WorldWideScience

Sample records for cancer cells over-expressing

  1. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  2. Effects of resistin-like molecule β over-expression on gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Chun-Lei Yang; Teng Qi; Meng Qi; Ling Tong; Qiang-Song Tong

    2012-01-01

    AIM:To investigate the effects of resistin-like molecule β (RELMβ) over-expression on the invasion,metastasis and angiogenesis of gastric cancer cells.METHODS:Human RELMβ encoding expression vector was constructed and transfected into the RELMβ lowly-expressed gastric cancer cell lines SGC-7901 and MKN-45.Gene expression was measured by Western blotting,reverse transcription polymerase chain reaction (PCR) and real-time quantitative PCR.Cell proliferation was measured by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry,colony formation and 5-ethynyl-20-deoxyuridine incorporation assays.The in vitro migration,invasion and metastasis of cancer cells were measured by cell adhesion assay,scratch assay and matrigel invasion assay.The angiogenic capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS:Transfection of RELMβ vector into SGC-7901 and MKN-45 cells resulted in over-expression of RELMβ,which did not influence the cellular proliferation.However,over-expression of RELMβ suppressed the in vitro adhesion,invasion and metastasis of cancer cells,accompanied by decreased expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.Moreover,transfection of RELMβ attenuated the expression of vascular endothelial growth factor and in vitro angiogenic capabilities of cancer cells.CONCLUSION:Over-expression of RELMβ abolishes the invasion,metastasis and angiogenesis of gastric cancer cells in vitro,suggesting its potentials as a novel therapeutic target for gastric cancer.

  3. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    Science.gov (United States)

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  4. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation

    Science.gov (United States)

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-01-01

    ABSTRACT The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  5. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  6. MECHANISMS OF MRP OVER-EXPRESSION IN 4 HUMAN LUNG-CANCER CELL-LINES AND ANALYSIS OF THE MRP AMPLICON

    NARCIS (Netherlands)

    EIJDEMS, EWHM; DEHAAS, M; COCOMARTIN, JM; OTTENHEIM, CPE; ZAMAN, GJR; DAUWERSE, HG; BREUNING, MH; TWENTYMAN, PR; BORST, P; BAAS, F

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer c

  7. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2

    Directory of Open Access Journals (Sweden)

    Quadros Edward V

    2009-05-01

    Full Text Available Abstract Background Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. Methods Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM, or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. Results There was a high correlation of cell growth with ATP concentration (r = 0.948 in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p Conclusion Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

  8. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a

    Science.gov (United States)

    Villegas-Ruiz, Vanessa; Juárez-Méndez, Sergio; Pérez-González, Oscar A; Arreola, Hugo; Paniagua-García, Lucero; Parra-Melquiadez, Miriam; Peralta-Rodríguez, Raúl; López-Romero, Ricardo; Monroy-García, Alberto; Mantilla-Morales, Alejandra; Gómez-Gutiérrez, Guillermo; Román-Bassaure, Edgar; Salcedo, Mauricio

    2014-01-01

    In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC. PMID:24817935

  9. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over......Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...

  10. Effects of Smac gene over-expression on the radiotherapeutic sensitivities of cervical cancer cell line HeLa

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; XIONG Zhou-fang; ZHU Jian-wen; WANG Ze-hua

    2005-01-01

    Background The second mitochondria-derived activator of caspases (Smac) is a novel proapoptotic gene, which plays an important role in the apoptosis-inducing effects of irradiation on tumor cells. The purpose of this study was to investigate the effects of extrinsic Smac gene transfer and its over-expression in radiotherapeutic sensitivities of cervical cancer cells. Methods After the Smac gene was transferred into the cervical cancer cell line HeLa, subcloned cells were obtained by persistent G418 selection. Cellular Smac gene expression was detected by RT-PCR and Western blot, while in vitro cell viabilities were detected by trypan blue staining assay. After treatment with X-ray irradiation, cellular radiotherapeutic sensitivities were investigated by tetrazolium bromide colorimetry. Cellular apoptosis and its rate were determined by electronic microscopy, annexin V-FITC and propidium iodide staining flow cytometry. The expression and activities of cellular caspase-3 were assayed by Western blot and colorimetry. Results Smac mRNA and protein levels in HeLa/Smac cells and the selected subclone cell line of cervical cancer were significantly higher than those of HeLa (P0.05). However, after irradiation with 8 Gy X-ray, growth activities of HeLa/Smac were reduced by 22.42% (P<0.01). When compared with those of HeLa, partial HeLa/Smac cells presented characteristic morphological changes of apoptosis under electronic microscope, with higher apoptosis rates (16.4% vs. 6.2%, P<0.01); the caspase-3 expression levels in HeLa/Smac cells were improved significantly (P<0.01), while its activities were increased by 3.42 times (P<0.01).Conclusions Stable transfer of the extrinsic Smac gene and its over-expression in cervical cancer cell line could significantly enhance the expression and activities of cellular caspase-3 and ameliorate apoptosis-inducing effects of irradiation on cancer cells, which was a novel strategy to improve radiotherapeutic effects on cervical cancer.

  11. The canine prostate cancer cell line CHP-1 shows over-expression of the co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α.

    Science.gov (United States)

    Azakami, D; Nakahira, R; Kato, Y; Michishita, M; Kobayashi, M; Onozawa, E; Bonkobara, M; Kobayashi, M; Takahashi, K; Watanabe, M; Ishioka, K; Sako, T; Ochiai, K; Omi, T

    2017-06-01

    Although androgen therapy resistance and poor clinical outcomes are seen in most canine prostate cancer cases, there are only a few tools for analysing canine prostate cancer by using a cell biological approach. Therefore, to evaluate androgen-independent neoplastic cell growth, a new canine prostate cancer cell line (CHP-1) was established in this study. CHP-1 over-expressed the co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is over-expressed in human androgen-independent prostate cancer. The CHP-1 xenograft also showed SGTA over-expression. Although CHP-1 shows poor androgen receptor (AR) signalling upon dihydrotestosterone stimulation, forced expression of AR enabled evaluation of AR signalling. Taken together, these results suggest that CHP-1 will be a useful model for investigating the pathogenesis of androgen-dependent and androgen-independent canine prostate cancer. © 2016 John Wiley & Sons Ltd.

  12. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150.

  13. The over-expression of FGFR4 could influence the features of gastric cancer cells and inhibit the efficacy of PD173074 and 5-fluorouracil towards gastric cancer.

    Science.gov (United States)

    Li, Jingjing; Ye, Yanwei; Wang, Min; Lu, Lisha; Han, Chao; Zhou, Yubing; Zhang, Jingmin; Yu, Zujiang; Zhang, Xiefu; Zhao, Chunlin; Wen, Jianguo; Kan, Quancheng

    2016-05-01

    The aim was to investigate the function of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the treatment value of agent targeted to FGFR4. Function assays in vitro and in vivo were performed to investigate the discrepancy of biological features among the GC cells with different expression of FGFR4. GC cells were treated with the single and combination of PD173074 (PD, an inhibitor of FGFR4) and 5-fluorouracil (5-Fu). The invasion ability were stronger, and the apoptosis rates were lower in MGC803 and BGC823 cells treated with FGFR4-LV5 (over-expression of FGFR4 protein) (P FGFR4-LV5 group was less inhibited compared with control group (P FGFR4-LV5 compared with control group (P FGFR4-LV5 group were much more increased (P FGFR4 enhanced the proliferation ability of GC in vitro and in vivo. The combination of 5-Fu and PD exerted synergetic effect in weakening the proliferation ability and promoting apoptosis in GC cells, while the over-expression of FGFR4 might inhibit the efficacy of two drugs.

  14. Over-expression of TSC-22 (TGF-beta stimulated clone-22) markedly enhances 5-fluorouracil-induced apoptosis in a human salivary gland cancer cell line.

    Science.gov (United States)

    Uchida, D; Kawamata, H; Omotehara, F; Miwa, Y; Hino, S; Begum, N M; Yoshida, H; Sato, M

    2000-06-01

    We have recently isolated TSC-22 (transforming growth factor-beta-stimulated clone-22) cDNA as an anticancer, drug-inducible (with vesnarinone) gene in a human salivary gland cancer cell line, TYS. We have also reported that TSC-22 negatively regulates the growth of TYS cells and that down-regulation of TSC-22 in TYS cells plays a major role in salivary gland tumorigenesis (Nakashiro et al, 1998). In this study, we transfected TYS cells with an expression vector encoding the TSC-22-GFP (green fluorescent protein) fusion protein, and we established TSC-22-GFP-expressing TYS cell clones. Next, we examined (a) the subcellular localization of the fusion protein, (b) the sensitivity of the transfectants to several anticancer drugs (5-fluorouracil, cis-diaminedichloroplatinum, peplomycin), and (c) induction of apoptotic cell death in the transfectants by 5-fluorouracil treatment. The TSC-22-GFP fusion protein was clearly localized to the cytoplasm, but not to the nucleus. Over-expression of the TSC-22-GFP fusion protein did not affect cell growth, but significantly increased the sensitivity of the cells to the anticancer drugs (p way ANOVA). Furthermore, over-expression of the TSC-22-GFP fusion protein markedly enhanced 5-fluorouracil-induced apoptosis. These findings suggest that over-expression of TSC-22-GFP protein in TYS cells enhances the chemosensitivity of the cells via induction of apoptosis.

  15. Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Stacker Steven A

    2010-07-01

    Full Text Available Abstract Background It has been hypothesised that increased VEGF-D expression may be an independent prognostic factor for endometrial cancer progression and lymph node metastasis; however, the mechanism by which VEGF-D may promote disease progression in women with endometrial cancer has not been investigated. Our aim was to describe the distribution of lymphatic vessels in mouse uterus and to examine the effect of VEGF-D over-expression on these vessels in a model of endometrial cancer. We hypothesised that VEGF-D over-expression would stimulate growth of new lymphatic vessels into the endometrium, thereby contributing to cancer progression. Methods We initially described the distribution of lymphatic vessels (Lyve-1, podoplanin, VEGFR-3 and VEGF-D expression in the mouse uterus during the estrous cycle, early pregnancy and in response to estradiol-17beta and progesterone using immunohistochemistry. We also examined the effects of VEGF-D over-expression on uterine vasculature by inoculating uterine horns in NOD SCID mice with control or VEGF-D-expressing 293EBNA tumor cells. Results Lymphatic vessels positive for the lymphatic endothelial cell markers Lyve-1, podoplanin and VEGFR-3 profiles were largely restricted to the connective tissue between the myometrial circular and longitudinal muscle layers; very few lymphatic vessel profiles were observed in the endometrium. VEGF-D immunostaining was present in all uterine compartments (epithelium, stroma, myometrium, although expression was generally low. VEGF-D immunoexpression was slightly but significantly higher in estrus relative to diestrus; and in estradiol-17beta treated mice relative to vehicle or progesterone treated mice. The presence of VEGF-D over-expressing tumor cells did not induce endometrial lymphangiogenesis, although changes were observed in existing vessel profiles. For myometrial lymphatic and endometrial blood vessels, the percentage of profiles containing proliferating

  16. Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival

    DEFF Research Database (Denmark)

    Skov, Birgit Guldhammer; Sode, Birgitte M Fischer; Pappot, H.

    2008-01-01

    BACKGROUND: Adenocarcinoma of the lung is more frequent in females than in males and the association with smoking is less pronounced than for the other histological subtypes of lung cancer. Oestrogen induction of cell proliferation has been found in breast adenocarcinomas, and since oestrogen...... receptors (ER) have been demonstrated in lung tumours, a similar role of oestrogens in the development of lung cancer has been suggested. We examined the expression of ERalpha, ERbeta and progesterone in a well defined cohort of patients with NSCLC with more than 15 years of follow up, and related...... of the clinical variables, including survival. None of the 104 patients had tumours positive for progesterone. CONCLUSION: The presence of ERbeta in a tumour seems to be a positive prognostic factor for men with non-small cell lung cancer. The finding confirms another recent study and suggests that the relation...

  17. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  18. The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the La-specific antibody APOMAB®.

    Science.gov (United States)

    Staudacher, Alexander H; Al-Ejeh, Fares; Fraser, Cara K; Darby, Jocelyn M; Roder, David M; Ruszkiewicz, Andrew; Manavis, Jim; Brown, Michael P

    2014-01-04

    The lupus-associated (La)-specific murine monoclonal antibody DAB4 (APOMAB®) specifically binds dead cancer cells. Using DAB4, we examined La expression in human lung cancer samples to assess its suitability as a cancer-selective therapeutic target. We evaluated the safety and effectiveness of radioimmunotherapy (RIT) using DAB4 radiolabeled with Lutetium-177 (177Lu) in the murine Lewis Lung (LL2) carcinoma model, and determined whether combining RIT with DNA-damaging cisplatin-based chemotherapy, a PARP inhibitor (PARPi), or both alters treatment responses. The expression of La mRNA in human lung cancer samples was analysed using the online database Oncomine, and the protein expression of La was examined using a TissueFocus Cancer Survey Tissue Microarray. The binding of DAB4 to cisplatin-treated LL2 cells was assessed in vitro. LL2 tumour-bearing mice were administered escalating doses of 177Lu-DAB4 alone or in combination with chemotherapy, and tumour growth and survival measured. Biodistribution analysis was used to determine tissue uptake of 177Lu-DAB4 or its isotype control (177Lu-Sal5), when delivered alone or after chemotherapy. PARPi (rucaparib; AG-014699) was combined with chemotherapy and the effects of combined treatment on tumour growth, tumour cell DNA damage and death, and intratumoural DAB4 binding were also analysed. The effect of the triple combination of PARPi, chemotherapy and 177Lu-DAB4 on tumour growth and survival of LL2 tumour-bearing mice was tested. La was over-expressed at both mRNA and protein levels in surgical specimens of human lung cancer and the over-expression of La mRNA conferred a poorer prognosis. DAB4 bound specifically to cisplatin-induced dead LL2 cells in vitro. An anti-tumour dose response was observed when escalating doses of 177Lu-DAB4 were delivered in vivo, with supra-additive responses observed when chemotherapy was combined with 177Lu-DAB4. Combining PARPi with chemotherapy was more effective than chemotherapy alone

  19. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  20. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com [Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University (China); Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences (China); Ma, Qunfeng [Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences (China); Zhang, Bo [Department of Pathology, Affiliated Hospital of Academy of Military Medical Sciences (China); Jiang, Hong [College of Life Sciences and Bioengineering, Beijing Jiaotong University (China); Zhang, Zhipei; Wang, Yunjie [Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University (China)

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  1. Tissue factor over-expression by human pancreatic cancer cells BXPC3 is related to higher prothrombotic potential as compared to breast cancer cells MCF7.

    Science.gov (United States)

    Gerotziafas, Grigoris T; Galea, Vassiliki; Mbemba, Elisabeth; Khaterchi, Amir; Sassi, Mouna; Baccouche, Hela; Prengel, Claudie; van Dreden, Patrick; Hatmi, Mohamed; Bernaudin, Jean François; Elalamy, Ismail

    2012-06-01

    Cancer histology influences the risk of venous thromboembolism and tissue factor (TF) is the key molecule in cancer-induced hypercoagulability. We investigated the relation between TF expression by pancreatic and breast cancer cells (BXPC3 and MCF7 respectively) and their capacity to trigger in vitro thrombin generation in normal human plasma. Flow cytometry and Western blot analysis for TF expression were performed using murine IgG1 monoclonal antibody against human TF. Real-time PCR for TFmRNA was also performed. Activity of TF expressed by cancer cells was measured with a specific chromogenic assay. Thrombin generation in PPP was assessed using calibrated automated thrombogram. Cancer cells were added to platelet poor plasma from healthy volunteers. In separate experiments cells were incubated with the anti-TF antibody at concentration that completely neutralized the activity of recombinant human TF on thrombin generation. BXPC3 cells expressed significantly higher amounts of functional TF as compared to MCF7 cells. Incubation of BXPC3 and MCF7 cells with PPP resulted in acceleration of the initiation phase of thrombin generation. BXPC3 cells manifested higher procoagulant potential than MCF7 cells. The incubation of BXPC3 or MCF7 cells with the anti-TF monoclonal antibody which resulted in reversal of their effect on thrombin generation. The present study establishes a link between the amount of TF expressed by cancer cells with their procoagulant activity. Both studied types of cancer cells trigger thrombin generation but they have different procoagulant potential. The procoagulant activity of BXPC3 and MCF7 cells is related to the amount of TF expressed. Kinetic parameters of thrombogram are the most relevant for the detection of the TF-dependent procoagulant activity of cancer cells. TF expression is one of the mechanisms by which cancer cells manifest their procoagulant potential but it is not the unique one. The present experimental model will allow the

  2. [Establishment of breast cancer MDA-MB-231 cell line stably over-expressing human TOX high mobility group box family member 3].

    Science.gov (United States)

    Han, Cuicui; Yue, Liling; Yang, Ying; Jian, Baiyu; Ma, Liwei; Liu, Jicheng

    2014-11-01

    To construct the lentiviral expression vector of human TOX high mobility group box family member 3 (TOX3) gene and the MDA-MB-231 cell line which stably over-expresses TOX3 gene. TOX3 gene was synthesized by the gene synthesis method and amplified by PCR, and then cloned into pLVEF-1a/GFP-Puro vector to construct pLVEF-1a/GFP-Puro-TOX3 lentiviral vector. After restriction enzyme analysis and sequence identification, the lentiviral vector was packaged and the titer was detected. The human breast cancer MDA-MB-231 cells were transfected with the recombinant lentiviral vector and cultured selectively by puromycin to acquire stably transfected cells. MDA-MB-231 cells which expressed GFP were observed by fluorescence microcopy. And the expression levels of TOX3 mRNA and protein in transfected MDA-MB-231 cells were detected by real-time quantitative PCR(qRT-PCR) and Western blotting, respectively. Restriction enzyme digestion and sequence analysis demonstrated that the lentiviral expression vectors of pLVEF-1a/GFP-Puro and pLVEF-1a/GFP-Puro-TOX3 were successfully constructed, and the viral titers were respectively 2×10(8) TU/mL and 1×10(8) TU/mL after lentiviral packaging. And after being transfected, more than 95% cells expressed GFP under a fluorescence microscope. The results of qRT-PCR and Western blotting showed that, when compared with the MDA-MB-231-NC negative control group, the expression of TOX3 mRNA and protein significantly increased in the MDA-MB-231-TOX3 group. The study successfully constructed lentiviral expression vector of TOX3 gene and obtained MDA-MB-231 cell line stably over-expressing TOX3 gene by transfection with the recombinant vector.

  3. Over-expression of small ubiquitin-like modifier proteases 1 predicts chemo-sensitivity and poor survival in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Mu Juwei; Zuo Yong; Yang Wenjing; Chen Zhaoli; Liu Ziyuan; Tu Jun; Li Yan

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors.Despite the advances in therapy over the years,its mortality remains high.The aim of this study was to evaluate the expression of small ubiquitin-like modifier (SUMO) proteases 1 (SENP1) in NSCLC tissues and its role in the regulation of vascular endothelial growth factor (VEGF) expression.We also investigated the association between the expression level of SENP1 and the clinicopathological features and survival of the patients.Methods A SENP1 small interfering RNA (siRNA) was constructed and transfected into the NSCLC cells.VEGF gene expression was analyzed by real-time polymerase chain reaction (RT-PCR).Immunohistochemistry staining was used to assess the expression of SENP1 in 100 NSCLC patients and its association with the clinicopathological features and survival was analyzed.Results VEGF expression was significantly higher in NSCLC tissues than in normal lung tissues.Inhibition of SENP1 by siRNA was associated with decreased VEGF expression.SENP1 was over-expressed in 55 of the 100 NSCLC samples (55%) and was associated with a moderate and low histological tumor grade (3.6%,38.2%,and 58.2% in high,moderate and low differentiated tumors,respectively,P=0.046),higher T stage (10.9% in T1,and 89.1% in T2 and T3 tumor samples,P <0.001)and TNM stage (10.9% in stage Ⅰ,and 89.1% in stages Ⅱ and Ⅲ tumor samples,P <0.001).The rate of lymph node metastasis was significantly higher in the SENP1 over-expression group (76.4%) than that in the SENP1 low expression group (33.3%,P <0.001).Sixty three patients received postoperative chemotherapy,including 34 with SENP1 over-expression and 29 with SENP1 low expression.Among the 34 patients with SENP1 over-expression,22 (64.7%) patients developed recurrence or metastasis,significantly higher than those in the low expression group 27.6% (8/29) (P=0.005).Multivariate Cox regression analysis showed that lymph

  4. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  5. Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells

    Directory of Open Access Journals (Sweden)

    Lyu Kevin W

    2010-04-01

    Full Text Available Abstract Background Survivin is a dual functioning protein. It inhibits the apoptosis of cancer cells by inhibiting caspases, and also promotes cancer cell growth by stabilizing microtubules during mitosis. Since the molecular chaperone Hsp90 binds and stabilizes survivin, it is widely believed that down-regulation of survivin is one of the important therapeutic functions of Hsp90 inhibitors such as the phase III clinically trialed compound 17-AAG. However, Hsp90 interferes with a number of molecules that up-regulate the intracellular level of survivin, raising the question that clinical use of Hsp90 inhibitors may indirectly induce survivin expression and subsequently enhance cancer anti-drug responses. The purpose of this study is to determine whether targeting Hsp90 can alter survivin expression differently in different cancer cell lines and to explore possible mechanisms that cause the alteration in survivin expression. Results Here, we demonstrated that Hsp90 inhibitors, geldanamycin and 17-AAG, induced the over-expression of survivin in three different human cancer cell lines as shown by Western blotting. Increased survivin mRNA transcripts were observed in 17-AAG and geldanamycin-treated HT-29 and HONE-1 cancer cells. Interestingly, real-time PCR and translation inhibition studies revealed that survivin was over-expressed partially through the up-regulation of protein translation instead of gene transcription in A549 cancer cells. In addition, 17-AAG-treated A549, HONE-1 and HT-29 cells showed reduced proteasomal activity while inhibition of 26S proteasome activity further increased the amount of survivin protein in cells. At the functional level, down-regulation of survivin by siRNA further increased the drug sensitivity to 17-AAG in the tested cancer cell lines. Conclusions We showed for the first time that down-regulation of survivin is not a definite therapeutic function of Hsp90 inhibitors. Instead, targeting Hsp90 with small

  6. Aberrantly Over-Expressed TRPM8 Channels in Pancreatic Adenocarcinoma: Correlation with Tumor Size/Stage and Requirement for Cancer Cells Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2014-05-01

    Full Text Available The transient receptor potential melastatin-subfamily member 8 (TRPM8 channels control Ca2+ homeostasis. Recent studies indicate that TRPM8 channels are aberrantly expressed and required for cellular proliferation in pancreatic adenocarcinoma. However, the functional significance of TRPM8 in pancreatic tissues is mostly unknown. The objectives of this study are to examine the expression of TRPM8 in various histopathological types of pancreatic tissues, determine its clinical significance in pancreatic adenocarcinoma, and investigate its functional role in cancer cells invasion. We present evidence that, in normal pancreatic tissues, anti-TRPM8 immunoreactivity is detected in the centroacinar cells and the islet endocrine cells. In pre-malignant pancreatic tissues and malignant neoplasms, TRPM8 is aberrantly expressed to variable extents. In the majority of pancreatic adenocarcinoma, TRPM8 is expressed at moderate or high levels, and anti-TRPM8 immunoreactivity positively correlates with the primary tumor size and stage. In the pancreatic adenocarcinoma cell lines that express relatively high levels of TRPM8, short hairpin RNA-mediated interference of TRPM8 expression impaired their ability of invasion. These data suggest that aberrantly expressed TRPM8 channels play contributory roles in pancreatic tumor growth and metastasis, and support exploration of TRPM8 as a biomarker and target of pancreatic adenocarcinoma.

  7. RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Qiang Zhang; Yunxiao Meng; Lei Zhang; Jie Chen; Dahai Zhu

    2009-01-01

    Protein ubiquitination by E3 ubiquitin ligases plays an important role in cancer development. In this study, we provide experimental evidence that a RING-finger-containing protein RNF13 is an ER/Golgi membrane-associated E3 ubiquitin ligase and its RING finger domain is required for the ubiquitin iigase activity, lmmunohistochemical analysis of pancreatic ductal adenocarcinoma (PDAC) and paracancerous normal tissues from 72 patients documented RNF13 over-expression in 30 tumor samples (41.7%, 30/72), and its expression was significantly associated with histological grading (P= 0.024). In addition, RNFI3 was detected in precancerous lesions: tubular complexes in chronic pancreatitis (CP) and pancreatic intraepithelial neoplasia (PanlN) (79.3%, 23/29 and 62.8%, 22/35, respectively). Moreover, RNF13 staining was significantly correlated with Tenascin-C expression (P = 0.004) in PDAC samples, further supporting the role of RNF13 in cancer progression. Over-expression of wild type but not RING domain-mutant RNF13 in pancreatic MiaPaca-2 cancer cells increased invasive potential and gelatinolytic activity by matrix metalloproteinase-9. Taken together, these findings reveal that RNF13 is a novel E3 ubiquitin ligase involved in pancreatic carcinogenesis; ubiqui-tin-mediated modification of proteins by RNF13 may participate in pancreatic cancer development.

  8. Over-expression of EGFR in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    BO Ai-hua; HOU Jin-chao; LAN Yong-hao; TIAN Ya-ting; ZHANG Jun-yan

    2008-01-01

    Objective:To explore the relationship of overexpression of epidermal growth factor receptor(EGFR)in occurrence,development and treatment of breast cancer. Methods:Samples of 46 breast adenoma tissues and 86 breast cancer tissues were regularly dehydrate-fixed,embedded in paraffin,sliced in to 5 μm thick,stained with SABC immunohistochemistry and coloured with DAB. Results:The positive staining of EGFR was shown as brown- yellow and distributed in cytoplasm.The positive rates in the tissues of breast adenosis and breast cancer were 17.04%(6/46)and 56.98%(49/86)respectively.The positive rates of EGFR in the tissue of invasive ductal carcinoma was 64.49%(41/59),which was significantly higher than that in in situ carcinoma(P<0.05).The positive rate of lymph metastasis group was higher than that in non-lymph metastasis group (P<0.05). Conclusion:The overexpression of EGFR was related with occurrence,lymph metastasis and pathologic types of breast cancer.The examination of EGFR in the breast cancer can serve as a guidance for target chemotherapy.

  9. HER3 over-expression and overall survival in gastrointestinal cancers.

    Science.gov (United States)

    Wang, Yadong; Yang, Haiyan; Duan, Guangcai

    2015-12-15

    Published studies on the association between human epidermal factor receptor 3 (HER3) expression and overall survival (OS) in gastrointestinal cancers have yielded conflicting results. The aim of this study was to explore the association of HER3 over-expression with OS in gastrointestinal cancers. A systematic search was performed through Medline/PubMed, Embase, Science Direct and Elsevier. The summary odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the strength of the association. Overall, we observed that HER3 over-expression was associated with worse OS at five years (OR = 1.38, 95% CI: 1.04-1.82); however, HER3 over-expression was not associated with worse OS at three years (OR = 1.33, 95% CI: 0.97-1.84). The cumulative meta-analysis showed similar results. In subgroup analyses by tumor type, HER3 over-expression in gastric cancers was associated with worse OS at both three years (OR = 1.69, 95% CI: 1.28-2.25) and five years (OR = 1.74, 95% CI: 1.26-2.41). In conclusion, our results suggest that HER3 over-expression may be associated with worse overall survival in gastric cancers. Well-designed studies with a large sample size are required to further confirm our findings.

  10. HER2 over-expression and response to different chemotherapy regimens in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jin ZHANG; Yan LIU

    2008-01-01

    Purpose: To exam the relationship between HER2 over-expression and different adjuvant chemotherapies in breast cancer. Patients and Methods: A total of 1625 primary breast cancer patients who received post-surgery adjuvant chemotherapy in Tianjin Cancer Hospital, China, from July 2002 to November 2005 were included in the study. Among them, 600 patients were given CMF (CTX+MTX+5-Fu) regimen, 600 given CEF (CTX+E-ADM+5-Fu) regimen, and 425 given anthracyclines plus taxanes regimen, with mean follow-up time of 42 months. Results: In CMF treatment group, the 3-year disease free survival (DFS)in HER2 over-expressed patients was lower than that of the HER2-negative ones (89.80% vs 91.24%, P=0.0348); in node-positive subgroup, the 3-year DFS was 84.72% in HER2 over-expressed patients, and 90.18% in the HER-2-negative ones (P=0.0271).Compared to CMF regimen, anthracyclines and anthracyclines plus taxanes regimens are more effective (P<0.05) in node-positive HER2 over-expression than those in the node-negative. Conclusion: HER2 over-expression is an independent index for predicting poor prognosis and short DFS for breast cancer patients. HER2 over-expressed patients are resistant to CMF regimen chemotherapy, but sensitive to anthracyclines-based or anthracyclines plus taxanes regimen. HER2 expression can be taken as a marker for therapies in breast cancer.

  11. Over-expression of hypoxia-inducible factor 1 alpha increases angiogenesis of LNCaP cells

    Institute of Scientific and Technical Information of China (English)

    Yili Han; Dalin He; Yong Luo; Hepeng Cheng; Guangfeng Zhu

    2007-01-01

    Objective:To evaluate the effect of HIF-1 α over-expression on angiogenesis in human prostate cancer cells. Methods:LNCaP cells(a human prostate cancer cell line) were transfected with the recombinant plasmid pcDNA3.1(-)-HIF-1α with Lipofectamine 2000 system. The positive clones were selected by G418 being further confirmed by Western blot and immunofluorescence. The expression levels of VEGF, iNOS and Ang- Ⅱ were determined. Results:The expression of HIF-1α in the LNCaP/HIF1α cells was significantly increased in transfected cells, which induced the up-regulation of VEGF, iNOS, whereas Ang- Ⅱ expression remained un- changed. Conclusion :Over-expression of HIF-1α can induce angiogenesis proteins and may improve the angiogenesis potency of prostate cancer.

  12. Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2014-03-01

    Full Text Available The platelet-derived growth factor-D (PDGF-D was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001, and high level of PDGF-D was correlated with late stage (p = 0.003, deep myometrium invasion (p < 0.001 and lympha vascular space invasion (p = 0.006. In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we

  13. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Tiantian

    2010-05-01

    Full Text Available Abstract Background Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT gene, a key component of the telomerase complex and its expression in gastric cancer. Results Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. Conclusions The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.

  14. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    Full Text Available BACKGROUND: Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis. SIGNIFICANCE: Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  15. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells

    Science.gov (United States)

    Panula, Sarita; Reda, Ahmed; Stukenborg, Jan-Bernd; Ramathal, Cyril; Sukhwani, Meena; Albalushi, Halima; Edsgärd, Daniel; Nakamura, Michiko; Söder, Olle; Orwig, Kyle E.; Yamanaka, Shinya; Reijo Pera, Renee A.; Hovatta, Outi

    2016-01-01

    The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo. PMID:27768780

  16. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer.

    Science.gov (United States)

    McFadyen, M C; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-07-20

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P = 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary.

  17. Over-expression of LPTS-L in hepatocellular carcinoma cell line SMMC-7721 induces crisis

    Institute of Scientific and Technical Information of China (English)

    Cheng Liao; Mu-Jun Zhao; Jing Zhao; Di Jia; Hai Song; Zai-Ping Li

    2002-01-01

    AIM: To evaluate the function of the longer transcripts LPTS-Lin hepatocellular carcinoma cell line SMMC-7721.METHODS: SMMC-7721 cells were transfected with LPTSL expression construct and stably transfected cells were selected by G418. Multiple single clones formed and were checked for their phenotype. In the study of the effect on telomerase activity of LPTS-Lin vitro, GST-LPTS-L fusion protein was expressed in E.coli and purified by glutathioneagarose column. Telomeric repeat amplification protocol (TRAP) assays were performed to study the influence of telomerase activity in SMMC-7721 cells.RESULTS: Over-expression of LPTS-L induced SMMC-7721 cells into crisis. LPTS-L could inhibit the telomerase activity in SMMC-7721 cellsin vitro.CONCLUSION: LPTS-L is a potent telomeraseinhibitor. Over-expression of LPTS-L can induce hepatoma cells into crisis due to the reduction of telomerase activity.

  18. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiying [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Newman, Donna R. [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Bonner, James C. [Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Sannes, Philip L., E-mail: philip_sannes@ncsu.edu [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States)

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  19. Over-expressed and truncated midkines promote proliferation of BGC823 cells in vitro and tumor growth in vivo

    Institute of Scientific and Technical Information of China (English)

    Qing-Ling Wang; Hui Wang; Shu-Li Zhao; Ya-Hong Huang; Ya-Yi Hou

    2008-01-01

    AIM: To determine whether midkine (MK) and its truncated form (tMK) contribute to gastric tumorigenesis using in vitro and in vivo models.METHODS: Human MK and tMK plasmids were constructed and expressed in BGC823 (a gastric adenocarcinoma cell line) to investigate the effect of over-expressed MK or tMK on cell growth and turmorigenesis in nude mice.RESULTS: The growth of MK-transfected or tMK-transfected cells was significantly increased compared with that of the control cells, and tMK-transfected cells grew more rapidly than MK-transfected cells. The number of colony formation of the cells transfected with MK or tMK gene was larger than the control cells. In nude mice injected with MK-transfected or tMK-transfected cells, visible tumor was observed earlier and the tumor tissues were larger in size and weight than in control animals that were injected with cells without the transfection of either genes.CONCLUSION: Over-expressed MK or tMK can promote human gastric cancer cell growth in vitro and in vivo, and tMK has greater effect than MK. tMK may be a more promising gene therapeutic target compared with MK for treatment of malignant tumors.

  20. Prognosis of HER2 over-expressing gastric cancer patients with liver metastasis

    Institute of Scientific and Technical Information of China (English)

    Hai-Zhen Dang; Yang Yu; Shun-Chang Jiao

    2012-01-01

    AIM:To study the risk factors for liver metastasis and the prognosis in patients with human epidermal growth factor receptor 2 (HER2) over-expressing gastric cancer (GC).METHODS:A total of 84 GC patients recruited from the General Hospital of the People's Liberation Army (PLA) between 2003 and 2010 were randomly enrolled in this study.HER2 expression was detected by immunohistochemistry in 84 GC patients with liver metastases.The study group consisted of 66 men and 18 women,with an average age of 54 years (range:19-74years).Liver metastasis was diagnosed by magnetic resonance imaging or computed tomography.Patients were followed-up and predictive factors of liver metastasis were evaluated.RESULTS:The median follow-up period was 47 mo (range:6-85 mo).The characteristics of 35 (25.7%)patients with HER2 over-expression of liver metastatic GC are presented.HER2 over-expression was detected in 23 out of 49 (46.9%) patients with intestinal GC,and 9 out of 35 (25.7%) patients with diffuse GC.29 out of 59 (49.2%) patients aged < 60 years were HER2-positive,while 8 out of 25 (32%) patients aged ≥ 60were HER2-positive; a significant difference (P < 0.05).Univariate analysis (log-rank test) showed that HER2 over-expression,sex,Lauren classification,differentiation and disease-free interval were correlated with poor survival (P < 0.05).Survival analysis with a survival curve showed that HER2 over-expression was significantly relevant,with a reduced survival time in GC patients with liver metastases (P < 0.01).2-year survival was not associated with the patient's age.A diseasefree survival longer than 12 mo has a significant association with extended overall survival (OS) in GC patients with liver metastases.The median survival time after the diagnosis of liver metastases was 18 mo [95% confidence interval (CI):9.07-26.94] among HER2 positive GC patients with liver metastases.In comparison,for 49 (69.4%) out of 84 HER2 negative patients with liver

  1. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  2. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Science.gov (United States)

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  3. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  4. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.

  5. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    Science.gov (United States)

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.

  6. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  7. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, R.; Simabuco, F.M. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Yokoo, S.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sherman, N. [University of Virginia, Charlottesville, VA (United States)

    2012-07-01

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  8. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  9. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21

    Directory of Open Access Journals (Sweden)

    Zigman Warren B

    2006-03-01

    Full Text Available Abstract Background Down syndrome (DS is caused by trisomy 21 (+21, but the aberrations in gene expression resulting from this chromosomal aneuploidy are not yet completely understood. Methods We used oligonucleotide microarrays to survey mRNA expression in early- and late-passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry. Results We found chromosome 21 genes consistently over-represented among the genes over-expressed in the +21 samples. However, these sets of over-expressed genes differed across the three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-fold in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast conditioned medium, suggesting an autocrine loop for its over-expression. By immunohistochemistry the p78MX1 protein was induced in lesional tissue of alopecia areata, an autoimmune disorder associated with DS. We found strong over-expression of the purine biosynthesis gene GART (mean 3-fold in fetal hearts with +21 and verified this result by northern blotting and real-time RT-PCR. Conclusion Different subsets of chromosome 21 genes are over-expressed in different cell types with +21, and for some genes this over-expression is non-linear (>1.5X. Hyperactive interferon signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal purine metabolism should be investigated for a potential role in cardiac defects.

  10. Differential effect of over-expressing UGT1A1 and CYP1A1 on xenobiotic assault in MCF-7 cells.

    Science.gov (United States)

    Leung, Hau Y; Wang, Yun; Leung, Lai K

    2007-12-05

    Gene mutation has been considered as a major step of carcinogenesis. Some defective genes may induce spontaneous tumorigenesis, while others are required to interact with the environment to induce cancer. CYP1A1 and UGT1A1 are encoded for the respective phase I and II drug-metabolizing enzymes. Their expressions have been associated with breast cancer incidence in women, and some xenobiotics are substrates of these two enzymes. In the current study, cytochrome P450 (CYP) 1A1 and UDP-glucuronosyltransferase (UGT) 1A1 were over-expressed in the breast cancer MCF-7 cells, and potential interactions between these enzymes and estrogen or polycyclic aromatic hydrocarbon were evaluated. Compared with control cells (MCF-7(VEC)), reduced cell proliferation was seen in cells expressing UGT1A1 (MCF-7(UGT1A1)) under estradiol treatment. 7,12-Dimethylbenz[a]anthracene (DMBA) is an established breast cancer initiator in animal model. Over-expressing UGT1A1 reduced the binding of DMBA to DNA, and increased MCF-7(UGT1A1) intact cells under DMBA treatment was verified by comet assay. On the other hand, intensified DMBA binding and damages were observed in MCF-7(CYP1A1) cells. This study supported that UGT1A1 but not CYP1A1 expression could protect against xenobiotic assault.

  11. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    He, Yuan; Shao, Fangyang; Pi, Weidong; Shi, Cong; Chen, Yujia; Gong, Diping; Wang, Bingjie; Cao, Zhiwei; Tang, Kailin

    2016-01-01

    Oral squamous cell carcinoma (OSCC) has been reported as the most prevalent cancer of the head and neck region, while early diagnosis remains challenging. Here we took a comprehensive bioinformatics study on microarray data of 326 OSCC clinical samples with control of 165 normal tissues. The cell interaction pathways of ECM-receptor interaction and focal adhesion were found to be significantly regulated in OSCC samples. Further analysis of the topological properties and expression consistency identified that three hub genes in the gene interaction network, MMP9, PDIA3 and BGH3, were consistently up-expressed in OSCC samples. When being validated on additional microarray datasets of 41 OSCC samples, the validation rate of over-expressed BGH3, MMP9, and PDIA3 reached 90%, 90% and 84% respectively. At last, immuno-histochemical assays were done to test the protein expression of the three genes on newly collected clinical samples of 35 OSCC, 20 samples of pre-OSCC stage, and 12 normal oral mucosa specimens. Their protein expression levels were also found to progressively increase from normal mucosa to pre-OSCC stage and further to OSCC (ANOVA p = 0.000), suggesting their key roles in OSCC pathogenesis. Based on above solid validation, we propose BGH3, MMP9 and PDIA3 might be further explored as potential biomarkers to aid OSCC diagnosis.

  12. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yuan He

    Full Text Available Oral squamous cell carcinoma (OSCC has been reported as the most prevalent cancer of the head and neck region, while early diagnosis remains challenging. Here we took a comprehensive bioinformatics study on microarray data of 326 OSCC clinical samples with control of 165 normal tissues. The cell interaction pathways of ECM-receptor interaction and focal adhesion were found to be significantly regulated in OSCC samples. Further analysis of the topological properties and expression consistency identified that three hub genes in the gene interaction network, MMP9, PDIA3 and BGH3, were consistently up-expressed in OSCC samples. When being validated on additional microarray datasets of 41 OSCC samples, the validation rate of over-expressed BGH3, MMP9, and PDIA3 reached 90%, 90% and 84% respectively. At last, immuno-histochemical assays were done to test the protein expression of the three genes on newly collected clinical samples of 35 OSCC, 20 samples of pre-OSCC stage, and 12 normal oral mucosa specimens. Their protein expression levels were also found to progressively increase from normal mucosa to pre-OSCC stage and further to OSCC (ANOVA p = 0.000, suggesting their key roles in OSCC pathogenesis. Based on above solid validation, we propose BGH3, MMP9 and PDIA3 might be further explored as potential biomarkers to aid OSCC diagnosis.

  13. IL-35 over-expression is associated with genesis of gastric cancer.

    Science.gov (United States)

    Fan, Yong-Gang; Zhai, Jing-Ming; Wang, Wei; Feng, Bing; Yao, Guo-Liang; An, Yan-Hui; Zeng, Chao

    2015-01-01

    Overexpression of interleukin (IL)-35 has been found in a variety of malignancies, but the expression status in gastric cancer has yet to be elucidated clearly. In the present study, positive expression of EBI3 and p35 was 63.3% and 70.0% of cases, respectively. EBI3 expression was strongly related with larger tumor size and invasion depth (PIL-35 might be involved in growth of gastric cancer. Interestingly, EBI3 and p35 expressions were positive correlated with Ki-67 expression. Moreover, EBI3 immunoreactivity was associated with Bcl-2 staining. Our data suggest IL-35 is correlated with genesis of gastric cancer by regulating growth and apoptosis.

  14. Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants.

    Science.gov (United States)

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2003-04-01

    Cyclase-associated proteins (CAP) are multifunctional proteins involved in Ras-cAMP signalling and regulation of the actin cytoskeleton. It has recently been demonstrated that over-expression of AtCAP1 in transgenic arabidopsis plants causes severe morphological defects owing to loss of actin filaments. To test the generality of the function of AtCAP1 in plants, transgenic tobacco plants over-expressing an arabidopsis CAP (AtCAP1) under the regulation of a glucocorticoid-inducible promoter were produced. Over-expression of AtCAP1 in transgenic tobacco plants led to growth abnormalities, in particular a reduction in the size of leaves. Morphological alterations in leaves were the result of reduced elongation of epidermal and mesophyll cells.

  15. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    OpenAIRE

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; N. E. Haites; Parkin, D.; Murray, G. I.

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a num...

  16. 维生素E琥珀酸酯联合紫杉醇对Her-2过表达乳腺癌细胞的诱导凋亡研究%Vitamin E succinate combined with paclitaxel on the apoptosis of Her-2 over-expressing breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    赵妍; 李里; 姜秋颖; 申维喜; 武露艳; 阎婷婷

    2011-01-01

    Background and purpose: Vitamin E succinate (VES) is the esterification of natural vitamin E derivative. Studies have confirmed that VES could induce the apoptosis of breast cancer, prostate cancer, tongue cancer, kidney cancer, but has no toxicity to normal cells and tissues. This experiment detected the apoptosis rates of Her-2 over-expressing breast cancer cells which were administered with VES and paclitaxel at different dosages,alone or together. Methods: Immunocytochemical method was used to detect Her-2 expression of MDA-MB-453 cells. TUNEL assay was used to detect apoptosis rates of MDA-MB-453 cells treated with VES at the concentration of 10, 20 mg/L and paclitaxel of 50 and 100 nmol/L, alone or together, for 24 or 48 h. Then apoptosis action of various combinations was compared. Results: The expression rates of 95% Her-2 were 63.32%-69.60%; VES and paclitaxel both induced apoptosis of MDA-MB-453 cells, and it was dose-and time-dependent. It was strongest in apoptosis at the combination treatment of 10 mg/L VES and 100 nmol/L paclitaxel in MDA-MB-453 cells 48 h later. Conclusion:VES and paclitaxel both can induce the apoptosis of MDA-MB-453 cells. It is stronger when the two drugs are administered together.%背景与目的:维生素E琥珀酸酯(vitamin E succinate,VES)是天然维生素E的酯化衍生物,研究已证实其可诱导乳腺癌、前列腺癌、舌癌及肾癌等恶性肿瘤凋亡,却对正常细胞组织没有毒性作用.本实验以VES、紫杉醇单独及联合作用于Her-2过表达乳腺癌细胞,检测各组药物对乳腺癌细胞的诱导凋亡率.方法:免疫细胞化学法检测MDA-MB-453细胞Her-2蛋白表达水平.以VES、紫杉醇单独作用于MDA-MB-453细胞24、48 h,用TUNEL法检测细胞凋亡率,以浓度为10、20 mg/L的VES与浓度为50和100 nmol/L的紫杉醇组合,作用于MDA-MB-453细胞24、48 h,用TUNEL法检测不同组合的细胞凋亡率,比较各种组合对Her-2过表达乳腺癌细胞的

  17. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process.

    Directory of Open Access Journals (Sweden)

    Wing Lung Yau

    Full Text Available Hepatocellular carcinoma (HCC is one the the most fatal cancers worldwide. The poor prognosis of HCC is mainly due to the developement of distance metastasis. To investigate the mechanism of metastasis in HCC, an orthotopic HCC metastasis animal model was established. Two sets of primary liver tumor cell lines and corresponding lung metastasis cell lines were generated. In vitro functional analysis demonstrated that the metastatic cell line had higher invasion and migration ability when compared with the primary liver tumor cell line. These cell lines were subjected to microRNA (miRNAs microarray analysis to identify differentially expressed miRNAs which were associated with the developement of metastasis in vivo. Fifteen human miRNAs, including miR-106b, were differentially expressed in 2 metastatic cell lines compared with the primary tumor cell lines. The clinical significance of miR-106b in 99 HCC clinical samples was studied. The results demonstrated that miR-106b was over-expressed in HCC tumor tissue compared with adjacent non-tumor tissue (p = 0.0005, and overexpression of miR-106b was signficantly correlated with higher tumor grade (p = 0.018. Further functional studies demonstrated that miR-106b could promote cell migration and stress fiber formation by over-expressing RhoGTPases, RhoA and RhoC. In vivo functional studies also showed that over-expression of miR-106b promoted HCC metastasis. These effects were related to the activation of the epithelial-mesenchymal transition (EMT process. Our results suggested that miR-106b expression contributed to HCC metastasis by activating the EMT process promoting cell migration in vitro and metastasis in vivo.

  18. Abnormalities of Endocytosis, Phagocytosis, and Development Process in Dictyostelium Cells That Over-Express Acanthamoeba castellanii Metacaspase Protein.

    Directory of Open Access Journals (Sweden)

    Entsar Saheb

    2015-06-01

    Full Text Available Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host's immune response. Acanthamoeba Type-I metacaspase (Acmcp is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein.The full length of Acmcp and a mutated version of the same gene, which lacks the proline rich N-terminal region (Acmcp-dpr, were cloned into the pDneo2a-GFP vector separately. The pDneo2a-GFP-Acmcp and pDneo2a-GFPAcmcp-dpr were electro-transfected into wild type D. discoideum cells to create cell lines that over-expressed Acmcp or Acmcp-dpr.Both cell lines that over-expressed Acmcp and Acmcp-dpr showed a significant increase in the fluid phase internalization and phagocytosis rate compared to the control cells. Additionally, the cells expressing the Acmcp-dpr mutant were unable to initiate early development and failed to aggregate or form fruiting bodies under starvation conditions, whereas Acmcp over-expressing cells showed the opposite phenomena. Quantitative cell death analysis provided additional support for these findings.Acmcp is involved in the processes of endocytosis and phagocytosis. In addition, the proline rich region in Acmcp is important for cellular development in Dictyostelium. Given its important role in the development process, metacaspase protein is proposed as a candidate drug target against infections caused by A. castellanii.

  19. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  20. Over-expression of Metastasis-associated in Colon Cancer-1 (MACC1)Associates with Better Prognosis of Gastric Cancer Patients

    Institute of Scientific and Technical Information of China (English)

    Shao-hua Ge; Jia-fu Ji; Xiao-jiang Wu; Xiao-hong Wang; Xiao-fang Xing; Lian-hai Zhang; Yu-bing Zhu; Hong Du; Bin Dong; Ying Hu

    2011-01-01

    Objective: The aim of this study was to detect metastasis-associated in colon cancer-1 (MACC1) expression in Chinese gastric cancer and analyze the relationship between MACC1 expression and postoperative survival. Methods: The expression of MACC1 and c-MET protein in a sample of 128 gastric cancer tissues was detected by immunohistochemistry. A retrospective cohort study on the prognosis was carried out and data were collected from medical records. Results: The positive rate of MACC1 protein expression in gastric cancer was 47.66%, higher than that in adjacent noncancerous mucosa (P<0.001). MACC1 protein expression was not related to the clinicopathological variables involved. Kaplan-Meier analysis revealed that the survival of MACC1 positive group tended to be better than that of MACC1 negative group, particularly in patients with stage Ⅲ carcinoma (P=0.032). Cox regression analysis revealed that MACC1 protein over-expression in gastric cancer tended to be a protective factor with hazard ratio of 0.621 (P=0.057). Immunohistochemical analysis showed that the positive rate of c-MET protein expression was much higher in cases with positive MACC1 expression in gastric cancer (P=0.002), but P53 expression was not associated with MACC1 expression. Conclusion: MACC1 over-expression implies better survival and may be an independent prognostic factor for gastric cancer in Chinese patients.

  1. Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina.

    Directory of Open Access Journals (Sweden)

    Simon S F Cheung

    Full Text Available The level of endothelin-1 (ET-1, a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1 over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm TET-1 mice and their non-transgenic (NTg littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL was investigated in paraffin sections of ipsilateral (ischemic and contralateral (non-ischemic retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP, glutamine synthetase (GS and aquaporin-4 (AQP4 peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.

  2. Cervical cancer isolate PT3, super-permissive for adeno-associated virus replication, over-expresses DNA polymerase δ, PCNA, RFC and RPA

    Directory of Open Access Journals (Sweden)

    Melchert Russell B

    2009-04-01

    Full Text Available Abstract Background Adeno-associated virus (AAV type 2 is an important virus due to its use as a safe and effective human gene therapy vector and its negative association with certain malignancies. AAV, a dependo-parvovirus, autonomously replicates in stratified squamous epithelium. Such tissue occurs in the nasopharynx and anogenitals, from which AAV has been clinically isolated. Related autonomous parvoviruses also demonstrate cell tropism and preferentially replicate in oncogenically transformed cells. Combining these two attributes of parvovirus tropism, squamous and malignant, we assayed if AAV might replicate in squamous cervical carcinoma cell isolates. Results Three primary isolates (PT1-3 and two established cervical cancer cell lines were compared to normal keratinocytes (NK for their ability to replicate AAV. One isolate, PT3, allowed for high levels of AAV DNA replication and virion production compared to others. In research by others, four cellular components are known required for in vitro AAV DNA replication: replication protein A (RPA, replication factor C (RFC, proliferating cell nuclear antigen (PCNA, and DNA polymerase delta (POLD1. Thus, we examined PT3 cells for expression of these components by DNA microarray and real-time quantitative PCR. All four components were over-expressed in PT3 over two representative low-permissive cell isolates (NK and PT1. However, this super-permissiveness did not result in PT3 cell death by AAV infection. Conclusion These data, for the first time, provide evidence that these four cellular components are likely important for AAV in vivo DNA replication as well as in vitro. These data also suggest that PT3 will be a useful reagent for investigating the AAV-permissive transcriptome and AAV anti-cancer effect.

  3. Over-expressed Genes Detected by Suppression Subtractive Hybridization in Carcinoma Derived From Transformed 16HBE Cells Induced by BPDE

    Institute of Scientific and Technical Information of China (English)

    SHE-JUAN AN; JIA-KUN CHEN; LI-LI LIU; YAN-FENG ZHAO; XUE-MIN CHEN

    2005-01-01

    Objective To screen the over differentially expressed genes in carcinoma induced by BPDE-transformed 16HBE cells (16HBE-C cells). Methods The suppression subtractive hybridization (SSH) method was performed to profile differentially expressed genes between 16HBE-C cells and 16HBE cells. The cDNA fragments of differentially expressed genes were inserted into TA cloning vector and transformed competent E. coli strain. Positive clones were randomly picked up and identified by the colony PCR method. Dot blot was used to test the same source with the tester. The differentially expressed cDNA fragments were sequenced and compared with known genes and EST database in Genbank. Results Eight known genes were over-expressed in 16HBE-C cells including eukaryotic translation elongation factor 1 alpha 1, HIF-1 responsive RTP801, ribosomal protein L10 (RPL10), ribosomal protein S29 (RPS29), mitochondrion related genes, and laminin receptor 1. Three differentially expressed cDNA fragments could not be matched to the known genes but to the EST database. Conclusion The SSH method can detect differentially expressed genes between 16HBE-C and 16HBE cells. BPDE-induced carcinogenesis may be related to alteration of at least eight known genes and three unknown genes. These expression data provide a clue to further cloning novel genes and studying functions in BPDE-induced carcinoma.

  4. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  5. Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota

    2013-11-01

    Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium.

  6. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model.

    Directory of Open Access Journals (Sweden)

    Bin Ma

    Full Text Available BACKGROUND: Neuropathic intermittent claudication (NIC is a typical clinical symptom of lumbar spinal stenosis and the apoptosis of neurons caused by cauda equina compression (CEC has been proposed as an important reason. Whereas, the factors and the mechanism involved in the process of apoptosis induced by CEC remain unclear. METHODOLOGY AND RESULTS: In our modified rat model of NIC, a trapezoid-shaped silicon rubber was inserted into the epidural space under the L5 and L6 vertebral plate. Obvious apoptosis was observed in spinal cord cells after compression by TUNEL assay. Simultaneously, qRT-PCR and immunohistochemistry showed that the expression levels of PUMA (p53 up-regulated modulator of apoptosis and p53 were upregulated significantly in spinal cord under compression, while the expression of p53 inhibitor MDM2 and SirT2 decreased in the same region. Furthermore, CEC also resulted in the upregulation of Bcl-2 pro-apoptotic genes expression and caspase-3 activation. With the protection of Methylprednisolone, the upregulation of PUMA and p53 expression as well as the decrease of MDM2 and SirT2 in spinal cord were partially rescued in western bolt analysis. CONCLUSIONS: These results suggest that over-expression of PUMA correlates with CEC caused apoptosis of spinal cord cells, which is characterized by the increase of p53, Bax and Bad expression. PUMA upregulation might be crucial to induce apoptosis of spinal cord cells through p53-dependent pathway in CEC.

  7. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  8. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    DEFF Research Database (Denmark)

    Perryman, L A; Blair, J M; Kingsley, E A;

    2006-01-01

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous "take rate" in NOD-SCID mice, and increased production of PSA. Tumors...

  9. CD90/THY1 is over-expressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker

    Energy Technology Data Exchange (ETDEWEB)

    True, Lawrence D.; Zhang, Hui; Ye, Mingliang; Huang, Chung-Ying; Nelson, Peter S.; Von Haller, Priska D.; Tjoelker, Larry W.; Kim, Jong Seo; Qian, Weijun; Smith, Richard D.; Ellis, William J.; Liebeskind, Emily S.; Liu, Alvin Y.

    2010-10-01

    A by-product in the processing of prostate tissue for cell sorting by collagenase digestion is the media supernatant that remains after the cells are harvested. These supernatants contain proteins made by the cells within the tissue. Quantitative proteomic analysis of Nglycosylated proteins detected an increased amount of CD90/THY1 in cancer supernatants compared to non-cancer supernatants. Immunohistochemistry showed that in all carcinomas, regardless of Gleason grade, a layer of CD90-positive stromal fibroblastic cells, approximately 5-to-10 cells deep, was localized to tumor glands. In contrast, a no more than 1-cell wide girth of CD90-positive stromal cells was found around benign glands. The increased number of CD90-positive stromal cells in cancer correlated with overexpression of CD90 mRNA detected by gene expression analysis of stromal cells obtained by laser-capture microdissection. There is increasing evidence that cancer-associated stroma plays a role in both tumor progression and carcinogenesis. Most experiments to identify cancer biomarkers have focused on the cancer cells. CD90, being a marker for prostate cancer-associated stroma, might be a potential biomarker for this cancer. A non-invasive test could be provided by a urine test. Proteomic analysis of urine from patients with prostate cancer identified CD90; conversely, CD90 was not detected in the urine of post-prostatectomy patients. Furthermore, this urinary CD90 protein was a variant CD90 protein not known to be expressed by such cells as lymphocytes that express CD90. These CD90 results were obtained from ~90 cases consisting of proteomic analysis of tissue and urine, immunohistochemistry, Western blot analysis of tissue media, flow cytometry of cells from digested tissue, and reverse transcriptase polymerase chain reaction analysis of isolated stromal cells.

  10. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  11. Neuroglobin over expressing mice

    DEFF Research Database (Denmark)

    Raida, Zindy; Hundahl, Christian Ansgar; Nyengaard, Jens R

    2013-01-01

    BACKGROUND: Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using...... thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain...... genetic background on ischemic damage was investigated. PRINCIPAL FINDINGS: A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A β-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization...

  12. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells).

    Science.gov (United States)

    Martín-Aragón, Sagrario; Jiménez-Aliaga, Karim Lizeth; Benedí, Juana; Bermejo-Bescós, Paloma

    2016-11-15

    Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon

  13. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    increase with the increase in the HIF1α levels. Gelatin and PEG-modified gelatin nanoparticles were successfully prepared having a particle size in the range of 200 to 300 nm in diameter. Cell uptake studies showed that both types of nanoparticles could be efficiently internalized in tumor cells with a maximum intracellular concentrations reaching after 6 hours of incubation. Cytotoxicity analysis using MTS (formazan) assay showed that there was no significant change in cell viability upon treatment with any of the nanoparticle formulations relative to untreated control. Comparative analysis of gelatin nanoparticles and lipofectamine transfection of HIF1α-siRNA, shows a higher HIF1α knockdown for gelatin nanoparticles. Conclusion: Use of HIF1α siRNA for the treatment of cancer cells that overly express HIF1α has shown great therapeutic potential as shown by the results. The expression of VEGF, MMP-2 and MMP-9 decreases with the decrease of HIF1α expression. This may indicate the reversal of the aggressive phenotype of the tumors with HIF1α knockdown. HIF1α-siRNA, hence shows great potential for the therapy of aggressive tumors, however in vivo studies need to be carried out to validate these findings.

  14. 过表达巨噬细胞移动抑制因子对子宫颈癌SiHa细胞中白细胞介素8及基质金属蛋白酶9表达的影响%Effects of over-expression of macrophage migration inhibitory factor on the expression of interleukin-8 and martix metalloproteinase-9 of human cervical cancer SiHa cells

    Institute of Scientific and Technical Information of China (English)

    郭红霞; 吴素慧; 贾睿; 尚海霞

    2013-01-01

    Objective To investigate the effects of macrophage migration inhibitory factor (MIF) overexpression on the expression of interleukin-8 (IL-8),martix metalloproteinase-9 (MMP-9) and invasion of human cervical cancer SiHa cells.Methods Chemical synthesis MIF eDNA gene,designed primer sequence including XhoI and BamHI enzyme sites,MIF gene was amplified by polymerase chain reaction (PCR),constructed eukaryotic expression vector pEGFP-N1/MIF and transfected into SiHa cells using Lipofectamine and won over-expression of MIF.The expression of MIF in supernatant fluid was detected by ELISA,the expression of MIF,IL-8,MMP-9 in both mRNA and protein levels were detected by real-time fluorescence quantitative-PCR and immunocytochemistry respectively.The effect of over-expressed MIF on migration was detected by Boyden small chamber.Results The expression of protein in supernatant fluid transfected with pEGFP-N1/MIF was significantly increased (Fgroup =8267.564,P < 0.01),the expression of MIF,IL-8,MMP-9 in both mRNA and protein in SiHa cells transfected with pEGFP-N1/MIF were significantly increased (F values were 7019.619,2148.094,3303.540,1565.114,2807.300,523.466,P < 0.01),and there was a positive correlation among MIF,IL-8,MMP-9 expression in both mRNA and protein (r values were 0.865,0.895,0.934,0.908,P < 0.01).Invasion ability in SiHa cells transfected with pEGFP-N1/MIF was obviously increased (F=3430.898,P< 0.01).Conclusion The over-expression MIF gene in SiHa cells can promote cervical cancer cell invasion and metastasis of ability,which could be associated with the upregulation of IL-8 and MMP-9 expression.%目的 研究过表达巨噬细胞移动抑制因子(MIF)对子宫颈癌SiHa细胞中白细胞介素8(IL-8)、基质金属蛋白酶9(MMP-9)表达及细胞侵袭迁移能力的影响.方法 化学合成MIF cDNA,设计含Xhol和BamHI酶切位点的引物序列,利用聚合酶链反应(PCR)方法 扩增MIF基因片段,构建人pEGFP-N1/MIF真核表达载体,

  15. Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells

    Directory of Open Access Journals (Sweden)

    Deng Shoulong

    2012-10-01

    Full Text Available Abstract Background Toll-like receptor 2 (TLR2 is important to host recognition of invading gram-positive microbes. In goats, these microbes can cause serious mastitis, anthrax, tetanus, and other problems. Transgenic goats constitutively over-expressing TLR2 in many tissues serve as a suitable model for the study of the role of TLR2 over-expression in bacterial clearance. Results Capra hircus TLR2 over-expression vector (p3S-LoxP-TLR2 was used to generate transgenic goats by egg microinjection. The integration efficiency was 8.57%. Real-time PCR and immunohistochemical results confirmed that the goats over-expressing the TLR2 gene (Tg expressed more TLR2 than wild-type goats (WT. Monocyte-macrophages from the bloodstreams of transgenic goats were stimulated with synthetic bacterial lipoprotein (Pam3CSK4 and by the promotion of interleukin-6 (IL-6 and IL-10 expression in vitro. The oxidative damage was significantly reduced, and lysozyme (LZM secretion was found to be up-regulated. Ear tissue samples from transgenic goats that had been stimulated with Pam3CSK4 via hypodermic injection showed that transgenic individuals can undergo the inflammation response very quickly. Conclusions Over-expression of TLR2 was found to decrease radical damage to host cells through low-level production of NO and MDA and to promote the clearance of invasive bacteria by up-regulating lysozyme secretion and filtration of inflammatory cells to the infected site.

  16. 过表达 LncRNA-MEG3对肠癌细胞 Lovo增殖活性的影响%Effect of LncRNA-MEG3 over-expression on the proliferation activity of colorectal cancer Lovo cells

    Institute of Scientific and Technical Information of China (English)

    章杰兵; 徐燕茹; 邱彦; 霍中华

    2014-01-01

    Objective To investigate the effect of the changes in MEG3 level on proliferation activity in Lovo cells, through the amplification of the non-coding RNA-MEG3 by PCR and the construction of a eukaryotic expression vector for MEG3, which was transfect-ed into a human colon cancer cell line, Lovo.Methods cDNA was prepared from the total RNA extracted from 293 cells by reverse tran-scription and MEG3 gene was amplified by PCR and was used to construct a recombinant plasmid, which was transfected into Lovo cells by using cationic liposome.Transfection efficiency was evaluated by observation on the expression of GFP marker 48 hours after transfection, and changes in MEG3 content were detected by RT-PCR ( Real-time-PCR) .CCK-8 was used to measure the effect of genetic intervention on proliferative activity in tumor cells in the logarithmic growth phase.Results MEG3 gene was successfully obtained and the recombinant expression vector was constructed.Lovo cells were successfully transfected, and 48 hours after transfection, the transfection efficiency reached as high as 60%.MEG3 level in transfected cells was significantly increased for approximately 6.8 folds, as compared with that of the transfected control group(P<0.01).High expression of exogenous MEG3 in Lovo cells could inhibit cell proliferation, and significant differences could be noted at hours 48 and 72 after the genetic intervention, as compared with those of the untransfected group and the transfected control group(P<0.01).Conclusion LncRNA-MEG3 could obviously inhibit the proliferation of Lovo cells.%目的:用PCR扩增长链非编码RNA-MEG3,构建MEG3真核表达载体,将重组质粒转染人肠癌细胞Lovo,观察MEG3含量改变对Lovo细胞增殖活性的影响。方法用293细胞提取人总RNA,反转录制备cDNA,PCR扩增MEG3基因并构建克隆,阳离子脂质体法转染重组质粒至Lovo细胞,转染后48 h通过荧光标记物GFP观察细胞转染效率。 RealTime

  17. Identification and characterization of L985P, a CD20 related family member over-expressed in small cell lung carcinoma.

    Science.gov (United States)

    Bangur, Chaitanya S; Johnson, Jeffrey C; Switzer, Ann; Wang, Yi-Hong; Hill, Beth; Fanger, Gary R; Wang, Tongtong; Retter, Marc W

    2004-12-01

    We recently reported on the use of cDNA subtraction combined with microarray based expression analysis for identifying genes that are differentially over-expressed in small cell lung carcinoma. One of the several hundred genes identified using this approach was termed L985P and its molecular characterization is described in this report. The differential over-expression of L985P mRNA in SCLC, as determined by microarray analysis, was confirmed by real-time RT-PCR and Northern blot analysis. Immunohistochemical analyses show that L985P protein is highly expressed in SCLC with very restricted expression observed in normal lung, which was confined to the apical region of the ciliated bronchiolar epithelium. Flow cytometric and immunohistochemical analysis showed that L985P was localized to the cell surface. Sequence homology comparison indicated that L985P is identical to MS4A8B, a member of the recently described membrane-spanning 4-domain family, subfamily A (MS4A) gene family. The MS4A gene family currently consists of greater than 20 distinct human and mouse proteins that include CD20 and FcepsilonRIbeta. Both CD20 and FcepsilonRIbeta are involved in signaling events that regulate diverse cellular functions including cell growth regulation and differentiation. Collectively, the results presented herein demonstrate that L985P is differentially over-expressed in SCLC and may have potential clinical utility as an immunotherapeutic target for the treatment of SCLC.

  18. Inhibition of PMA-induced endothelial cell activation and adhesion by over-expression of domain negative IκBα protein

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Wei; Ke Sun; Shi-Guo Xu; Hai-Yang Xie; Shu-Sen Zheng

    2005-01-01

    AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector to inhibit NF-κB activation and investigate the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. METHODS: The NF-κB activity was detected with pNF-κB reporter gene and electrophoretic mobility shift assay. Expression of cell surface molecules was detected by RT-PCR and flow cytometer. The cell-cell adhesion assay was performed to determine the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. RESULTS: We could find that NF-κB activity is inhibited by over-expression of non-degraded IκBα protein. Expression of adhesion molecules like ICAM-1, VCAM-1, and P-selectin as well as cell-cell adhesion were inhibited significantly by transfection of the pCMV-IκBαM vector. CONCLUSION: Our results indicate that the pCMVIκBαM, which inhibit the activity of NF-κB through over-expression of non-degraded IκBα protein, can be used for gene therapy in diseases involving NF-κB activation abnormally like organ transplantation via inhibiting cell adhesion.

  19. Bcl-2 over-expression and activation of protein kinase C suppress the Trail-induced apoptosis in Jurkat T cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Trail,a tumor necrosis factor-related apoptosis-inducing ligand,is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2.Its role,like FasL in activation-induced cell death(AICD),has been demonstrated in immune system.However the mechanism of Trail induced apoptosis remains unclear.In this report,the recombinant Trail protein was expressed and purified.The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro.Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner.Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells.Treatment with PMA(phorbol 12-myristate 13-acetate),a PKC activator,suppressed Trail-induced apoptosis in Jurkat T cells.The inhibition of apoptosis by PMA was abolished by pretreatment with Bis,a PKC inhibitor.Taken together,it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.

  20. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  1. Over-expression and localization of a host protein on the membrane of Cryptosporidium parvum infected epithelial cells.

    Science.gov (United States)

    Yang, Yi-Lin; Serrano, Myrna G; Sheoran, Abhineet S; Manque, Patricio A; Buck, Gregory A; Widmer, Giovanni

    2009-11-01

    The genus Cryptosporidium includes several species of intestinal protozoan parasites which multiply in intestinal epithelial cells. The impact of this infection on the transcriptome of cultured host cells was investigated using DNA microarray hybridizations. The expression of 14 genes found to be consistently up- or down-regulated in infected cell monolayers was validated with RT PCR. Using immunofluorescence we examined the expression of Protease Activated Receptor-2, which is encoded by one of the up-regulated genes. In infected cells this receptor localized to the host cell membrane which covers the intracellular trophozoites and meronts. This observation indicates that the composition of the host cell membrane is affected by the developing trophozoite, a phenomenon which has not been described previously.

  2. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  3. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi Yousef

    2016-07-01

    Full Text Available Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293 packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR. Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF, glial fibrillary acidic protein (GFAP and Microtubule-associated protein 2 (MAP2 genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this

  4. Over-expression of AhR (aryl hydrocarbon receptor induces neural differentiation of Neuro2a cells: neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Ishihara-Sugano Mitsuko

    2006-09-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR. AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE. Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. Methods The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH. Results N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH mRNA as a

  5. Consequences of over-expression of rat Scavenger Receptor, SR-BI, in an adrenal cell model

    Directory of Open Access Journals (Sweden)

    Azhar Salman

    2006-12-01

    Full Text Available Abstract Background The plasma membrane scavenger receptor, SR-BI, mediates the 'selective uptake' process by which cholesteryl esters (CE from exogenously supplied HDL are taken up by target cells. Recent work suggests that dimer and higher order oligomeric forms of the SR-BI protein are important to this process. SR-BI has been shown to be particularly associated with microvilli and microvillar channels found at the cell surface of steroidogenic cells, and a study with the hormone stimulated adrenal gland has shown impressive changes in the size and complexity of the microvillar compartment as the mass of CE uptake (and accompanying steroidogenesis fluctuates. In the present study, we examine a cell line in which we overexpress the SR-BI protein to determine if morphological, biochemical and functional events associated with SR-BI in a controlled cell system are similar to those observed in the intact mammalian adrenal which is responsive to systemic factors. Methods Y1-BS1 mouse adrenocortical cells were transiently transfected using rat SR-BI-pcDNA6-V5-His, rat SR-BI-pcDNA6-cMyc-His or control pcDNA6-V5-His vector construct using a CaPO4 precipitation technique. Twenty four hours after transfection, cells were treated with, or without, Bt2cAMP, and SR-BI expression, CE uptake, and steroidogenesis was measured. SR-BI dimerization and cell surface architectural changes were assessed using immunoelectron microscopic techniques. Results Overexpression of the scavenger receptor protein, SR-BI, in Y1-BS1 cells results in major alterations in cell surface architecture designed to increase uptake of HDL supplied-CEs. Changes include 1 the formation of crater-like erosions of the surface with multiple double membraned channel structures lining the craters, and 2 dimerized formations of SR-BI lining the newly formed craters and associated double membraned channels. Conclusion These data show that overexpression of the scavenger receptor protein, SR

  6. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF

    Science.gov (United States)

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  7. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  8. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  9. Mesenchymal Stem Cells with eNOS Over-Expression Enhance Cardiac Repair in Rats with Myocardial Infarction.

    Science.gov (United States)

    Chen, Leilei; Zhang, Yuan; Tao, Liangliang; Yang, Zhijian; Wang, Liansheng

    2017-02-01

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapeutic option for patients with acute myocardial infarction. We show here that the ectopic overexpression of endothelial nitric oxide synthases (eNOS), an endothelial form of NOS, could enhance the ability of MSCs in treating ischemic heart damage after the occlusion of the coronary artery. Adenoviral delivery of human eNOS gene into mouse bone marrow-derived MSCs (BM-MSCs) conferred resistance to oxygen glucose deprivation (OGD)-induced cell death in vitro, and elevated the bioavailability of nitric oxide when injected into the myocardium in vivo. In a rat model of acute myocardial infarction, the transplantation of eNOS-overexpressing BM-MSCs significantly reduced myocardial infarct size, corrected hemodynamic parameters and increased capillary density. We also found that the synergistic effects were consistently better than either treatment alone. These findings reveal a positive role of elevated eNOS expression in cardiac repair, and suggest the combination of eNOS and MSC transplant therapy as a potential approach for treating myocardial infarction.

  10. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  11. Transgenic over-expression of slit2 enhances disruption of blood-brain barrier and increases cell death after traumatic brain injury in mice.

    Science.gov (United States)

    Li, Shuai; Li, Hang; He, Xiao-Fei; Li, Ge; Zhang, Qun; Liang, Feng-Ying; Jia, Huan-Huan; Li, Jiang-Chao; Huang, Ren; Pei, Zhong; Wang, Li-Jing; Zhang, Yu

    2016-09-19

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among male adolescents and young adults; and mild traumatic brain injury is the most common type of traumatic brain injury. The disruption of blood-brain barrier (BBB) plays an important role in brain trauma. Previously, we have found that slit2, a member of slit protein family, increases permeability of BBB. In the present study, we examined the role of slit2 in the pathogenesis of mild TBI in a mouse model of micro TBI. Rhodamine BandPI (PropidiumIodide) staining were used to detect the permeability of BBB and cell death, respectively. The leakage of Rhodamine B and cell death were significantly increased in Slit2-Tg mice than in C57 control mice after micro TBI. The present results suggest that over expression of slit2 plays a detrimental role in the pathophysiology of mild TBI.

  12. OVER-EXPRESSION OF EXTRACELLULAR SIGNAL-REGULATED KINASE IN VASCULAR SMOOTH MUSCLE CELL OF HYPERTENSIVE RATS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate whether extracellular signal-regulated kinase (ERK1/2) was involved in changes of vascular smooth muscle cell (VSMC) under hypertension. Methods Two-kidney one clip Wistar hypertensive rats (WHR) were sacrificed and their right kidneys were harvested 4 weeks after surgery. The spontaneously hypertensive rats (SHR) were divided into 4, 8, and 16 weeks old groups (SHR4w, SHR8w, and SHR16w), respectively. The control group were sham operated age-matched Wistar rats. Immunohistochemical technique and Western blotting were applied to study ERK1/2 protein expression in VSMC of the renal vascular trees in WHR, SHR, and control rats. Results Blood pressure in two-kidney one clip WHR obviously increased at one week after surgery, and reached to 198.00 ± 33.00 mm Hg at the end of experiment, significantly higher than that in the control rats ( P < 0. 01 ). Blood pressure in SHR4w ( 108.00 ± 11.25 mm Hg) was similar to that in the controls. However, it rose to 122.25 ± 21.75 mm Hg in SHR8w, and even up to 201.75 ± 18.00 mm Hg in SHR16w, which were significantly higher than that of both the SHR4w and the controls ( P < 0. 01 ). The rate and degree of glomerular fibrosis in WHR were significantly higher than controls (P < 0. 05 ). Hyaline degeneration of the afferent arterioles was found in WHR. In contrast, either fibrosis of glomerulus or hyaline degeneration of the arterioles or protein casts was not observed in SHR4w, SHR8w,and SHR16w. Immunohistochemical staining results showed expression of ERK1 was similar to that of ERK2. The positive rates of ERK2 staining in VSMC of afferent arterioles, interlobular, interlobar, and arcuate arteries in two-kidney one clip WHR were significantly higher (7. 09% ± 1.75%, 14. 57% ± 4. 58%, 29.44% ± 7. 35%, and 13.63% ±3.85%, respectively) than that of the controls( P < 0. 01 ). The positive rates of ERK2 staining in VSMC at afferent arterioles, interlobular, interlobar, and arcuate arteries in SHR

  13. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  14. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  15. Abnormal B-cell activation associated with TALL-1 over-expression and SOCS-1 suppression during chronic hepatitis C virus infection.

    Science.gov (United States)

    Moorman, Jonathan; Dong, Zhi P; Ni, Lei; Zhang, Chunlan; Borthwick, Thomas; Yao, Zhi Q

    2009-10-01

    Chronic hepatitis C virus (HCV) infection is associated with cirrhosis, autoimmunity and lymphoproliferative disorders. We have previously reported a differential regulation of T and B lymphocytes by HCV core protein in vitro. In this report, we employed a translational approach to characterize the activation status of peripheral B cells from individuals with chronic HCV infection and to explore potential mechanisms for B-cell dysregulation in the setting of HCV infection. In contrast to the T-cell suppression observed in HCV-infected individuals, B cells exhibit a non-specific polyclonal activation phenotype, characterized by significantly higher levels of (1) the early activation marker, CD69, (2) the costimulatory molecule, CD86, and (3) the CCR5 chemokine receptor, CD195, when compared with B cells from healthy donors in response to phytohaemagglutinin (PHA) stimulation. Importantly, tumour necrosis factor- and Apo-L-related leucocyte-expressed ligand-1 (TALL-1), also known as B-lymphocyte stimulator (BLYS), was found to be up-regulated on the surface of B cells from HCV patients in response to PHA as well as HCV core antigen stimulation. This up-regulation of TALL-1 was associated with vigorous memory B-cell responses to viral antigenic stimulation. Additionally, suppressor of cytokine signalling-1 (SOCS-1), a negative feedback immunoregulator that is inhibited in B lymphocytes by HCV core in vitro, was also inhibited in B cells from HCV patients when compared with healthy donors. These findings suggest that TALL-1 over-expression and SOCS-1 suppression are associated with aberrant B-cell activation, providing a plausible basis for the B-cell clonal expansion underlying the lymphoproliferative disorders and autoimmune phenomena observed during chronic HCV infection.

  16. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  17. DEK over-expression promotes mitotic defects and micronucleus formation.

    Science.gov (United States)

    Matrka, Marie C; Hennigan, Robert F; Kappes, Ferdinand; DeLay, Monica L; Lambert, Paul F; Aronow, Bruce J; Wells, Susanne I

    2015-01-01

    The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.

  18. Correlation of p53 over-expression and alteration in p53 gene detected by polymerase chain reaction-single strand conformation polymorphism in adenocarcinoma of gastric cancer patients from India

    Institute of Scientific and Technical Information of China (English)

    Sajjad Karim; Arif Ali

    2009-01-01

    AIM: To study the alterations in p53 gene among Indian gastric cancer patients and to correlate them with the various clinicopathological parameters.METHODS: A total of 103 gastric cancer patients were included in this study. The p53 alterations were studied by both immunohistochemical method as well as polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis. We only studied four (exon 5, 6, 7, and 8) of the 11 p53 exons. The alterations in p53 were also correlated with respect to various clinicopathological parameters.RESULTS: Among 103 cases, p53 over-expression and alteration were detected in 37 (35.92%) and 19 (18.44%) cases, respectively. Most of the p53 alterations were found at exon 5 (31.54%), followed by exon 6 (26.31%), exon 7 (21.04%) and exon 8 (21.04%). A significant correlation of p53 overexpression was found with p53 alteration ( P = 0.000).Concordance between p53 alteration (as detected by SSCP) and over-expression [as detected by immunohistochemistry (IHC)] was found in 75% cases.We found that IHC-positive/SSCP-negative cases accounted for 21% of cases and IHC-negative/SSCPpositive cases accounted for remaining 4% cases.CONCLUSION: Our results show that p53 gene mutations are significantly correlated with p53 protein over-expression, with 75% concordance in overexpression and alteration in the p53 gene, but 25% disconcordance also cautions against the assumption that p53 over-expression is always associated with a gene mutation. There may be other mechanisms responsible for stabilization and accumulation of p53 protein with no evidence of gene mutation that reflect an accumulation of a non-mutated protein, or a false negative SSCP result.

  19. NOK对肺腺癌细胞SPC-A-1增殖的影响%Effect of NOK over expression on proliferation of lung adenocarcinoma cell SPC-A-1

    Institute of Scientific and Technical Information of China (English)

    刘涛; 张志培; 李小飞

    2012-01-01

    目的:建立稳定过表达NOK基因的SPC-A-1-NOK细胞系,观察其增殖变化,探讨NOK基因对SPC-A-l细胞增殖的影响.方法:运用电穿孔仪将pcDNA3.1-NOK质粒转染肺腺癌SPC-A-1细胞,筛选出稳定过表达NOK基因的SPC-A-1-NOK细胞单克隆株.RT-PCR检测转染前后细胞内NOK基因的表达效果.通过流式细胞术检测细胞周期和细胞凋亡,MTT法检测细胞生长并绘制细胞生长曲线.结果:RT-PCR显示SPC-A-1-NOK细胞中NOK基因表达量明显增高.流式细胞术显示SPC-A-1-NOK与SPC-A-1和SPC-A-1-3.1细胞相比,S期细胞增多[(28.00±1.42)% VS(24.93±1.57)%,(23.75±1.20)%,均P<0.05]、细胞增殖指数升高[(56.70±1.43)% VS(46.47士1.32)%,(46.89±1.19)%,均P<0.05]、细胞凋亡比减少[(4.O±0.2)% VS(8.4±0.5)%,(7.9±0.4)%,均P<0.05].MTT结果显示SPC-A-1-NOK细胞较SPC-A-1和SPC-A-1-3.1细胞生长曲线上移(P<0.05).结论:NOK可促进SPC-A-1细胞的增殖,可能在肺癌的发生、发展中发挥重要作用.%Objective: To establish the stable over expression of NOK in lung adenocarcinoma cell line SPC - A -1 and to investigate the effect of NOK over expression on the proliferation of SPC - A - 1. Methods :pcDNA3. 1 -NOK plasmid was transferred into SPC - A -1 cells with electroporation apparatus. The cloned strain SPC - A - 1 -NOK with NOK stable over expression was screened and validated by RT - PCR. The cell cycle and cell apoptosis incidence were detected by flow cytometry and the cell growth curve was determined by MTT. Results;There was stable over expression of NOK in SPC - A - 1 - NOK cells. The number of SPC - A - 1 - NOK cells at S stage was more than that of SPC - A - 1 and SPC -A-l -3.1 cells[ (28.00 ± 1.42)% VS (24.93 ± 1.57)% ,(23. 75 ± 1.20) % , both P < 0.05 ]; The proliferation index (PI) in SPC - A - 1 - NOK cells with the number of cell apoplosis being decreased[ (4.0 ±0.2)% VS (8.4 ±0.5)% ,(7.9 ±0.4)% ,both P<0.05] ,was higher than that in

  20. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  1. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.

    Science.gov (United States)

    Lee, Sung Won; Park, Hyun Jung; Jeon, Sung Ho; Lee, Changjin; Seong, Rho Hyun; Park, Se-Ho; Hong, Seokmann

    2015-01-01

    Although SWI3-related gene (SRG3), a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE) development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development using SRG3 transgenic mouse models exhibiting two distinct SRG3 expression patterns: SRG3 expression driven by either the CD2 or β-actin promoter. We found that the outcome of EAE development was completely different depending on the expression pattern of SRG3. The specific over-expression of SRG3 using the CD2 promoter facilitated EAE via the induction of Th1 and Th17 cells, whereas the ubiquitous over-expression of SRG3 using the β-actin promoter inhibited EAE by promoting Th2 differentiation and suppressing Th1 and Th17 differentiation. In addition, the ubiquitous over-expression of SRG3 polarized CD4+ T cell differentiation towards the Th2 phenotype by converting dendritic cells (DCs) or macrophages to Th2 types. SRG3 over-expression not only reduced pro-inflammatory cytokine production by DCs but also shifted macrophages from the inducible nitric oxide synthase (iNOS)-expressing M1 phenotype to the arginase-1-expressing M2 phenotype during EAE. In addition, Th2 differentiation in β-actin-SRG3 Tg mice during EAE was associated with an increase in the basophil and mast cell populations and in IL4 production. Furthermore, the increased frequency of Treg cells in the spinal cord of β-actin-SRG3 Tg mice might induce the suppression of and accelerate the recovery from EAE symptoms. Taken together, our results provide the first evidence supporting the development of a new therapeutic strategy for EAE involving the modulation of SRG3 expression to induce M2 and Th2 polarization

  2. Quantitative analysis of BTF3, HINT1, NDRG1 and ODC1 protein over-expression in human prostate cancer tissue.

    Directory of Open Access Journals (Sweden)

    Andrew J Symes

    Full Text Available Prostate carcinoma is the most common cancer in men with few, quantifiable, biomarkers. Prostate cancer biomarker discovery has been hampered due to subjective analysis of protein expression in tissue sections. An unbiased, quantitative immunohistochemical approach provided here, for the diagnosis and stratification of prostate cancer could overcome this problem. Antibodies against four proteins BTF3, HINT1, NDRG1 and ODC1 were used in a prostate tissue array (> 500 individual tissue cores from 82 patients, 41 case pairs matched with one patient in each pair had biochemical recurrence. Protein expression, quantified in an unbiased manner using an automated analysis protocol in ImageJ software, was increased in malignant vs non-malignant prostate (by 2-2.5 fold, p<0.0001. Operating characteristics indicate sensitivity in the range of 0.68 to 0.74; combination of markers in a logistic regression model demonstrates further improvement in diagnostic power. Triple-labeled immunofluorescence (BTF3, HINT1 and NDRG1 in tissue array showed a significant (p<0.02 change in co-localization coefficients for BTF3 and NDRG1 co-expression in biochemical relapse vs non-relapse cancer epithelium. BTF3, HINT1, NDRG1 and ODC1 could be developed as epithelial specific biomarkers for tissue based diagnosis and stratification of prostate cancer.

  3. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation

    NARCIS (Netherlands)

    H.E.S. Marei (Hany); A. Althani (Asmaa); N. Afifi (Nahla); A. Abd-Elmaksoud (Ahmed); C. Bernardini (Camilla); F. Michetti (Fabrizio); M. Barba (Marta); M. Pescatori (Mario); G. Maira (Giulio); E. Paldino (Emanuela); L. Manni (Luigi); P. Casalbore (Patrizia); C. Cenciarelli (Carlo)

    2013-01-01

    textabstractThe adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, h

  4. Hepatitis E virus ORF2 protein over-expressed by baculovirus in hepatoma cells, efficiently encapsidates and transmits the viral RNA to naïve cells

    Directory of Open Access Journals (Sweden)

    Emerson Suzanne U

    2011-04-01

    Full Text Available Abstract A recombinant baculovirus(vBacORF2 that expressed the full-length ORF2 capsid protein of a genotype 1 strain of hepatitis E virus(HEV was constructed. Transduction of S10-3 human hepatoma cells with this baculovirus led to large amounts of ORF2 protein production in ~50% of the cells as determined by immune fluorescence microscopy. The majority of the ORF2 protein detected by Western blot was 72 kDa, the size expected for the full-length protein. To determine if the exogenously-supplied ORF2 protein could transencapsidate viral genomes, S10-3 cell cultures that had been transfected the previous day with an HEV replicon of genotype 1 that contained the gene for green fluorescent protein(GFP, in place of that for ORF2 protein, were transduced with the vBacORF2 virus. Cell lysates were prepared 5 days later and tested for the ability to deliver the GFP gene to HepG2/C3A cells, another human hepatoma cell line. FACS analysis indicated that lysates from cell cultures receiving only the GFP replicon were incapable of introducing the replicon into the HepG2/C3A cells whereas ~2% of the HepG2/C3A cells that received lysate from cultures that had received both the replicon and the baculovirus produced GFP. Therefore, the baculovirus-expressed ORF2 protein was able to trans-encapsidate the viral replicon and form a particle that could infect naïve HepG2/C3A cells. This ex vivo RNA packaging system should be useful for studying many aspects of HEV molecular biology.

  5. Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Mitali Das

    Full Text Available Minichromosome Maintenance (MCM proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2-7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7. The purpose of this study is to explore the role of MCMs in cervical cancer and their correlation with the clinical parameters of cervical cancer. We have investigated sixty primary cervical cancer tissue samples, eight cervical cancer cell lines and thirty hysterectomised normal cervical tissue. The expression profiling of MCMs was done using semi-quantitative RT-PCR, immunoblotting and immunohistochemistry. MCM2, 4, 5, 6, 7, 10 and RECQL4 are significantly over-expressed in cervical cancer. Among these, MCM4, 6 and 10 show increased frequency of over expression along with advancement of tumor stages. MCM4, 5 and 6 also show differential expression in different types of lesion, while MCM2 and MCM10 are over expressed in cervical cancer irrespective of clinico-pathological parameters. Our data indicates the role of MCM4, MCM5, MCM6, MCM10 and RECQL4 in the progression of cervical cancer.

  6. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi, E-mail: chenyisun11@163.com

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  7. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation.

    Directory of Open Access Journals (Sweden)

    Hany E S Marei

    Full Text Available The adult human olfactory bulb neural stem/progenitor cells (OBNC/PC are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, however effective delivery of NGF into the CNS parenchyma is still challenging due mainly to its limited ability to cross the blood-brain barrier, and intolerable side effects if administered into the brain ventricular system. An effective method to ensure delivery of NGF into the parenchyma of CNS is the genetic modification of NSC to overexpress NGF gene. Overexpression of NGF in adult human OBNSC is expected to alter their proliferation and differentiation nature, and thus might enhance their therapeutic potential. In this study, we genetically modified adult human OBNS/PC to overexpress human NGF (hNGF and green fluorescent protein (GFP genes to provide insight about the effects of hNGF and GFP genes overexpression in adult human OBNS/PC on their in vitro multipotentiality using DNA microarray, immunophenotyping, and Western blot (WB protocols. Our analysis revealed that OBNS/PC-GFP and OBNS/PC-GFP-hNGF differentiation is a multifaceted process involving changes in major biological processes as reflected in alteration of the gene expression levels of crucial markers such as cell cycle and survival markers, stemness markers, and differentiation markers. The differentiation of both cell classes was also associated with modulations of key signaling pathways such MAPK signaling pathway, ErbB signaling pathway, and neuroactive ligand-receptor interaction pathway for OBNS/PC-GFP, and axon guidance, calcium channel, voltage-dependent, gamma subunit 7 for OBNS/PC-GFP-hNGF as revealed by GO and KEGG. Differentiated OBNS/PC-GFP-hNGF displayed extensively branched cytoplasmic processes, a significant faster growth rate and up modulated the expression of oligodendroglia

  8. In vitro effect of radiation, antibody to epidermal growth factor receptor and Docetaxel in human head and neck squamous carcinoma cells with mutant P53 and over-expressed EGFR.

    Science.gov (United States)

    Laytragoon-Lewin, Nongnit; Ustun, Hasan; Castro, Juan; Friesland, Signe; Ghaderi, Mehran; Lundgren, Jan; Turesson, Ingela; Lewin, Freddi

    2009-02-01

    Radiotherapy is the most frequently used and cheapest treatment both for curative and palliative purposes in HNSCC. Despite advances in technology and intensive treatments with radiation, only half of the patients are cured. New therapeutic approaches focusing on the molecular mechanism that mediate tumour cell growth or cell death in combination with radiotherapy have been suggested. The effects of radiation, antibody to EGFR and Docetaxel as single treatment or in combinations on HNSCC cells were investigated. The established HNSCC cells with mutant (mt) P53 and over-expressed normal EGFR was used as the in vitro model. Gene expression profile, cell cycle progression and cell death were used as the indication of treatment outcome. With c-DNA microarray of well-characterised functional genes, massive changes in the genes expression of HNSCC were detected. The alterations of gene expression profiles do not have any correlation neither on tumour cell growth nor cell death. HNSCC cells with mt P53 and over-expressed normal EGFR did not response to radiation, anti-EGFR monoclonal antibody and their combination therapy. Effective treatment could be obtained from single therapy with Docetaxel. No additive effects on cell cycle arrest or cell death were seen in the combination of Docetaxel to anti-EGFR antibody, radiation or anti-EGFR antibody + radiation. The c-DNA microarray analysis does not indicate any specific target or treatment effects of HNSCC with mt P53 and over-expressed normal EGFR. Single therapy, target at microtubules might be the most suitable treatment modulation in this tumour type.

  9. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma.

    Science.gov (United States)

    Gupta, S; Srivastava, M; Ahmad, N; Bostwick, D G; Mukhtar, H

    2000-01-01

    Aberrant or increased expression of cyclooxygenase (COX)-2 has been implicated in the pathogenesis of many diseases including carcinogenesis. COX-2 has been shown to be over-expressed in some human cancers. Employing semi-quantitative reverse transcription-PCR, immunoblotting, and immunohistochemistry we assessed COX-2 expression in samples of pair-matched benign and cancer tissue obtained from the same prostate cancer patient. Mean levels of COX-2 mRNA were 3.4-fold higher in prostate cancer tissue (n = 12) compared with the paired benign tissue. The immunoblot analysis demonstrated that as compared to benign tissue COX-2 protein was over-expressed in 10 of 12 samples examined. Immunohistochemical analysis also verified COX-2 over-expression in cancer than in benign tissue. To our knowledge, this is the first in vivo study showing an over-expression of COX-2 in prostate cancer. These data suggest that COX-2 inhibitors may be useful for prevention or therapy of prostate cancer in humans.

  10. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  11. Over-expression of nm23-H1 in HeLa cells provides cells with higher resistance to oxidative stress possibly due to raising intracellular p53 and GPX1

    Institute of Scientific and Technical Information of China (English)

    Run AN; Yong-lie CHU; Chan TIAN; Xiao-xia DAI; Jing-hong CHEN; Qi SHI; Jun HAN; Xiao-ping DONG

    2008-01-01

    Aim: To determine whether the antitumor factor nm23 is related with antioxi-dation. Methods: Full-length human nm23-Hl was cloned into a mammalian-expressing vector and transiently introduced into HeLa cells. Results: A remark-ably low level of reactive oxygen species (ROS) was detected in the cells over-expressing nm23-Hl. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays found that the cells transfected with a nm23-H1-expressing plasmid had higher viability and stronger resistance to oxidative stress. Immunoprecipitation tests revealed that endogenous nm23-H1 formed a protein complex with p53. Furthermore, the intracellular levels of p53 and p53-regulated gene GPXI were obviously increased in the cells overexpressing nm23-H1. The downregulation of p53 in the cells overexpressing nm23-H1 resulted in a higher cellular ROS level and lower cell viability. Conclusion: The findings suggest that nm23-H1 may act as a cellular protector against oxidative stress, possibly triggering the p53-related antioxidative pathway.

  12. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  13. Metabolomic comparison between cells over-expressing isocitrate dehydrogenase 1 and 2 mutants and the effects of an inhibitor on the metabolism.

    Science.gov (United States)

    Wen, He; Cho, Hye Rim; Yun, Taeho; Kim, Hyeonjin; Park, Chul-Kee; Lee, Se-Hoon; Choi, Seung Hong; Park, Sunghyouk

    2015-01-01

    The R132H and R172K mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have neomorphic activity of generating 2-hydroxyglutarate (2-HG) which has been implicated in the oncogenesis. Although similarities in structure and enzyme activity for the two isotypic mutations have been suggested, the difference in their cellular localization and biochemical properties suggests differential effects on the metabolic oncogenesis. Using U87 cells transfected with either wild-type (WT) and mutant (MT) IDH genes, the MT-IDH1 and MT-IDH2 cells were compared with NMR-based metabolomics. When normalized with the respective WT-IDH cells, the general metabolic shifts of MT-IDH1 and IDH2 were almost opposite. Subsequent analysis with LC-MS and metabolic pathway mapping showed that key metabolites in pentose phosphate pathway and tricarboxylic acid cycle are disproportionately altered in the two mutants, suggesting different activities in the key metabolic pathways. Notably, lactate level was lower in MT-IDH2 cells which produced more 2-HG than MT-IDH1 cells, indicating that the Warburg effects can be overridden by the production of 2-HG. We also found that the effect of a mutant enzyme inhibitor is mainly reduction of the 2-HG level rather than general metabolic normalization. Overall, the metabolic alterations in the MT-IDH1 and 2 can be different and seem to be commensurate with the degree of 2-HG production. The R132H and R172K mutations of isocitrate dehydrogenase 1 and 2, respectively, (IDH1 and IDH2) have neomorphic activity of generating 2-hydroxyglutarate (2-HG) which has been implicated in oncogenesis. The mutant cell's metabolic shifts from the respective wild type cells were almost opposite, with lactate level being lower in the IDH2 mutant only, implicating an overridden Warburg effect. The metabolic effect of an IDH1 mutant inhibitor was limited to 2-HG lowering.

  14. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway

    Science.gov (United States)

    Zheng, J-M; Zhu, J-M; Li, L-S; Liu, Z-H

    2008-01-01

    Background and purpose: Rhein, an anthraquinone compound isolated from rhubarb, has been proved effective in treatment of experimental diabetic nephropathy (DN). To explore the mechanism of its therapeutic effect on DN, rhein was tested for its effect on the hexosamine pathway. Experimental approach: The influence of rhein on cellular hypertrophy, fibronectin synthesis, glucose uptake, glutamine: fructose 6-phosphate aminotransferase (GFAT) activity, UDP-N-acetylglucosamine (UDP-GlcNAc) level and TGF-β1 and p21 expression was evaluated in MCGT1 cells, a GLUT1 transgenic rat mesangial cell line. GFAT activity in normal rat mesangial cells in high glucose concentrations and in vitro was also measured. Key results: Significantly increased fibronectin synthesis, cellular hypertrophy, much higher GFAT activity and UDP-GlcNAc level and increased TGF-β1 and p21 expression were found in MCGT1 cells cultured in normal glucose concentration. Rhein treatment decreased all these features of MCGT1 cells but did not exert a direct effect on GFAT enzymatic activity. Conclusions and implications: There was over-activity of the hexosamine pathway in MCGT1 cells, which may explain the higher expression of TGF-β1 and p21, the cellular hypertrophy and the increased expression of extracellular matrix (ECM) components in the cells. By inhibiting the increased activity the hexosamine pathway, rhein decreased TGF-β1 and p21 expression and thus contributed to the decreased cellular hypertrophy and ECM synthesis. Inhibition of the hexosamine pathway may be one of the mechanism through which rhein exerts its therapeutic role in diabetic nephropathy. PMID:18264122

  15. ALMS1-deficient fibroblasts over-express extra-cellular matrix components, display cell cycle delay and are resistant to apoptosis.

    Directory of Open Access Journals (Sweden)

    Elisabetta Zulato

    Full Text Available Alström Syndrome (ALMS is a rare genetic disorder (483 living cases, characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM and fibrosis, cellular architecture/motility and apoptosis. ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions.

  16. Over-expression of ATF3 Inhibits the Proliferation of Esophageal Squamous Carcinoma Cells%激活转录因子3的过表达对食管癌细胞生长的抑制作用

    Institute of Scientific and Technical Information of China (English)

    谢仰民; 谢剑君; 周飞; 侯健; 曹君君; 许丽艳; 李恩民

    2009-01-01

    背景与目的:激活转录因子3(activating transcription factor 3,ATF3)在食管癌中表达异常下调,但其功能仍不清楚.本研究拟探讨ATF3在食管癌细胞过表达对癌细胞生长及裸鼠成瘤的影响. 材料与方法:利用分子克隆技术将ATF3基因完整编码区克隆至真核细胞表达载体pcDNA3中,获得重组表达质粒;将该表达质粒转染食管癌EC109细胞并用G418筛选稳定表达的细胞克隆;用Western blot检测ATF3的过表达效果;对ATF3过表达的细胞与相应对照细胞进行细胞克隆形成实验和裸鼠体内成瘤实验,以分析ATF3过表达对食管癌细胞生长的影响. 结果:ATF3的过表达在体外可以降低食管癌细胞的克隆形成能力;在体内可以抑制食管癌细胞在雌鼠中的成瘤能力,但对雄鼠中的成瘤能力没有明显影响.结论:ATF3的过表达可以抑制食管癌细胞的生长,ATF3可能在食管癌的发生发展中发挥重要作用.%BACKGROUND AND AIM: ATF3 was down-regulated in esophageal squamous cell carcinoma (ESCC), but the roles of ATF3 in ESCC cells still remained unclear. The purpose of this study was to explore the effect of ATF3 on the proliferation of ESCC cells. MATERIALS AND METHODS: The recombinant expressing plasmid was constructed by inserting the full coding sequence of ATF3 gene into the eukaryotic expressing vector pcDNA3. Then, the expressing plasmid was stably transfected into EC 109 cells, an ESCC cell line, and the over-expressing ATF3 cell clones were obtained. Colony formation assay and tumor formation assay in nude mice were used to explore the effect of ATF3 over-expression on the proliferation of ESCC cells. RESULTS: With the over-expression of ATF3, the colony formation ability of EC109 cells was decreased and the tumor formation of EC109 cells in female mice was inhibited. CONCLUSION: Over-expression of ATF3 could inhibit the proliferation of ESCC cells and ATF3 may play important roles in the progression of ESCC.

  17. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates.

    Science.gov (United States)

    Cal, Pedro M S D; Frade, Raquel F M; Chudasama, Vijay; Cordeiro, Carlos; Caddick, Stephen; Gois, Pedro M P

    2014-05-25

    Herein we present the synthesis of fluorescent 2-acetylbenzeneboronic acids that undergo B-N promoted conjugation with lysozyme and N-(2-aminoethyl) folic acid (EDA-FA), generating conjugates that are selectively recognized and internalized by cancer cells that over-express folic acid receptors.

  18. Glomerular Epithelial Cells-Targeted Heme Oxygenase-1 Over Expression in the Rat: Attenuation of Proteinuria in Secondary But Not Primary Injury.

    Science.gov (United States)

    Atsaves, Vassilios; Makri, Panagiota; Detsika, Maria G; Tsirogianni, Alexandra; Lianos, Elias A

    2016-01-01

    Induction of heme oxygenase 1 (HO-1) in glomerular epithelial cells (GEC) in response to injury is poor and this may be a disadvantage. We, therefore, explored whether HO-1 overexpression in GEC can reduce proteinuria induced by puromycin aminonucleoside (PAN) or in anti-glomerular basement membrane (GBM) antibody (Ab)-mediated glomerulonephritis (GN). HO-1 overexpression in GEC (GECHO-1) of Sprague-Dawley rats was achieved by targeting a FLAG-human (h) HO-1 using transposon-mediated transgenesis. Direct GEC injury was induced by a single injection of PAN. GN was induced by administration of an anti-rat GBM Ab and macrophage infiltration in glomeruli was assessed by immunohistochemistry and western blot analysis, which was also used to assess glomerular nephrin expression. In GECHO-1 rats, FLAG-hHO-1 transprotein was co-immunolocalized with nephrin. Baseline glomerular HO-1 protein levels were higher in GECHO-1 compared to wild type (WT) rats. Administration of either PAN or anti-GBM Ab to WT rats increased glomerular HO-1 levels. Nephrin expression markedly decreased in glomeruli of WT or GECHO-1 rats treated with PAN. In anti-GBM Ab-treated WT rats, nephrin expression also decreased. In contrast, it was preserved in anti-GBM Ab-treated GECHO-1 rats. In these, macrophage infiltration in glomeruli and the ratio of urine albumin to urine creatinine (Ualb/Ucreat) were markedly reduced. There was no difference in Ualb/Ucreat between WT and GECHO-1 rats treated with PAN. Depending on the type of injury, HO-1 overexpression in GEC may or may not reduce proteinuria. Reduced macrophage infiltration and preservation of nephrin expression are putative mechanisms underlying the protective effect of HO-1 overexpression following immune injury. © 2016 S. Karger AG, Basel.

  19. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  20. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  1. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  2. Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas

    Directory of Open Access Journals (Sweden)

    Katerina Vrzalikova

    2012-10-01

    Full Text Available B-lymphocyte-induced maturation protein 1 (BLIMP1 exists as two major isoforms, α and β, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC B cell differentiation. In contrast, the shorter β isoform is functionally impaired and over-expressed in several haematological malignancies, including diffuse large B cell lymphomas (DLBCL. We have studied the influence on BLIMP1β expression of the Epstein-Barr virus (EBV, a human herpesvirus that is implicated in the pathogenesis of several GC-derived lymphomas, including a subset of DLBCL and Hodgkin’s lymphoma (HL. We show that BLIMP1β expression is increased following the EBV infection of normal human tonsillar GC B cells. We also show that this change in expression is accompanied by hypomethylation of the BLIMP1β-specific promoter. Furthermore, we confirmed previous reports that the BLIMP1β promoter is hypomethylated in DLBCL cell lines and show for the first time that BLIMP1β is hypomethylated in the Hodgkin/Reed-Sternberg (HRS cells of HL. Our results provide evidence in support of a role for BLIMP1β in the pathogenesis of EBV-associated B cell lymphomas.

  3. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  4. Over-expression of Pygo2 Promotes C6 Cells Proliferation of Glioma%Pygo2过表达促进大鼠胶质瘤C6细胞增殖

    Institute of Scientific and Technical Information of China (English)

    陈玉英; 王海东; 王占祥; 谭国伟; 刘希尧; 沈上杭

    2012-01-01

    Objective To up-regulate expression of Pygopus2 (Fygo2) by construction of the recombinanl vectors of over-expression of Py-go2 protein,and to explore the role and mechanism of over-expression of Pygo2 in C6 cells proliferation of glioma. Methods The recombi-nant plasmids were digested with EcoR I and Hind III to execute the restriction endonuclease identification,then the sequence analysis was assayed by DNA sequencing. The recombinant plasmids were transfected into cultured gliohlastoma C6 cells using lipofectamineTM 2000. The exogenous Pygo2 protein level of C6 cells was detected by Western blot analysis. Colony framing assay and MTT assay were used to detect the cell proliferation,and cell cycle analysis was performed by flow cytometry analysis. The effect of Pygo2 over-expression on the level of cy-clinD1 and β-catenin of C6 cells was detected by Western blot analysis,and the expression and subcellular location of cyclinD1 and (3-catenin of C6 cells were further quantified by immunofluorescent staining. Results The recombinant plasmids were completely coincided with the designs by the restriction map and the sequence analysis,which up-regulated Pygo2 expression of C6 cells efficiently. After Pygo2 expression were up-regulated by transfected C6 cells with the recombinant plasmids,cells proliferation was promoted and colony forming was increased significantly,cell cycle progression from G, to S transition was enhanced notably. Furthermore,the expression level of cyclinD1 was significantly increased without change of subcellular location,and the expression level and subcellular location of β-catenin were not changed obviously. Concluson The recombinant vectors of Pygo2 over-expression were constructed successfully. Over-expression of Pygo2 promotes the growth of glioma cells by an increased expression of cyclinD1 to improve G1/S transition.%目的 通过构建过表达Pygo2的重组体上调Pygo2表达,探讨其在大鼠胶质瘤C6细胞增

  5. Establishment of a robust hepatitis C virus replicon cell line over-expressing P-glycoprotein that facilitates analysis of P-gp drug transporter effects on inhibitor antiviral activity.

    Science.gov (United States)

    Hernandez, Dennis; Falk, Paul; Yu, Fei; Zhai, Guangzhi; Quan, Yong; Faria, Teresa; Cao, Kai; Scola, Paul; McPhee, Fiona

    2013-01-01

    P-glycoprotein (P-gp) is an active efflux pump affecting the pharmacokinetic (PK) profiles of drugs that are P-gp substrates. The Caco-2 bi-directional assay is widely used to identify drug-P-gp interactions in vitro. For molecules exhibiting non-classical drug properties however, ambiguous results limit its use in lead optimization. The goal of this study was to develop a robust cell-based assay system to directly measure the role of P-gp-driven efflux in reducing the potency of hepatitis C virus (HCV) replication inhibitors. Vinblastine (Vin) was employed to select for a Vin-resistant HCV replicon (313-11) from the parental cell line (377-2). The 313-11 cell line was >50-fold resistant to Vin and over-expressed P-gp, as determined by Western immunoblots. Increased expression of P-gp was mediated by up-regulation of the MDR1 transcript. The reduced potency of different classes of HCV replication inhibitors in the 313-11 P-gp cell line was restored in the presence of known P-gp inhibitors. Addition of the P-gp inhibitor, tariquidar, increased the uptake of a radiolabeled HCV replication inhibitor by 14-fold in the 313-11 replicon cell line. Finally, a positive correlation was demonstrated between potency in the 313-11 replicon and the bi-directional Caco-2 efflux ratio for a panel of HCV protease inhibitors. In conclusion, a robust P-gp HCV replicon cell-based assay has been developed to measure the effect of the P-gp efflux pump on the potency of different classes of HCV replication inhibitors. This system establishes a direct correlation between antiviral activity and the effect of P-gp efflux in a single cell line.

  6. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  7. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  8. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  9. Establishment of stable over-expressing human SIRT1 HEK293 cell line%稳定过表达人SIRT1基因的HEK293细胞系的建立

    Institute of Scientific and Technical Information of China (English)

    林蓉; 张凯帆; 王维蓉; 林琴琴; 杨莉娜; 任峰; 张建丰

    2013-01-01

    Objective To construct a plasmid expressing human SIRT1 and to establish HEK293 cell line with stable over-expressing human SIRT1. Methods Full length of human SIRT1 gene cDNA was ligated into an expressing vector pcDNA3.1 ( + ). After confirmed by restriction analysis and sequencing, the recombinant plasmid was transfected into HEK293 cells mediated with liposome. G418-resistant clones of HEK293 cells were then detected by real-time PCR and Western blot for the expression level of SIRT1. Results The accuracy of constructed and selected plasmids was confirmed by restriction enzymatic analyses and DNA sequencing. As compared with untransfected HEK293 cells, the levels of SIRT1 mRNA and SIRT1 protein of transfected HEK293 cells were significantly increased (P<0.01). Conclusions The pcDNA3.1 ( + )-SIRTl plasmid is successfully constructed. HEK293 cell line with stable over-expressing SIRT1 is established, which provides a useful tool for further study on the effect of SIRT1 on cardiovascular diseases.%目的:构建人沉默信息调节因子2同源蛋白1(SIRT1)基因的真核表达载体,建立稳定过表达人SIRT1的HEK293细胞系.方法:将含有SIRT1的克隆载体pCRⅡ-TOPO-SIRT1双酶切后,连接至真核表达载体pcDNA3.1(+)中,连接产物经酶切鉴定后进行测序.构建的重组真核表达质粒pcDNA3.1(+)-SIRT1转染HEK293细胞.G418进行筛选.Real-time PCR和Western Blot分别从mRNA和蛋白水平检测SIRTI的表达.结果:酶切分析和测序结果证实,SIRT1基因成功插入真核表达质粒pcDNA3.1(+)中.Real-time PCR和Western Blot结果显示稳定转染pc:DNA3.1(+)-SIRT1的HEK293细胞SIRT1的表达水平明显高于未转染细胞(P<0.01).结论:成功构建了真核表达载体pcDNA3.1(+)-SIRT1,并建立了稳定过表达SIRT1基因的HEK293细胞系.为进-步研究SIRT1基因在心血管疾病中的作用及其机制奠定了基础.

  10. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available The roles of vitamin A (VA in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1 were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.

  11. ABCC2基因过表达细胞株的建立及鉴定%Construction and identification of the recombinant cell line over-expressing ABCC2 gene

    Institute of Scientific and Technical Information of China (English)

    魏丹芸; 张洪; 彭锐; 张英

    2016-01-01

    Objective To construct the lentiviral vecter carrying human ABCC2 gene,then to screen out the stable cell line over -ex-pressing ABCC2 after package and transfection to HEK293 cells,thus to provide cell model to determine substrate drugs of multidrug re-sistance protein 2(MRP2)in vitro.Methods The primers were designed according to the cDNA sequence of ABCC2 gene from Gen-Bank.The gene were amplified by PCR and connected to lentiviral vector PEZ -LV105.The recombined lentiviral vector was pack-aged and transfected to HEK293 cells.After puromycin screening,HEK293 cells over -expressing human ABCC2 gene were selected and cloned.Finally,gene sequencing,real -time quantitative PCR(RTQ -PCR)and Western blot assays were performed for identifica-tion.Results RTQ -PCR showed that the ABCC2 mRNA in HEK293 cells transfected with exogenous ABCC2 gene was about 320 times higher than that of normal HEK293 cells and blank carrier HEK293 cells.MRP2 protein level in HEK293 cells with ABCC2 gene transfection was nearly 150 times higher than that of normal HEK293 cells and blank carrier HEK293 cells according to the Western blot.Conclusions Stable recombinant cell line over -expressing ABCC2 was successfully generated.The cell line could be useful in the confirmation of substrate drugs of multidrug resistance protein 2(MRP2)and the transport mechanism in vitro.%目的:构建携带 ABCC2基因的慢病毒载体,转染 HEK293细胞,筛选出稳定过表达 ABCC2基因的细胞株并进行鉴定,为体外实验确定与多药耐药相关蛋白2(MRP2)外排转运相关的底物药物及其转运机制提供细胞模型。方法根据 GenBank提供的 ABCC2基因 cDNA 序列设计引物,PCR 扩增该基因并将其连接至慢病毒载体 PZE -LV105,包装病毒并感染 HEK293细胞。用嘌呤霉素进行筛选得到过表达 ABCC2基因的稳转细胞株,通过基因测序、实时荧光定量 PCR(RTQ -PCR)和蛋白免疫印迹(Western blot)对稳转细

  12. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1.

    Science.gov (United States)

    Wang, Huayang; Shao, Qianqian; Sun, Jintang; Ma, Chao; Gao, Wenjuan; Wang, Qingjie; Zhao, Lei; Qu, Xun

    2016-04-01

    Tumor-infiltrated macrophages were potential targets of the immune therapy for patients with colon cancer. Colony stimulating factor 1 (CSF1) is a primary chemoattractant and functional regulator for macrophages, and therefore would be a feasible intervention for the macrophage-targeting therapeutics. However, the expression of CSF1 in colon cancer microenvironment and its roles in cancer development is largely unknown. In the present study, we found that CSF1 was over-expressed exclusively in colon cancer cells and was correlated with macrophages infiltration. The high CSF1 expression and macrophages infiltration were related to the tumor-node-metastasis (TNM) stage of colon cancer, and suggested to be positively associated with survival of colon cancer patients. In the in vitro studies based on an indirect Transwell system, we found that co-culture with macrophage promoted CSF1 production in colon cancer cells. Further investigation on regulatory mechanisms suggested that CSF1 production in colon cancer cells was dependent on PKC pathway, which was activated by IL-8, mainly produced by macrophages. Moreover, colon cancer cell-derived CSF1 drove the recruitment of macrophages and re-educated their secretion profile, including the augment of IL-8 production. The mice tumor xenografts study also found that over-expression of CSF1 in colon cancer cells promoted intratumoral infiltration of macrophages, and partially suppressed tumor growth. In all, our results demonstrated that CSF1 was an important factor in the colon cancer microenvironment, involving in the interactions between colon cancer cells and tumor-infiltrated macrophages.

  13. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  14. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  15. small Cell Lung Cancer

    African Journals Online (AJOL)

    treatment response in a non-small cell lung cancer (NSCLC). Methodology: A single-center ..... groupings in the forthcoming (7th) edition of the TNM. Classification of ... overall survival in patients with metastatic colorectal cancer. J Clin Oncol ...

  16. [Clinical significance of cyclin Dl expression in non-small cell lung cancer].

    Science.gov (United States)

    Dworakowska, Dorota

    2005-01-01

    Lung cancer remains interdisciplinary problem. The genetic alterations in non-small cell lung cancer (NSCLC) are related to tumor suppressor genes and proto-oncogenes. CCND1 gene, coding cyclin DI, in correlation with pRb is involved in regulation of cell cycle arrest in G1 phase. Amplification of CCND1 gene and cyclin D1 over-expression was found in several cancers including head and neck cancers or colorectal cancer, where these alterations were correlated with worse prognosis. The literature addressing the clinical significance of CCND1 gene amplification/expression in NSCLC remains poor and prognostic value of these alterations in that cancer is still controversial.

  17. Ezrin基因敲低及过表达对脑胶质瘤细胞U87迁移的影响%Effect of Ezrin gene knockdown and over-expression on invasion of glioma U87 cells

    Institute of Scientific and Technical Information of China (English)

    刘乃杰; 秦治刚; 孙利波; 金星一; 叶保国; 张金男; 朱庆三

    2013-01-01

    Objective To study the relationship between Ezrin gene and infiltrative growth of glioma through Ezrin gene knockdown and over-expression. Methods According to Ezrin gene sequence in GenBank, primers were designed using Prime Primer 5. 0 software, with which the gene fragment encoding CDS region of Ezrin gene was amplified from U87 cells and cloned into expression vector pEGFP-1. U87 cells were transfected with the constructed recombinant plasmid pEGFP-C 1/Ezrin as well as plasmids shRNA-EZrin-2 and pEGFP-C 1 in mediation of LipofectimineTM 2000 respectively, then deter-mined for expression of Ezrin protein by Western blot, and for migration by scarification test. Results The homologies of mRNAs of cloned Ezrin gene were 99% to those of homo sapiens ezrin (EZR) and transcript variant 1 reported in Gen-Bank. The homologies of amino acids encoding by the cloned gene was 99% to that of ezrin [Homo sapiens] (Sequence ID: ref-NP_003370. 2-, Length:586), with variations of S66P, K258R, P265L and K577R, while the opening read frame was correct. The relative expression level (1. 17) of Ezrin protein in U87 cells transfected with recombinant plasmid pEGFP-C1 /Ezrin was higher those transfected with shRNA-Ezrin-2 (0. 47) and pEGFP-C1 (0. 82). Scarification test showed migration of a small quantity of U87 cells transfected with shRNA-Ezrin-2 to the wound. However, in pEGFP-C1/ Ezrin transfection group, the wound was almost filled with cells. Conclusion Ezrin gene knockdown blocked , while the over-expression promoted the migration of U87 cells, indicating that Ezrin gene involved in the invasive growth of U87 cells.%目的 分析Ezrin基因敲低及过表达对脑胶质瘤细胞U87迁移的影响,以探讨脑胶质瘤浸润性生长的机理.方法 从U87细胞中扩增Ezrin基因CDS区片段,克隆至表达载体pEGFP-C1中,构建Ezrin基因表达质粒pEGFP-C1/Ezrin.将pEGFP-C1/Ezrin、Ezrin基因shRNA质粒shRNA-Ezrin-2和pEGFP-C1以脂质体LipofectimineTM 2000

  18. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells.

    Science.gov (United States)

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-08-01

    Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.

  19. Over-expression of ST3Gal-I promotes mammary tumorigenesis.

    Science.gov (United States)

    Picco, Gianfranco; Julien, Sylvain; Brockhausen, Inka; Beatson, Richard; Antonopoulos, Aristotelis; Haslam, Stuart; Mandel, Ulla; Dell, Anne; Pinder, Sarah; Taylor-Papadimitriou, Joyce; Burchell, Joy

    2010-10-01

    Changes in glycosylation are common in malignancy, and as almost all surface proteins are glycosylated, this can dramatically affect the behavior of tumor cells. In breast carcinomas, the O-linked glycans are frequently truncated, often as a result of premature sialylation. The sialyltransferase ST3Gal-I adds sialic acid to the galactose residue of core 1 (Galbeta1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice that over-express the sialyltransferase under the control of the human membrane-bound mucin 1 promoter. These mice were then crossed with PyMT mice that spontaneously develop mammary tumors. As expected, ST3Gal-I transgenic mice showed increased activity and expression of the enzyme in the pregnant and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background. These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis.

  20. MiR-888 regulates side population properties and cancer metastasis in breast cancer cells.

    Science.gov (United States)

    Huang, Shengjian; Chen, Liangbiao

    2014-08-01

    Cancer stem cells (CSCs) have recently been reported to possess properties related to cancer metastasis. However, the mechanism by which microRNAs (miRNAs) regulate these properties remains unclear. This study aims to investigate a correlation between miRNAs and the side population (SP) of human breast cancer cell line MCF-7 with CSC properties. miR-888 was found in our previous study to be up-regulated in SP cells and predicted to target E-Cadherin directly, indicating a potential role in maintaining SP properties and regulating the epithelial-mesenchymal transition (EMT) and cancer metastasis. After the over-expression of miR-888 in MCF-7 cells and knock-down of its expression in SP cells, we found that miR-888 played a role in maintaining CSC-related properties. Next, miR-888 was found to regulate the EMT process by targeting related gene expression. Lastly, MCF-7 cells over-expressing miR-888 exhibited a significant reduction in their ability to adhere to the extracellular matrix and an increased potential for migration and invasion, whereas knock-down of miR-888 expression in SP cells reversed these trends. In conclusion, miR-888 maintains SP properties and regulates EMT and metastasis in MCF-7 cells, potentially by targeting E-Cadherin expression.

  1. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  2. Inflammatory breast cancer: High incidence of GCC haplotypes (-1082A/G, -819T/C, and -592A/C) in the interleukin-10 gene promoter correlates with over-expression of interleukin-10 in patients' carcinoma tissues.

    Science.gov (United States)

    Sabet, Salwa; El-Sayed, Shrouk Khalaf; Mohamed, Hossam Taha; El-Shinawi, Mohamed; Mohamed, Mona M

    2017-07-01

    Interleukin-10 is involved in carcinogenesis by supporting tumor escape from the immune response. The aim of this study was to assess the single nucleotide polymorphisms, -1082A/G, -819T/C and -592A/C, in interleukin-10 gene promoter in inflammatory breast cancer compared to non-inflammatory breast cancer and association of these polymorphisms with interleukin-10 gene expression. We enrolled 105 breast cancer tissue (72 non-inflammatory breast cancer and 33 inflammatory breast cancer) patients and we determined the three studied single nucleotide polymorphisms in all samples by polymerase chain reaction restriction fragment length polymorphism and investigated their association with the disease and with various prognostic factors. In addition, we assessed the expression of interleukin-10 gene by real-time quantitative reverse transcription polymerase chain reaction and the correlation between studied single nucleotide polymorphisms and interleukin-10 messenger RNA expression. We found co-dominant effect as the best inheritance model (in the three studied single nucleotide polymorphisms in non-inflammatory breast cancer and inflammatory breast cancer samples), and we didn't identify any association between single nucleotide polymorphisms genotypes and breast cancer prognostic factors. However, GCC haplotype was found highly associated with inflammatory breast cancer risk (p interleukin-10 messenger RNA was significantly higher (p interleukin-10 gene expression (r = 0.9, p < 0.001).

  3. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  4. Chrysosplenetin inhibits artemisinin efflux in P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA up-regulated expression induced by artemisinin in mouse small intestine.

    Science.gov (United States)

    Ma, Liping; Wei, Shijie; Yang, Bei; Ma, Wei; Wu, Xiuli; Ji, Hongyan; Sui, Hong; Chen, Jing

    2017-12-01

    CYP3A4 and P-gp together form a highly efficient barrier for orally absorbed drugs and always share the same substrates. Our previous work revealed that chrysosplenetin (CHR) significantly augmented the rat plasma level and anti-malarial efficacy of artemisinin (ART), partially due to the uncompetitive inhibition effect of CHR on rat CYP3A. But the impact of CHR on P-gp is still unknown. The present study investigates whether CHR interferes with P-gp-mediated efflux of ART and elucidates the underlying mechanism. P-gp-over-expressing Caco-2 cells were treated with ART (10 μM) or ART-CHR (1:2, 10:20 μM) in ART bidirectional transport experiment. ART concentration was determined by UHPLC-MS/MS method. Healthy male ICR mice were randomly divided into nine groups (n = 6) including negative control (0.5% CMC-Na solution, 13 mL/kg), ART alone (40 mg/kg), verapamil (positive control, 40 mg/kg), ART-verapamil (1:1, 40:40 mg/kg), CHR alone (80 mg/kg), ART-CHR (1:0.1, 40:4 mg/kg), ART-CHR (1:1, 40:40 mg/kg), ART-CHR (1:2, 40:80 mg/kg) and ART-CHR (1:4, 40:160 mg/kg). The drugs were administrated intragastrically for seven consecutive days. MDR1 and P-gp expression levels in mice small intestine were examined by performing RT-PCR and western blot analysis. ABC coupling ATPase activity was also determined. After combined with CHR (1:2), Papp (AP-BL) and Papp (BL-AP) of ART changed to 4.29 × 10 (-) (8) (increased 1.79-fold) and 2.85 × 10 (-) (8 )cm/s (decreased 1.24-fold) from 2.40 × 10 (-) (8) and 3.54 × 10 (-) (8 )cm/s, respectively. Efflux ratio (PBA/PAB) declined 2.21-fold (p P-gp levels compared with vehicle, while CHR in combination ratio of 0:1, 0.1:1, 1:1, 2:1 and 4:1 with ART, reversed them to normal levels as well as negative control (p p P-gp activity and reverse the up-regulated P-gp and MDR1 levels induced by ART. It suggested that CHR potentially can be used as a P-gp reversal agent to

  5. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed by...

  6. Ets-1 regulates energy metabolism in cancer cells.

    Directory of Open Access Journals (Sweden)

    Meghan L Verschoor

    Full Text Available Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of reactive oxygen species are significant driving forces. In this study, we have investigated the role of the transcription factor Ets-1 in the regulation of mitochondrial function and metabolism. Ets-1 was over-expressed using a stably-incorporated tetracycline-inducible expression vector in the ovarian cancer cell line 2008, which does not express detectable basal levels of Ets-1 protein. Microarray analysis of the effects of Ets-1 over-expression in these ovarian cancer cells shows that Ets-1 up-regulates key enzymes involved in glycolysis and associated feeder pathways, fatty acid metabolism, and antioxidant defense. In contrast, Ets-1 down-regulates genes involved in the citric acid cycle, electron transport chain, and mitochondrial proteins. At the functional level, we have found that Ets-1 expression is directly correlated with cellular oxygen consumption whereby increased expression causes decreased oxygen consumption. Ets-1 over-expression also caused increased sensitivity to glycolytic inhibitors, as well as growth inhibition in a glucose-depleted culture environment. Collectively our findings demonstrate that Ets-1 is involved in the regulation of cellular metabolism and response to oxidative stress in ovarian cancer cells.

  7. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-lei [Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Lu, Fan-zhen [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Shen, Xiao-Yong, E-mail: shengxiaoyong_sh@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Wu, Yun, E-mail: WuYun_hd@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Zhao, Li-ting [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China)

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  8. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  9. The over expression of thioredoxin during malignancies

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shabani

    2014-09-01

    Full Text Available Thioredoxin system comprised of thiorexin and NADPH dependent thiorexin reductase, is responsible for redox regulation of cells by controlling the apoptosis, proliferation and other vital processes of cells. The efficacy of thioredoxin system has been represented in a wide range of physiological and biological reactions in bacteria, yeast, plants, mammals and etc. including DNA synthesis, regulation of transcription factors, protein repairing, regulating the photosynthesis and controlling the apoptosis and preventing oxidative stresses, filamentous phage assembly, immune-modulating, neuronal survival, pregnancy and birth and many other  physiological and biological functions. The up-regulation of thioredoxin has been observed in various malignancies, which was associated with tumor angiogenesis and development. In this regard, the thiordoxin system has become a putative target in new chemotherapeutic methods. In this study, we mentioned various features of thioredoxin system in malignant cells and reviewed the articles which have evaluated the expression rate of thioredoxin system in malignancies.

  10. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  11. Vascular endothelial growth inhibitor affects the invasion, apoptosis and vascularisation in breast cancer cell line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    Gao Yinguang; Ge Zhicheng; Zhang Zhongtao; Bai Zhigang; Ma Xuemei; Wang Yu

    2014-01-01

    Background Breast cancer is one of the most common malignant female diseases worldwide.It is a significant threat to every woman's health.Vascular endothelial growth inhibitor (VEGI) is known to be abundant in endothelial cells.According to previous literature,overexpression of VEGI has been shown to inhibit tumor neovascularisation and progression in cellular and animal models,but there has been limited research on the significance of VEGI in the breast cancer.Methods In our study,cell lines MDA-MB-231 were first constructed in which VEGI mediated by lentivirus over-expressed.The effects of VEGI over-expression on MDA-MB-231 cells were investigated both in vitro and in vivo.The expression of VEGI in the MDA-MB-231 cells after infection of lentivirus was analyzed using real-time PCR and Western blotting.The effect of the biological characteristics of MDA-MB-231 cells was assessed by growth,invasion,adhesion,and migration assay with subcutaneous tumor-bearing nude mice models.Then the growth curves of the subcutaneous tumors were studied.Expressions of VEGI,CD31 and CD34 in the tumors were analyzed by immunohistochemistry and apoptosis was detected by flow cytometry and immunohistochemistry.Results Infection of MDA-MB-231 cells within the lentivirus resulted in approximately a 1 000-fold increase in the expression of VEGI.As can be seen in the invasion,adhesion and migration assay,the over-expression of VEGI can inhibit the ability of MDA-MB-231 cells during migration,adhesion and invasion.The volume of the subcutaneous tumor in the over-expression group was distinctly and significantly less than that of the control groups.Immunohistochemistry analysis of the tumor biopsies cleady showed the expression of VEGI in the over-expression group increased while CD31 and CD34 decreased significantly.In vitro and in vivo,the early apoptosis rate and the apoptosis index were increased within the VEGI over-expression group as compared with the control group.Conclusions Taken

  12. Laryngeal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2016-03-01

    Full Text Available Laryngeal squamous cell carcinoma (LSCC is one of the most commonly diagnosed malignancies in the head and neck region with an increased incidence rate worldwide. Cancer stem cells (CSCs are a group of cells with eternal life or infinite self-renewal ability, which have high migrating, infiltrative, and metastatic abilities. Though CSCs only account for a small proportion in tumors, the high resistance to traditional therapy exempts them from therapy killing and thus they can reconstruct tumors. Our current knowledge, about CSCs in the LSCC, largely depends on head and neck studies with a lack of systematic data about the evidences of CSCs in tumorigenesis of LSCC. Certainly, the combination of therapies aimed at debulking the tumour (e.g. surgery, conventional chemotherapy, radiotherapy together with targeted therapies aimed at the elimination of the CSCs might have a positive impact on the long-term outcome of patients with laryngeal cancer (LC in the future and may cast a new light on the cancer treatment.

  13. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  14. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha.

    Science.gov (United States)

    Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.

  15. Prolyl hydroxylase 3 inhibited the tumorigenecity of gastric cancer cells.

    Science.gov (United States)

    Cui, Lei; Qu, Jianguo; Dang, Shengchun; Mao, Zhengfa; Wang, Xuqing; Fan, Xin; Sun, Kang; Zhang, Jianxin

    2014-09-01

    Gastric cancer is one of the most common malignancies and the second leading cause of cancer-related death in the world, and it is very urgent to develop novel therapeutic strategies. Although HIF-1α is the most highly characterized target of prolyl hydroxylase 3 (PHD3), PHD3 has been shown to regulate several signal pathways independent of HIF-1α. Here, we found that the expression of PHD3 was decreased in the clinical gastric cancer samples and reversely correlated with tumor size and tumor stage. Over-expression of PHD3 in the gastric cancer cells significantly inhibited cell growth in vitro and in vivo, while knockdown the expression of PHD3 promoted the tumorigenecity of gastric cancer cells. Mechanistically, it showed that PHD3 downregulated the expression of beta-catenin and inhibited beta-catenin/T-cell factor (TCF) signaling. Taken together, our findings demonstrate that PHD3 inhibits gastric cancer by suppressing the beta-catenin/TCF signaling and PHD3 might be an important therapeutic target in gastric cancer.

  16. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  17. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  18. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  19. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  20. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  1. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  2. NOR1基因转染对肝癌细胞HepG2基因表达谱的影响%Changes in Global Gene Expression Induced by NOR1 Over-expression in HepG2 Cells

    Institute of Scientific and Technical Information of China (English)

    李登清; 唐华; 桂嵘; 聂新民

    2008-01-01

    Previous work from this laboratory has cloned a novel gene NOR1 and showed its extensive expression in normal tissues and down-regulation in carcinomas. To further investigate its downstream target genes and better understand its function, NOR1 was over-expressed in HepG2 hepatoma cells and global changes in gene expressions from a stable line were identified by cDNA microarrays. The results discovered 59 genes up-regulated in these cells compared with the original cells, including Grb2, HBP17,TNFRSF11B genes that have been implicated in tumorigenesis and cancer development. In addition, 103 down-regalated genes were also identified, including genes encoding Bik, MAP2K6 and ZFP95 proteins. The expression patterns of certain genes identified by microarrays were validated by quantitative real-time PCR and the results showed that expression difference were statistically significant (P< 0.05). These data suggest that NOR1 may influence the biology and cancerous behaviors of HepG2 cells by regulating expression of a set of genes involved in signal traasduction, cell cycle regulation, transcription and Wanslation controls.%NOR1基因是一在正常组织中广泛表达且在肿瘤组织中表达下调的新基因.为进一步研究NOR1基因的功能和寻找其下游基因,利用脂质体技术将NOR1基因转染进HepG2细胞,采用cDNA微阵列技术分析其基因表达谱的改变.试验表明NOR1基因的转染能使Grb2,HBP17,TNFRSF11B等59个基因上调,同时也下调Bik,MAp2K6,ZFP95等103个基因.随后用实时荧光定量PCR对cDNA 微阵列结果中上述3个上调表达基因进行验证,结果表明,基因表达差异具有统计学意义(P<0.05),荧光定量PCR结果与微阵列结果相符.这些结果提示,NOR1基因对肝癌HepG2细胞的生物学行为的影响可能与它对细胞信号转导,细胞周期调控,转录、翻译调控相关基因的表达影响有关.

  3. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2011-03-01

    Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and\\/or a survival factor in the disease.

  4. 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction.

    Science.gov (United States)

    Keramati, Farid; Seyedjafari, Ehsan; Fallah, Parviz; Soleimani, Masoud; Ghanbarian, Hossein

    2015-04-01

    7SK small nuclear RNA (snRNA) is a 331-333-bp non-coding RNA, which recruits HEXIM 1/2 protein to inhibit positive elongation factor b (P-TEFb) activity. P-TEFb is an essential factor in alleviating promoter-proximal paused RNA polymerase II (Pol II) and initiating the productive elongation phase of gene transcription. Without this protein, Pol II will remain in its hypophosphorylated state, and no transcription occurs. In this study, we inhibited P-TEFb activity by over-expressing 7SK snRNA in human embryonic kidney (HEK) 293T cancer cell line. This inhibition led to a significant decrease in cell viability, which can be due to the transcription inhibition. Moreover, 7SK snRNA over-expression promoted apoptosis in cancerous cells. Our results suggest 7SK snRNA as a potential endogenous anti-cancer agent, and to the best of our knowledge, this is the first study that uses a long non-coding RNA's over-expression against cancer cell growth and proliferation.

  5. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  6. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.

    Science.gov (United States)

    Bikas, Athanasios; Jensen, Kirk; Patel, Aneeta; Costello, John; McDaniel, Dennis; Klubo-Gwiezdzinska, Joanna; Larin, Olexander; Hoperia, Victoria; Burman, Kenneth D; Boyle, Lisa; Wartofsky, Leonard; Vasko, Vasyl

    2015-12-01

    Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.

  7. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  8. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  9. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  10. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  11. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  12. The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Directory of Open Access Journals (Sweden)

    Halsey Christina

    2012-08-01

    Full Text Available Abstract Background Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL where GATA1FL mutations are an essential driver for disease pathogenesis. Methods Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. Results We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. Conclusions These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL.

  13. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation

    Science.gov (United States)

    Siddiqui, Y H; Kershaw, R M; Humphreys, E H; Assis Junior, E M; Chaudhri, S; Jayaraman, P-S; Gaston, K

    2017-01-01

    PRH/HHEX (proline-rich homeodomain protein/haematopoietically expressed homeobox protein) is a transcription factor that controls cell proliferation, cell differentiation and cell migration. Our previous work has shown that in haematopoietic cells, Protein Kinase CK2-dependent phosphorylation of PRH results in the inhibition of PRH DNA-binding activity, increased cleavage of PRH by the proteasome and the misregulation of PRH target genes. Here we show that PRH and hyper-phosphorylated PRH are present in normal prostate epithelial cells, and that hyper-phosphorylated PRH levels are elevated in benign prostatic hyperplasia, prostatic adenocarcinoma, and prostate cancer cell lines. A reduction in PRH protein levels increases the motility of normal prostate epithelial cells and conversely, PRH over-expression inhibits prostate cancer cell migration and blocks the ability of these cells to invade an extracellular matrix. We show that CK2 over-expression blocks the repression of prostate cancer cell migration and invasion by PRH. In addition, we show that PRH knockdown in normal immortalised prostate cells results in an increase in the population of cells capable of colony formation in Matrigel, as well as increased cell invasion and decreased E-cadherin expression. Inhibition of CK2 reduces PRH phosphorylation and reduces prostate cell proliferation but the effects of CK2 inhibition on cell proliferation are abrogated in PRH knockdown cells. These data suggest that the increased phosphorylation of PRH in prostate cancer cells increases both cell proliferation and tumour cell migration/invasion. PMID:28134934

  14. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Directory of Open Access Journals (Sweden)

    Aragon Robert J

    2010-10-01

    Full Text Available Abstract Background The Ras association domain family 1 (RASSF1 gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.

  15. Effects of K562 cells with over-expression of MHC class Ⅰ chain-related protein A on phagocytosis of dendritic cells%K562细胞过表达MHCⅠ类相关抗原A对树突状细胞吞噬功能的影响

    Institute of Scientific and Technical Information of China (English)

    张跃; 邵小青; 陈贝; 季明春; 龚卫娟

    2012-01-01

    Objective To observe how apoptosed K562 cells with over-expression of MHC class I chain-related protein A (MICA) affects phagocytic function of dendritic cells. Methods At first a K562 cell line with ectopic MICA expression, called K562-MICA, was generated by gene trans-fection and G418 screen. Both K562 and K562-MICA cells were stained with fluorescent CFSE, treated with mitomycin C, and then co-cultured with THP1 cells or dendritic cells derived from peripheral blood monocytes overnight. Phagocytic activities were evaluated through detection of percentage of ap-optotic cells by flow cytometry. Meanwhile, some activating receptors on THP1 cells and NKG2D expression on DC were measured by flow cytometry. Finally NKG2D neutralizing antibody was added to cell co-culture system to observe whether phagocytosis of DC would be varied correspondingly. Results K562-MICA cells stimulated THP1 cell to enhance expression of CD86 and MICA, but had no effects on HLA-DR and NKG2D expression. Compared with K562 cells, apoptotic bodies from K562-MICA cells were more susceptible to be uptake by DC. Apoptosed K562-MICA cells induced DC to increase NKG2D expression. In addition, NKG2D antibody could significantly inhibit phagocytosis of DC. Conclusion MICA over-expression on K562 cells promoted phagocytic function of DC, and the function depended on NKG2D expression on DC.%目的 观察过表达MHC Ⅰ类相关抗原A(MICA)的K562细胞,体外经诱导凋亡后,对树突状细胞(DC)吞噬功能的影响.方法 首先利用脂质体介导的基因转染技术和G418筛选过程,建立稳定表达MICA的K562细胞(K562-MICA).其次分别取K562、K562-MICA细胞经CFSE标记,并用丝裂霉素C诱导凋亡,与单核细胞系THP1或外周血单核细胞来源的DC共孵育过夜,流式细胞术检测2种细胞吞噬凋亡小体的活性.同时检测THPI细胞表面相关活化性受体的表达,以及DC表面NKG2D受体的情况.最后,在细胞共培养体系中加入NKG2D抗体,观

  16. Cancer stem cells in human gastrointestinal cancer.

    Science.gov (United States)

    Taniguchi, Hiroaki; Moriya, Chiharu; Igarashi, Hisayoshi; Saitoh, Anri; Yamamoto, Hiroyuki; Adachi, Yasushi; Imai, Kohzoh

    2016-11-01

    Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype.

  17. Effect of microRNA-494 over-expression and RNA interference-mediated Survivin gene inhibition on xenograft prostate cancer growth%微小RNA-494过表达与RNA干扰抑制Survivin基因对前列腺癌移植瘤生长的比较

    Institute of Scientific and Technical Information of China (English)

    孙承文; 王礼平; 臧亚晨; 薛波新; 单玉喜; 许立军; 阳东荣

    2013-01-01

    Objective To investigate the effect of microRNA-494 over-expression and RNA interference-mediated Survivin gene inhibition on on xenograft prostate cancer growth in nude mice.Methods Two adenovirns vectors,Ad-494 which can overexpressed microRNA-494,and Ad-sur loaded with Survivin short hairpin RNA,were transfected into PC-3 cells alone or in combination,and the following groups were established:PBS group (blank control),Ad-GFP group (negative control),Ad-sur group,Ad-494 group,Ad-sur + Ad-494 group.Then a total of 1 × 107 transfected cells were injected to the right armpit of one nude mouse to establish xenograft prostate cancer model.The gross tumor volumes were measured periodically.Fifty-five days after cell injection,the mice were sacrificed and tumor volume was measured.The expression of Survivin gene in tumor sample was detected by using Western blotting and immunohistochemistry.The expression of B lymphocytes/leukemia-2 (bcl-2),bcl-2 associated X protein (bax),and cysteinyl aspartate-specific protease (Caspase)-3 in tumor samples was examined by using immunohistochemistry.Results The tumor growth was inhibited dramatically in Ad-sur group,Ad-494 group and Ad-sur + Ad-494 group as compared with control groups (P < 0.05).Thirty-five days after tumor cell injection,the difference in the tumor volume was found in each group.The average volume in Ad-sur + Ad-494 group was the smallest (40.69 ±0.69) mm3 as compared to that in either Ad-sur group (102.11 ± 5.32) mm3 or Ad-494 group (99.03 ±3.50) mm3(P < 0.05).Fifty-five days after tumor cell injection,the tumor inhibition rate in Ad-sur group,Ad-494 group and Ad-sur + Ad-494 group was 64.62%,65.98% and 86.67%,respectively,suggesting the synergetic anti-tumor effect of Ad-sur + Ad-494 (Q =0.99).Both Western blotting and immunohistochemistry revealed that Survivin gene expression was down-regulated in all experimental groups as compared with control groups,more obviously in Ad-sur + Ad-494 group (P

  18. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion.

    Science.gov (United States)

    Jana, Kuladip; Jana, Narayan; De, Dipak Kumar; Guha, Sujoy Kumar

    2010-09-01

    Although it has been well established that spermatogenic cells undergo apoptosis when treated with ethanol, the molecular mechanisms behind it remain to be investigated. Adult male mice were given intra-peritoneal injection (IP) of ethanol at a dose of 3 g (15%, v/v) per kg body weight per day during the period of 14 days. Testicular androgenesis and apoptotic germ cell death, along with different interrelated proteins expression, were evaluated. Ethanol treatment induced apoptotic spermatogenic cell death with a decrease in the plasma and intra-testicular testosterone concentration. Western blot analysis revealed that repeated ethanol treatment decreased the expression of steroidogenic acute regulatory protein (StAR), 3 beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17 beta-hydroxysteroid dehydrogenase (17beta-HSD); increased the expression of active caspase-3, p53, Fas and Fas-L; and led to up-regulation of Bax/Bcl-2 ratio and translocation of cytochrome c from mitochondria to cytosol in testis. It has also been shown in our study that repeated ethanol treatment led to up-regulation of caspase-3, p53, Fas, Fas-L transcripts; increase in caspase-3 and caspase-8 activities; diminution of 3beta-HSD, 17beta-HSD, and GPx activities; decrease in the mitochondrial membrane potential along with ROS generation and depletion of glutathione pool in the testicular tissue. The present study has indicated that the ethanol treatment induced apoptosis in the mouse testis through the increased expression of Fas/Fas-L and p53, up-regulation of Bax/Bcl-2 ratio, cytosolic translocation of cytochrome c along with caspase-3 activation and glutathione depletion.

  19. Over-expression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats.

    Science.gov (United States)

    Ying, Yan-Lu; Wei, Xu-Hong; Xu, Xue-Bing; She, Shou-Zhang; Zhou, Li-Jun; Lv, Jing; Li, Dai; Zheng, Bin; Liu, Xian-Guo

    2014-11-01

    Many patients suffer from chronic postsurgical pain (CPSP) following surgery, and the underlying mechanisms are poorly understood. In the present work, with use of the skin/muscle incision and retraction (SMIR) model, the role of P2X7 receptors (P2X7Rs) in spinal glial cells in the development of CPSP was evaluated. Consistent with previous reports, we found that SMIR decreased the ipsilateral 50% paw withdrawal threshold (PWT), lasting for at least 2weeks. No injury was done to L3 dorsal root ganglia (DRG) neurons and no axonal or Schwann cell damage at the retraction site in the saphenous nerve was observed 7days after SMIR. The results of immunofluorescence showed that both microglia and astrocytes were activated in the spinal dorsal horn following SMIR. In addition, both P2X7Rs and tumor necrosis factor-alpha (TNF-α) were up-regulated following SMIR. Double immunofluorescence staining revealed that the up-regulated P2X7R immunoreactivity was mainly located in microglia, and to a lesser extent in astrocytes, but not in neurons. Intrathecal delivery of specific P2X7R antagonist BBG (10μM in 10μl volume) or A438079 (10μM in 10μl volume), started 30min before the surgery and once daily thereafter for 7days, prevented the mechanical allodynia. Intrathecal injection of BBG inhibited the activation of microglia and astrocytes, and the up-regulation of TNF-α induced by SMIR. These data suggest that P2X7Rs in the spinal dorsal horn might mediate the development of CPSP via activation of glial cells and up-regulation of TNF-α.

  20. Over-expression of ST3Gal-I promotes mammary tumorigenesis

    DEFF Research Database (Denmark)

    Picco, Gianfranco; Julien, Sylvain; Brockhausen, Inka

    2010-01-01

    3Gal-I adds sialic acid to the galactose residue of core 1 (Galbeta1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice...... and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background....... These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis....

  1. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  2. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  3. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  4. Therapeutic implications of colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Eros; Fabrizi; Simona; di; Martino; Federica; Pelacchi; Lucia; Ricci-Vitiani

    2010-01-01

    Colorectal cancer is the second most common cause of cancer-related death in many industrialized countries and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support with regard to several solid tumors, including colorectal cancer. According to the cancer stem cell hypothesis, cancer can be considered a disease in which mutations either convert no...

  5. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  6. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production.

    Science.gov (United States)

    Marc, Jillian; Grousseau, Estelle; Lombard, Eric; Sinskey, Anthony J; Gorret, Nathalie; Guillouet, Stéphane E

    2017-07-01

    We previously reported a metabolic engineering strategy to develop an isopropanol producing strain of Cupriavidus necator leading to production of 3.4gL(-1) isopropanol. In order to reach higher titers, isopropanol toxicity to the cells has to be considered. A toxic effect of isopropanol on the growth of C. necator has been indeed observed above a critical value of 15gL(-1). GroESL chaperones were first searched and identified in the genome of C. necator. Native groEL and groES genes from C. necator were over-expressed in a strain deleted for PHA synthesis. We demonstrated that over-expressing groESL genes led to a better tolerance of the strain towards exogenous isopropanol. GroESL genes were then over-expressed within the best engineered isopropanol producing strain. A final isopropanol concentration of 9.8gL(-1) was achieved in fed-batch culture on fructose as the sole carbon source (equivalent to 16gL(-1) after taking into account evaporation). Cell viability was slightly improved by the chaperone over-expression, particularly at the end of the fermentation when the isopropanol concentration was the highest. Moreover, the strain over-expressing the chaperones showed higher enzyme activity levels of the 2 heterologous enzymes (acetoacetate carboxylase and alcohol dehydrogenase) of the isopropanol synthetic operon, translating to a higher specific production rate of isopropanol at the expense of the specific production rate of acetone. Over-expressing the native chaperones led to a 9-18% increase in the isopropanol yield on fructose. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  7. Combined over-expression of the hypoxia-inducible factor 2α gene and its long non-coding RNA predicts unfavorable prognosis of patients with osteosarcoma.

    Science.gov (United States)

    Li, Wei; He, Xijing; Xue, Rongliang; Zhang, Ying; Zhang, Xiaoqin; Lu, Jianrui; Zhang, Zhenni; Xue, Li

    2016-10-01

    LncRNA hypoxia-inducible factor-2α (HIF-2α) promoter upstream transcript (HIF2PUT) functions as a novel regulatory factor of osteosarcoma stem cells partly by controlling HIF-2α expression. The aim of this study was to investigate the clinical significance of HIF-2α and HIF2PUT in human osteosarcoma. Quantitative real-time PCR was performed to detect the expression levels of HIF-2α mRNA and HIF2PUT in 82 surgical specimens of primary osteosarcoma and matched non-cancerous bone tissues. Then, the associations of HIF-2α and/or HIF2PUT expression with various clinicopathological features of osteosarcoma patients were statistically analyzed. Moreover, their prognostic value was further evaluated. Compared with non-cancerous bone tissues, HIF-2α mRNA and HIF2PUT expression were both significantly upregulated in osteosarcoma tissues (all Posteosarcoma tissues were positively correlated with those of HIF2PUT (r=0.28, P=0.009). Additionally, osteosarcoma patients with HIF-2α mRNA and/or HIF2PUT over-expression more frequently had large tumor size (all Posteosarcoma patients with HIF-2α mRNA and/or HIF2PUT over-expression had a significantly shorter overall and disease-free survival (all Posteosarcomas with aggressive potency. The over-expression of the two molecules, alone or combined, may predict poor prognosis in osteosarcoma patients. Copyright © 2016. Published by Elsevier GmbH.

  8. Cancer stem cells in osteosarcoma.

    Science.gov (United States)

    Brown, Hannah K; Tellez-Gabriel, Marta; Heymann, Dominique

    2017-02-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cancer Stem Cells in Osteosarcoma

    OpenAIRE

    Heymann, D; Brown, H K; Tellez-Gabriel, M.

    2017-01-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and...

  10. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel.

    Science.gov (United States)

    Muntimadugu, Eameema; Kumar, Rajendra; Saladi, Shantikumar; Rafeeqi, Towseef Amin; Khan, Wahid

    2016-07-01

    This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population.

  11. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine.

    Science.gov (United States)

    Dalla Pozza, Elisa; Fiorini, Claudia; Dando, Ilaria; Menegazzi, Marta; Sgarbossa, Anna; Costanzo, Chiara; Palmieri, Marta; Donadelli, Massimo

    2012-10-01

    Cancer cells exhibit an endogenous constitutive oxidative stress higher than that of normal cells, which renders tumours vulnerable to further reactive oxygen species (ROS) production. Mitochondrial uncoupling protein 2 (UCP2) can mitigate oxidative stress by increasing the influx of protons into the mitochondrial matrix and reducing electron leakage and mitochondrial superoxide generation. Here, we demonstrate that chemical uncouplers or UCP2 over-expression strongly decrease mitochondrial superoxide induction by the anticancer drug gemcitabine (GEM) and protect cancer cells from GEM-induced apoptosis. Moreover, we show that GEM IC(50) values well correlate with the endogenous level of UCP2 mRNA, suggesting a critical role for mitochondrial uncoupling in GEM resistance. Interestingly, GEM treatment stimulates UCP2 mRNA expression suggesting that mitochondrial uncoupling could have a role also in the acquired resistance to GEM. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing strongly enhances GEM-induced mitochondrial superoxide generation and apoptosis, synergistically inhibiting cancer cell proliferation. These events are significantly reduced by the addition of the radical scavenger N-acetyl-l-cysteine or MnSOD over-expression, demonstrating a critical role of the oxidative stress. Normal primary fibroblasts are much less sensitive to GEM/genipin combination. Our results demonstrate for the first time that UCP2 has a role in cancer cell resistance to GEM supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to GEM treatment.

  12. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  13. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies

    Science.gov (United States)

    Bae, Pan Kee; Chung, Bong Hyun

    2014-07-01

    The effective targeting of cancer cell surface antigens is an attractive approach in cancer diagnosis and therapy. Multifunctional nanoprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this study, we have fabricated biocompatible perfluorocan/quantum dot nanoemulsions as bimodal imaging nanoprobes for the targeting of breast cancer cells. Perfluorocarbon/quantum dot nanoemulsions conjugated with monoclonal antibodies, as a type of bimodal imaging nanoprobe based on 19 F-MR and optical imaging, have been synthesized and applied for targeted imaging of three different breast cancer cells (SKBR3, MCF-7, MDA-MB 468), respectively. We have shown that the cancer-detection capabilities of antibody-conjugated PFC/QDs nanoemulsions could be successfully applied to target of various breast cancer cells. These modified PFC/QDs nanoemulsions were shown to target the cancer cell surface receptors specially. Conjugation of ligands to nanoemulsions targeting over-expressed cell surface receptors is a promising approach for targeted imaging to tumor cells. We further propose that the PFC/QDs nanoemulsions could be used in targeted imaging of breast cancer cells.

  14. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF.

    Directory of Open Access Journals (Sweden)

    Maria del Pilar Camacho Leal

    Full Text Available p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR and Estrogen Receptor (ER during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2 severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.

  15. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  16. t-Darpp Promotes Enhanced EGFR Activation and New Drug Synergies in Her2-Positive Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Erin C Denny

    Full Text Available Trastuzumab has led to improved survival rates of HER2+ breast cancer patients. However, acquired resistance remains a problem in the majority of cases. t-Darpp is over-expressed in trastuzumab-resistant cell lines and its over-expression is sufficient for conferring the resistance phenotype. Although its mechanism of action is unknown, t-Darpp has been shown to increase cellular proliferation and inhibit apoptosis. We have reported that trastuzumab-resistant BT.HerR cells that over-express endogenous t-Darpp are sensitized to EGFR inhibition in the presence (but not the absence of trastuzumab. The purpose of the current study was to determine if t-Darpp might modulate sensitivity to EGFR inhibitors in trastuzumab-resistant cells. Using EGFR tyrosine kinase inhibitors AG1478, gefitinib and erlotinib, we found that trastuzumab-resistant SK.HerR cells were sensitized to EGFR inhibition, compared to SK-Br-3 controls, even in the absence of trastuzumab. t-Darpp knock-down in SK.HerR cells reversed their sensitivity to EGFR inhibition. Increased EGFR sensitivity was also noted in SK.tDp cells that stably over-express t-Darpp. High levels of synergy between trastuzumab and the EGFR inhibitors were observed in all cell lines with high t-Darpp expression. These cells also demonstrated more robust activation of EGFR signaling and showed greater EGFR stability than parental cells. The T75A phosphorylation mutant of t-Darpp did not confer sensitivity to EGFR inhibition nor activation of EGFR signaling. The over-expression of t-Darpp might facilitate enhanced EGFR signaling as part of the trastuzumab resistance phenotype. This study suggests that the presence of t-Darpp in HER2+ cancers might predict the enhanced response to dual HER2/EGFR targeting.

  17. Targeting and Imaging of Cancer Cells via Monosaccharide-Imprinted Fluorescent Nanoparticles

    Science.gov (United States)

    Wang, Shuangshou; Yin, Danyang; Wang, Wenjing; Shen, Xiaojing; Zhu, Jun-Jie; Chen, Hong-Yuan; Liu, Zhen

    2016-03-01

    The recognition of cancer cells is a key for cancer diagnosis and therapy, but the specificity highly relies on the use of biorecognition molecules particularly antibodies. Because biorecognition molecules suffer from some apparent disadvantages, such as hard to prepare and poor storage stability, novel alternatives that can overcome these disadvantages are highly important. Here we present monosaccharide-imprinted fluorescent nanoparticles (NPs) for targeting and imaging of cancer cells. The molecularly imprinted polymer (MIP) probe was fluorescein isothiocyanate (FITC) doped silica NPs with a shell imprinted with sialic acid, fucose or mannose as the template. The monosaccharide-imprinted NPs exhibited high specificity toward the target monosaccharides. As the template monosaccharides used are over-expressed on cancer cells, these monosaccharide-imprinted NPs allowed for specific targeting cancer cells over normal cells. Fluorescence imaging of human hepatoma carcinoma cells (HepG-2) over normal hepatic cells (L-02) and mammary cancer cells (MCF-7) over normal mammary epithelial cells (MCF-10A) by these NPs was demonstrated. As the imprinting approach employed herein is generally applicable and highly efficient, monosaccharide-imprinted NPs can be promising probes for targeting cancer cells.

  18. MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3.

    Science.gov (United States)

    He, L; Yao, H; Fan, L H; Liu, L; Qiu, S; Li, X; Gao, J P; Hao, C Q

    2013-04-02

    We examined microRNA-181b (miRNA) expression in prostate cancer tissues and its effect on the prostate cancer cell line PC-3. Tissues from 27 cases of prostate cancer and 30 samples of normal human prostate were collected by surgical removal. Total miRNA was extracted, and the relative expression of miR-181b was quantified using RT-PCR. miR-181b ASO was transfected into prostate cancer PC-3 cells. miR-181b expression in transfected and non-transfected cells was measured using RT-PCR. Changes in cell apoptosis were measured using flow cytometry. MTT and cell growth curve methods were used to assess the influence of miR-181b expression on cell proliferation. The changes in cell invasive ability in vitro were detected using the Transwell chamber method. miR-181b was up-regulated in the prostate cancer tissues compared with the normal prostate samples. It was down-regulated after miR-181b ASO transfection into the prostate cancer PC-3 cells. Down-regulation of miR-181b in the PC-3 cell induced apoptosis, inhibited proliferation, and depressed invasion of PC-3 cells in vitro. As miR-181b is over-expressed in prostate cancer, its down-regulation could have potential as gene therapy for prostate cancer by inducing apoptosis, inhibiting proliferation and depressing invasion by cancer cells.

  19. Schwann cells induce cancer cell dispersion and invasion

    Science.gov (United States)

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  20. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  1. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  2. Effect of SMYD3 over-expression on DNMT3B levels and proliferation ability in human cholangiocarcinoma cell line FRH0201%上调SMYD3对人胆管癌FRH0201细胞中DNMT3B表达及细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    程帝; 李志花; 陈汝福; 郭宁; 廖巧芳; 郑礼平; 周泉波; 周嘉嘉

    2012-01-01

    目的:研究人胆管癌细胞株FRH0201中SET和MYND结构域含有蛋白3(SET and MYND domain-containing protein 3,SMYD3)过度表达对DNA甲基化转移酶3B(DNA methyltransferase 3B,DNMT3B)表达及细胞增殖能力的影响.方法:瞬时转染SMYD3真核表达质粒后,RT-PCR检测细胞中DNMT3B mRNA水平的变化;Western blotting检测细胞中DNMT3B蛋白水平的变化;CCK-8检测细胞增殖能力的改变;流式细胞术检测细胞周期的改变.结果:以未处理组为对照,胆管癌细胞FRH0201在转染pEGFP-C3-SMYD3质粒后,DNMT3B蛋白及mRNA表达均显著上升(P<0.01);细胞的增殖能力显著提高、细胞增殖速度加快(P<0.05);进入G2/M期的细胞明显增多(P<0.05).结论:过度表达SMYD3,可引起细胞中DNMT3B的表达上调并增强细胞增殖能力.%AIM:To explore ihe effect of SET and MYND domain - containing protein 3 ( SMYD3 ) over - expression on the expression of DNA methyltransferase 3B (DNMT3B) and the proliferation ability in human cholangiocarci-noma cell line FRH0201. METHODS; Transient transfection of SMYD3 eukaryotic expression plasmid pEGFP - C3 - SMYD3 into human cholangiocarcinoma cell line FRH0201 was performed. The expression of DNMT3B at mRNA and protein levels was detected by RT - PCR and Western blotting,respectively. Cell proliferation was examined by CCK -8 method and cell cycle situation was checked by flow cytometry. RESULTS; After transfected with SMYD3 eukaryotic expression plasmid pEGFP - C3 - SMYD3 , the over - expression of SMYD3 in FRH0201 cells was observed. Compared with the un-transfected cells, the expression of DNMT3B was significantly increased (P <0. 01) , the proliferation rate was obviously accelerated (P<0. 05) and the number of the cells in G2/M phase was significantly increased (P<0. 05) in FRH0201 cells transiently transfected with pEGFP - C3 - SMYD3 plasmid. CONCLUSION; The transient transfection of pEGFP -C3 - SMYD3 plasmid induces over - expression of DNMT3B and

  3. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    O'Byrne Kenneth J

    2011-03-01

    Full Text Available Abstract Background Thromboxane synthase (TXS metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. Methods TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB2 levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB2 levels were increased in protein (p p p p Conclusion TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC.

  4. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  5. Eradicating cancer cells: struggle with a chameleon

    NARCIS (Netherlands)

    Di, J.; Duiveman-de Boer, T.; Figdor, C.G.; Torensma, R.

    2011-01-01

    Eradication of cancer stem cells to abrogate tumor growth is a new treatment modality. However, like normal cells cancer cells show plasticity. Differentiated tumor stem cells can acquire stem cell properties when they gain access to the stem cell niche. This indicates that eradicating of stem cells

  6. Effects of over-expressed Smac gene coupling with cisplatin on proliferation and apoptosis of hepatocarcinoma cells%Smac基因过表达联合顺铂对SMMC-7721细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    郭彩霞; 李艳博; 杜海英; 刘颖; 孙磊; 金明华; 孙志伟

    2008-01-01

    Objective To investigate the effects of over-expressed Smae gene combined with eisplatin (CDDP) on proliferation and apoptosis of hepatic carcinoma cells. Methods The recombinant plasmid pcDNA3.1+-hSmac was introduced into the human hepatic carcinoma SMMC-7721 cells using a lipusome-mediated method. The expression of Smac protein was detected by Western blot and flow eytometry.The cells were treated with three different doses of CDDP, 5, 15 and 25 μg/ml, for 24 hours after the transfection.MTr colorimetry was used to detect the cellular growth-inhibitory effects; acridine orange-ethidium bromide fluorescent staining (AO/EB) and flow cytometry with annexin V-PI double staining methods were used to detect the changes of cell apoptosis. Results Western blot and flow cytometry results demonstrated that the Smac protein level in SMMC-7721 cells was significantly increased after the transfection (P < 0.01). Compared with that of the control group, the over-expressed Smae gene inhibited the cell growth and induced cell apoptosis (P < 0.01). After being treated with CDDP, the inhibitory rates were increased significantly with increasing concentrations of CDDP compared with that of the control group, and the inhibitory rate of the CDDP-treated plus Smae group was significantly higher than that of the CDDP-treated group (P < 0.01). The results detected by AO/EB and flow cytometry demonstrated that the apoptotic rates of CDDP-treated plus Smac group were higher than those of the CDDP-treated group (P < 0.01). The results demonstrated that the Smac over-expression enhanced the effects of cell growth inhibition and apoptotic promotion induced by CDDP. Conclusion The pro-apoptotic Smac gene could be over-expressed in hepatocarcinoma SMMC-7721 cells and inhibit cell growth and induce apoptosis. Moreover the over-expressed Smac could enhance the chemotherapeutic sensitivity of SMMC-7721 to cisplatin. This experimental work may help in further study on the regulatory

  7. MAZ drives tumor-specific expression of PPAR gamma 1 in breast cancer cells.

    Science.gov (United States)

    Wang, Xin; Southard, R Chase; Allred, Clinton D; Talbert, Dominique R; Wilson, Melinda E; Kilgore, Michael W

    2008-09-01

    The peroxisome proliferator-activated receptor gamma 1 (PPARgamma1) is a nuclear receptor that plays a pivotal role in breast cancer and is highly over-expressed relative to normal epithelia. We have previously reported that the expression of PPARgamma1 is mediated by at least six distinct promoters and expression in breast cancer is driven by a tumor-specific promoter (pA1). Deletional analysis of this promoter fragment revealed that the GC-rich, 263 bp sequence proximal to the start of exon A1, is sufficient to drive expression in breast cancer cells but not in normal, human mammary epithelial cells (HMEC). By combining the disparate technologies of microarray and computer-based transcription factor binding site analyses on this promoter sequence the myc-associated zinc finger protein (MAZ) was identified as a candidate transcription factor mediating tumor-specific expression. Western blot analysis and chromatin immunoprecipitation assays verify that MAZ is overexpressed in MCF-7 cells and is capable of binding to the 263 bp promoter fragment, respectively. Furthermore, the over-expression of MAZ in HMEC is sufficient to drive the expression of PPARgamma1 and does so by recruiting the tumor-specific promoter. This results in an increase in the amount of PPARgamma1 capable of binding to its DNA response element. These findings help to define the molecular mechanism driving the high expression of PPARgamma1 in breast cancer and raise new questions regarding the role of MAZ in cancer progression.

  8. Enhanced cellular radiosensitivity induced by cofilin-1 over-expression is associated with reduced DNA repair capacity

    Science.gov (United States)

    Leu, Jyh-Der; Chiu, Yu-Wen; Lo, Chia-Chien; Chiang, Pei-Hsun; Chiu, Su-Jun; Tsai, Cheng-Han; Hwang, Jeng-Jong; Chen, Ran-Chou; Gorbunova, Vera; Lee, Yi-Jang

    2013-01-01

    Purpose A previous report has indicated that over-expression of cofilin-1 (CFL-1), a member of the actin depolymerizing factor (ADF)/cofilin protein family, enhances cellular radiosensitivity. This study explores, the involvement of various DNA damage responses and repair systems in the enhanced cellular radiosensitivity as well as assessing the role of CFL-1 phosphorylation in radiosensitivity. Materials and Methods Human non-small lung cancer H1299 cells harboring a tet-on gene expression system were used to induce exogenous expression of wild-type CFL-1. Colony formation assays were used to determine cell survival after γ-ray exposure. DNA damage levels were determined by comet assay. DNA repair capacity was assessed by fluorescence-based DNA repair analysis and antibody detection of various repair proteins. The effects of CFL-1 phosphorylation on radiation responses were explored using two mutant CFL-1 proteins, S3D and S3A. Finally, endogenous CFL-1 phosphorylation levels were investigated using latrunculin A (LA), cytochalasin B (CB) and Y27632. Results When phosphorylatable CFL-1 was expressed, radiosensitivity was enhanced after exposure to γ-rays and this was accompanied by DNA damage. Phosphorylated histone H2AX (γ-H2AX) and p53-binding protein-1 (53BP1) foci, as well as Chk1/2 phosphorylation, were apparently suppressed, although ataxia telangiectasia mutated (ATM) kinase activation was apparently unaffected. In addition, two radiation induced double strand break (DSB) repair, systems, namely homologous recombination repair (HRR) and non-homologous end joining (NHEJ), were suppressed. Moreover, over-expression of CFL-1 S3D and CFL-1 S3A both enhanced radiosensitivity. However, enhanced radiosensitivity and reduced γ-H2AX expression were only detected in cells treated with LA which increased endogenous phospho-CFL-1, and not in cells treated with Y27632, which dephosphorylates CFL-1. Conclusion CFL-1 over-expression enhances radiosensitivity and this

  9. Targeting cancer stem cells with p53 modulators

    Science.gov (United States)

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  10. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  11. Deciphering the role of microRNA 21 in cancer stem cells (CSCs

    Directory of Open Access Journals (Sweden)

    Durairaj Sekar

    2016-12-01

    Full Text Available Irrespective of positive developments of cancer treatment, the mortality due to various cancers remains high and the mechanisms of cancer initiation and the development also remains mysterious. As we know that microRNAs are considered to be a short noncoding RNA molecules consisting of 21–25 nucleotides (nt in length and they silence their target genes by inhibiting mRNA translation or degrading the mRNA molecules by binding to their 3′-untranslated (UTR region and play a very important role in cancer biology. Recent evidences indicate that miR-21 is over expressed in cancer stem cells and plays a vital role in cell proliferation, apoptosis, and invasion. Even though an increased expression level of miR-21 has been observed in cancer stem cells, studies related to the role of miR-21 in cancer stem cells are limited. The main aim of this mini review is to explain the potency of miR-21 in various cancer stem cells (CSCs and as a new target for therapeutic interventions of cancer progression.

  12. Immune responses induced by Hepa1-6 hepotoma cell after over-expression SEA and CD80 in vitro%SEA-CD80基因过表达Hepa1-6肝癌细胞体外诱导的免疫学效应

    Institute of Scientific and Technical Information of China (English)

    司少艳; 史亮; 刘俊丽; 宋淑军; 景青萍; 吴继华; 张建中

    2011-01-01

    This study is aimed to determine whether Hepal-6 hepotoma cells could induce antitumor immune response after over-expression Staphylococcus enterotoxin A (SEA) and CD80. Mouse spleen lymphocytes were cocultured with hepal-6 cells infected with empty adenoviruse vector Ad (empty) or the recombinant aden-oviruses of Ad-MMRE-mTERT-B7, Ad-MMRE-mTERT-SEA or Ad-MMRE-mTERT-BIS. Lymphocyte proliferation was assayed by BrdU incorporation using a commercial kit, flow cytometric analysis was used to detect proliferation of T Lymphocyte subgroups. The production of IL-2, TNF-a and IFN-γ was tested by enzyme-linked immunosorbent assay, and antitumor activity of CTL was determined by lactate dehydrogenase release assay. Compared with Hepa1-6 infected with empty adenovirus or without infection, Hepal-6 infected with recombinant adenoviruses could significantly induce proliferatioin of spleen lymphocytes and T Lymphocyte subgroups, enhance IL-2, TNF-a and IFN-γ production and CTL killing activities. The antitumor response was significantly stronger in Hepal-6 cells after dual-gene over-expression than that in Hepal-6 cells after single-gene over-expression. The results indicate that SEA and CD80 expressed on the membrane of Hepal-6 cells by infection with recombinant adenovirus has immune activities. This study provides some experimental evidence for further tumor immune genetherapy with the recombinant adenovirus.%观察经SEA和CD80重组腺病毒感染Hepa1-6肝癌细胞后体外能否诱导抗肿瘤免疫学反应.方法 Hepa1-6细胞分别经空载体腺病毒Ad(空)和重组腺病毒Ad-MMRE-mTERT-B7、Ad-MMRE-mTERT-SEA、Ad-MMRE -mTERT-BIS感染后,和小鼠脾淋巴细胞共培养,然后采用Brdu酶联免疫法(ELISA)检测淋巴细胞增殖;流式细胞术检测T淋巴细胞亚群增殖;ELISA法检测细胞因子IL-2、TNF-α和IFN-γ的产生;LDH释放法检测CTLs对Hepa1-6的杀伤作用.结果与感染空载体腺病毒Ad(空)和未感染Hepa 1-6细胞相比,

  13. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  14. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    Science.gov (United States)

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  15. Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma.

    Science.gov (United States)

    Montalvo-Javé, Eduardo E; Olguín-Martínez, Marisela; Hernández-Espinosa, Diego R; Sánchez-Sevilla, Lourdes; Mendieta-Condado, Edgar; Contreras-Zentella, Martha L; Oñate-Ocaña, Luis F; Escalante-Tatersfield, Tomás; Echegaray-Donde, Agustín; Ruiz-Molina, Juan M; Herrera, Miguel F; Morán, Julio; Hernández-Muñoz, Rolando

    2016-04-01

    Gastric cancer is one of the main causes of global mortality. Here, reactive oxygen species (ROS) could largely contribute to gastric carcinogenesis. Hence, the present work was aimed to assess the role of ROS, oxidant status, NADPH oxidases (NOXs) expression, during human gastric adenocarcinoma. We obtained subcellular fraction from samples of gastric mucosa taken from control subjects (n = 20), and from 40 patients with gastric adenocarcinoma, as well as samples of distant areas (tumour-free gastric mucosa). Parameters indicative of lipid peroxidation and cell proliferation were selectively increased in both tumour-free and in cancerous gastric mucosa, despite of glutathione (GSH) content, glutathione reductase (GR) and superoxide dismutase (SOD) activities were increased in the adenocarcinoma. These high levels of antioxidant defences inversely correlated with down-regulated expression for NOX2 and 4; however, over-expression of NOX1 occurred with increased caspase-3 activity and overexpressed checkpoint 1 (MDC1) and cyclin D1 proteins. In the tumour-free mucosa an oxidant stress took place, without changing total GSH but with decreased activities for GR and mitochondrial SOD; moreover, over-expression of checkpoint 1 (MDC1) correlated with lower NOX2 and 4 expression in this mucosa. Chronically injured gastric mucosa increases lipoperoxidative events and cell proliferation. In the adenocarcinoma, cell proliferation was further enhanced, oxidant stress decreased which seemed to be linked to NOX1, MDC1 and cyclin D1 over-expression, but with a lower NOXs activity leading a 'low tone' of ROS formation. Therefore, our results could be useful for early detection and treatment of gastric adenocarcinoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  17. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  18. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2011-03-09

    Abstract Background Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and\\/or a survival factor in the disease. Methods TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation\\/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB2 levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC.

  19. A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps

    OpenAIRE

    Martins, Marta; McCusker, Matthew P.; Viveiros, Miguel; Couto, Isabel; Fanning, Séamus; Pagès, Jean-Marie; Amaral, Leonard

    2013-01-01

    It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer...

  20. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  1. SIRT1 deacetylates KLF4 to activate Claudin-5 transcription in ovarian cancer cells.

    Science.gov (United States)

    Zhang, Xinjian; Chen, Junliang; Sun, Lina; Xu, Yong

    2017-09-09

    Malignant cancers are distinguished from more benign forms of cancers by enhanced ability to disseminate. A number of factors aid the migration and invasion of malignant cancer cells. Epithelial-to-mesenchymal transition (EMT), which greatly facilitates the dissemination of cancer cells, is characterized by the loss of epithelial markers and the acquisition of mesenchymal markers thereby rendering the cells more migratory and invasive. We have previously shown that the class III lysine deacetylase SIRT1 plays a critical role curbing the metastasis of ovarian cancer cells partly by blocking EMT. Here we investigated the mechanism by which SIRT1 regulates the transcription of Claudin 5 (CLDN5), an epithelial marker gene, in ovarian cancer cells. SIRT1 activation or over-expression up-regulated CLDN5 expression while SIRT1 inhibition or depletion down-regulated CLDN5 expression. SIRT1 interacted with and deacetylated Kruppel-like factor 4 (KLF4), a known transcriptional activator for CLDN5. Deacetylation by SIRT1 promoted nuclear accumulation of KLF4 and enhanced the binding of KLF4 on the CLDN5 promoter in the nucleus. SIRT1-mediated up-regulation of CLDN5 was abrogated in the absence of KLF4. In accordance, KLF4 depletion by siRNA rendered ovarian cancer cells more migratory and invasive despite of SIRT1 activation or over-expression. In conclusion, our data suggest that SIRT1 activates CLDN5 transcription by deacetylating and potentiating KLF4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells.

    Science.gov (United States)

    Ito, Hiromu; Tamura, Masato; Matsui, Hirofumi; Majima, Hideyuki J; Indo, Hiroko P; Hyodo, Ichinosuke

    2014-03-01

    Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.

  3. Notch signaling in cancer stem cells.

    Science.gov (United States)

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  4. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  5. miR-203 downregulates Yes-1 and suppresses oncogenic activity in human oral cancer cells.

    Science.gov (United States)

    Lee, Seul-Ah; Kim, Jae-Sung; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Chun, Hong Sung; Kim, Jeongsun; Park, Jong-Tae; Go, Daesan; Kim, Do Kyung

    2015-10-01

    The purpose of this study was to elucidate the molecular mechanisms of microRNA-203 (miR-203) as a tumor suppressor in KB human oral cancer cells. MicroRNA microarray results showed that the expression of miR-203 was significantly down-regulated in KB cells compared with normal human oral keratinocytes. The viability of KB cells was decreased by miR-203 in the time- and dose-dependent manners. In addition, over-expressed miR-203 not only increased the nuclear condensation but also significantly increased the apoptotic population of KB cells. These results indicated that the over-expression of miR-203 induced apoptosis of KB cells. Furthermore, the target gene array analyses revealed that the expression of Yes-1, a member of the Src family kinases (SFKs), was significantly down-regulated by miR-203 in KB cells. Moreover, both the mRNA and protein levels of Yes-1 were strongly reduced in KB cells transfected with miR-203. Therefore, these results indicated that Yes-1 is predicted to be a potential target gene of miR-203. Through a luciferase activity assay, miR-203 was confirmed to directly targets the Yes-1 3' untranslated region (UTR) to suppress gene expression. Therefore, our findings indicate that miR-203 induces the apoptosis of KB cells by directly targeting Yes-1, suggesting its application in anti-cancer therapeutics.

  6. β-catenin regulates c-Myc and CDKN1A expression in breast cancer cells

    Science.gov (United States)

    Xu, Jinhua; Chen, Yinghua; Huo, Dezheng; Khramtsov, Andrey; Khramtsova, Galina; Zhang, Chunling; Goss, Kathleen H.; Olopade, Olufunmilayo I.

    2015-01-01

    We previously reported that the Wnt pathway is preferentially activated in basal-like breast cancer. However, the mechanisms by which the Wnt pathway regulates down-stream targets in basal-like breast cancer, and the biological significance of this regulation, are poorly understood. In this study, we found that c-Myc is highly expressed in the basal-like subtype by microarray analyses and immunohistochemical staining. After silencing β-catenin using siRNA, c-Myc expression was decreased in non-basal-like breast cancer cells. In contrast, c-Myc mRNA and protein expression was up-regulated in the basal-like breast cancer cell lines. Decreased c-Myc promoter activity was observed after inhibiting β-catenin by siRNA in non-basal-like breast cancer cells; however, inhibition of β-catenin or over-expression of dominant-negative LEF1 had no effect on c-Myc promoter activity in basal-like breast cancer cell lines. In addition, CDKN1A mRNA and p21 protein expression were significantly increased in all breast cancer cell lines upon β-catenin silencing. Interestingly, inhibiting β-catenin expression alone did not induce apoptosis in breast cancer cell lines despite c-Myc regulation, but we observed a modest increase of cells in the G1 phase of the cell cycle and decrease of cells in S phase upon β-catenin silencing. Our findings suggest that the regulation of c-Myc in breast cancer cells is dependent on the molecular subtype, and that β-catenin-mediated regulation of c-Myc and p21 may control the balance of cell death and proliferation in breast cancer. PMID:25663530

  7. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  8. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  9. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  10. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  11. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  12. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  13. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  14. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy.

    Science.gov (United States)

    Ai, Jun; Xu, Yuanhong; Lou, Baohua; Li, Dan; Wang, Erkang

    2014-01-01

    Herein, one multifunctional AS1411-functionalized fluorescent gold nanoparticles (named NAANPs) is synthesized and successfully applied for both targeted cancer cell imaging and efficient photodynamic therapy (PDT). The NAANPs are obtained by functionalizing the gold nanoparticles with AS1411 aptamer and then bound with one porphyrin derivative N-methylmesoporphyrin IX (NMM). Using HeLa cells over expressing nucleolin as representative cancer cells, the formed NAANPs can target to the cell surface via the specific AS1411-nucleolin interaction, which can discriminate the cancer cells from normal ones (e.g. HEK293) unambiguously. That the fluorescence intensity of NMM increased significantly upon binding to AS1411 G-quadruplex makes the NAANPs appropriate fluorescence reagent for cell imaging. Meanwhile, NMM can also be used as a photosensitizer, thus irradiation of the NAANPs by the white light from a common electric torch can lead to efficient production of cytotoxic reactive oxygen species for establishing a new type of PDT to cancer cells. Gold nanoparticles play the roles of both carrier and enhancer of the functional groups onto the cells. In addition, they not only possess inherently certain cytotoxicity to the cancer cells, but also boost the cellular uptake of the fluorescent groups. As a result, the efficiency of both the targeted cell imaging and PDT could be ensured.

  15. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  16. Over-expression of thymosin beta 4 promotes abnormal tooth development and stimulation of hair growth.

    Science.gov (United States)

    Cha, Hee-Jae; Philp, Deborah; Lee, Soo-Hyun; Moon, Hye-Sung; Kleinman, Hynda K; Nakamura, Takashi

    2010-01-01

    Thymosin beta 4 has multi-functional roles in cell physiology. It accelerates wound healing, hair growth and angiogenesis, and increases laminin-5 expression in corneal epithelium. Furthermore, thymosin beta 4 stimulates tumor growth and metastasis by induction of cell migration and vascular endothelial growth factor-mediated angiogenesis. Using a construct on the skin-specific keratin-5 promoter, we have developed thymosin beta 4 over-expressing transgenic mice to further study its functional roles. Thymosin beta 4 in adult skin and in embryonic stages of the transgenic mouse was analyzed by both Western blot and immunohistochemistry. The over-expression of thymosin beta 4 was observed especially around hair follicles and in the teeth in the transgenic mice. We examined the phenotype of the thymosin beta 4 over-expressing mice. Hair growth was accelerated. In addition, the transgenic mice had abnormally-shaped white teeth and dull incisors. We found that the expression of laminin-5 was up-regulated in the skin of the transgenic mice. We conclude that thymosin beta 4 has an important physiological role in hair growth and in tooth development.

  17. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  18. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness

    Directory of Open Access Journals (Sweden)

    M. Moazzem Hossain

    2014-01-01

    Full Text Available Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates.

  19. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness.

    Science.gov (United States)

    Moazzem Hossain, M; Wang, Xin; Bergan, Raymond C; Jin, J-P

    2014-01-01

    Calponin is an actin filament-associated protein and its h2 isoform inhibits cell motility. Here we report significant expression of h2-calponin in prostate epithelial cells, which is diminished in cancerous cells. Comparison between a prostate cancer cell line PC3 and its metastatic derivative PC3-M showed lower levels of h2-calponin in PC3-M, corresponding to faster rates of cell proliferation and migration. Substrate adhesion of PC3 and PC3-M cells was positively correlated to the level of h2-calponin and the adhesion of PC3-M exhibited a higher dependence on substrate stiffness. Such effects of h2-calponin on cell proliferation, migration and substrate adhesion were also seen in normal versus cancerous primary prostate cells. Further supporting the role of h2-calponin in inhibiting cell motility, fibroblasts isolated from h2-calponin knockout mice proliferated and migrated faster than that of wild type fibroblasts. Transfective over-expression of h2-calponin in PC3-M cells effectively inhibited cell proliferation and migration. The results suggest that the diminished expression of h2-calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates.

  20. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  1. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  2. Regulation of HIF-1-Alpha, miR-200, and Markers of Cancer Stem Cells by CDF Under Hypoxic Condition

    Science.gov (United States)

    2012-04-01

    Ali,S., Kong,D., Banerjee,S., Ahmad,A., Li,Y., Azmi,A.S., Miele ,L. and Sarkar,F.H. Over-expression of FoxM1 leads to epithelial-mesenchymal...Ahmad,A., Banerjee,S., Azmi,A.S., Miele ,L. and Sarkar,F.H. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell

  3. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  4. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Science.gov (United States)

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  5. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Caroline H Diep

    Full Text Available BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1 is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells.

  6. Fluoridated hydroxyapatite: Eu3+ nanorods-loaded folate-conjugated D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) micelles for targeted imaging of cancer cells

    Science.gov (United States)

    Wan, Dong; Liu, Weijiao; Wang, Lei; Wang, Hao; Pan, Jie

    2016-03-01

    In this study, fluoridated hydroxyapatite: Eu3+ nanorod-loaded folate-conjugated TPGS micelles were prepared by thin-film hydration. The findings in this study demonstrate that micelles show improved dispersion, high stability, and excellent fluorescent property in aqueous solutions, suitable for targeted imaging of cancer cells with over-expressing folate receptors on their surface. The micelles designed in this study will be a promising tool for early detection of cancer.

  7. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Ranganathan, Santhalakshmi; Halagowder, Devaraj; Sivasithambaram, Niranjali Devaraj

    2015-01-01

    Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  8. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  9. Production of transgenic pigs over-expressing the antiviral gene Mx1

    OpenAIRE

    2014-01-01

    The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated...

  10. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    Science.gov (United States)

    Wang, Yinjie; Sheng, Liping; Zhang, Huanru; Du, Xinping; An, Cong; Xia, Xiaolong; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2017-01-01

    The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin. PMID:28287502

  11. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway.

    Science.gov (United States)

    Li, Haoran; Lu, Yan; Pang, Yangyang; Li, Mengjiao; Cheng, Xi; Chen, Jiawei

    2017-02-01

    The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Novel psammaplin A derivatives sensitize human cancer cells to x-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Ho; Kim, Hak Jae; Wee, Chan Woo; Suh, Soo Youn; Kim, Il Han [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ma, Eun Sook; Shin, Beom Soo [College of Pharmacy, Catholic University of Daegu. Daegu (Korea, Republic of)

    2015-04-15

    Since therapeutics such as temozolomide (TMZ) showed survival benefit in a particular subgroup of patients whose cancer cells carried methylated O6-methylguanin-DNA methyltransferase genes, the field of developing novel epigenic anticancer agents seems promising. DNA methylation and histone modifications are the two principal factors in epigenetic phenomena. These two mechanisms perform a crucial function in carcinogenesis and tumor progression. DNA methylation is controlled by DNA methyltransferase (DNMT), which have been detected to be over expressed in a variety of malignancies. As a nucleoside or a non-nucleoside, DNMT inhibitors demonstrate anticancer effects by directly trapping DNMTs or by blocking DNMTs at a proper site, respectively. Psammaplin A (PsA) is an inhibitor of both DNA methyltransferase (DNMT) and histone deacetylase inhibitor, and as previously reported from our institution, enhances radiation cell killing by increasing the sub-G1 fraction of cancer cells compared to cells exposed to radiation alone.

  13. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-05-01

    components [53]. A role for Wnt signaling in stem cell self-renewal of mammary stem cells was suggested by recent studies of Alexander and colleagues...autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 2004, 6:497-506. 54. Liu BY, McDermott SP, Khwaja SS, Alexander ...helping with the Western blotting, the University of Michigan Cancer Center Flow Cytometry and Vector Core Facilities, and Dr. Graham W. Neill for

  14. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2—Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Fung-Wei Chang

    2017-01-01

    Full Text Available Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2, adenosine triphosphate (ATP synthase and cytochrome c oxidase subunit VIc (COX6C were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX. The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP and reactive oxygen species (ROS expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.

  15. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  16. An intronic SNP in the thyroid hormone receptor β gene is associated with pituitary cell-specific over-expression of a mutant thyroid hormone receptor β2 (R338W in the index case of pituitary-selective resistance to thyroid hormone

    Directory of Open Access Journals (Sweden)

    Cochran Craig

    2011-08-01

    Full Text Available Abstract Background The syndrome of resistance to thyroid hormone (RTH is caused by mutations in the thyroid hormone receptor β gene (THRB. The syndrome varies from asymptomatic to diffuse hypothyroidism, to pituitary-selective resistance with predominance of hyperthyroid signs and symptoms. The wide spectrum of clinical presentation is not completely attributable to specific THRB mutations. The THRB gene encodes two main isoforms, TR β1 which is widely distributed, and TR β2, whose expression is limited to the cochlea, retina, hypothalamus, and pituitary. Recent data demonstrated that in mice an intron enhancer region plays a critical role in the pituitary expression of the β2 isoform of the receptor. We thus hypothesized that polymorphisms in the human homologous region could modulate the pituitary expression of the mutated gene contributing to the clinical presentation of RTH. Methods Screening and in vitro characterization of polymorphisms of the intron enhancer region of the THRB gene in the index case of pituitary-selective RTH. Results The index case of pituitary-selective resistance is characterized by the missense R338W exon 9 mutation in cis with two common SNPs, rs2596623T and rs2596622C, located in the intron enhancer region of the THRB gene. Reporter gene assay experiments in GH3 pituitary-derived cells indicate that rs2596623T generates an increased pituitary cell-specific activity of the TR β2 promoter suggesting that rs2596623T leads to pituitary over-expression of the mutant allele. Conclusions The combined coding mutation and non-coding SNP therefore generate a tissue-specific dominant-negative condition recapitulating the patient's peculiar phenotype. This case illustrates the role of regulatory regions in modifying the clinical presentation of genetic diseases.

  17. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... 2015 2014 2013 2012 Media Resources Media Contacts Multicultural Media ... This page lists cancer drugs approved by the Food and Drug Administration (FDA) for kidney (renal cell) cancer. The list ...

  18. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy

    Science.gov (United States)

    Qin, Weiwei; Huang, Guan; Chen, Zuanguang; Zhang, Yuanqing

    2017-01-01

    Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.

  19. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    Science.gov (United States)

    Tomasetti, Cristian; Li, Lu; Vogelstein, Bert

    2017-03-24

    Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.

  20. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  1. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  2. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  3. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer

    Science.gov (United States)

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-Yuan; Chen, Hui-Guo; Huang, Shao-Hong

    2016-09-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body.

  4. Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P.

    Science.gov (United States)

    Bassett, Tyler; Harpur, Brock; Poon, Ho Y; Kuo, Kuo-Hsing; Lee, Chow H

    2008-12-01

    Syntaxin18 (Stx18) is an endoplasmic reticulum (ER)-membrane bound SNARE protein involved in membrane trafficking between the ER and Golgi as well as in phagocytosis. Stx18 has also been shown to physically interact with proteins involved in the cell cycle and apoptosis. These findings suggest the possible role of Stx18 in regulating cell growth. In this study, we used theoretically designed external guide sequence molecule which utilizes RNase P to cleave Stx18 mRNA and down-regulate Stx18 levels in MCF-7 human breast cancer cells. We showed that down-regulation of Stx18 leads to significant enhancement of growth in MCF-7 cells. Consistent with this finding was the observation that over-expression of Stx18 using the CMV promoter led to suppression of cell growth. Over-expressing Stx18 had no effect on c-myc mRNA expression and half-life, suggesting that the mechanism does not involve control at the transcriptional and post-transcriptional level of the c-myc gene. Finally, we showed that Stx18 is over-expressed in clinical human breast cancer. Overall, this study showed that Stx18 plays a role in the growth of human breast cancer cells and provided the basis for further investigation in determining whether it can be used as a prognostic marker and as a molecular target in the treatment of breast cancer.

  5. Pancreatic cancer stem cells: fact or fiction?

    Science.gov (United States)

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  6. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    Science.gov (United States)

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design.

  7. 抑癌基因蛋白p16在宫颈癌中过度表达对其结合Cdk4功能的影响%Effects of over-expressed p16 on its binding capacity with Cdk4 in cervical squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    庞天云; 邓飞; 郑晓娟; 邹琳; 李飞虹; 胡新荣

    2011-01-01

    目的 观察在宫颈癌中过度表达的p16是否仍然具有正常结合Cdk4的功能,进一步阐明过表达的p16不能抑制宫颈癌发生发展的原因.方法 对142例宫颈标本,包括慢性宫颈炎19例,CIN Ⅰ级(LCIN)15例,CIN Ⅱ/Ⅲ级(HCIN)42例,宫颈鳞状细胞癌(SCC)66例进行p16和Cdk4免疫组化染色分析.选取1例p16高表达SCC(22C)和1例p16低表达SCC(43C)的新鲜标本进行免疫沉淀和Western blot分析.结果 按照慢性宫颈炎、LCIN、HCIN和SCC的顺序,p16阳性率分别是0、60.0%、78.6%和92.4%;Cdk4 阳性率分别是21.1%、46.7%、73.2%和92.4%,表明p16和CDK4的表达随宫颈肿瘤的进展而协调性升高.在同一例标本中,83.9%的p16高表达SCC的Cdk4同时呈高表达;86.7%的p16低表达SCC的Cdk4呈高表达或平行低表达,表明大多数SCC含有足够的与p16结合的Cdk4.结合Cdk4的p16与总p16的比例在p16高表达SCC(22C)中是66.9%,在p16低表达SCC(43C)中是42.2%,表明在SCC中过表达p16的近半左右与Cdk4结合,且p16表达越高,其与Cdk4结合的总量也越多.结论 在宫颈癌中过度表达的p16 仍然具有结合Cdk4 的能力.本研究首次从宫颈癌组织水平证实过表达的p16可以结合Cdk4,为研究p16对宫颈癌的作用向前推进了一步.%Objective To observe the hinding capacity of over - expressed p16 with Cdk4 in cervical carcinoma.Methods Immunohistochemiscal staining of p16 and Cdk4 was performed on 142 samples of cervical tissues, including 19, 15 , 42 and 66 cases of cervicitis, low cervical intraepithelial neoplasm ( LCIN ) , high CIN ( HCIN ) and invasive cervical squamous cell carcinoma ( SCC ), respectively. Co - immunoprecipitation ( Co - IP ) and Western blot were used to test the activity of p16 binding Cdk4 in high p16 expression and low p16 expression SCC. Results In the lesions of cervicitis, LCIN, HCIN and SCC, the p16 positive rates were 0, 60. 0% , 78. 6% and 92. 4% , respectively, with Cdk4 positive rates of 21. 1

  8. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  9. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Directory of Open Access Journals (Sweden)

    Felicite K. Noubissi

    2016-09-01

    Full Text Available Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

  10. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  11. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer

    Directory of Open Access Journals (Sweden)

    Federspiel Birgitte

    2011-03-01

    Full Text Available Abstract Background Gastric cancer is the fourth most common cancer in the world and the second most prevalent cause of cancer related death. The development of gastric cancer is mainly associated with H. Pylori infection leading to a focus in pathology studies on bacterial and environmental factors, and to a lesser extent on the mechanistic development of the tumour. MicroRNAs are small non-coding RNA molecules involved in post-transcriptional gene regulation. They are found to regulate genes involved in diverse biological functions and alterations in microRNA expression have been linked to the pathogenesis of many malignancies. The current study is focused on identifying microRNAs involved in gastric carcinogenesis and to explore their mechanistic relevance by characterizing their targets. Results Invitrogen NCode miRNA microarrays identified miR-449 to be decreased in 1-year-old Gastrin KO mice and in H. Pylori infected gastric tissues compared to tissues from wild type animals. Growth rate of gastric cell lines over-expressing miR-449 was inhibited by 60% compared to controls. FACS cell cycle analysis of miR-449 over-expressing cells showed a significant increase in the sub-G1 fraction indicative of apoptosis. ß-Gal assays indicated a senescent phenotype of gastric cell lines over-expressing miR-449. Affymetrix 133v2 arrays identified GMNN, MET, CCNE2, SIRT1 and CDK6 as miR-449 targets. Luciferase assays were used to confirm GMNN, MET, CCNE2 and SIRT1 as direct targets. We also show that miR-449 over-expression activated p53 and its downstream target p21 as well as the apoptosis markers cleaved CASP3 and PARP. Importantly, qPCR analyses showed a loss of miR-449 expression in human clinical gastric tumours compared to normal tissues. Conclusions In this study, we document a diminished expression of miR-449 in Gastrin KO mice and further confirmed its loss in human gastric tumours. We investigated the function of miR-449 by identifying its

  12. Stem cells and cancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-05-01

    Full Text Available Stem cells are the small units of multicellular creature. Regeneration and self-renewal are the ability of the stem cells. Each tissue is having particular stem cells, specific to it. These normal stem cells are converted into cancer stem cells through mutations in it. Although the expression of oncogenes is enhanced a lot, the tumor-supressing gene is lessened. Cancer stem cells are isolated and visualized through different techniques like immunocytochemical staining, spectral karyotyping, immunohistochemistry, induction method and dissection measures, then are performed histological procedures which include fascination, immunohistochemistry, dispensation, in situ hybridization and also quantitative examination of tissue flow cytometric analysis. For the analysis of quantization, statistical tests are also performed as two-sample t-test, Chi-square test, SD and arithmetic mean. Tumor cells generate glioma spheres. These are used in cancer study. Axin 1 is the gene suppressing cancer. Its removal causes the generation of liver cancer. Curcumin is the most effective for suppressing cancer as it increases the normal stem cell function and decreases the cancer stem cell function. Brahma-related gene 1 is crucial for the safeguarding of the stem cell residents in tissue-specific comportment. Different types of cancers originate through genetic mutation, tissue disorganization and cell proliferation. Tumor configuration is produced by the alteration in original cell culture having stem cells and progenitor cell populations. The developmental facets about cancer cells and cancer stem cells as well as their personal natal functions sustain an intricate steadiness to settle on their personal donations to the efficacy or harmfulness of the biological organization.

  13. Curcumin Promotes KLF5 Proteasome Degradation through Downregulating YAP/TAZ in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-08-01

    Full Text Available KLF5 (Krüppel-like factor 5 plays critical roles in normal and cancer cell proliferation through modulating cell cycle progression. In this study, we demonstrated that curcumin targeted KLF5 by promoting its proteasome degradation, but not by inhibiting its transcription in bladder cancer cells. We also demonstrated that lentivirus-based knockdown of KLF5 inhibited cancer cell growth, while over-expression of a Flag-tagged KLF5 could partially reverse the effects of curcumin on cell growth and cyclin D1 expression. Furthermore, we found that curcumin could down-regulate the expression of Hippo pathway effectors, YAP and TAZ, which have been reported to protect KLF5 protein from degradation. Indeed, knockdown of YAP by small interfering RNA caused the attenuation of KLF5 protein, but not KLF5 mRNA, which was reversed by co-incubation with proteasome inhibitor. A xenograft assay in nude mice finally proved the potent inhibitory effects of curcumin on tumor growth and the pro-proliferative YAP/TAZ/KLF5/cyclin D1 axis. Thus, our data indicates that curcumin promotes KLF5 proteasome-dependent degradation through targeting YAP/TAZ in bladder cancer cells and also suggests the therapeutic potential of curcumin in the treatment of bladder cancer.

  14. Colon cancer stem cells: implications in carcinogenesis

    Science.gov (United States)

    Sanders, Matthew A.; Majumdar, Adhip P. N.

    2014-01-01

    The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may not be effective against the cancer stem cells that are responsible for recurrence. In recent years great progress has been made in identifying markers of both normal and malignant colon stem cells. Proteins proposed as colon cancer stem cell markers include CD133, CD44, CD166, ALDH1A1, Lgr5, and several others. In this review we consider the evidence for these proteins as colon cancer stem cell markers and as prognostic indicators of colon cancer survival. Additionally, we discuss potential functions of these proteins and the implications this may have for development of therapies that target colon cancer stem cells. PMID:21196254

  15. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Zhi-xiang Yuan; Jingxin Mo; Guixian Zhao; Gang Shu; Hua-lin Fu; Wei Zhao

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  16. The Balance of Cell Surface and Soluble Type III TGF-β Receptor Regulates BMP Signaling in Normal and Cancerous Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Catherine E. Gatza

    2014-06-01

    Full Text Available Bone morphogenetic proteins (BMPs are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.

  17. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression.

    Science.gov (United States)

    Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang

    2016-08-02

    The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.

  18. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  19. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  20. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  1. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  2. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Cancer stem cell targeted therapy: progress amid controversies

    Science.gov (United States)

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  4. NDRG1 expression is related to the progression and prognosis of gastric cancer patients through modulating proliferation, invasion and cell cycle of gastric cancer cells.

    Science.gov (United States)

    Chang, Xiaojing; Xu, Xiaoyang; Ma, Jinguo; Xue, Xiaoying; Li, Zhenhua; Deng, Peng; Zhang, Shuanglong; Zhi, Yu; Chen, Jing; Dai, Dongqiu

    2014-09-01

    N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1-NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.

  5. Single domain antibody against carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) inhibits proliferation, migration, invasion and angiogenesis of pancreatic cancer cells.

    Science.gov (United States)

    Cheng, Tsai-Mu; Murad, Yanal M; Chang, Chia-Ching; Yang, Ming-Chi; Baral, Toya Nath; Cowan, Aaron; Tseng, Shin-Hua; Wong, Andrew; Mackenzie, Roger; Shieh, Dar-Bin; Zhang, Jianbing

    2014-03-01

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is over-expressed in pancreatic cancer cells, and it is associated with the progression of pancreatic cancer. We tested a single domain antibody (sdAb) targeting CEACAM6, 2A3, which was isolated previously from a llama immune library, and an Fc conjugated version of this sdAb, to determine how they affect the pancreatic cancer cell line BxPC3. We also compared the effects of the antibodies to gemcitabine. Gemcitabine and 2A3 slowed down cancer cell proliferation. However, only 2A3 retarded cancer cell invasion, angiogenesis within the cancer mass and BxPC3 cell MMP-9 activity, three features important for tumour growth and metastasis. The IC50s for 2A3, 2A3-Fc and gemcitabine were determined as 6.5μM, 8μM and 12nM, respectively. While the 2A3 antibody inhibited MMP-9 activity by 33% compared to non-treated control cells, gemcitabine failed to inhibit MMP-9 activity. Moreover, 2A3 and 2A3-Fc inhibited invasion of BxPC3 by 73% compared to non-treated cells. When conditioned media that were produced using 2A3- or 2A3-Fc-treated BxPC3 cells were used in a capillary formation assay, the capillary length was reduced by 21% and 49%, respectively. Therefore 2A3 is an ideal candidate for treating tumours that over-express CEACAM6. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions.

    Science.gov (United States)

    Liao, Shan; Xiao, Songshu; Chen, Hongxiang; Zhang, Manying; Chen, Zhifang; Long, Yuehua; Gao, Lu; Zhu, Guangchao; He, Junyu; Peng, Shuping; Xiong, Wei; Zeng, Zhaoyang; Li, Zheng; Zhou, Ming; Li, Xiaoling; Ma, Jian; Wu, Minghua; Xiang, Juanjuan; Li, Guiyuan; Zhou, Yanhong

    2017-10-01

    Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca(2+) levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions. © 2017 Wiley Periodicals, Inc.

  7. Human decorin regulates proliferation and migration of human lung cancer A549 cells

    Institute of Scientific and Technical Information of China (English)

    LIANG Shuo; XU Jin-fu; CAO Wei-jun; LI Hui-ping; HU Cheng-ping

    2013-01-01

    Background Decorin is a small leucine-rich proteoglycan and it plays an important role in regulation of cell growth and migration in various tumor cell lines.Decorin was found down-regulated in non-small cell lung cancer tissue and may be involved in regulation of lung cancer development.Methods In this study,lentivirus-mediated RNA interference and over expression were employed to change the expression levels of decorin in lung cancer A549 cells.We tested the cell cycle of A549 cells and the expression of transforming growth factor (TGF)-β1,cyclin D1,epidermal growth factor receptor (EGFR),P53,and P21.Results We found that up-regulation of decorin could inhibit proliferation,block cell cycle at G1 and decrease invasive activity of A549 cells.Moreover,we also show that up-regulation of decorin induced significant decreases of TGF-β1,cyclin D1 expression,phosphorylation of EGFR,and increases of P53 and P21 expression.Opposite results were observed in A549 cells with down-regulation of decorin.Conclusion Our results suggest that decorin is a key regulator involved in proliferation and migration ofA549 cells.

  8. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.

    2010-01-01

    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  9. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene.

    Science.gov (United States)

    Li, Liang-Qing; Yang, Yang; Chen, Hui; Zhang, Lin; Pan, Dun; Xie, Wen-Jun

    2016-06-07

    Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, which is named as ``Warburg effect''. Recent studies have shown that MicroRNAs (miRNAs), a class of short and non-coding RNAs, play a role in the regulation of metabolic reprograming in cancer cells. In the present study, we report that miR-181b negatively regulates glycolysis in gastric cancer cells. Over-expression of miR-181b mimics reduces the glucose uptake and lactate production, while increasing the cellular ATP levels in NCI-N87 and MGC80-3 cells. At the molecular level, miR-181b directly inhibits the expression level of hexokinase 2 (HK2), a key enzyme that catalyzes the first step of glycolysis, through targeting its 3'-untranslated region. In addition, miR-181b represses cell proliferation and migration and is dramatically down-regulated in human gastric cancers. Therefore, our data disclose a novel function of miR-181b in reprogramming the metabolic process in gastric cancer.

  10. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    which resemble normal stem cells, specifically in the ability to infinitely give rise to the bulk of a tumor as the “ seed ” of the cancer, account for...evolutionarily- conserved role in regulating the cell fate in both normal and neoplastic stem cell populations, which suggests that therapeutic targeting of this...specifically in the ability to infinitely give rise to the bulk of a tumor as the “ seed ” of the cancer, account for cancer initiation, progression

  11. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  12. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  13. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  14. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  15. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  16. Single-cell analysis in cancer genomics

    Science.gov (United States)

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2017-01-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper, we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  17. Gefitinib: a pharmacoeconomic profile of its use in patients with Non Small Cell Lung Cancer EGFR+

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2011-06-01

    Full Text Available Lung cancer is the most common form of cancer with the highest incidence worldwide. The mortality rates are highest in males and second highest in females, after breast cancer. The genetic predisposition to Non Small Cell Lung Cancer (NSCLC is still under investigation, however, studies have shown that the Epidermal Growth Factor Receptor (EGFR, a receptor tyrosine kinase is frequently over-expressed and activated to a phosphorylated state in NSCLC. The activity of EGFR in cancer cells results in the phosphorylation of downstream proteins that promote cell proliferation, invasion, metastasis, and inhibition of apoptosis. Targeting the EGFR pathway therefore constitutes a relevant strategy for cancer therapy. Gefitinib is a selective inhibitor of the EGFR tyrosine kinase and is indicated for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of EGFR-TK. From the pharmacoeconomic point of view gefitinib is dominant (more effective and less expensive compared to the alternatives. In conclusion, gefitinib is a treatment option for NSCLC tumors with a high clinical and economic value in the Italian setting.

  18. Over-Expression of DSCR1 Protects against Post-Ischemic Neuronal Injury

    Science.gov (United States)

    Corlett, Alicia; Broughton, Brad R. S.; Kim, Hyun Ah; Thundyil, John; Drummond, Grant R.; Arumugam, Thiruma V.; Pritchard, Melanie A.

    2012-01-01

    Background and Purpose The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1. Methods Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons. Results In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation. Conclusions Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons. PMID:23144708

  19. Over-expression of DSCR1 protects against post-ischemic neuronal injury.

    Directory of Open Access Journals (Sweden)

    Vanessa H Brait

    Full Text Available BACKGROUND AND PURPOSE: The Down syndrome candidate region 1 (DSCR1 gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT and transgenic (DSCR1-TG mice which over-express isoform 1 of human DSCR1. METHODS: Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons. RESULTS: In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation. CONCLUSIONS: Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.

  20. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Candelaria Myrna

    2006-01-01

    Full Text Available Abstract Background Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in a panel of cancer cell lines. Results Hydralazine showed no growth inhibitory effect on cervical, colon, breast, sarcoma, glioma, and head & neck cancer cell lines when used alone. On the contrary, valproic acid showed a strong growth inhibitory effect that is potentiated by hydralazine in some cell lines. Individually, hydralazine and valproic acid displayed distinctive effects upon global gene over-expression but the number of genes over-expressed increased when cells were treated with the combination. Treatment of HeLa cells with hydralazine and valproic acid lead to an increase in the cytotoxicity of gemcitabine, cisplatin and adriamycin. A higher antitumor effect of adriamycin was observed in mice xenografted with human fibrosarcoma cells when the animals were co-treated with hydralazine and valproic acid. Conclusion Hydralazine and valproic acid, two widely used drugs for cardiovascular and neurological conditions respectively have promising antineoplastic effects when used concurrently and may increase the antitumor efficacy of current cytotoxic agents.

  1. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  2. An immunosurveillance mechanism controls cancer cell ploidy.

    Science.gov (United States)

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  3. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Hou Xiaohua

    2010-02-01

    Full Text Available Abstract Background Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells. Methods Three heparanase-specific small interfering RNA (siRNAs were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The in vitro invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells. Results Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the in vitro invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the in vitro angiogenesis of cancer cells in a dose-dependent manner. Conclusions These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells in vitro, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.

  4. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja;

    2013-01-01

    -3p in a second independent cohort of 43 CRC patients, using single TaqMan® microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified...... as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel...

  5. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    National Research Council Canada - National Science Library

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    .... We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic...

  6. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  7. Mast cells and cancer: enemies or allies?

    Science.gov (United States)

    Dyduch, Grzegorz; Kaczmarczyk, Karolina; Okoń, Krzysztof

    2012-03-01

    Mast cells are a component of cancer microenvironment the role of which is complex and poorly understood. Mast cells promote cancer growth by stimulation of neoangiogenesis, tissue remodeling and by modulation of the host immune response. The mediators of cancer promotion include protease-activated receptors, mitogen activated protein kinases, prostaglandins and histamine. Histamine may induce tumor proliferation and immunosuppression through H1 and H2 receptors, respectively. The mast cell-derived modulators of immune response include also interleukin 10 (IL-10), tumor necrosis factor α (TNF-α) and CD30L. Possibly stimulation of angiogenesis is the most important. Mast cells release potent proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGF-β), TNF- α and IL-8, and mast cells' enzymes, like metaloproteinases (MMPs), tryptase and chymase participate in vessels' formation. The anti-cancer actions of mast cells include direct growth inhibition, immunologic stimulation, inhibition of apoptosis and decreased cell mobility; the mediators of these processes include chymase, tryptase, TNF-α, IL-1 and IL-6. The very same mediators may exert both pro- or anti-cancer effects depending on concentration, presence of cofactors or location of secreting cells. In fact, peri- and intra-tumoral mast cells may have dissimilar effects. Understanding of the role of mast cells in cancer could lead to improved prognostication and development of therapeutic methods targeting the mast cells.

  8. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  9. GPX4 and GPX7 Over-Expression in Human Hepatocellular Carcinoma Tissues

    Science.gov (United States)

    Guerriero, E.; Capone, F.; Accardo, M.; Sorice, A.; Costantini, M.; Colonna, G.; Castello, G.

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is still one of the most fatal cancers. Hence, it needs to identify always new putative markers to improve its diagnosis and prognosis. The selenium is an essential trace mineral implicated as a key factor in the early stage of cancer and exerts its biological function through the selenoproteins. In the last years our group has been studying the involvement of some selenoproteins in HCC. However, no many data are reported in literature about the correlation between HCC and the glutathione peroxidases (GPXs), both selenium and non selenium-containing GPXs. In this paper we have evaluated the GPX4 and GPX7 expression in some paraffin-embedded tissues from liver biopsy of patients with hepatitis C virus (HCV)-related cirrhosis and HCC by immunohistochemistry and RT-qPCR analysis. Our results evidenced that i) GPX4 and GPX7 had a statistically significant over-expression in HCC tissues compared to cirrhotic counterparts used as non tumor tissues, and ii) their expression was higher in grade III HCC tissues with respect to grade I-II samples. Therefore, we propose to use GPX4 and GPX7 as possible markers for improving HCC diagnosis/prognosis. PMID:26708178

  10. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  11. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  12. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division.

    Science.gov (United States)

    Xin, Hong-Wu; Ambe, Chenwi M; Ray, Satyajit; Kim, Bo-Kyu; Koizumi, Tomotake; Wiegand, Gordon W; Hari, Danielle; Mullinax, John E; Jaiswal, Kshama R; Garfield, Susan H; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S; Avital, Itzhak

    2013-01-01

    Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy.

  13. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Zhang Lingmin

    2012-08-01

    Full Text Available Abstract Background Propofol is one of the most commonly used intravenous anaesthetic agents during cancer resection surgery, but the effect of propofol on gallbladder cancer is not clear. NF-E2-related factor 2 (Nrf2 is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. The aims of the current study were to evaluate effects of propofol on the behavior of human GC cells and role of Nrf2 in these effects. Method The effects of propofol on cell proliferation, apoptosis, and invasion were detected by MTT assays, flow cytometry, and transwell assay. Also, activation of Nrf2 was determined by western blot, RT-PCR, and immunofluorescence assays. Nrf2 was knocked-down in GBC-SD cells by shRNA before evaluating the role of Nrf2 in the influence of propofol on biological behaviors. Results Propofol promoted the proliferation of GBC-SD cells in a dose- and time- dependent manner. After exposure to propofol for 48 h, GBC-SD cells showed decreased apoptosis and increased invasion. Also, propofol over-expressed Nrf2 at both the protein and mRNA levels and induced translocation of Nrf2 into the nucleus. Finally, loss of Nrf2 by shRNA reversed the effect of propofol on cell proliferation, apoptosis, and invasion. Conclusion Propofol induces proliferation and promotes invasion of GC cells through activation of Nrf2.

  14. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Directory of Open Access Journals (Sweden)

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  15. Repression of cancer cell senescence by PKCι.

    Science.gov (United States)

    Paget, J A; Restall, I J; Daneshmand, M; Mersereau, J A; Simard, M A; Parolin, D A E; Lavictoire, S J; Amin, M S; Islam, S; Lorimer, I A J

    2012-08-02

    Senescence is an irreversible growth arrest phenotype adopted by cells that has a key role in protecting organisms from cancer. There is now considerable interest in therapeutic strategies that reactivate this process to control the growth of cancer cells. Protein kinase-Cι (PKCι) is a member of the atypical PKC family and an important downstream mediator in the phosphoinositide-3-kinase (PI-3-kinase) pathway. PKCι expression was found to be upregulated in a subset of breast cancers and breast cancer cell lines. Activation of the PI-3-kinase pathway by introduction of mutant, oncogenic PIK3CA into breast mammary epithelial cells increased both the expression and activation of PKCι. In breast cancer cells lines overexpressing PKCι, depletion of PKCι increased the number of senescent cells, as assessed by senescence-associated β-galactosidase, morphology and bromodeoxyuridine incorporation. This phenomenon was not restricted to breast cancer cells, as it was also seen in glioblastoma cells in which PKCι is activated by loss of PTEN. Senescence occurred in the absence of a detectable DNA-damage response, was dependent on p21 and was enhanced by the aurora kinase inhibitor VX-680, suggesting that senescence is triggered by defects in mitosis. Depletion of PKCι had no effect on senescence in normal mammary epithelial cell lines. We conclude that PKCι is overexpressed in a subset of cancers where it functions to suppress premature senescence. This function appears to be restricted to cancer cells and inhibition of PKCι may therefore be an effective way to selectively activate premature senescence in cancer cells.

  16. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells

    Science.gov (United States)

    Akal, Z. Ü.; Alpsoy, L.; Baykal, A.

    2016-08-01

    In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR +) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.

  17. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  18. Relevance of mortalin to cancer cell stemness and cancer therapy

    Science.gov (United States)

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy. PMID:28165047

  19. Relevance of mortalin to cancer cell stemness and cancer therapy.

    Science.gov (United States)

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C; Wadhwa, Renu

    2017-02-06

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy.

  20. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  1. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation.

    Science.gov (United States)

    Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J

    2011-07-01

    The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.

  2. Peganum harmala L.’s anti-growth effect on a breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Somayeh Hashemi Sheikh Shabani

    2015-12-01

    Full Text Available This research was done to evaluate the induction of apoptosis in MDA-MB-231 breast cancer cell line by Peganum harmala’s extract, in which a significant amount of ß-carbolines is included. The apoptosis incidence was assessed through Annexin-V-Flous kit. The expressions of genes through which intrinsic apoptosis pathway are involved, Bax, Bcl-2, Bid, and Puma, over the genes the expressions of which are linked to extrinsic apoptosis pathway, TRAIL, Caspase8, p21, and p53, were examined by RT-PCR and Real-time PCR. The results demonstrate that the extract decreases the growth rate of the cancer cell line through inducing apoptosis mechanism. As long as the expression of anti-apoptosis Bcl-2 gen reduced dramatically, an over-expression in Bax and Puma genes was monitored indicating activation of intrinsic apoptosis pathway. A notable over-expression observed with TRAIL and Caspase8 genes as well as Bid gene. The latter is an intermediate for both intrinsic and extrinsic pathways of apoptosis.

  3. 白血病细胞中共表达P2X7受体和Notch1胞内区%Dual Over-expression of P2X7 Receptor and Intracellular Domain of Notch1 in Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    冯丽; 杨骁; 廖金凤; 陈莎燕; 冯文利; 林永敏; 任倩; 郑国光

    2013-01-01

    This study aimed to construct the dual expression vectors of wide type or N187D mutant P2X7 receptor and intracellular domain of Notchl (ICN1) linked by 2A peptide to coexpress them in leukemia cells so as to lay a foundation for further investigating the role of P2X7 in development of leukemia.Overlap PCR was used to construct the dual expression vectors encoding wide type or N187D mutant type P2X7 receptor and ICN1 linked by the self-cleaving 2A sequence.The results showed that stable expressing cell lines were obtained by retroviral infection followed by cell sorting after DNA sequence analysis.RT-PCR,Western blot,intracellular free calcium concentration analysis were used to verify the functionally successful construction of K562 cell line expressing P2X7 receptor alone or with ICN1.DNA sequence analysis revealed that all construction were right.The infection efficiency of packaged constructed virus ranged from 40% to 70% for K562 cells.Stable infected cell line was obtained by cell sorting.RT-PCR analysis revealed that P2X7 receptor and/or ICN1 could be detected at high level in their stable infected cell lines,respectively.Western blot analysis also showed that P2X7 receptor was highly expressed in cell line infected by virus with P2X7 receptor.Sustained increase in intracellular free calcium concentration ([Ca2 +] i) could be observed in K562 cells overexpressing either type of P2X7 receptor upon stimulation with BzATP.It is concluded that the wide type or N187D mutant P2X7 receptor and ICN1 are simultaneously and functionally over-express in leukemia cells,which lay a foundation for further studying the role of P2X7 receptor in the development of leukemia.%本研究旨在构建野生型及N187D突变型P2X7与ICN1基因的共表达载体,并在白血病细胞中表达,为进一步探讨P2X7在白血病发展中的作用奠定基础.采用Overlap PCR法,通过2A连接,构建野生型或N187DP2X7与ICN1的共表达载体;经DNA序列分析验

  4. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  5. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  6. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  7. Nucleolar function and size in cancer cells.

    OpenAIRE

    Derenzini, M; Trerè, D; Pession, A; Montanaro, L; Sirri, V.; Ochs, R. L.

    1998-01-01

    We have have studied the relationship between nucleolar function and size and cell doubling time in cancer cells. Seven human cancer cell lines characterized by different proliferation rates were used. Nucleolar functional activity was evaluated by measuring RNA polymerase I activity and expression of RNA polymerase I upstream binding factor (UBF), DNA topoisomerase I, and fibrillarin, three proteins involved in synthesis and processing of rRNA. Transcriptional activity of RNA polymerase I wa...

  8. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  9. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  10. Cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2 induces pro-survival pathways and hypertrophic cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Polina Sysa-Shah

    Full Text Available BACKGROUND: Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. METHODOLOGY/PRINCIPAL FINDINGS: We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2-3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. CONCLUSIONS/SIGNIFICANCE: These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling

  11. Sodium Butyrate Induces Apoptosis of Human Colon Cancer Cells by Modulating ERK and Sphingosine Kinase 2

    Institute of Scientific and Technical Information of China (English)

    XIAO Min; LIU Yun Gang; ZOU Meng Chen; ZOU Fei

    2014-01-01

    Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the U0126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.

  12. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Suhong; Zheng, Hui [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wen, Xuemei [Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Sun, Jiajun; Wang, Yanchun; Gao, Xiang; Guo, Lin [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Lu, Renquan, E-mail: lurenquan@126.com [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-08-05

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, and the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.

  13. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Jia Dongxuan

    2012-03-01

    Full Text Available Abstract Background Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA - as an invasion suppressor of prostate cancer cells. Methods Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. Results We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. Conclusions We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.

  14. LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chakrabarti Ratna

    2011-01-01

    Full Text Available Abstract Background LIM kinase 1 (LIMK1 is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP is a critical modulator of extracellular matrix (ECM turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion. Results Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues. Conclusion Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.

  15. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro.

    Science.gov (United States)

    Ge, Yanli; Zhang, Junjie; Cao, Jianchun; Wu, Qiong; Sun, Longe; Guo, Likun; Wang, Zhirong

    2012-05-01

    Trefoil Factor Family (TFF) plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC) is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC. The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry. From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  16. Production of transgenic pigs over-expressing the antiviral gene Mx1.

    Science.gov (United States)

    Yan, Quanmei; Yang, Huaqiang; Yang, Dongshan; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Fan, Nana; Ouyang, Hongsheng; Gu, Weiwang; Lai, Liangxue

    2014-01-01

    The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15-25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV). Indirect immunofluorescence assay (IFA) revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  17. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  18. Expression and silencing of microtubule-associated protein Tau in breast cancer cells

    Science.gov (United States)

    Spicakova, Tatiana; O’Brien, Maureen M.; Duran, George E.; Sweet-Cordero, Alejandro; Sikic, Branimir I.

    2010-01-01

    Microtubule-associated protein (MAP) Tau has been reported to be a predictive factor for clinical response to taxanes in metastatic breast cancer. We generated a panel of eight taxane resistant variants from four human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231 and BT-549). Four variants had higher levels of Tau compared to their T47D and MDA-MB-231 parental cells. Using isoform-specific primers, we found that Tau 0N, 1N, 2N, 3R and 4R isoforms are overexpressed in the resistant variants, as is Tau exon 6 but not exons 4A or 8. To determine whether Tau overexpression produces resistance to taxanes, we derived three independent T-47D clones stably over-expressing Tau-3R and Tau-4R isoforms. Tau overexpression did not result in taxane resistance compared to parental cells transfected with vector alone. We then knocked down Tau expression in three cell lines that expressed Tau constitutively (MCF-7 and ZR-75-1 breast cancer cells, and OVCAR-3 ovarian cancer cells). Lentivirus-mediated silencing of Tau expression in MCF-7 and OVCAR-3 cells did not result in increased taxane sensitivity compared with luciferase shRNA-infected cells and uninfected parental cells. Transient silencing using Tau-specific siRNAs also did not alter taxane sensitivity relative to non-targeting controls in both MCF-7 and and ZR-75-1 cells. These results show that neither overexpression nor depletion of Tau modulate cellular sensitivity to taxanes. Although Tau overexpression has been reported to be a predictive marker of taxane resistance, it is not likely to be a direct mechanism of taxane resistance in breast cancer. PMID:21062914

  19. Stem cell concepts renew cancer research.

    Science.gov (United States)

    Dick, John E

    2008-12-15

    Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.

  20. Updates in colorectal cancer stem cell research

    Directory of Open Access Journals (Sweden)

    Chun-Jie Li

    2014-01-01

    Full Text Available Colorectal cancer (CRC is one of the world most common malignant tumors, also is the main disease, which cause tumor-associated death. Surgery and chemotherapy are the most used treatment of CRC. Recent research reported that, cancer stem cells (CSCs are considered as the origin of tumor genesis, development, metastasis and recurrence in theory. At present, it has been proved that, CSCs existed in many tumors including CRC. In this review, we summary the identification of CSCs according to the cell surface markers, and the development of drugs that target colorectal cancer stem cells.

  1. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  2. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  3. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  4. Cell Polarity Proteins in Breast Cancer Progression.

    Science.gov (United States)

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  5. Induction of cancer cell stemness by chemotherapy.

    Science.gov (United States)

    Hu, Xingwang; Ghisolfi, Laura; Keates, Andrew C; Zhang, Jian; Xiang, Shuanglin; Lee, Dong-ki; Li, Chiang J

    2012-07-15

    Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.

  6. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  7. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  8. Identification of HRAS as cancer-promoting gene in gastric carcinoma cell aggressiveness

    Science.gov (United States)

    Wu, Xiao Yu; Liu, Wen Tao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang

    2016-01-01

    Gastric carcinoma is one of the most lethal malignancies of cancers and its prognosis remains dismal due to the paucity of effective therapeutic targets. Herein, we showed that HRAS is markedly up-regulated in gastric carcinoma. Prognostic analysis indicated that HRAS expression might be a prognostic indicator for the survival of patients with gastric carcinoma. Ectopic expression of HRAS in gastric carcinoma cells accelerated proliferation, migration, invasion, angiogenesis, and clone formation ability of gastric carcinoma cells in vitro. Furthermore, HRAS over-expressing significantly promoted the tumorigenicity of gastric carcinoma cells in vivo whereas silencing endogenous HRAS caused opposite outcomes. Moreover, we demonstrated that HRAS enhanced gastric carcinoma aggressiveness by activating VEGFA/PI3K/AKT pathway and Raf-1 signaling. Together, our results provide new evidence that HRAS overexpression promotes the progression of gastric carcinoma and might represent a novel therapeutic target for its treatment. PMID:27725900

  9. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  10. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    Thor Straten, Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell ...

  11. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  12. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    progenitor cells (NPCs) by expressing an activated form of Notch1 (N1ICD) or oncogenic PIK3CA (PIK3CA*) in the developing mouse cerebellum, using cell...resistance, pediatric cancer, brain tumor, Notch1, PIK3CA, cell of origin, molecular subtypes, neural stem cells, neural progenitor cells, tumor initiation...neural progenitor cells, tumor initiation. 3. ACCOMPLISHMENTS: Major goals of the project: The stated goals of this project are to: 1) test the

  13. Low white blood cell count and cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000675.htm Low white blood cell count and cancer To use ... high blood pressure, or seizures Continue Reading How Low is too Low? When your blood is tested, ...

  14. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  15. [Analyzed the molecular interaction network of tumor suppressor gene 14-3-3 sigma in lung cancer cell based on stable isotope labeling by amino acids in cell culture technology].

    Science.gov (United States)

    Xiao, Ting; Mi, Wei; Li, Min; Cao, Bang-rong; Feng, Lin; Cheng, Shu-jun; Gao, Yan-ning

    2013-08-01

    To analysis the molecular interaction network of 14-3-3 sigma in non small cell lung cancer (NSCLC) cells. Established stable over-expressed 14-3-3 sigma protein PG cells, MTT assay was used to assess the growth rate of PG cells. Though stable isotope labeling by amino acids in cell culture (SILAC) and Mass spectrometry (MS) technology, to identify difference expressed proteins caused by over expressed 14-3-3 sigma. The protein expressed >2 or encyclopedia of genes and genomes (KEGG), established the molecular interaction network of tumor suppressor gene 14-3-3 sigma. The growth rate of over-expressed 14-3-3 sigma PG cell was obviously slower down compared to vector PG cells. A database including 147 differential protein was established. And a molecular interaction network of 14-3-3 sigma containing 26 protein was constructed.In this network, the expression of CSNK2A1 (casein kinase II subunit alpha), involved in numerous cellular processes, such as cell cycle progression, apoptosis and transcription, was the most significantly increased. A DNA repair protein, MEN1 (Menin) which functions as a transcriptional regulator was the most significantly decreased. After stable transfected with 14-3-3 sigma gene, growth rate of PG cells was inhibited, the proteins associated with cell cycle, DNA damage repair mechanisms were significantly changed, and constructed the molecular interaction network.

  16. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    OpenAIRE

    Shigeo Koido; Eiichi Hara; Sadamu Homma; Yoshihisa Namiki; Toshifumi Ohkusa; Jianlin Gong; Hisao Tajiri

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived...

  17. BMP9 Inhibits Proliferation and Metastasis of HER2-Positive SK-BR-3 Breast Cancer Cells through ERK1/2 and PI3K/AKT Pathways

    OpenAIRE

    Wei Ren; Yuehong Liu; Shaoheng Wan; Chang Fei; Wei Wang; Yingying Chen; Zhihui Zhang; Ting Wang; Jinshu Wang; Lan Zhou; Yaguang Weng; Tongchuan He; Yan Zhang

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-reg...

  18. Cancer Stem Cells in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Wang

    2011-01-01

    Full Text Available Head and neck cancer (HNC is the sixth most common malignancy world-wide, however the survival rate has not improved for the past 20 years. In recent years, the cancer stem cell (CSC hypothesis has gained ground in several malignancies and there is mounting evidence suggesting CSCs mediate tumor resistance to chemotherapy and radiation therapy. However, the CSC theory is also challenged at least in certain types of cancer. Here we review the progress of CSC studies in HNC, which suggest that HNC conforms to the CSC model. The identified CSC markers and their tumor initiation properties provide a framework for the development of novel therapeutic strategies for HNC.

  19. Noncoding RNAs in cancer and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Tianzhi Huang; Angel Alvarez; Bo Hu; Shi-Yuan Cheng

    2013-01-01

    In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potential y useful diagnostic tools.

  20. Up-Regulated FASN Expression Promotes Transcoelomic Metastasis of Ovarian Cancer Cell through Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-06-01

    Full Text Available Fatty acid synthase (FASN, responsible for the de novo synthesis of fatty acids, has been shown to act as an oncogene in various human cancers. However, the mechanisms by which FASN favors the progression of ovarian carcinoma remain unknown. In this study, we evaluated FASN expression in ovarian cancer and investigated how FASN regulates the aggressiveness of ovarian cancer cells. Our results show that increased FASN is associated with the peritoneal metastasis of ovarian cancers. Over-expression of FASN results in a significant increase of tumor burden in peritoneal dissemination, accompanied by augment in cellular colony formation and metastatic ability. Correspondingly, FASN knockdown using RNA interference in ovarian cancer cells inhibits the migration in vitro and experimental peritoneal dissemination in vivo. Mechanistic studies reveal that FASN promotes Epithelial-mesenchymal Transition (EMT via a transcriptional regulation of E-cadherin and N-cadherin, which is also confirmed by luciferase promoter activity analysis. Taken together, our work demonstrates that FASN promotes the peritoneal dissemination of ovarian cancer cells, at least in part through the induction of EMT. These findings suggest that FASN plays a critical role in the peritoneal metastasis of ovarian cancer. Targeting de novo lipogenesis may have a therapeutic potential for advanced ovarian cancer.

  1. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells.

    Science.gov (United States)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-03-11

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer.

  2. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2012-02-01

    INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and beta1-integrin, we examined activation of the beta1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and beta1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the beta1-integrin substrate fibronectin. This was accompanied by reduced protein expression of beta1-integrin and its binding partners alphaV- and alpha5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and beta1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between

  3. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    ABSTRACT: INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF

  4. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    Abstract Introduction The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. Methods MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. Results JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6

  5. Cancer and deregulation of stem cells pathways

    Directory of Open Access Journals (Sweden)

    Filipe Correia Martins

    2011-12-01

    Full Text Available Stem cells may have an important etiological role in cancer. Their classic regulatory pathways are deregulated in tumors, strengthening the stem cell theory of cancer. In this manuscript, we review Wnt, Notch and Hedhehog pathways, describing which of their factors may be responsible for the neoplastic development. Furthermore, we classify these elements as oncogenes or tumor suppressor genes, demonstrating their mutation implications in cancer. The activation of these pathways is associated with the expression of certain genes which maintain proliferation and apoptosis inhibition. Further work should be carried out in the future in order to control tumor development by controlling these signaling cascades.

  6. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    .003) and cytokines. Yet, these systemic adaptations had no effect on breast cancer cell viability in vitro. During 2 h of acute exercise, increases in serum lactate (6-fold, p ...Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...

  7. Sox2 expression in breast tumours and activation in breast cancer stem cells.

    Science.gov (United States)

    Leis, O; Eguiara, A; Lopez-Arribillaga, E; Alberdi, M J; Hernandez-Garcia, S; Elorriaga, K; Pandiella, A; Rezola, R; Martin, A G

    2012-03-15

    The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

  8. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  9. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  10. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  11. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    Directory of Open Access Journals (Sweden)

    Yinjie Wang

    2017-03-01

    Full Text Available The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the localized to the localized to the localized to the localized to the localized to the nucleus nucleus . CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1, CmC4H (cinnamate4 hydroxylase, Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1, CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase, CmC3H1 (coumarate3 hydroxylase1, CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1 and CmCCR1 (cinnamyl CoA reductase1 were all upregulated, in agreement in agreement in agreement in agreement in agreement in agreement with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content in CmMYB19 over-expressing plants plants plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin.

  12. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  13. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice.

    Science.gov (United States)

    Wang, Jian; Menchenton, Trevor; Yin, Shankai; Yu, Zhiping; Bance, Manohar; Morris, David P; Moore, Craig S; Korneluk, Robert G; Robertson, George S

    2010-07-01

    Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea.

  14. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  15. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    Science.gov (United States)

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  16. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  17. PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA

    Science.gov (United States)

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2012-01-01

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  18. Gap Junctions: The Claymore for Cancerous Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-07-01

    Full Text Available Introduction: Gap junctions play an important role in the cell proliferation in mammalian cells as well as carcinogenesis. However, there are controversial issues about their role in cancer pathogenesis. This study was designed to evaluate genotoxicity and cytotoxicity of Carbenoxolone (CBX as a prototype of inter-cellular gap junction blocker in MCF7 and BT20 human breast cancer cells. Methods: The MCF7and BT20 human breast cancer cell lines were cultivated, and treated at designated confluency with different doses of CBX. Cellular cytotoxicity was examined using standard colorimetric assay associated with cell viability tests. Gene expression evaluation was carried out using real time polymerase chain reaction (PCR. Results: MCF7 and BT20 cells were significantly affected by CBX in a dose dependent manner in cell viability assays. Despite varying expression of genes, down regulation of pro- and anti-apoptotic genes was observed in these cells. Conclusion: Based upon this investigation, it can be concluded that CBX could affect both low and high proliferative types of breast cancer cell lines and disproportionate down regulation of both pre- and anti-apoptotic genes may be related to interacting biomolecules, perhaps via gap junctions.

  19. Cell polarity signaling in the plasticity of cancer cell invasiveness.

    Science.gov (United States)

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-05-03

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.

  20. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  1. Midkine is a NF-κB-inducible gene that supports prostate cancer cell survival

    Directory of Open Access Journals (Sweden)

    You Zongbing

    2008-02-01

    Full Text Available Abstract Background Midkine is a heparin-binding growth factor that is over-expressed in various human cancers and plays important roles in cell transformation, growth, survival, migration, and angiogenesis. However, little is known about the upstream factors and signaling mechanisms that regulate midkine gene expression. Methods Two prostate cancer cell lines LNCaP and PC3 were studied for their expression of midkine. Induction of midkine expression in LNCaP cells by serum, growth factors and cytokines was determined by Western blot analysis and/or real-time quantitative reverse-transcription – polymerase chain reaction (RT-PCR. The cell viability was determined by the trypan blue exclusion assay when the LNCaP cells were treated with tumor necrosis factor alpha (TNFα and/or recombinant midkine. When the LNCaP cells were treated with recombinant midkine, activation of intracellular signalling pathways was determined by Western blot analysis. Prostate tissue microarray slides containing 129 cases (18 normal prostate tissues, 40 early stage cancers, and 71 late stage cancers were assessed for midkine expression by immunohistochemical staining. Results We identified that fetal bovine serum, some growth factors (epidermal growth factor, androgen, insulin-like growth factor-I, and hepatocyte growth factor and cytokines (TNFα and interleukin-1beta induced midkine expression in a human prostate cancer cell line LNCaP cells. TNFα also induced midkine expression in PC3 cells. TNFα was the strongest inducer of midkine expression via nuclear factor-kappa B pathway. Midkine partially inhibited TNFα-induced apoptosis in LNCaP cells. Knockdown of endogenous midkine expression by small interfering RNA enhanced TNFα-induced apoptosis in LNCaP cells. Midkine activated extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in LNCaP cells. Furthermore, midkine expression was significantly increased in late stage

  2. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  3. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Z.Ü., E-mail: zulker@fatih.edu.tr [Department of Biology, 34500 Büyükçekmece, Istanbul (Turkey); Alpsoy, L. [Department of Biology, 34500 Büyükçekmece, Istanbul (Turkey); Department of Medical Biology, 34500 Büyükçekmece, Istanbul (Turkey); Baykal, A. [Department of Chemistry, Fatih University, 34500 Büyükçekmece, Istanbul (Turkey)

    2016-08-15

    Highlights: • SPION has been synthesized via Reflux synthesis route. • SPION@APTES@FA-PEG@CQ nanodrug has super paramagnetic property. • SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 cells. • SPION@APTES@FA-PEG@CQ nanodrug can be potentially used for the delivery of quercetin to cervical and breast cancer cells. - Abstract: In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR + ) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.

  4. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Delury, Craig; Parkin, Edward

    2014-10-31

    Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  5. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  6. Effect of the over-expression of PII and PZ proteins on the nitrogenase activity of Azospirillum brasilense.

    Science.gov (United States)

    Huergo, Luciano F; Filipaki, Angela; Chubatsu, Leda S; Yates, M Geoffrey; Steffens, Maria Berenice; Pedrosa, Fabio O; Souza, Emanuel M

    2005-12-01

    The Azospirillum brasilense PII and PZ proteins, encoded by the glnB and glnZ genes respectively, are intracellular transducers of nitrogen levels with distinct functions. The PII protein participates in nif regulation by controlling the activity of the transcriptional regulator NifA. PII is also involved in transducing the prevailing nitrogen levels to the Fe-protein ADP-ribosylation system. PZ regulates negatively ammonium transport and is involved in nitrogenase reactivation. To further investigate the role of PII and PZ in the regulation of nitrogen fixation, broad-host-range plasmids capable of over-expressing the glnB and glnZ genes under control of the ptac promoter were constructed and introduced into A. brasilense. The nitrogenase activity and nitrate-dependent growth was impaired in A. brasilense cells over-expressing the PII protein. Using immunoblot analysis we observed that the reduction of nitrogenase activity in cells over-expressing PII was due to partial ADP-ribosylation of the Fe-protein under derepressing conditions and a reduction in the amount of Fe-protein. These results support the hypothesis that the unmodified PII protein act as a signal to the DraT enzyme to ADP-ribosylate the Fe-protein in response to ammonium shock, and that it also inhibits nif gene expression. In cells over-expressing the PZ protein the nitrogenase reactivation after an ammonium shock was delayed indicating that the PZ protein is involved in regulation of DraG activity.

  7. Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhao; Wen-Lu Shen

    2005-01-01

    AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers

  8. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N;

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated......Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  9. Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors

    OpenAIRE

    Oshima, Nobu

    2014-01-01

    Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, et al. (2014) Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors. PLoS ONE 9(7): e101735. doi:10.1371/journal.pone.0101735

  10. Cancer cells with irons in the fire.

    Science.gov (United States)

    Bystrom, Laura M; Rivella, Stefano

    2015-02-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.

  11. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  12. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  13. Squamous cell cancer of the rectum

    Institute of Scientific and Technical Information of China (English)

    Tara Dyson; Peter V Draganov

    2009-01-01

    Squamous cell carcinoma of the rectum is a rare malignancy. It appears to be associated with chronic inflammatory conditions and infections. The clear association seen between Human Papilloma Virus and various squamous cancers has not been firmly established for the squamous cell cancer of the rectum. The presentation is nonspecific and patients tend to present with advanced stage disease. Diagnosis relies on endoscopic examination with biopsy of the lesion. Distinction from squamous cell cancer of the anus can be difficult, but can be facilitated by immunohistochemical staining for cytokeratins. Staging of the cancer with endoscopic ultrasound and computed tomography provides essential information on prognosis and can guide therapy. At present, surgery remains the main therapeutic option; however recent advances have made chemoradiation a valuable therapeutic addition. Squamous cell carcinoma of the rectum is a distinct entity and it is of crucial importance for the practicing Gastroenterologist to be thoroughly familiar with this disease. Compared to adenocarcinoma of the rectum and squamous cell cancer of the anal canal, squamous cell carcinoma of the rectum has different epidemiology, etiology, pathogenesis, and prognosis but, most importantly, requires a different therapeutic approach. This review will examine and summarize the available information regarding this disease from the perspective of the practicing gastroenterologist.

  14. NSAIDs and Cell Proliferation in Colorectal Cancer.

    Science.gov (United States)

    Ettarh, Raj; Cullen, Anthony; Calamai, Alvise

    2010-06-24

    Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration), could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  15. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  16. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake.

  17. Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1

    Institute of Scientific and Technical Information of China (English)

    Min Ni; Xiao-Lei Shi; Zhi-Gang Qu; Hong Jiang; Zi-Qian Chen; Jun Hu

    2015-01-01

    Objective:To explore the effect and molecular mechanism ofSPHK1 in the invasion and metastasis process of non-small-cell lung cancer cells(A549).Methods:Recombinant retrovirus was used to mediate the production ofA549/vector,A549/SPHK1,A549/scramble, andA549/SPHK1/RNAi that stably expressed or silencedSPHK1.The invasion and migration capacities of A549 cells overexpressing or silencingSPHK1 were determined usingTranswell invasion assay and scratch wound repair experiment.The protein and mRNA expression levels ofE-cadherin, fibronectin, vimentin inA549/vector,A549/SPHK1,A549/scramble,A549/SPHK1/RNAi were detected withWestern blot(WB) and quantitativePCR(QPCR) methods, respectively.Results:Transwell invasion assay and scratch wound repair experiments showed that over-expression of SPHK1 obviously enhanced the invasion and migration capacities ofA549 cells.WB andQPCR detection results showed that, the expression ofE-cadherin(a molecular marker of epithelial cells) and fibronectin, vimentin(molecular markers of mesenchymal cells) inA549 cells was upregulated after overexpression ofSPHK1; whileSPHK1 silencing significantly reduced the invasion and metastasis capacities ofA549cells, upregulated the expression of molecular marker of epithelial cells, and downregulated the expression of molecular marker of mesenchymal cells. Conclusions:SPHK1 promotes epithelial mesenchymal transition of non-small-cell lung cancer cells and affects the invasion and metastasis capacities of these cells.

  18. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  19. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  20. Enteric Bacteria and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2011-01-01

    Full Text Available Intestinal bacteria can contribute to cell proliferation and cancer development, particularly in chronic infectious diseases in which bacteria and/or bacterial components might interfere with cell function. The number of microbial cells within the gut lumen is estimated to be 100 trillion, which is about 10-times larger than the number of eukaryotic cells in the human body. Because of the complexity of the gut flora, identifying the specific microbial agents related to human diseases remains challenging. Recent studies have demonstrated that the stemness of colon cancer cells is, in part, orchestrated by the microenvironment and is defined by high Wnt activity. In this review article, we will discuss recent progress with respect to intestinal stem cells, cancer stem cells, and the molecular mechanisms of enteric bacteria in the activation of the Wnt pathway. We will also discuss the roles of other pathways, including JAK-STAT, JNK, and Notch, in regulating stem cell niches during bacterial infections using Drosophila models. Insights gained from understanding how host-bacterial interaction during inflammation and cancer may serve as a paradigm for understanding the nature of self-renewal signals.

  1. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    Science.gov (United States)

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  2. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    Science.gov (United States)

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  3. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    1998-01-01

    in research in the early stages of testicular cancer (carcinoma in situ testis (CIS)) allows us to begin to answer some of these questions. There is more and more evidence that the CIS cell is a gonocyte with stem cell potential, which explains why an adult man can develop a non-seminoma, which...... is a neoplastic caricature of embryonic growth. We consider the possibility that CIS cells may loose their stem cell potential with ageing. Along these lines, a seminoma is regarded a gonocytoma where the single gonocytes have little or no stem cell potential. The Sertoli and Leydig cells, which are activated...

  4. Helicobacter pylori upregulates the expression of p16(INK4) in gastric cancer cells.

    Science.gov (United States)

    Wang, Ping; Mei, Juan; Zhang, Ning; Tao, Jing; Tian, Hua; Fu, Guo-Hui

    2011-01-01

    Previous studies have suggested that p16(INK4) protein is over expressed in gastric cancer. However, whether H. pylori infection induces p16(INK4) in human gastric epithelial cells remains to be determined. The aim of this study was to analyze the molecular mechanism of H. pylori-induced p16(INK4) expression. Expression of p16(INK4) mRNA and Sp1 mRNA were assessed by reverse transcription-PCR. Expression of p16(INK4) protein was assessed by Western blot and immunocytochemistry. A luciferase assay was used to monitor activation of the p16(INK4) gene promoter and to explore the binding of transcription factors to this promoter. H. pylori upregulates the expression of p16(INK4) in gastric cancer SGC7901 cells. p16 promoter is highly actived in SGC7901 cells by H. pylori. Sp1 activates the expression of p16(INK4)-Luc and promotes the protein level of p16(INK4). H. pylori upregulates the expression of p16(INK4) in gastric cancer SGC7901 cells via the p16(INK4) promoter, and Sp1 is involved in the activation of p16(INK4) promoter by H. pylori.

  5. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  6. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Science.gov (United States)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  7. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  8. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  9. Phenotypic Heterogeneity of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Aurelio Lorico

    2011-01-01

    Full Text Available Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006, and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006. The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005, has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et al., 2006 has suggested that current anticancer drugs, which inhibit bulk replicating cancer cells, may not effectively inhibit CSC. The clinical relevance of targeting CSC-associated genes is supported by several recent studies, including CD44 targeting for treatment of acute myeloid leukemia (Jin et al., 2006, CD24 targeting for treatment of colon and pancreatic cancer (Sagiv et al., 2008, and CD133 targeting for hepatocellular and gastric cancer (Smith et al., 2008. One promising approach is to target CSC survival signaling pathways, where leukemia stem cell research has already made some progress (Mikkola et al., 2010.

  10. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D; Debeb, B; Woodward, W [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  11. Myeloid suppressor cells in cancer and autoimmunity.

    Science.gov (United States)

    Sica, Antonio; Massarotti, Marco

    2017-07-17

    A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or

  12. Autophagy-related cell death by pan-histone deacetylase inhibition in liver cancer

    Science.gov (United States)

    Di Fazio, Pietro; Waldegger, Petra; Jabari, Samir; Lingelbach, Susanne; Montalbano, Roberta; Ocker, Matthias; Slater, Emily P.; Bartsch, Detlef K.; Illig, Romana; Neureiter, Daniel; Wissniowski, Thaddeus T.

    2016-01-01

    Autophagy is a homeostatic, catabolic degradation process and cell fate essential regulatory mechanism. Protracted autophagy triggers cell death; its aberrant function is responsible for several malignancies. Panobinostat, a potent pan-deacetylase inhibitor, causes endoplasmic reticulum stress-induced cell death. The aim of this study was to investigate the role of autophagy in deacetylase inhibitor-triggered liver cancer cell death. HepG2 (p53wt) and Hep3B (p53 null) liver cancer cell lines were exposed to panobinostat. RT-qPCR and western blot confirmed autophagic factor modulation. Immuno-fluorescence, -precipitation and -histochemistry as well as transmission electron microscopy verified autophagosome formation. The cytotoxicity of panobinostat and autophagy modulators was detected using a real time cell viability assay. Panobinostat induced autophagy-related factor expression and aggregation. Map1LC3B and Beclin1 were significantly over-expressed in HepG2 xenografts in nude mice treated with panobinostat for 4 weeks. Subcellular distribution of Beclin1 increased with the appearance of autophagosomes-like aggregates. Cytosolic loss of p53, in HepG2, and p73, in Hep3B cells, and a corresponding gain of their nuclear level, together with modulation of DRAM1, were observed. Autophagosome aggregation was visible after 6 h of treatment. Treatment of cells stably expressing GFP-RFPtag Map1LC3B resulted in aggregation and a fluorescence switch, thus confirming autophagosome formation and maturation. Tamoxifen, an inducer of autophagy, caused only a block in cell proliferation; but in combination with panobinostat it resulted in cell death. Autophagy triggers cell demise in liver cancer. Its modulation by the combination of tamoxifen and panobinostat could be a new option for palliative treatment of hepatocellular carcinoma. PMID:27058414

  13. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chen Wang

    2014-02-01

    Full Text Available VCAM-1 (CD106, a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1. In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.

  14. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  15. Cancer Stem Cells: A Moving Target.

    Science.gov (United States)

    Francipane, Maria Giovanna; Chandler, Julie; Lagasse, Eric

    2013-06-01

    Even though the number of anti-cancer drugs entering clinical trials and approved by the FDA has increased in recent years, many cancer patients still experience poor survival outcome. The main explanation for such a dismal prognosis is that current therapies might leave behind a population of cancer cells with the capacity for long-term self-renewal, so-called cancer stem cells (CSCs), from which most tumors are believed to be derived and fueled. CSCs might favor local and distant recurrence even many years after initial treatment, thus representing a potential target for therapies aimed at improving clinical outcome. In this review, we will address the CSC hypothesis with a particular emphasis on its current paradigms and debates, and discuss several mechanisms of CSC resistance to conventional therapies.

  16. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  17. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  18. with esophageal squamous cell cancer

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-02-01

    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT. Material and methods : From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results : The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS and local-regional control (LRC were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010, according to univariate analysis. The 5-year OS (LRC was 37.3% (58.6% for patients aged 70-74 years and 14.5% (47.9% for patients aged > 74 years (p = 0.010 and p = 0.038. In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]. From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6% patients experienced fistula and 15 (7.9% experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027, higher NBT dose/fraction (20-25 Gy/5 fractions, and higher total dose (> 66 Gy. Conclusions : The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients.

  19. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  20. Gasdermin-B promotes invasion and metastasis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Marta Hergueta-Redondo

    Full Text Available Gasdermin B (GSDMB belongs to the Gasdermin protein family that comprises four members (GSDMA-D. Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases. We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2 the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2. The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.

  1. Detecting the epidermal growth factor receptors status in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    MENG Xue; YU Jin-ming

    2011-01-01

    Non-small cell lung cancer is one of the leading causes of all cancer deaths,but despite years of research,it is still difficult to predict the response and clinical outcome of the disease.In recent years,new treatment strategies targeting the epidermal growth factor receptors (EGFR) have been developed.EGFR is one of the most frequently over expressed proteins in various cancers,including lung cancer,and signaling through this receptor has been known to cause tumor progression as well as resistance to different treatments.Therefore,EGFR has become an attractive target for various treatment strategies.However,it is important to note that not all patients with lung cancer are suitable for targeted treatment,and that patients should be selected for this treatment.Several studies have proven that the status of the EGFR can be both an indicator of suitability for treatment with,and predict the likelihood of response to EGFR targeted therapy.There are many standard techniques to be used for the detection of EGFR.This overview summarizes the ongoing and future investigations to determine the status of the EGFR.

  2. Methods of Cell Propulsion through the Local Stroma in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available In the normal breast, cellular structures change cyclically in response to ovarian hormones. Cell proliferation, apoptosis, invasion, and differentiation are integral processes that are precisely regulated. Normal epithelial cells depend on the formation of intercellular adhesion contacts to form a continuous sheet of stratifying cell layers that are attached to one and other horizontally and vertically. Cells migrate by extending membrane protrusions to explore the extracellular space locating their targets in a chemotactic manner. The formation of cell protrusions is driven by the assembly of actin filaments at the leading edge. Reorganisation is regulated by a highly integrated signalling cascade that transduces extracellular stimuli to the actin filaments. This signalling cascade is governed by GTPases which act as molecular switches leading to actin polymerisation and the formation of filopodia and lamellipodia. This process is linked to downstream molecules known collectively as WASP proteins, which, in the presence of cortactin, form a complex leading to nucleation and formation of branched filaments. In breast cancer, the cortactin is over expressed leading to increased cellular motility and invasiveness. This hugely complex and integrated signalling cascade transduces extracellular stimuli. There are multiple genes related to cell motility which are dysregulated in human breast cancers.

  3. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  4. Breast Cancer Stem Cells in Antiestrogen Resistance

    Science.gov (United States)

    2014-10-01

    like stem cells and that are resistant to chemotherapy drugs , radiation therapy and antiestrogens provided a reasonable explanation for the...breast cancer patients in the past four decades. However, despite the significant antineoplastic activity ofTAM,most breast tumors are eventually...oestrogen to reverse antihormonal drug resistance in oestrogen re- cepotr positive breast cancer patients. The Breast. Supplement. 2007;2:S105–S113

  5. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    functional connection between diet and abundance of MaSCs for breast cancer prevention . 15. SUBJECT TERMS Diet, nutrition , stem cells, Wnt-transgenic...Su et al. / Journal of Nutritional Biochemistry xx (2010) – lifelong exposure to soy-enriched diets are mammary tumor- preventive in rodent...environmental (‘dietary’) cues may expand nutritional strategies for breast cancer prevention and therapeutic interventions. Acknowledgements We thank Dr

  6. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  7. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  8. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy.

  9. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  10. The cancer stem cell theory: is it correct?

    Science.gov (United States)

    Yoo, Min-Hyuk; Hatfield, Dolph L

    2008-11-30

    The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

  11. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small ... clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have ...