor cells that have acquired the potential for self-renewal. These tumor-initiating cells, or CSCs, in turn, are characterized by their ability to undergo self-renewal, a process that drives tumorigenesis and differentiation, which contributes to the cellular heterogeneity of tumors. Herein, we discuss the definitions and properties of CSCs in the major human cancers.

  5. Endothelial cells activate the cancer stem cell-associated NANOGP8 pathway in colorectal cancer cells in a paracrine fashion.

    Science.gov (United States)

    Wang, Rui; Bhattacharya, Rajat; Ye, Xiangcang; Fan, Fan; Boulbes, Delphine R; Xia, Ling; Ellis, Lee M

    2017-08-01

    In colorectal cancer (CRC), cancer stem cells (CSCs) have been hypothesized to mediate cell survival and chemoresistance. Previous studies from our laboratory described a role for liver parenchymal endothelial cells (LPECs) in mediating the CSC phenotype in CRC cells in a paracrine/angiocrine fashion. The objectives of this study were to determine whether endothelial cells (ECs) from different organs can induce the CSC phenotype in CRC cells and to elucidate the signaling pathways involved. We treated a newly developed CRC cell line (HCP-1) and established CRC cell lines (HT29 and SW480) with conditioned medium (CM) from primary ECs isolated from nonmalignant liver, lung, colon mucosa, and kidney. Our results showed that CM from ECs from all organs increased the number of CSCs, as determined by sphere formation, and protein levels of NANOG and OCT4 in CRC cells. With the focus of further elucidating the role of the liver vascular network in mediating the CSC phenotype, we demonstrated that CM from LPECs increased resistance to 5-fluorouracil in CRC cells. Moreover, we showed that LPEC CM specifically induced NANOGP8 expression in CRC cells by specific enzyme digestion and a luciferase reporter assay using a vector containing the NANOGP8 promoter. Lastly, we found that LPEC CM-induced NANOGP8 expression and sphere formation were mediated by AKT activation. Our studies demonstrated a paracrine role for ECs in regulating the CSC phenotype and chemoresistance in CRC cells by AKT-mediated induction of NANOGP8. These studies suggest a more specific approach to target CSCs by blocking the expression of NANOGP8 in cancer cells. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  6. Multimodality approach towards individualized non-small cell lung cancer treatment

    NARCIS (Netherlands)

    Schaake, E.E.

    2014-01-01

    The different studies described in this thesis focus on better understanding of individualized diagnostics, response evaluation and multi modality treatments in non-small cell lung cancer (NSCLC) patients. In part I the novel biological agents erlotinib and cetuximab are evaluated in a new,

  7. Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants

    DEFF Research Database (Denmark)

    Chen, Muwan; Andersen, Morten Østergaard; Dillschneider, Philipp

    2015-01-01

    Tumors in load bearing bone tissue are a major clinical problem, in part because surgical resection invokes a dilemma whether to resect aggressively, risking mechanical failure, or to resect conservatively, risking cancer recurrence due to residual malignant cells. A chemo-functionalized implant,...

  8. Cost utility analysis of everolimus in the treatment of metastatic renal cell cancer in the Netherlands

    NARCIS (Netherlands)

    Mihajlović, J.; Minović, I.; Bruinsma, A.; Postma, M.J.

    2013-01-01

    Objectives: Metastatic renal cell cancer (mRCC) is becoming an important part of Dutch health care expenditure due to expensive pharmaceutical options for disease control and lack of adequate prevention methods. New targeted therapeutics, such as sunitinib, sorafenib and everolimus, have recently

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Cancer stem cells: constantly evolving and functionally heterogeneous therapeutic targets.

    Science.gov (United States)

    Yang, Tao; Rycaj, Kiera; Liu, Zhong-Min; Tang, Dean G

    2014-06-01

    Elucidating the origin of and dynamic interrelationship between intratumoral cell subpopulations has clear clinical significance in helping to understand the cellular basis of treatment response, therapeutic resistance, and tumor relapse. Cancer stem cells (CSC), together with clonal evolution driven by genetic alterations, generate cancer cell heterogeneity commonly observed in clinical samples. The 2013 Shanghai International Symposium on Cancer Stem Cells brought together leaders in the field to highlight the most recent progress in phenotyping, characterizing, and targeting CSCs and in elucidating the relationship between the cell-of-origin of cancer and CSCs. Discussions from the symposium emphasize the urgent need in developing novel therapeutics to target the constantly evolving CSCs. ©2014 American Association for Cancer Research.

  11. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming, E-mail: erc1080@gmail.com; Wang, Yujiong, E-mail: erc1080@gmail.com [Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia (China); College of Life Science, Ningxia University, Yinchuan 750021, Ningxia (China)

    2012-12-04

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC{sub 50}) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC{sub 50} values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs.

  12. Stromal cells in tumor microenvironment and breast cancer.

    Science.gov (United States)

    Mao, Yan; Keller, Evan T; Garfield, David H; Shen, Kunwei; Wang, Jianhua

    2013-06-01

    Cancer is a systemic disease encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion, and metastasis. In breast cancer, CAFs not only promote tumor progression but also induce therapeutic resistance. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistance. This review summarizes the current understandings of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. In addition, the effects of other stromal components such as endothelial cells, macrophages, and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to categorize patients into a specific and confirmed subtype for personalized treatment.

  13. Stroma Cells in Tumor Microenvironment and Breast Cancer

    Science.gov (United States)

    Mao, Yan; Keller, Evan T.; Garfield, David H.; Shen, Kunwei; Wang, Jianhua

    2015-01-01

    Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment. PMID:23114846

  14. BREAST AND/OR OVARIAN CANCER AS PART OF FAMILY CANCER SYNDROME

    Directory of Open Access Journals (Sweden)

    L. N. Lyubchenko

    2009-01-01

    Full Text Available The problems in the early diagnosis, primary and secondary prevention of family cancer of the breast and/or ovaries are successfully solved within medical genetic counseling at a cancer clinic. Its genetic diagnosis is confirmed, individual risks for breast and/or ovarian cancer are calculated, risk-modifying factors are studied, and treatment, family planning, and childbirth are discussed during clinicogenetic studies.

  15. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.

    Science.gov (United States)

    Han, Yang-Yang; Liu, Hong-Yan; Han, Dong-Ju; Zong, Xi-Cui; Zhang, Shuang-Quan; Chen, Yu-Qing

    2013-11-01

    Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Part I: cancer in Sudan—burden, distribution, and trends breast, gynecological, and prostate cancers.

    Science.gov (United States)

    Elamin, Amany; Ibrahim, Muntaser E; Abuidris, Dafalla; Mohamed, Kamal Eldin H; Mohammed, Sulma Ibrahim

    2015-03-01

    Despite the growing burden of cancer worldwide, it continues to receive low priority in Africa, across the continent and specifically in Sudan. This is due to political unrest, limited health resources, and other pressing public health issues such as infectious diseases. Lack of awareness about the magnitude of the current and future cancer burden among policy makers play a major role as well. Although, the real scope of cancer in Sudan is not known, the reported cases have increased from 303 in 1967-6303 in 2010. According to Globocan estimates, the top most common cancers in both sexes are breast, non-Hodgkin lymphoma, leukemia, esophagus, and colorectum. This review is the first of four papers that focuses on cancer, its distribution and trend as well as the risk factors most common in Sudan. It is expected that cancer will increase in Sudan as a result of migration of people from rural areas to urban cities in the pursuit of a better standard of living, which has resulted in lifestyle and behavioral changes that include tobacco chewing and smoking, unhealthy dieting, and a lack of physical activity. These changes are further exacerbated by the aging population and have made the country vulnerable to many diseases including cancer. These reviews are meant to provide a better understanding and knowledge required to plan appropriate cancer-control and prevention strategies in the country. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  18. Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24.

    Science.gov (United States)

    Ning, Z-F; Huang, Y-J; Lin, T-X; Zhou, Y-X; Jiang, C; Xu, K-W; Huang, H; Yin, X-B; Huang, J

    2009-01-01

    Cancer stem cells can be isolated from human tumours using specific cell surface markers. Bladder cancer cells, however, lack specific cell surface markers, making this approach impracticable. In this study an alternative method was used, involving isolation of side population cells to explore the stem cell characteristics of bladder cancer. Side population cells were isolated from the bladder transitional cell cancer cell line T24 and examined for potential stem cell characteristics related to proliferation, cell cycle distribution, self-renewal and differentiation. It was observed that T24 side population cells have stronger proliferative and colony formation abilities than non-side population cells. Side population cells were also more resistant to chemotherapy and radiotherapy, which may be due to expression of the ATP-binding cassette half-transporter, sub-family G, member 2 protein. Overall, the results suggest that side population cells from the human bladder transitional cell cancer cell line T24 harbour stem-like cells.

  19. DNA Methylation and Apoptosis Resistance in Cancer Cells

    Science.gov (United States)

    Hervouet, Eric; Cheray, Mathilde; Vallette, François Marie; Cartron, Pierre-François

    2013-01-01

    Apoptosis is a cell death programme primordial to cellular homeostasis efficiency. This normal cell suicide program is the result of the activation of a cascade of events in response to death stimuli. Apoptosis occurs in normal cells to maintain a balance between cell proliferation and cell death. A deregulation of this balance due to modifications in the apoptosic pathway leads to different human diseases including cancers. Apoptosis resistance is one of the most important hallmarks of cancer and some new therapeutical strategies focus on inducing cell death in cancer cells. Nevertheless, cancer cells are resistant to treatment inducing cell death because of different mechanisms, such as DNA mutations in gene coding for pro-apoptotic proteins, increased expression of anti-apoptotic proteins and/or pro-survival signals, or pro-apoptic gene silencing mediated by DNA hypermethylation. In this context, aberrant DNA methylation patterns, hypermethylation and hypomethylation of gene coding for proteins implicated in apoptotic pathways are possible causes of cancer cell resistance. This review highlights the role of DNA methylation of apoptosis-related genes in cancer cell resistance. PMID:24709797

  20. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  1. Resveratrol Sensitizes Selectively Thyroid Cancer Cell to 131-Iodine Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Hosseinimehr

    2014-01-01

    Full Text Available Background. In this study, the radiosensitizing effect of resveratrol as a natural product was investigated on cell toxicity induced by 131I in thyroid cancer cell. Methods. Human thyroid cancer cell and human nonmalignant fibroblast cell (HFFF2 were treated with 131I and/or resveratrol at different concentrations for 48 h. The cell proliferation was measured by determination of the percent of the survival cells using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Findings of this study show that resveratrol enhanced the cell death induced by 131I on thyroid cancer cell. Also, resveratrol exhibited a protective effect on normal cells against 131I toxicity. Conclusion. This result indicates a promising effect of resveratrol on improvement of cellular toxicity during iodine therapy.

  2. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  3. Risks of Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  4. Stages of Small Intestine Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  5. Treatment Options for Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  6. Risks of Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  7. Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein

    Directory of Open Access Journals (Sweden)

    Moon Sung-Pyo

    2004-10-01

    Full Text Available Abstract Background Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441. Methods Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT. Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. Results Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC50 values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. Conclusion These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction.

  8. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    Directory of Open Access Journals (Sweden)

    Arif Malik

    2016-01-01

    Full Text Available Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  9. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update.

    Science.gov (United States)

    Malik, Arif; Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.

  10. In vitro cytotoxicity of crude alkaloidal extracts of South African Menispermaceae against three cancer cell lines

    CSIR Research Space (South Africa)

    De Wet, H

    2009-07-20

    Full Text Available -35-9026491. species, although species from five genera in this family are used in cancer treatment (De Wet, 2006) in other parts of the world. These genera are Cissampelos, Sphe- nocentrum, Menispermum, Stephania and Tinospora, and were used in treating stomach... recorded (published) history of use against stomach and skin cancer in South Africa (Van Wyk and Gericke, 2000), but no screening for cytotoxicity against cancer cell lines has been reported on any of the 13 South African spe- cies. Most...

  11. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  12. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    Purpose: To investigate anticancer effects of bergenin on human colorectal cancer cell lines. Methods: Human colorectal adenocarcinoma cell line HCT116 was treated with various concentrations of bergenin for 24 and 48 h. Cell viability, apoptosis, cell cycle arrest and reactive oxygen species (ROS) level were analyzed ...

  13. Cancer Stem Cells and stress induced evolution - understanding the ...

    Indian Academy of Sciences (India)

    Dr S Bapat

    2015-11-08

    Nov 8, 2015 ... Most therapies fail to consider differential drug sensitivities of various cells in a tumor. (Tumor Cell Heterogeneity). • Drug refractory behaviour of tumor cells may arise due to either –. - Intrinsic drug resistance mechanisms (Molecular Heterogeneity). - Cell dormancy / reversible quiescence (Cancer stem ...

  14. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    Science.gov (United States)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  15. Cell Surface and Secreted Protein Profiles of Human Thyroid Cancer Cell Lines Reveal Distinct Glycoprotein Patterns

    Science.gov (United States)

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A.

    2009-01-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using 2-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hürthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57 percent are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g. CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hürthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e. anaplastic). Based on the results obtained, a

  16. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  17. Glycolytic ATP fuels the plasma membrane calcium pump critical for pancreatic cancer cell survival.

    Science.gov (United States)

    James, Andrew D; Chan, Anthony; Erice, Oihane; Siriwardena, Ajith K; Bruce, Jason I E

    2013-12-13

    Pancreatic cancer is an aggressive cancer with poor prognosis and limited treatment options. Cancer cells rapidly proliferate and are resistant to cell death due, in part, to a shift from mitochondrial metabolism to glycolysis. We hypothesized that this shift is important in regulating cytosolic Ca(2+) ([Ca(2+)]i), as the ATP-dependent plasma membrane Ca(2+) ATPase (PMCA) is critical for maintaining low [Ca(2+)]i and thus cell survival. The present study aimed to determine the relative contribution of mitochondrial versus glycolytic ATP in fuelling the PMCA in human pancreatic cancer cells. We report that glycolytic inhibition induced profound ATP depletion, PMCA inhibition, [Ca(2+)]i overload, and cell death in PANC1 and MIA PaCa-2 cells. Conversely, inhibition of mitochondrial metabolism had no effect, suggesting that glycolytic ATP is critical for [Ca(2+)]i homeostasis and thus survival. Targeting the glycolytic regulation of the PMCA may, therefore, be an effective strategy for selectively killing pancreatic cancer while sparing healthy cells.

  18. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  19. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro

    OpenAIRE

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the h...

  20. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells

    OpenAIRE

    Tang, Yuzhe; Chen, Ruibao; Huang, Yan; Li, Guodong; Huang, Yiling; Chen, Jiepeng; Duan, Lili; Zhu, Bao-Ting; Thrasher,J. Brantley; Zhang, Xu; Li, Benyi

    2014-01-01

    Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anti-cancer effect of a recently isolated natural compound Alternol in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived non-malignant cells. As assessed by trypan blue exclusion a...

  1. MET and Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gelsomino, Francesco, E-mail: francesco.gelsomino@istitutotumori.mi.it [Medical Oncology Unit 1, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milano (Italy); Rossi, Giulio [Operative Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo 71, 41124 Modena (Italy); Tiseo, Marcello [Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Viale A. Gramsci 14, 43126 Parma (Italy)

    2014-10-13

    Small-cell lung cancer (SCLC) is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  2. MET and Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Francesco Gelsomino

    2014-10-01

    Full Text Available Small-cell lung cancer (SCLC is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  3. Differential roles of leptin in regulating cell migration in thyroid cancer cells.

    Science.gov (United States)

    Cheng, Shih-Ping; Yin, Pen-Hui; Chang, Yuan-Ching; Lee, Chen-Hsen; Huang, Shih-Yuan; Chi, Chin-Wen

    2010-06-01

    Excess body weight is associated with a moderately increased risk of thyroid cancer. Adipocyte-derived hormone, leptin, has been shown to enhance cell growth and migration in many cancer types. Limited evidence suggests that leptin has direct actions on the thyroid gland, but there are no data available on the effect of leptin on thyroid cancer cells. We evaluated the action of leptin on gene expression, cell growth, cell cycle, and cell migration in anaplastic (ARO), follicular (WRO) and papillary (CGTH-W3) thyroid carcinoma cell lines. Expression of long-form leptin receptors was observed in all thyroid cancer cell lines. Leptin stimulation did not alter the expression levels of leptin, leptin receptor and sodium-iodide symporter. Cell growth and cell cycle were not changed after leptin treatment. However, leptin was able to promote cell migration of papillary thyroid cancer cells, but inhibited migration of anaplastic and follicular cancer cells. In summary, our study suggests that leptin modulates cell migration of thyroid cancer cells in a cell type-specific manner.

  4. Current advances in T-cell-based cancer immunotherapy

    Science.gov (United States)

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy. PMID:25524383

  5. Characteristics of liver cancer stem cells and clinical correlations.

    Science.gov (United States)

    Cheng, Zhuo; Li, Xiaofeng; Ding, Jin

    2016-09-01

    Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The role of proteasome inhibition in nonsmall cell lung cancer.

    Science.gov (United States)

    Escobar, Mauricio; Velez, Michel; Belalcazar, Astrid; Santos, Edgardo S; Raez, Luis E

    2011-01-01

    Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  7. The Role of Proteasome Inhibition in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mauricio Escobar

    2011-01-01

    Full Text Available Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  8. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    Science.gov (United States)

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  10. Are primary renal cell carcinoma and metastases of renal cell carcinoma the same cancer?

    Science.gov (United States)

    Semeniuk-Wojtaś, Aleksandra; Stec, Rafał; Szczylik, Cezary

    2016-05-01

    Metastasis is a process consisting of cells spreading from the primary site of the cancer to distant parts of the body. Our understanding of this spread is limited and molecular mechanisms causing particular characteristics of metastasis are still unknown. There is some evidence that primary renal cell carcinoma (RCC) and metastases of RCC exhibit molecular differences that may effect on the biological characteristics of the tumor. Some authors have detected differences in clear cell and nonclear cell component between these 2 groups of tumors. Investigators have also determined that primary RCC and metastases of RCC diverge in their range of renal-specific markers and other protein expression, gene expression pattern, and microRNA expression. There are also certain proteins that are variously expressed in primary RCCs and their metastases and have effect on clinical outcome, e.g., endothelin receptor type B, phos-S6, and CD44. However, further studies are needed on large cohorts of patients to identify differences representing promising targets for prognostic purposes predicting disease-free survival and the metastatic burden of a patient as well as their suitability as potential therapeutic targets. To sum up, in this review we have attempted to summarize studies connected with differences between primary RCC and its metastases and their influence on the biological characteristics of renal cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  12. Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    2015-01-01

    Full Text Available Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs. Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.

  13. Valproic acid enhances bosutinib cytotoxicity in colon cancer cells.

    Science.gov (United States)

    Mologni, Luca; Cleris, Loredana; Magistroni, Vera; Piazza, Rocco; Boschelli, Frank; Formelli, Franca; Gambacorti-Passerini, Carlo

    2009-04-15

    Unbalanced histone deacetylase (HDAC) hyperactivity is a common feature of tumor cells. Inhibition of HDAC activity is often associated with cancer cell growth impairment and death. Valproic acid (VPA) is a HDAC inhibitor used for the treatment of epilepsy. It has recently been recognized as a promising anticancer drug. We investigated the effects of VPA on growth and survival of colon cancer cells. VPA caused growth inhibition and programmed cell death that correlated with histone hyperacetylation. VPA modulated the expression of various factors involved in cell cycle control and apoptosis and induced caspase activation. Interestingly, VPA induced downregulation of c-Src and potentiated the cytotoxic effects of the c-Src inhibitor bosutinib, both in vitro and in vivo. The combination of sublethal doses of VPA and bosutinib led to massive apoptosis of colon cancer cells, irrespective of their genetic background. These results suggest that VPA may be employed as a positive modulator of bosutinib antitumor activity in colorectal cancer.

  14. Rhein Induces Apoptosis in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chang

    2012-01-01

    Full Text Available Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2 and control vector MCF-7 (MCF-7/VEC cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

  15. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    CERN Document Server

    Heyden, Stefanie

    2015-01-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  16. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  17. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  18. Duramycin-induced calcium release in cancer cells.

    Science.gov (United States)

    Broughton, Laura J; Crow, Chris; Maraveyas, Anthony; Madden, Leigh A

    2016-03-01

    Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner.

  19. Elasticity measurement of breast cancer cells by atomic force microscopy

    Science.gov (United States)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  20. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  1. Long-Term Surgical Complications in the Oral Cancer Patient: a Comprehensive Review. Part I

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    2010-07-01

    Full Text Available Objectives: Oral and oropharyngeal cancer remains among the top ten most common malignancies in the United States and worldwide. Over the last several decades the approach to treatment of oral cancer has changed very little with regards to primary tumour extirpation while the approach to the “at risk” lymph nodes has evolved significantly. Perhaps the most significant change in the surgical treatment of cancer is the introduction of free flap for reconstruction post resection. Despite these surgical advances, oral cancer ablation, still results in the sacrifice of several functional and aesthetic organs. The aim of this article was to provide a comprehensive review of the potential long-term complications associated with surgical treatment of oral cancer and their management.Material and Methods: The available English language literature relevant to long-term surgical complications associated with surgical treatment of oral cancer was reviewed. The potential common as well as rarer complications that may be encountered and their treatment are summarized.Results: In total 50 literature sources were obtained and reviewed. The topics covered in the first part of this review series include ablative surgery complications, issues with speech, swallowing and chewing and neurologic dysfunction.Conclusions: The early complications associated with oncologic surgery for oral cancer are similar to other surgical procedures. The potential long-term complications however are quite challenging for the oncologic team and the patient who survives oral cancer, primarily due to the highly specialized regional tissues involved in the surgical field.

  2. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    Ewelina Szliszka; Zenon P. Czuba; Bogdan Mazur; Lukasz Sedek; Andrzej Paradysz; Wojciech Krol

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  3. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  4. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...

  5. E. coli as a biological model for cancer cells

    Science.gov (United States)

    Liao, David; Lambert, Guillaume; Austin, Robert

    2010-03-01

    Uninhibited growth and invasion of healthy tissue characterize cancer. We co-cultured two strains of E. coli bacteria in a microfabricated environment to model cancer. During starvation, growth-advantage-in-stationary-phase, or GASP, cells grew to a higher population than wild-type cells. GASP cells also displaced wild-type cells from nutrient-rich chambers. When we repeated the experiment with medium depleted by wild-type cells, the peak GASP population density increased 54%, and the ``invasion,'' or displacement of wild-type cells from nutrient-rich chambers, occurred 5 hours earlier. We mathematically modeled both this increase in GASP population and this acceleration of spatial invasion by assuming that GASP cells consume detritus secreted by wild-type cells. Our experimental and model results corroborate recent caution against using tumor starvation as a cancer therapy.

  6. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    Science.gov (United States)

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  8. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  9. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  10. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  11. Isolation and characterization of spheroid cells from the HT29 colon cancer cell line.

    Science.gov (United States)

    Fan, Xinlan; Ouyang, Nengyong; Teng, Hong; Yao, Herui

    2011-10-01

    Colorectal cancer stem cells (Cr-CSCs) are involved in the growth of colon cancer, but their specific role in tumor biology, including metastasis, is still unclear. Currently, methods for sorting Cr-CSCs are based on the expression of surface markers (e.g., CD133(+), CD44(+), and aldehyde dehydrogenase 1 (ALDH1(+))); however, the specificity of these markers for Cr-CSCs is uncertain. This study aimed to develop more effective ways of isolating and purifying Cr-CSCs. Suspension culture was used for isolation of Cr-CSCs. And spheroid cells were performed by side population technology, and the putative molecular marker analysis of colorectal cancer stem cell. Migration assay and chemoresistance experiment were conducted between the adherent cells and spheroid cells. HT29 colon cancer cells grew well in suspension culture. The percentage of CD44(+) cancer cell of spheroid cells was 68 times higher than that of adherent cells (89.5% vs. 1.3%), but there was no obvious difference in the percentage of CD133(+) cells (6.25% vs. 5.6%). Moreover, it is worth noting that the percent of CD133 (+)/CD44(+) cells remarkably rose (from 0.6% to 5.4%). The expression of ALDH1 was markedly increased (7.5% vs. 20.5%) for the spheroid cells than the adherent cells. The side population within the spheroid population dramatically increased from 0.2% to 6.3%. The resistance of spheroid cells to 5-FU was higher than that of adherent cells, as was their ability to migrate in the presence of SDF-1α. Suspension culture is an effective approach for enriching Cr-CSCs and can provide an inexhaustible supply of genetically stable colon cancer stem cells for targeted Cr-CSC studies. Spheroid cell models also enable the study of colon cancer chemoresistance and metastasis and may help to elucidate the role of cancer stem cells in colon cancer.

  12. Stem Cell Based Gene Therapy in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    2014-01-01

    Full Text Available Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.

  13. Single Cell “Glucose Nanosensor” Verifies Elevated Glucose Levels in Individual Cancer Cells

    OpenAIRE

    Nascimento, Raphael A. S.; Özel, Rıfat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader

    2016-01-01

    Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucos...

  14. Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742.

    Science.gov (United States)

    Rezaie-Tavirani, Mostafa; Fayazfar, Setareh; Heydari-Keshel, Saeid; Rezaee, Mohamad Bagher; Zamanian-Azodi, Mona; Rezaei-Tavirani, Majid; Khodarahmi, Reza

    2013-01-01

    In this study, we report the effect of the essential oil of Rosa Damascena on human colon cancer cell line (SW742) and human fibroblast cells. Colon cancer is the second most common fatal malignancy. Owing to the existence of many side effects and problems related to common treatments such as surgery, chemotherapy and radiotherapy, alternative treatments are being investigated. Some herbal medicines have shown promising results against different types of cancers. Herbal medicines used have included the use naturally occurring essential oils. The essential oil of Rosa Damascena was obtained by distillation and its effect on SW742 cell-line and fibroblast cells were investigated with cell culture. The cells were cultured and different volumes of essential oil were induced to the cells. After48hincubation, cell survival was measured and using statistical analysis, the findings were evaluated and reported. This study showed that soluble part of Rosa Damascena oil increases cell proliferation in high volumes and the non-soluble component decreases cell proliferation. The effects of essential oils, such as Rosa Damascena, on cell proliferation require more thorough investigation.

  15. Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742

    Science.gov (United States)

    Rezaie-Tavirani, Mostafa; Heydari-Keshel, Saeid; Rezaee, Mohamad Bagher; Zamanian-Azodi, Mona; Rezaei-Tavirani, Majid; Khodarahmi, Reza

    2013-01-01

    Aim In this study, we report the effect of the essential oil of Rosa Damascena on human colon cancer cell line (SW742) and human fibroblast cells. Background Colon cancer is the second most common fatal malignancy. Owing to the existence of many side effects and problems related to common treatments such as surgery, chemotherapy and radiotherapy, alternative treatments are being investigated. Some herbal medicines have shown promising results against different types of cancers. Herbal medicines used have included the use naturally occurring essential oils. Patients and methods The essential oil of Rosa Damascena was obtained by distillation and its effect on SW742 cell-line and fibroblast cells were investigated with cell culture. The cells were cultured and different volumes of essential oil were induced to the cells. After48hincubation, cell survival was measured and using statistical analysis, the findings were evaluated and reported. Results This study showed that soluble part of Rosa Damascena oil increases cell proliferation in high volumes and the non-soluble component decreases cell proliferation. Conclusion The effects of essential oils, such as Rosa Damascena, on cell proliferation require more thorough investigation. PMID:24834241

  16. New high-speed cell sorting methods for stem cell sorting and breast cancer cell purging

    Science.gov (United States)

    Leary, James F.; McLaughlin, Scott R.; Hokanson, James A.; Rosenblatt, Judah I.

    1998-04-01

    An important problem in clinical medicine is that of positively selecting hematopoietic stem cells or mobilized peripheral blood stem cells for autologous bone marrow transplantation while purging it of contaminating tumor cells. Since both the stem cells to be positively selected and the tumor cells to be purged are relatively rare cells, this poses special problems for their isolation in terms of purity and yield of stem cells, with a high penalty of misclassification for contaminating tumor cells. A model system of tumor cells spiked into bone marrow or blood cells was used to validate the system. Multiparameter data mixtures of human MCF-7 breast cancer cells and human peripheral blood or bone marrow cells were first analyzed by discriminant function analysis. Mathematical methods were developed to assess the relative probabilities of misclassification. Cell identification tags, implemented as additional correlated listmode parameters not used for these analyses, were used to uniquely identify each cell type and to compare classifier results. The performance of classifier systems was also assessed using ROC (`receiver operating characteristics') analysis. Then the classification system was implemented using lookup tables allowing for real-time (in this system approximately 625 microseconds) rapid separation of these cell types. Isolated cell types, purities and yields were assessed by single-cell PCR molecular characterizations.

  17. Reprogramming to developmental plasticity in cancer stem cells.

    Science.gov (United States)

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. GOLPH2 expression in renal cell cancer

    Directory of Open Access Journals (Sweden)

    Jung Klaus

    2008-11-01

    Full Text Available Abstract Background Renal cell carcinomas (RCC are among the most common and most lethal genitourinary malignancies. GOLPH2 (golgi phosphoprotein 2, GOLM1 has recently been proposed as a biomarker for hepatocellular and prostate cancer. In this study we analysed the expression patterns and the prognostic and diagnostic value of GOLPH2 in RCC. Methods GOLPH2 protein expression was analysed by immunohistochemistry in 104 clinically well characterized RCC cases in comparison with matched normal kidney tissue and in association with clinico-pathological parameters. Statistical analyses including Kaplan Meier analyses were performed with SPSS version 15.0. Results GOLPH2 was highly expressed in normal renal tubules and in almost half of RCC with a statistically significant predominance in the papillary and chromophobe histological subtypes. No other associations with clinico-pathological parameters were detectable. The Kaplan-Meier curves showed a weak trend for unfavourable prognosis of tumours with high GOLPH2 expression, but failed significance. Conclusion GOLPH2 protein is expressed in normal renal tissue (especially in distal tubular epithelia and is down-regulated in the majority of clear cell RCC. In papillary and chromophobe RCC GOLPH2 expression is consistently present. In contrast to its diagnostic value in hepatocellular and prostatic carcinomas, a prognostic or diagnostic value of GOLPH2 in RCC appears to be unlikely.

  19. Cancer

    Science.gov (United States)

    Cancer begins in your cells, which are the building blocks of your body. Normally, your body forms ... be benign or malignant. Benign tumors aren't cancer while malignant ones are. Cells from malignant tumors ...

  20. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    OpenAIRE

    Castelli, Germana; Pelosi, Elvira; Testa, Ugo

    2017-01-01

    Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa)...

  1. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  2. Isolation and identification of a distinct side population cancer cells in the human epidermal squamous cancer cell line A431.

    Science.gov (United States)

    Geng, Songmei; Wang, Qianqian; Wang, Jianli; Hu, Zhishang; Liu, Chunchun; Qiu, Junkang; Zeng, Weihui

    2011-04-01

    Side population (SP) cells have been suggested to be multipotent cancer stem cells. To address whether SP cells exist in epidermal squamous cancer cell line A431, A431 cells dyed with Hoechst 33342 were sorted through flow cytometry. The SP cells were then analyzed by colony-forming and cell proliferation assay. Further, tumorigenicity and microarray analysis were used to compare biological difference between SP and non-SP (NSP) cells. Our results showed that SP cells existed in the A431 cell line, showing higher proliferating and colony-forming ability than NSP cells. Tumors generated from SP cells were larger than those from the NSP cells in NOD/SCID mice. The mRNA microarray profiling revealed that five cancer marker gene expressions were up-regulated and one tumor suppressor gene expression was down-regulated. These findings suggest that SP cells in A431 could contribute to self-renewal, neoplastic transformation, and cancer metastasis of human epidermal squamous cell carcinoma.

  3. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    OpenAIRE

    Kimitoshi Kohno; Noriaki Kitamura; Akihiro Kuma; Yoshihiro Yasuniwa; Takahiro Yamaguchi; Masaki Akiyama; Hiroto Izumi

    2011-01-01

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-li...

  4. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer.

    Science.gov (United States)

    Bousquet, Guilhem; El Bouchtaoui, Morad; Sophie, Tan; Leboeuf, Christophe; de Bazelaire, Cédric; Ratajczak, Philippe; Giacchetti, Sylvie; de Roquancourt, Anne; Bertheau, Philippe; Verneuil, Laurence; Feugeas, Jean-Paul; Espié, Marc; Janin, Anne

    2017-05-23

    There is growing evidence for the role of cancer stem-cells in drug resistance, but with few in situ studies on human tumor samples to decipher the mechanisms by which they resist anticancer agents.Triple negative breast cancer (TNBC) is the most severe sub-type of breast cancer, occurring in younger women and associated with poor prognosis even when treated at a localized stage.We investigated here the relationship between complete pathological response after chemotherapy and breast cancer stem-cell characteristics in pre-treatment biopsies of 78 women with triple negative breast carcinoma (TNBC).We found that chemoresistance was associated with large numbers of breast cancer stem-cells, and that these cancer stem-cells were neither proliferative nor apoptotic, but in an autophagic state related to hypoxia. Using relevant pharmacological models of patient-derived TNBC xenografts, we further investigated the role of autophagy in chemoresistance of breast cancer stem-cells. We demonstrated that hypoxia increased drug resistance of autophagic TNBC stem-cells, and showed that molecular or chemical inhibition of autophagic pathway was able to reverse chemoresistance.Our results support breast cancer stem-cell evaluation in pre-treatment biopsies of TNBC patients, and the need for further research on autophagy inhibition to reverse resistance to chemotherapy.

  5. Metabolic Plasticity in Cancer Cells: Reconnecting Mitochondrial Function to Cancer Control.

    Science.gov (United States)

    Ramanujan, V Krishnan

    2015-06-01

    Anomalous increase in glycolytic activity defines one of the key metabolic alterations in cancer cells. A realization of this feature has led to critical advancements in cancer detection techniques such as positron emission tomography (PET) as well as a number of therapeutic avenues targeting the key glycolytic steps within a cancer cell. A normal healthy cell's survival relies on a sensitive balance between the primordial glycolysis and a more regulated mitochondrial bioenergetics. The salient difference between these two bioenergetics pathways is that oxygen availability is an obligatory requirement for mitochondrial pathway while glycolysis can function without oxygen. Early observations that some cancer cells up-regulate glycolytic activity even in the presence of oxygen (aerobic glycolysis) led to a hypothesis that such an altered cancer cell metabolism stems from inherent mitochondrial dysfunction. While a general validity of this hypothesis is still being debated, a number of recent research efforts have yielded clarity on the physiological origins of this aerobic glycolysis phenotype in cancer cells. Building on these recent studies, we present a generalized scheme of cancer cell metabolism and propose a novel hypothesis that might rationalize new avenues of cancer intervention.

  6. Human Papillomavirus Is Associated with Breast Cancer in the North Part of Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Sigaroodi

    2012-01-01

    Full Text Available We have analyzed the possible relevance of HPV infection for breast cancer risk among Iranian women from north part of Iran. Among women with breast cancer, 25.9% had positive test results for HPV DNA in breast tumor samples in contrast to 2.4% of women with noncancer status (P=0.002. The infection of HPV has increased the risk of breast cancer (OR 14.247; 95% CI 1.558–130.284, P=0.019. The high-risk HPV genotypes (types 16 and 18 in samples of breast cancer patients were the predominant types (53.34%. Other genotypes detected in breast cancer were HPV-6, HPV-11, HPV-15, HPV-23, and HPV-124, and one isolate could not be genotyped compared to HPV reference sequences. While the sole detected HPV in control specimens was HPV-124. Our study reveals that HPV infection and age are the risk factors in breast cancer development in the north part of Iran.

  7. Resveratrol Inhibited Non-small Cell Lung Cancer Through Inhibiting STAT-3 Signaling.

    Science.gov (United States)

    Li, Xin; Wang, Dan; Zhao, Qing Chun; Shi, Tao; Chen, Jun

    2016-11-01

    Resveratrol has demonstrated many beneficial effects against cancers; however, the mechanism remains unclear. Non-small cell lung cancer accounts for 80% of lung cancers. The present study was designed to observe the effects and related mechanisms of resveratrol on non-small cell lung cancer in in vitro A549 cells. The anticancer effects of resveratrol were analyzed on cell viability, migration and invasion, proliferation and apoptosis. Cell viability was determined by sulphorhodamine B assays. Cell proliferation and apoptosis were determined by flow cytometry and migration and invasion by transwell chamber analysis. Expression of STAT-3 was examined by real-time polymerase chain reaction and western blot. Overexpressing vector of STAT-3 was also constructed and transfected into A549 cells to observe the effects of resveratrol on STAT-3 signaling. The results showed that resveratrol displayed a dose-dependent and time-dependent cytotoxicity action on A549 cell viability. Resveratrol also inhibited proliferation, migration and invasion and promoted apoptosis in a time-dependent manner from 0-72 hours. Further study showed that resveratrol inhibited the messenger RNA and protein expression of STAT-3, and overexpressed STAT-3 abolished the effects of resveratrol on proliferation, apoptosis, migration and invasion totally or in part. These results suggest that the anticancer effects of resveratrol are mediated by STAT-3 signaling. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  8. Antibody-mediated targeting of the transferrin receptor in cancer cells.

    Science.gov (United States)

    Luria-Pérez, Rosendo; Helguera, Gustavo; Rodríguez, José A

    Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Antibody-mediated targeting of the transferrin receptor in cancer cells

    Directory of Open Access Journals (Sweden)

    Rosendo Luria-Pérez

    2016-11-01

    Full Text Available Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf, a protein that binds its receptor (TfR1 or CD71 on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor.

  10. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  11. [Isolation and in vitro characterization of CD133(+) side population cells from laryngeal cancer cell line].

    Science.gov (United States)

    Wu, Chun-ping; Zhou, Liang; Xie, Ming; Tao, Lei; Zhang, Ming; Tian, Jie

    2011-09-01

    To investigate an approach enriching cancer stem cells (CSCs) more effectively from laryngeal cancer cell line. CD133(+)SP and CD133(-)SP subpopulation was detected and isolated from Hep-2 cell line using Hoechst33342 dye and phycoerythrin (PE)-conjugated CD133 monoclonal antibody assisted by fluorescence activated cell sorting technology. Sorted CD133(+)SP and CD133(-)SP cells were compared in CSCs-related assays including proliferation, differentiation, spheroid formation and drug sensitivity. CD133(+)SP cells accounted for a very small fraction of (0.30 ± 0.12)% in Hep-2 cell line, far less than the proportion of CD133(+) subgroup and side population subgroup, which were (3.15 ± 0.83)% and (17.1 ± 2.0)% respectively. Intriguingly, CD133(+)SP cells proliferated much faster than CD133(-)SP cells in RPMI1640 and gave rise to CD133(-)SP cells and other heterogeneous cells that formed the bulk of the tumor. In contrast, CD133(-)SP cells were not able to differentiate into CD133(+)SP cells. In serum-free medium CD133(+)SP cells grew as spherical clusters and remained floating. In addition, CD133(+)SP cells manifested the marked resistance to chemotherapy than CD133(-)SP cells. Compared with CD133(-)SP cells, CD133(+)SP subpopulation exhibited extraordinary cancer stem-like properties, were enriched for cancer stem cells more effectively and might serve as an ideal putative candidate for CSCs research in laryngeal cancer.

  12. High-dose regimen of interleukin-2 and interferon-alpha in combination with lymphokine-activated killer cells in patients with metastatic renal cell cancer

    NARCIS (Netherlands)

    W.H.J. Kruit (Wim); S.H. Goey (Swan Hoo); C.H.J. Lamers (Cor); J.W. Gratama (Jan-Willem); B. Visser (Bauke); P.I.M. Schmitz (Paul); A.M.M. Eggermont (Alexander); R.L.H. Bolhuis (Reinder); G. Stoter (Gerrit)

    1997-01-01

    textabstractSeventy-two patients with metastatic renal cell cancer were treated with the combination of high-dose interleukin-2 (IL2), interferon-alpha (IFNa), and lymphokine-activated killer cells (LAK). Seventeen patients were entered in a feasibility part of the study (protocol 1) and 55 in an

  13. Characterization of side population cells isolated from the colon cancer cell line SW480.

    Science.gov (United States)

    Xiong, Binghong; Ma, Li; Hu, Xiang; Zhang, Caiquan; Cheng, Yong

    2014-09-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many types of cell lines and tissues have demonstrated the presence of SP cells, including colon cancer cell lines. This study aimed to identify cancer stem cells (CSCs) in the SP of the colon cancer cell line SW480. SP cells were isolated by fluorescence-activated cell sorting (FACS), followed by serum-free medium (SFM) culture. The self-renewal, differentiated progeny, clone formation, proliferation, invasion ability, cell cycle, chemosensitivity and tumorigenic properties in SP and non-SP (NSP) cells were investigated through in vitro culture and in vivo serial transplantation. The expression profiles of ATP-binding cassette (ABC) protein transporters and stem cell-related genes were examined by RT-PCR and western blot analysis. The human colon cancer cell lines SW480, Lovo and HCT116 contain 1.1 ± 0.10, 0.93 ± 0.11 and 1.33 ± 0.05% SP cells, respectively. Flow cytometry analysis revealed that SP cells could differentiate into SP and NSP cells. SP cells had a higher proliferation potency and CFE than NSP cells. Compared to NSP cells, SP cells were also more resistant to CDDP and 5-FU, and were more invasive and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA and protein expression of ABCG2, MDR1, OCT-4, NANOG, SOX-2, CD44 and CD133. SP cells isolated from human colon cancer cell lines harbor CSC properties that may be related to the invasive potential and therapeutic resistance of colon cancer.

  14. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic cha